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ABSTRACT
Knowledge graph (KG) alignment is to match entities in different
KGs, which is important to knowledge fusion and integration. Tem-
poral KGs (TKGs) extend traditional Knowledge Graphs (KGs) by
associating static triples with specific timestamps (e.g., temporal
scopes or time points). Moreover, open-world KGs (OKGs) are dy-
namic with new emerging entities and timestamps. While entity
alignment (EA) between KGs has drawn increasing attention from
the research community, EA between TKGs and OKGs still remains
unexplored. In this work, we propose a novel Temporal Relational
Entity Alignment method (TREA) which is able to learn alignment-
oriented TKG embeddings and represent new emerging entities.
We first map entities, relations and timestamps into an embedding
space, and the initial feature of each entity is represented by fus-
ing the embeddings of its connected relations and timestamps as
well as its neighboring entities. A graph neural network (GNN)
is employed to capture intra-graph information and a temporal
relational attention mechanism is utilized to integrate relation and
time features of links between nodes. Finally, a margin-based full
multi-class log-loss is used for efficient training and a sequential
time regularizer is used to model unobserved timestamps. We use
three well-established TKG datasets, as references for evaluating
temporal and non-temporal EAmethods. Experimental results show
that our method outperforms the state-of-the-art EA methods.
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• Computing methodologies → Knowledge representation
and reasoning; Temporal reasoning.
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1 INTRODUCTION
Knowledge Graph (KG) is a knowledge base that uses a graph-
structured data model or topology to integrate data. The recent
growth of KG, such as the Google knowledge graph, YAGO [27],
and DBpedia [16], has triggered success in various applications to
deal with knowledge-intensive downstream like search engines
and recommendation systems [9]. A typical KG is composed of
entities as nodes and relations as edges and can be represented as
a collection of triples (es , r , eo ), indicating a specific relationship
between the subject entity and the object entity, e.g., (Boris Johnson,
PrimeMinisterOf, United Kingdom).

However, most KGs are independently extracted from separate
data sources, focusing on different domains or languages. There-
fore, using a single KG is oftentimes insufficient to the need of
downstream applications and it is essential to fuse heterogeneous
knowledge among different KGs where same entities exist in dif-
ferent surface forms. Entity alignment (EA) in different KGs play
an important role for KG fusion. To address this problem, a lot of
embedding-based EAmethods [5, 21, 22, 30, 36] have been proposed
to embed entities into low-dimensional vector spaces, and obtain
the pairs of equivalent entities by computing the pair-wise distance
between their vector representations.

Recently, studies of temporal dynamics in knowledge graphs
have intrigued a lot of interest for researchers. Temporal KGs like
Wikidata [7], YAGO3 [19] and ICEWS [15] incorporate time in-
formation into triples, which means some links between entities
have two properties, i.e., relation and time, as shown in Figure 1.
Triples attached with time information are represented as quadru-
ples, shaped like (es , r , eo , t), where t denotes the timestamp and
can be represented in various forms, e.g., time points, start/end
time, or time intervals. Noteworthily, timestamps in most TKGs are
presented using Arabic numerals and similar formats. Thus, times-
tamps expressing the same temporal information across different
TKGs can be easily aligned by manually unifying their formats.

However, most of the existing embedding-based EA methods
do not consider time information in KGs, which might lead to the
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Figure 1: An illustrative example of limitations of the exist-
ing time-unaware entity align methods.

misalignment between similar entities. As in the case of Figure 1
in which the left and right subgraphs are extracted from two sep-
arate TKG respectively, time-unaware EA methods are likely to
recognize Boris Johnson and David Cameron as an entity pair to
be aligned due to the similarity of their neighboring nodes and
connected relations. On the other hand, these two entities can be
easily distinguished by considering the timestamps of links within
their neighborhood. Moreover, the existing EA methods can not
model new emerging entities and timestamps, which is important
for learning and inferencing on open-world KGs (OKGs).

To address the above challenges, we introduce a novel Temporal
Relational Entity Alignment method, TREA, for EA between TKGs
and OKGs. TREA maps entities, relations and timestamps in TKGs
into an embedding space, and the the initial feature of each entity
is represented by fusing the embeddings of its connected relations
and timestamps as well as its neighboring entities so that a new
emerging entity can also be represented. We employs a graph neu-
ral network (GNN) to learn the semantics of entities and capture
structural information, and a temporal relational attention mecha-
nism is used to incorporate time and relation information of links
into the GNN by assigning respective weights to different nodes
within a neighborhood according to embeddings of the correspond-
ing timestamps and relation. Then, a margin-based full multi-class
log-loss is used for efficient training and a sequential time regu-
larizer is used to model unobserved timestamps. At last, entities
are aligned by computing the distances between their multi-aspect
representations.

In summary, the main contributions of this paper are as follows:

• We propose a GNN-based embedding method to entity align-
ment between TKGs, which can model temporal relational
graphs with an efficient time-aware attention mechanism.

• The existing EA methods hold a closed-world assumption,
i.e., where KGs are fixed, and entities or timestamps cannot
be easily added. In this work, we relax this assumption and
propose a new open-world EA task where new entities and
timestamps are emerging in testing phase.

• A neighborhood aggregation representation and a sequential
time regularizer are proposed, which can model representa-
tions of new emerging entities and timestamps, respectively.

Additionally, a margin-based full multi-class log-loss func-
tion is used for fast training.

• The experimental results on three well-built TKG bench-
marks show that our method achieves the state-of-the-art
on temporal EA and open-world EA.

2 RELATEDWORK
2.1 TKG and OKG Embedding
With the development of TKGs, recent researches have shown in-
terest in extending KGE models to TKGs. Typically, such works im-
prove performances of some existing KGE methods on time-aware
link prediction by mapping timestamps into the embedding space
and defining a time-aware score function which involves time em-
beddings [8, 13, 41–43]. Another line of TKGE works including RE-
NET [11] and TeMP [37] combine R-GCN and temporal recurrent
networks (e.g., RNN, GRU or temporal transformers) as encoders,
and use shallow KGEmodels (e.g., ComplEx [33]) as decoders. Some
TKGE models [10, 11] can predict future link. However, the closed-
world assumption is partly kept since the entity set of a KG is
consistent. On the other hand, some existing OKGE [26, 35] mod-
els consider new emerging entities but ignore time information.
Noteworthily, the above TKGE and OKGE methods are not directly
compatible with the EA setting.

2.2 Temporal Graph Neural Network
Graph Neural Network (GNN) is famous for its strong modeling
capability on the non-Euclidean structure and thus has become one
of the hottest topics in graph learning these years. GNNmodels, e.g.,
GCN [12] and GAT [34] have seen a series of recent successes in
problems related to graph-structured data. Since many real-world
graphs like social networks and recommendation systems are dy-
namic or temporal, it is essential to carefully consider time informa-
tion for learning good representations on such graphs. Most of the
existing temporal GNNmodels [2, 17, 20, 25, 45] generally discretize
a temporal graph into multiple static snapshot in a timeline and use
combinations of GNN models and recurrent models whereby the
former handle graph information and the latter capture dynamism.
Such combination architectures often need long training time.

2.3 Entity Alignment
Entity alignment (EA) is to find equivalent entities between multi-
ple KGs. A lot of embedding-based EAmethods have been proposed
to embed KGs into a vector space and align entities by measure
the similarities between their embeddings. Some embedding-based
EA methods [5, 29, 30, 49] exploit TransE to encode entities and
relations into dense embeddings and learn structure information
from separate KGs, and use an alignment function to map the em-
beddings of entities in different KGs into a unified vector space via
pre-aligned entities.

More recent research works introduce GNNs into EA task, which
is originated with the ability to model global information of graphs.
GCN-Align utilizes GCNs to embed entities of each KG into a uni-
fied vector space without the prior knowledge of relations. After
that, a bunch of GCN-based methods are proposed to incorporate
relation information into GCNs. A part of GCN-based EA meth-
ods [1, 22, 23, 28, 46] assign different weight coefficients to entities
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Figure 2: Framework of our method. Dashed arrows repre-
sent the created inverse links.

according to relation types between them, which empowers the
models to distinguish the importance between different entities.
Another part of GNN-based EA methods incorporate auxiliary in-
formation in addition to structure information in KGs. Some of
them [38–40, 47] use pre-trained entity name vectors, and mean-
while others [18, 24] utilize an attributed value encoder to learn
attribute information. A very recent work [44] show that the in-
corporation of time information can improve the performances
of GNN-based EA methods. So far, there is no existing EA model
which can be directly compatible with both TKGs and OKGs.

3 PROBLEM FORMULATION
A TKG is a directed relational temporal graph G = (E,R,T ,Q)

comprising four sets: entities E, relations R, timestamps T , and
quadruples Q ⊆ E × R × E × T . A TKG stores the real-world
information in the form of quadruples (es , r , eo , t), where es , eo ∈ E.
Given two TKGs G1 = (E1,R1,T1,Q1), G2 = (E2,R2,T2,Q2), and
a pre-aligned entity pair set S = {(ei , ej )|ei ∈ E1, ej ∈ E2, ei ≡ ej }
as alignment seeds where ≡ denotes equivalence. The task of EA
between TKGs aims to obtain more potential equivalent entity pairs.

The task of EA between OKGs aims to predict entity pairs in-
volving unseen entities or those entities associated with future time
stamps. In another word, a TKGG is updated as (E

⋃
E ′,R,T

⋃
T ′

,Q
⋃

Q ′) where E ′, T ′ and Q ′ are sets of unseen entities, times-
tamps and quadruples emerging at the inference phase.

4 THE PROPOSED METHOD
As mentioned in the introduction, a lot of recent knowledge bases
involves temporal facts and real-world knowledge bases are often
dynamic with new emerging entities and timestamps. However,
most of the existing embedding-based EA methods disregard time
information and is incapable to model new emerging entities and
timestamps. To address these defects, we propose a novel Tempo-
ral Relational Entity Alignment method, TREA. Figure 2 depicts
that TREA consists of three major parts: (i) Neighborhood Aggrega-
tion Representation (NAR); (ii) Temporal Relational Attention (TRA);

Figure 3: An illustration of temporal relation attention by
entity e0 on its neighborhood. Red and purple arrows denote
computations of time and relation attention, respectively.

(iii) Margin-based Multi-class Log-loss (MML). In this section, we
elaborate on the above three parts of TREA.

4.1 Neighborhood Aggregation Representation
Timestamps in TKGs can be represented in different forms, i.e., time
points, start/end time, and time intervals and some TKGs involve
non-temporal facts. Following previous work [44], we use a time
range ([tb , te ]) where tb denotes the begin time and te denotes
the end time to represent each timestamp. Specifically, we have
tb = te for a time point and te = t0 or tb = t0 for a start time or
end time where t0 ∈ T denotes the first time step and indicates
that the time data is unobtainable. We create an inverse link for
each link to accumulate the direction information. Each inverse
link involves a reciprocal relation r−1 corresponding to the relation
r of the original link. Thus, the relation set R is extended to have its
inverse. And the begin time tb and end time te of each timestamp are
separately attached to the original link and the inverse link. Thus,
each fact (es , r , eo , [tb , te ]) can be decomposed into two quadruples
(es , r , eo , tb ) and (es , r

−1, eo , te ).
We map all of entities, relations (including reverse relations) and

time steps in TKGs into a vector space Rk where k denotes the
dimension of the vector space. Embeddings of the entity ei , relation
rm , time step tn are denoted as hei ,hrm ,htn ∈ Rk , respectively. To
enforce neighborhood information into the entity representation,
we average the embeddings of each embedding and its neighboring
entities and then concatenate the average entity embedding with
the features of the inward links in the entity’s neighborhood. The
complete neighborhood aggregation representation h0ei of an entity
ei can be formulated as,

h0ei =
[

1
|Ne

i |+1
∑

ej ∈Ne
i ∪ei

hej | |
1

|Nr
i |

∑
r j ∈Nr

i

hr j | |
1

|Nτ
i |

∑
τj ∈Nτ

i

hτj
]
(1)

where Ne
i is the set of neighboring entities of ei , Nr

i and Nτ
i are

sets of relations and time steps which connect inwardly to ei . | |
denotes the concatenation operator. For a new emerging entity ei
without an entity embedding hei , we only consider its neighboring
entities ej ∈ Ne

i which are observed in the original KG. By using
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neighborhood aggregation representation, we can represent both
observed entities and new emerging entity.

4.2 Temporal Relational Attention
Graph Attention Network (GAT) extends the vanilla Graph Convo-
lutional Network (GCN) by employing a self-attention mechanism
to calculate the hidden representations of each node by attending
over its neighbors. A GAT layer can be defined as follow,

hl+1ei = σ
( ∑
ej ∈Ne

ei ∪ei

αi, jWhlej
)
, (2)

where σ (·) denotes the nonlinear activation function, W denotes
the shared transformation matrix, and αi, j denotes the attention
coefficient of ej to ei . To develop a temporal relational attention
mechanism, we define new time-specific attention coefficient αi, j,n ,
relation-specific attention coefficient βi, j,m , diagonal temporal
transformation matrixWt and diagonal relational transformation
matrixWr . The attention coefficients are computed as,

αi, j,n =
exp(υTt htn )∑

ej ∈Ne
i

∑
[tn′,rm′ ]∈Li j exp(υ

T
t htn′ )

,

βi, j,m =
exp(υTr hrm )∑

ej ∈Ne
i

∑
[tn′,rm′ ]∈Li j exp(υ

T
r hrm′ )

,

(3)

where υt ,υr ∈ Rk denote shared temporal and relational attention
weight vectors, htn ∈ Rk denotes the embedding of the time step tn ,
hrm ∈ Rk denotes the embedding of the relation rm , Li j denotes
the set of inward links from ej to ei and [tn′ , rm′] ∈ Li j indicates
the presence of an observed quadruple (ej , rm′ , ei , tn′).

As shown in Figure 3, the entity feature update equation can be
renewed by substituting Eq 3 into Eq 2,

hl+1ei = tanh
( ∑
ej ∈Ne

i

∑
[tn,rm ]∈Li j

(αi, j,nWt + βi, j,mWr )hlej
)
.

(4)
A cross-layer representation is employed to capture multi-hoop

neighboring information by stacking entity features from different
layers. We define a global output features houtei of ei as,

houtei = [h0ei | |h
1
ei | | · · · | |h

L
ei ], (5)

where L denotes the number of attention layers.
To obtain multi-aspect representations for entities, we concate-

nate entity output features generated from GNN with averages of
embeddings of their neighboring relations and timestamps. The
multi-view entity representation of ei is defined as follows,

hmul
ei =

[
houtei | |

1
|Nr

i |

∑
rm ∈Nr

i

hrm | |
1

|N t
i |

∑
tn ∈Nt

i

htn
]
. (6)

4.3 Margin-based Multi-class Log-loss
The optimization objective of an embedding-based EA model is to
enforce that entities of each alignment seed have close representa-
tions. During training, we use L2 distance as the metric to define
the difference of representations of two entities ei and ej as follows,

d(ei , ej ) = | |hmul
ei − hmul

ej | |22 . (7)

Most of existing embedding-based EA methods employ a pair-
wise margin ranking loss (MRL) function to minimize the distances
between training entity pairs as follows,

L =
∑

(ei ,ej )∈S

[γ + d(ei , ej ) − d(e ′i , e
′
j )]+, (8)

where S denote the set of alignment seeds, γ is a fixed margin, [x]+
represents the operationMax(x , 0), e ′i and e

′
j denote the negative

samples corresponding to ei and ej . Since the negative samples
are randomly selected and the margin ranking loss function treats
each negative sample equally, the whole training process might
be influenced by easy negative samples which are low-quality and
uninformative, and thus suffer from slow convergence.

Lacroix et al. [14] employs a full negative sampling strategy
instead of random negative sampling for training link prediction
model to achieve fast convergence. And a multi-class logistic loss
function is used to ensure that the optimization objective mainly
focus on hard negative samples,

L =
∑
i ∈SP

[
− s(i) + log

∑
j ∈SN

i ∪i

exp(s(j))
]
, (9)

where SP denote the sets of positive samples, SN
i denotes negative

samples corresponding to the positive sample i , s(i) represents the
score of the sample i .

In this work, we also adopt full negative sampling for fast con-
vergence and a LogSumExp operation is used to find hard negative
samples [21]. The margin-based logistic loss function for entity
pairs can be defined as follows,

Lp =
∑

(ei ,ej )∈S

log
[
1 +

∑
e ′j ∈E2

exp(γ + d(ei , ej ) − d(ei , e
′
j ))

]
+

∑
(ei ,ej )∈S

log
[
1 +

∑
e ′i ∈E1

exp(γ + d(ei , ej ) − d(e ′i , ej ))
]
,

(10)

To retain the distance and sequence information between dif-
ferent timestamps, we use a sequential time regularizer for time
embeddings in addition to the loss function for entity pairs, based
on the assumption that embeddings of two distant time steps are
relatively more different than those of two adjacent time steps. The
complete loss function used for our model is defined as,

L = Lp + λt

|T |−1∑
i=1

| |hti+1 − hti − htb | |
2
2 , (11)

where T = T1 ∪ T2, λt denotes the time regularization weight, htb
is the embedding of the temporal slope.

Following the previous EA work [22, 23, 44], we adopt Cross-
domain Similarity Local Scaling (CSLS) [6] as the distance metric
during testing to measure similarities between entity embeddings.

4.4 Trainable Parameters
We compare the theoretical value of the amount of trainable pa-
rameters of TREA with several existing EA models. As shown in
Table 1, compared to parameter-efficient translational entity align
models like MTransE, TREA uses additional parameters only for
reciprocal relation embeddings, time embeddings and attention
weight vectors, which are much fewer than parameters of entity
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embeddings in most cases. We further show the actual values of
the amount of trainable parameters of these EA models on different
datasets in Section 5.7.

EA Methods Number of Trainable Parameters

MTransE d(|E1 | + |E2 | + |R1 | + |R2 |)
JAPE d(|E1 | + |E2 | + |R1 | + |R2 |)

BootEA d(|E1 | + |E2 | + |R1 | + |R2 |)
GCN-Align d(|E1 | + |E2 |) + 2d2
MuGNN d(|E1 | + |E2 | + |R1 | + |R2 |) + 2d + d2
MRAEA d(|E1 | + |E2 | + 2|R1 | + 2|R2 |) + 3dML
HyperKA d(|E1 | + |E2 | + |R1 | + |R2 |) + d2L
RREA d(|E1 | + |E2 | + 2|R1 | + 2|R2 |) + 3dL

KE-GCN d(|E1 | + |E2 | + |R1 | + |R2 |) + d2L(|R1 | + |R2 | + 2)
TEA-GNN d(|E1 | + |E2 | + 2|R1 | + 2|R2 | + |T |) + 6dL

TREA d(|E1 | + |E2 | + 2|R1 | + 2|R2 | + |T |) + 8dL

Table 1: Comparison of numbers of trainable parameters be-
tween our EAmethod and several popular EAmethods. Note
thatM denotes the number of attention heads of MRAEA.

5 EXPERIMENT
5.1 Temporal Datasets for Entity Alignment
In this paper, we use three TKG datasets extracted from ICEWS [15],
YAGO [27], Wikidata [7] as references for evaluating temporal
and non-temporal EA methods, i.e., DICEWS, YAGO-WIKI50K
and YAGO-WIKI20K [44]. The statics of the three temporal EA
datasets are listed in Table 2.

ICEW05-15 [8] is a subset of ICEWS facts occurring during 2005
to 2015, and is commonly used as a TKG benchmark dataset in
the community. It is noteworthy that time annotations in ICEWS
are all time points, e.g., (Barack Obama, Visit, Ukraine, 2014-07-
08). DICEWS is built from ICEWS05-15 in the similar way to the
construction of DFB datasets [49]. Between Q1 and Q2 of DICEWS,
the overlap ratio of their shared quadruples are 50%.

YAGO-WIKI50K andYAGO-WIKI20K are extracted fromWiki-
data and YAGO, between which there are a large number of identi-
cal entities represented in different surface forms. The first dataset
contains about 50,000 entity pairs, and each fact in the dataset
is temporal. Meanwhile, YAGO-WIKI20K is a hybrid dataset with
20,000 entity pairs. It is noteworthy that timestamps in YAGO-WIKI
datasets are represented in various forms, e.g., time points, start or
end time, time intervals. Statics of time-aware EA datasets are listed
in Table 2. Please see the appendix for detailed dataset descriptions.

5.2 Baseline
As mentioned in Section 2.3, most of embedding- based EAmethods
can be roughly classified into two categories, i.e., translational
methods and GNN-based methods. In this paper, we compare our
proposed method with three popular tranlational EA methods and
seven state-of-the-art GNN-based EA methods as follows,
• Translational Models: MTransE [5], JAPE [29], AlignE [30];
• GNN-based Models: GCN-Align [36], MuGNN [1], MRAEA [22],
HyperKA [28], RREA [23], KE-GCN [46], TEA-GNN [44].

Dataset DICEWS YAGO-WIKI50K YAGO-WIKI20K

|E1 | 9,517 49,629 19,493
|E2 | 9,537 49,222 19,929
|R1 | 247 11 32
|R2 | 246 30 130
|T ∗ | 4,017 245 405
|Q1 | 307,552 221,050 83,583
|Q2 | 307,553 317,814 142,568
|P | 8,566 49,172 19,462

Table 2: Statistics of our proposed temporal EA datasets. |P |

denotes the total number of reference entity pairs.

Due to the lack of attribute information in TKG datasets, we use
the SE (Structural Embedding) variants of JAPE and GCN-Align,
and the basic versions of MRAEA and RREA. And attribute-aware
EAmethods [3, 18, 24, 32, 48] are not selected as baseline models for
the same reason. We also do not select EA models [4, 38–40, 47, 50]
which use literal information of entities as auxiliary information
since our model solely rely on structural information in TKGs for
EA. And we use AlignE instead of BootEA since we do not adopt
bootstrapping to generate semi-supervised structure data for other
baseline models and ours. The current time-aware link prediction
methods [8, 11, 13, 37, 42, 43] are not suitable for EA setting since
the the EA task does not necessarily score facts.

5.3 Experimental Setup

Implementation Enviroments: We implement our method us-
ing Tensorflow and Keras. Except that the experiments of MTransE
is implemented based on OpenEA framework [31], all experiments
of baseline models are implemented based on their publicly avail-
able resource codes. All of experiments are conducted on a single
GeForce GTX TITAN X GPU with 12GB RAM.

Evaluation Metrics: CSLS are used as the distance metric for
all baseline models as well as our models. We use Mean Reciprocal
Rank (MRR) and Hits@K as our evaluation metrics. The Hits@K
score is calculated by measuring the proportion of correctly aligned
pairs ranked in the top-K. MRR denotes the mean of the reciprocals
of these ranks.

Dataset splitting: As we mentioned, timestamps can be easily
aligned by uniforming time formats. By contrast, it is difficult to
obtain pre-aligned entity pairs in practical applications. Thus, we
prefer to using a small proportion (2-12%) of entity pairs as align-
ment seeds S. For DICEWS, we consider using two of its variants,
DICEWS-1K and DICEWS-200, which contain 1,000 and 200 align-
ment seeds, respectively. For YAGO-WIKI50K, we use its variants,
YAGO-WIKI50K-5K and YAGO-WIKI50K-1K, with |S| = 5, 000 and
|S| = 1, 000 respectively, for evaluation. For YAGO-WIKI20K, we
take 400 entity pairs as alignment seeds. We compare our method
against baselines on DICEWS and YAGO-WIKI50K datasets and
conduct a sensitivity study on YAGO-WIKI20K.

Open-world setting: We resplit quadruples of DICEWS dataset
according to timestamps of facts. Specifically, we use two quadruple
sets Q ′

1, Q
′
2 which contain quadruples in Q1, Q2 occuring before
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Models DICEWS-1K DICEWS-200 YAGO-WIKI50K-5K YAGO-WIKI50K-1K

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

MTransE .150 .101 .241 .104 .067 .175 .322 .242 .477 .033 .012 .067
JAPE .198 .144 .298 .138 .098 .210 .345 .271 .488 .157 .101 .262
AlignE .593 .508 .751 .303 .222 .457 .800 .756 .883 .618 .565 .714

GCN-Align .291 .204 .466 .231 .165 .363 .581 .512 .711 .279 .217 .398
MuGNN .617 .525 .794 .412 .367 .583 .808 .762 .890 .632 .589 .733
MRAEA .745 .675 .870 .564 .476 .733 .848 .806 .913 .685 .623 .801
HyperKA .669 .588 .842 .474 .383 .653 .829 .784 .900 .665 .610 .775
RREA .780 .722 .883 .719 .659 .824 .868 .828 .938 .753 .696 .859

KE-GCN .650 .549 .827 .451 .373 .625 .831 .780 .910 .654 .600 .761

TEA-GNN .911 .887 .947 .902 .876 .941 .909 .879 .961 .775 .723 .871

TREA .933 .914 .966 .927 .910 .960 .958 .940 .989 .885 .840 .937

Table 3: Entity alignment results on DICEWS and YAGO-WIKI50K datasets. The best results are written bold. Baseline models
are ordered by their publication dates.

2014-01-01 for training. By doing this, 1,064 and 1,079 entities in E1
and E2 as well as 730 timestamps in T are not observed during the
training process. We select 1,000 pre-aligned pairs as the training
set, none of which involves unobserved entities. The unseen entities,
timestamps and quadruples only appear in testing phase. We do
not use YAGO-WIKI datasets since most of facts in these datasets
occur in the last few timestamps.

Hyper-parameter Configurations: For all baseline models, we
mainly focus on the grid research of embedding dimensions d and
marginsγ and follow their default optimal configurations regarding
other hyper-parameters, e.g., learning rates lr , batch sizes b, nega-
tive sampling ratesη, dropout ratesdr , numbers of attentional layers
L, numbers of maximum epochs ep, and so forth. For all baselines
and our method TREA, we tune d in the range of (25, 50, 75, 100), λt
in the range of (0, 0.001, 0.005, 0.01, 0.05,. . . , 1) and γ in the range of
(0, 0.5, 1, 2, 3, 5, 7, 10, 15, 20). For a fair comparison, we use the same
setup for TREA as TEA-GNN and RREA to fix L = 2 and dr = 0.3.
Specially, we fix b = 1024, ep = 100 and adopt a RMSprop optimizer
with lr = 0.005 for TREA. The optimal configuration of TREA re-
garding d , λt and γ are listed as below: d = 100, λt = 0.001, γ = 0
for DICEWS-1K and DICEWS-200; d = 50, λt = 0.01, γ = 0 for
YAGO-WIKI50K-5K; d = 50, λt = 0.005, γ = 1 for YAGO-WIKI50K-
1K; d = 100, λt = 0, γ = 0 for YAGO-WIKI20K.

5.4 Main Results
In table 3, we report the performances of our method and all base-
line methods on DICEWS and YAGO-WIKI50K datasets. Among
all baseline models, TEA-GNN obtains the best performance since
TEA-GNN can also capture time information by utilizing a temporal
relational graph neural network. Compared to TEA-GNN, TREA
improves Hits@1 by 3.0%, 3.9%, 6.9% and 16.2% on four datasets
respectively. Noteworthily, the performance difference between
TEA-GNN and TREA on DICEWS datasets is smaller. One possible
reason is that facts in two TKGs of each DICEW dataset are all from
ICEWS05-15 and have a high overlap ratio of 50%, and thus both
TEA-GNN and TREA are able to align entities well between these
two homogeneous TKGs with their similar abilities of modeling

time information. By contrast, two TKGs of each YAGO-WIKI50K
dataset are extracted from different knowledge bases, and YAGO-
WIKI50K datasets are much sparse than DICEWS datasets at the
entity level. Thus, it is more important to force input feature of each
entity to reflect its neighborhood semantics, i.e., the embeddings
of neighboring entities, relations and timestamps. Moreover, us-
ing Margin-based Multi-class Log-loss (MML) can be more helpful
to find hard negative samples among a larger amount of nega-
tive heterogeneous entity pairs. Compared to DICEWS datasets
where two TKGs are homogeneous, YAGO-WIKI50K datasets are
extracted from different resources and are sparser at entity level
which are closer to application scenarios in the real world. There-
fore, TREA achieves more significant improvements on YAGO-
WIKI50K datasets with Neighborhood Aggregation Represetation
(NAR) andMML.We conduct an ablation study to empirically verify
the above arguments in the later section.

5.5 Ablation Study
Although TREA and TEA-GNN use similar temporal relational at-
tention (TRA) mechanisms, TREA achieves better performances
with NAR, MML and sequential time regularizer (STR). To demon-
strate the effectiveness of each design of TREA, we conduct an
ablation experiment on DICEWS-200 and YAGO-WIKI50K-1K. We
implement two variants of TREA including a time-unaware variant
TREA (-Ti) which is implemented by taking t ∈ T as unknown
time information, i.e., t ≡ t0, a variant TREA (-Re) which is set to
be relation-unaware in a similar way. And we also evaluate two
variants of TREA trained without NAR and STR, respectively, i.e.,
TREA (-NAR) and TREA (-STR). Additionally, TREA trained with
Margin Rank Loss (MRL), i.e., TREA (W. MRL) is considered.

As shown in Table 4, there are obvious declines of the perfor-
mances of TREA on both datasets after the removal of time infor-
mation, which supports our intuition that the incorporation of time
information have a remarkable effect on EA results between TKGs.
We also provide an example study in the appendix with regard to
this argument. The removal of relation information slightly changes
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Figure 4: Entity alignment results w.r.t. different sizes of pre-aligned seed entity pairs on temporal datasets.

Models DICEWS-200 YAGO-WIKI50K-1K

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TREA .927 .910 .960 .885 .840 .937
(-Ti) .803 .741 .923 .785 .734 .885
(-Re) .784 .727 .895 .869 .823 .924
(-NAR) .923 .907 .955 .874 .827 .932
(-STR) .908 .884 .940 .878 .830 .931

(w. MRL) .929 .907 .965 .798 .745 .873

Table 4: Results of Ablation experiment.

the performances on YAGO-WIKI50K-5K dataset where two TKGs,
G1 and G2 are extracted from different sources.

On YAGO-WIKI50K-1K, NAR improves TREA’s performance
and TREA trained with MML outperforms TREA trained with MRL.
However, these two technologies fails to have an positive effect on
DICEWS-200. As mentioned in Section 5.4, NAR is important to
making the input information of entities as rich as possible when
TKGs are sparse at the entity level. Thus, NAR is less necessary for
dense TKGs like DICEWS. Moreover, training process on DICEWS-
200 might be mainly influenced by positive samples due to the
lack of hard negative samples while hard negative samples play
an important role in the training process on YAGO-WIKI50K-1K.
Thus, MML scarcely change the performance of TREA on DICEWS-
200, but have significant effects on YAGO-WIKI50K-1K. Specifi-
cally, e1 and e2 can be regarded as hard negative samples of each
other if there exist multiple observed similar-looking quadruple
pairs, shaped like (es , r , e1, t) and (es , r , e2, t), which have the same
subjects, relations and timestamps but involve these two entities
respectively. For each observed quadruple (es , r , eo , t) in YAGO-
WIKI50K-1K, there are on average 5.22 similar-looking quadruples
shaped like (es , r , e ′o , t). By contrast, this number drops to 0.15 in
DICEWS-200. Thus, the average number of hard negative samples
of each entity in training data of DICEWS-200 is much lower than
YAGO-WIKI50K-1K. Different from NAR and MML, STR is helpful
for improving the performance of TREA on DICEWS200 because
the distribution of time data in DICEWS200 is dense and uniform.

Meanwhile, some timestamps are missed in YAGO-WIKI50K and
most of timestamps are concentrated in the last few years with a
long tail of other timestamps, which can not be well modelled by a
sequential time model.

5.6 Robustness Study
It is costly to annotate pre-aligned entity pairs manually, especially
for the large-scale KGs. Thus, it is essential for an EA method to
maintain an effective performance with a small proportion of pre-
aligned entities. To verify the robustness of TREA, we test TREA
and the two best performing baseline models, i.e., TEA-GNN and
RREA, with |S| varying from 200 to 1,000 with step size of 200 and
|S| varying from 1,000 to 5,000 with step size of 1,000 on DICEWS
and YAGO-WIKI50K, respectively. As shown in Figure 4, TREA is
not only superior to TEA-GNN and RREA in all seed sizes, but also
has a more gradual slope curve. This demonstrates that our model
is less dependent on additional training data due to its robust model
structure and learning effectiveness, and it is promising to have
good capability of generalization.

5.7 Efficiency Study

Table 5 lists numbers of trainable parameters of our method
and all baseline models, and their overall time costs on DICEWS
and YAGO-WIKI50K dataset, including data loading, pre-processing,
training, and evaluating. As shown in Table 5, the training efficiency
of TREA exceeds most of baseline models. Only GCN-Align has
less training time than TREA on both datasets, since it uses a small
negative sampling rate and it is evaluated only once during the
training process. While most of GNN-based EA models trained
with MRL need thousands of training epochs, TREA can converge
within 100 epochs by adopting MML. With the inclusion of time
embeddings, TREA does not excessively increase the number of
trainable parameters on DICEWS datasets, compared to baseline
models. On YAGO-WIKI50K datasets, TREA has even fewer free
parameters than most baseline models since lower-dimensional
embeddings (d = 50) are used. In general, the high efficiency of
TREA makes the time-aware EA on large-scale KGs possible.
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Models DICEWS YAGO-WIKI50K

Time Cost Parameter Number Time Cost Parameter Number

MTransE 284 1.95M 1,624 9.89M
JAPE 953 1.95M 4,083 9.89M
AlignE 9,797 1.95M 5,384 9.89M

GCN-Align 39 1.92M 613 9.91M
MuGNN 2,173 1.96M 22,457 9.90M
MRAEA 2,647 2.01M 14,338 7.42M
HyperKA 6,389 1.97M 40,951 9.91M
RREA 1,538 2.00M 6,487 4.95M

KE-GCN 1,704 2.18M 9,510 11.61M
TEA-GNN 4,410 2.40M 9,350 4.95M

TREA 128 2.41M 2,655 4.96M
(w. MRL) 1,948 2.41M 6,327 4.96M

Table 5: Time costs (seconds) and numbers of trainable pa-
rameters of EA methods.

5.8 Sensitivity Study
YAGO-WIKI20K is a temporally-hybrid dataset where some facts
are non-temporal. Thus, a part of entities are insensitive to tem-
poral change. Testing entity pairs can be categorized into highly
time-sensitive entity pairs and lowly time-sensitive entity pairs
according to the ratio of the number of entities’ time-aware con-
nected links over the amount of all links within their neighbor-
hood [44]. The EA results of TREA and its time-unaware variant on
the highly time-sensitive test set and the lowly time-sensitive test
set are reported in Table 6. One can find that TREA significantly
outperforms its time-unaware variant on the highly time-sensitive
test set while they have close performances on lowly time-sensitive
test set, which means that the incorporation of time information
have more significant effect on higher time-sensitive entity pairs.

Models Highly Time-Sensitive Lowly Time-Sensitive

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

TREA .909 .875 .961 .370 .319 .470
(- Ti ) .834 .781 .930 .367 .317 .466

Table 6: Entity alignment results on YAGO-WIKI20K.

5.9 Open-World Learning
In the real world, most of KGs are dynamic with new emerging
entities and timestamps. However, the existing EA methods hold a
closed-world assumption that KGs are fixed and is unable to model
representations of new emerging entities and timestamps. Taking
RREA and TEA-GNN as examples, neither of them can model input
features of unseen entities since their embeddings are unobtainable
or untrained. Moreover, RREA does not consider time informa-
tion and TEA-GNN can not model unseen timestamps. By contrast,
TREA can model the input features with its known neighborhood
information by using Eq. 1, i.e., NAR. In Eq. 11, we force the change
of timestamp embeddings to satisfy a linear equation over time
by using STR. Thus, we can roughly estimate embeddings of fu-
ture timestamps with embeddings of observed timestamps and the
temporal slope.

We compare TREA with TEA-GNN and RREA on DICEWS un-
der open-world setting. To enable TEA-GNN and RREA to model
unseen entities, we drop links flowing from unobserved entities
towards observed entities and remove unseen entities’ input fea-
tures from their final representations in testing phase, which causes
the information loss inevitably. We use the last seen timestamps to
represent future timestamps for TEA-GNN since the embedding of
unknown time information t0 is not updated during the training
process. As mentioned in Section 5.3, 1,064 and 1,079 entities as
well as 730 timestamps are unseen before 2014-01-01 in DICEWS.
We select 1,000 entity pairs only involving observed entities as
training set and the rest are testing set. Among testing entity pairs,
1,027 entity pairs involve unseen entities, called unobserved en-
tity pairs, and others are called observed entity pairs. Table 7
shows that TREA significantly outperforms TEA-GNN and TREA
under open-world setting, especially on unobserved entities. These
experimental results support our argument that TREA can effec-
tively perform EA tasks between OKGs.We also provide an example
study in the appendix as argumentation.

Models Unobserved Entity Pairs Observed Entity Pairs

MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

RREA .253 .075 .483 .407 .361 .580
TEA-GNN .324 .155 .590 .513 .392 .748

TREA .479 .342 .748 .643 .549 .825

Table 7: Open-world Entity alignment results on DICEWS.

6 CONCLUSION
Embedding models have been successful for entity alignment be-
tween KGs, but lack consideration of time information and the dy-
namism of open-world KGs. To address this challenge, we present
a GNN-based method which uses an efficient attention mechanism
to learn both time and relation information in TKGs. In addition,
a neighborhood aggregation representation is used to incorporate
neighborhood information into entitie’s input features and is able
to represent observed entities and new emerging entities. A margin-
based multi-class log-loss is used for fast parameter optimization.
A sequential time regularizer helps to model future time represen-
tations. Experimental results on three TKG benchmarks show that
our method achieves higher performances than the state-of-the-art
EA methods under both close-world setting and open-world setting.
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Entities to Be Aligned Ashley_Wooliscroft (in E1 of YAGO-WIKI50K-1K)

Predictions TREA: Ashley Wooliscroft; TREA (-Ti):Matt Haddrell (in E2 of YAGO-WIKI50K-1K)

Similar Facts (Links) Involving
Aligned Entities Between

Q1 and Q2

(Ashley_Wooliscroft, playsFor, Newcastle_Town_F.C., [2003, 2004]),
(Ashley_Wooliscroft, playsFor, Leek_Town_F.C., [2004, 2006]),

(Ashley_Wooliscroft, playsFor, Kidsgrove_Athletic_F.C., [2006, 2007]),
. . . (in Q1 of YAGO-WIKI50K-1K)

(Matt Haddrell, member of sports team, Newcastle Town F.C., [2006, 2007]),
(Matt Haddrell, member of sports team, Leek Town F.C.., [2004, 2005]),

(Matt Haddrell, member of sports team, Kidsgrove Athletic F.C., [2009, 2010]),
. . . (in Q2 of YAGO-WIKI50K-1K)

Table 8: Examples of different alignment predictions between TREA and TREA (-Ti).

Unobserved Entity Alignment TREA TEA-GNN

Yoon Sang-jick ∈ E1 Yoon Sang-jick ∈ E2 Andrew Robb ∈ E2
Edwin Lacierda ∈ E1 Edwin Lacierda ∈ E2 Wen Jiabao ∈ E2
Dunya Maumoon ∈ E1 Dunya Maumoon ∈ E2 Maumoon Abdul Gayoom ∈ E2

Table 9: Examples of Different Alignment Predictions between TREA and TEA-GNN under open-world setting.

A DETAILS OF TEMPORAL ENTITY
ALIGNMENT DATASETS

In this paper, we use three TKG datasets extracted from ICEWS [15],
YAGO [27], Wikidata [7] as references for evaluating temporal
and non-temporal EA methods, i.e., DICEWS, YAGO-WIKI50K
and YAGO-WIKI20K [44]. The statics of the three temporal EA
datasets are listed in Table 2.

Integrated Crisis Early Warning System (ICEWS) is a publicly
available large-scale event-based database that contains political
events with specific time annotations extracted from millions of
real-world news stories. It is noteworthy that time annotations
in ICEWS are all time points, e.g., (Barack Obama, Visit, Ukraine,
2014-07-08). ICEW05-15 [8] is a subset of ICEWS which contains
10,094 entities, 251 relations, 4,017 time steps and 461,329 temporal
facts occurring during 2005 to 2015, and is commonly used as a
TKG benchmark dataset in the community. DICEWS is built based
on ICEWS05-15 in the similar way to the establishment of DFB
datasets [49]. First, ICEWS05-15 quadruples is randomly divided
into two subsets Q1 and Q2 of similar size, and making the overlap
ratio of the amount of shared quadruples between Q1 and Q2 to
all quadruples equal to 50%. These two TKGs have the same set of
time steps T = T1 ∪ T2, i.e., the sequence of dates in the year 2005.

Wikidata is a free and open knowledge base that store the struc-
tured data fromWikipedia. YAGO is also an open source knowledge
base and is extracted fromWikipedia and other sources. In these two
knowledge base, there are a large number of identical entities rep-
resented in different surface forms and a part of facts are attached
with timestamps of various forms, e.g., time points, start/end time
and time intervals. Lacroix et al. [13] built a large-scale TKG dataset
from Wikidata, which contains 43,2715 entities, 407 relations and
1,724 time steps (only year information was kept) by filtering out
high-frequency entities and relations. The whole dataset has over 7
millions of triples in total and about 10% of them are attached to

specific timestamps. To build YAGO-WIKI50K from YAGO and
Wikidata, top 50,000 entities are first selected according to their
frequencies in this dataset and link them to their equivalent YAGO
entities according to their QIDs and the mappings of YAGO enti-
ties to Wikidata QIDs. Two TKGs are generated by filtering out
facts only involving the selected entities from the above-mentioned
subset of Wikidata and all YAGO facts and then attach comple-
mentary time metadata to the corresponding YAGO facts. In this
step, a small part of entities are removed. At last, non-temporal
facts are removed from these two filtered TKGs to make sure that
YAGO-WIKI50K is fully temporal and only keep the year infor-
mation of timestamps in YAGO facts and uniform the time formats
of both TKGs to generate the shared time set T . YAGO-WIKI20K
is constructed in the same way except that the amount of selected
Wikidata entities is reduced to 20,000 and keep the non-temporal
facts in two TKGs of this temporally hybrid dataset.

B EXAMPLE STUDY
We provide an example in Table 9 that TREA gives different predic-
tions from TREA (-Ti) with consideration of additional time infor-
mation. In YAGO-WIKI50K-5K dataset, the entity Ashley Wooliscroft
only have 5 occurrences in Q1 and the top retrieved entity in E2
by TREA (-Ti) is Matt Haddrell. Since these two players played for
three same football clubs, the time-unaware model wrongly aligns
these two different entities from E1 and E2 regardless of the fact
that they played for different periods of time. By contrast, TREA
gives correct prediction with the consideration of time information.
In Table , we show some examples that TEA-GNN gives wrong pre-
dictions and TREA predicts correctly for unobserved entity pairs
under open-world setting. Without NAR and STR, TEA-GNN more
frequently gives wrong predictions for unobserved entities since it
can only recognize straightforward neighborhood information, but
can hardly learn the semantics of new emerging entities.
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