
ALI et al. 1

Bringing Light Into the Dark:
A Large-scale Evaluation of Knowledge Graph
Embedding Models under a Unified Framework

Mehdi Ali, Max Berrendorf†, Charles Tapley Hoyt†, Laurent Vermue†, Mikhail Galkin,
Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann

F

Abstract—The heterogeneity in recently published knowledge graph
embedding models’ implementations, training, and evaluation has made
fair and thorough comparisons difficult. To assess the reproducibility
of previously published results, we re-implemented and evaluated 21
models in the PyKEEN software package. In this paper, we outline which
results could be reproduced with their reported hyper-parameters, which
could only be reproduced with alternate hyper-parameters, and which
could not be reproduced at all, as well as provide insight as to why this
might be the case.

We then performed a large-scale benchmarking on four datasets
with several thousands of experiments and 24,804 GPU hours of com-
putation time. We present insights gained as to best practices, best
configurations for each model, and where improvements could be made
over previously published best configurations. Our results highlight that
the combination of model architecture, training approach, loss function,
and the explicit modeling of inverse relations is crucial for a model’s
performance and is not only determined by its architecture. We provide
evidence that several architectures can obtain results competitive to the
state of the art when configured carefully. We have made all code, exper-
imental configurations, results, and analyses available at https://github.
com/pykeen/pykeen and https://github.com/pykeen/benchmarking.

Index Terms—Knowledge Graph Embeddings, Link Prediction, Repro-
ducibility, Benchmarking

1 INTRODUCTION

A S the usage of knowledge graphs (KGs) becomes more
widespread, their inherent incompleteness can pose

a liability for typical downstream tasks that they support,

†Equal contribution.
Mehdi Ali is affiliated with Smart Data Analytics (University of Bonn),
Germany, & Fraunhofer IAIS, Sankt Augustin and Dresden, Germany.
Max Berrendorf is affiliated with Ludwig-Maximilians-Universität München,
Munich, Germany.
Charles Tapley Hoyt is affiliated with Laboratory of Systems Pharmacology,
Harvard Medical School, Boston, USA.
Laurent Vermue is affiliated with the Technical University of Denmark,
Kongens Lyngby, Denmark.
Mikhail Galkin is affiliated with Mila & McGill University, Montreal, Canada
Sahand Sharifzadeh is affiliated with Ludwig-Maximilians-Universität
München, Munich, Germany.
Asja Fischer is affiliated with the Ruhr University Bochum, Germany.
Volker Tresp is affiliated with Ludwig-Maximilians-Universität München &
Siemens AG, Munich, Germany.
Jens Lehmann is affiliated with Smart Data Analytics (University of Bonn),
Bonn, Germany, & Fraunhofer IAIS, Sankt Augustin and Dresden Germany.

e.g., question answering, dialogue systems, and recommen-
dation systems [1]. Knowledge graph embedding models
(KGEMs) present an avenue for predicting missing links.
However, the following two major challenges remain in
their application.

First, the reproduction of previously reported results
turned out to be a major challenge — there are even exam-
ples of different results reported for the same combinations
of KGEMs and datasets [2]. In some cases, the lack of
availability of source code for KGEMs or the usage of dif-
ferent frameworks and programming languages inevitably
introduces variability. In other cases, the lack of a precise
specification of hyper-parameters introduces variability.

Second, the verification of the novelty of previously
reported results remains difficult. It is often difficult to
attribute the incremental improvements in performance re-
ported with each new state of the art model to the model’s
architecture itself or instead to the training approach, hyper-
parameter values, or specific prepossessing steps, e.g., the
explicit modeling of inverse relations. It has been shown that
baseline models can achieve competitive performance to
more sophisticated ones when optimized appropriately [3],
[2]. Additionally, the variety of implementations and inter-
pretations of common evaluation metrics for link prediction
makes a fair comparison to previous results difficult [4].

This paper makes two major contributions towards ad-
dressing these challenges:

1) We performed a reproducibility study in which we
tried to replicate reported experimental results in
the original papers (when sufficient information
was provided).

2) We performed an extensive benchmark study on
21 KGEMs over four benchmark datasets in which
we evaluated the models based on different hyper-
parameter values, training approaches (i.e. training
under the local closed world assumption and stochastic
local closed world assumption), loss functions, optimiz-
ers, and the explicit modeling of inverse relations.

Previous studies have already investigated important
aspects for a subset of models: Kadlec et al. [3] showed
that a fine-tuned baseline (DistMult [5]) can outperform

ar
X

iv
:2

00
6.

13
36

5v
5

 [
cs

.L
G

]
 1

 N
ov

 2
02

1

https://github.com/pykeen/pykeen
https://github.com/pykeen/pykeen
https://github.com/pykeen/benchmarking

ALI et al. 2

more sophisticated models on FB15K. Akrami et al. [2], [6]
examined the effect of removing faulty triples from KGs
on the model’s performance. Mohamed et al. [7] studied
the influence of loss functions on the models’ performances
for a set of KGEMs. Concurrent to the work on this paper,
Rufinelli et al. [8] performed a benchmarking study in which
they investigated five knowledge graph embedding models.
After describing their benchmarking [8], they called for a
larger study that extends the search space and incorporates
more sophisticated models. Our study answers this call and
realizes a fair benchmarking by completely re-implementing
KGEMs, training pipelines, loss functions, and evaluation
metrics in a unified, open-source framework. Inspired by
their findings, we have also included the cross entropy
loss (CEL) function, which has been previously used by
Kadlec et al. [3]. Our benchmarking can be considered as a
superset of many previous benchmarkings — to the best of
our knowledge, there exists no study of comparable breadth
or depth. A further interesting study with a different focus
is the work of Rossi et al. [9] in which they investigated
the effect of the structural properties of KGs on models’
performances, instead of focusing on the combinations of
different model architectures, training approaches, and loss
functions.

This article is structured as follows: in Section 2, we in-
troduce our notation of KG and the link prediction task and
introduce an exemplary KG to which we refer in examples
throughout this paper. In Section 3, we present our defini-
tion of a KGEM and review the KGEMs that we investigated
in our studies. In Section 4, we describe and discuss es-
tablished evaluation metrics as well as a recently proposed
one [10]. In Section 5, we introduce the benchmark datasets
on which we conducted our experiments. In Section 6 and
Section 7, we present our respective reproducibility and
benchmarking studies. In Section 8, we investigate how
well the investigated KGEMs can model symmetry, anti-
symmetry, and composition patterns. Finally, we provide a
discussion and an outlook for our future work in Section 9.

2 KNOWLEDGE GRAPHS

For a given set of entities E and set of relations R, we con-
sider a knowledge graph K ⊆ K = E ×R× E as a directed,
multi-relational graph that comprises triples (h, r, t) ∈ K
in which h, t ∈ E represent a triples’ respective head and
tail entities and r ∈ R represents its relationship. Figure 1
depicts an exemplary KG. The direction of a relationship
indicates the roles of the entities, i.e., head or tail entity.
For instance, in the triple (Sarah, CEO Of, Deutsche Bank),
Sarah is the head and Deutsche Bank is the tail entity. KGs
usually contain only true triples corresponding to available
knowledge.

In contrast to triples in a KG, there are different philoso-
phies, or assumptions, for the consideration of triples not con-
tained in a KG [11], [12]. Under the closed world assumption
(CWA), all triples that are not part of a KG are considered
as false. Based on the example in Figure 1, the triple (Sarah,
lives in, Germany) is a false fact under the CWA since it is not
part of the KG. Under the open world assumption (OWA),
it is considered unknown as to whether triples that are not
part of the KG are true or false. The construction of KGs

Fig. 1. Exemplary KG: nodes represent entities and edges their respec-
tive relations.

under the principles of the semantic web (and RDF) rely
on the OWA as well as most of the relevant works to this
paper [13], [11].

Because KGs are usually incomplete and noisy, several
approaches have been developed to predict new links. In
particular, the task of link prediction is defined as predicting
the tail/head entities for (h, r)/(r, t) pairs. For instance,
given queries of the form (Sarah, studied at, ?) or (?, CEO of,
Deutsche Bank), the task is the correctly detect the entities
that answer the query, i.e. (Sarah, studied at, University of
Oxford) and (Sarah, CEO of, Deutsche Bank). While classical
approaches have relied on domain-specific rules to derive
missing links, they usually require a large number of user-
defined rules in order to generalize [11]. Alternatively, ma-
chine learning approaches learn to predict new links based
on the set of existing ones. It has been shown that espe-
cially relational-machine learning methods are successful in
predicting missing links and identifying incorrect ones, and
recently knowledge graph embedding models have gained
significant attention [11].

3 KNOWLEDGE GRAPH EMBEDDING MODELS

Knowledge graph embedding models (KGEMs) learn latent
vector representations of the entities e ∈ E and relations
r ∈ R in a KG that best preserve its structural properties [1],
[11], [14]. Besides for link prediction, they have been used
for tasks such as entity disambiguation, and clustering as
well as for downstream tasks such as question answering,
recommendation systems, and relation extraction [1]. Fig-
ure 2 shows an embedding of the entities and relations in
R2 from the KG from Figure 1.

Here, we define a KGEM as four components: an in-
teraction model, a training approach, a loss function, and its
usage of explicit inverse relations. This abstraction enables
investigation of the effect of each component individually
and in combination on each KGEMs’ performance. Each
are described in detail in their following respective sub-
sections 3.1, 3.2, 3.3, and 3.4. We focus on shallow em-
bedding approaches [15] in this work, i.e., matrix lookups
represent the entity and relation encoders. Recently, several
graph neural network (GNN)-based approaches for learn-
ing representations of KGs have been developed. GNNs
encode entities and relations by neighbor aggregation. We
refer interested readers to [14], [15]. Furthermore, learning

ALI et al. 3

Fig. 2. An example embedding of the entities and relations from the
knowledge graph portrayed by Figure 2.

representation for temporal KGs has gained increased inter-
est. Because learning representation for temporal KGs is a
distinct line of research with its own benchmarking datasets,
we do not discuss temporal KGEMs in this work. Instead,
we refer interested readers to [16].

In this paper, we use a boldface lower-case letter x to
denote a vector, ‖x‖p to represent its lp norm, a boldface
upper-case letter X to denote a matrix, and a fraktur-
font upper-case letter X to represent a three-mode tensor.
Furthermore, we use � to denote the Hadamard product
� : Rd × Rd → Rd:

[a� b]i = ai · bi (1)

Finally, we use x to denote the conjugate of a complex
number x ∈ C.

3.1 Interaction Models
An interaction model f : E × R × E → R computes a
real-valued score representing the plausibility of a triple
(h, r, t) ∈ K given the embeddings for the entities and
relations. In general, a larger score indicates a higher plau-
sibility. The interpretation of the score value is model-
dependent, and usually, it cannot be directly interpreted as
a probability. We follow [1], [14] and categorize interaction
models into translational distance based and semantic match-
ing based interaction models. Translational distance inter-
action models compute the plausibility of triples based on
a distance function, e.g., Euclidean distance between (pro-
jected) entities, and semantic similarity matching models
exploit the similarity of the latent features usually induced
by inner a product formulation.

3.1.1 Translational Distance Interaction Models
Unstructured Model [17] The Unstructured Model
(UM) [17] scores a triple by computing the distance between
the head and tail entity

f(h, t) = −‖h− t‖22 , (2)

where h, t ∈ Rd are the embeddings of head and tail entity,
respectively. A small distance between these embeddings
indicates a plausible triple. In the UM, relations are not
considered, and therefore, it cannot distinguish between
different relationship types. However, the model can be
beneficial for learning embeddings for KGs that contain only
a single relationship type or only equivalent relationship

types, e.g. GrandmotherOf and GrandmaOf. Moreover, it may
serve as a baseline to interpret the performance of relation-
aware models.

Structured Embedding Structured Embedding (SE) [18]
models each relation by two matrices Mh

r ,M
t
r ∈ Rd×d that

perform relation-specific projections of the head and tail
embeddings:

f(h, r, t) = −‖Mh
rh−Mt

rt‖1 . (3)

As before, h, t ∈ Rd are the embeddings of head and tail
entity, respectively. By employing different projections for
the embeddings of the head and tail entities, SE explicitly
distinguishes between the subject- and object-role of an
entity.

TransE TransE [19] models relations as a translation of
head to tail embeddings, i.e. h + r ≈ t. Thus, the interaction
model is defined as:

f(h, r, t) = −‖h + r− t‖p , (4)

with p ∈ {1, 2} is a hyper-parameter. A major advantage of
TransE is its computational efficiency which enables its us-
age for large scale KGs. However, it inherently cannot model
1-N, N-1, and N-M relations: assume (h, r, t1), (h, r, t2) ∈ K,
then the model adapts the embeddings in order to ensure
h + r ≈ t1 and h + r ≈ t2 which results in t1 ≈ t2.

TransH TransH [20] is an extension of TransE that specif-
ically addresses the limitations of TransE in modeling 1-
N, N-1, and N-M relations. In TransH, each relation is
represented by a hyperplane, or more specifically a normal
vector of this hyperplane wr ∈ Rd, and a vector dr ∈ Rd
that lies in the hyperplane. To compute the plausibility of
a triple (h, r, t) ∈ K, the head embedding h ∈ Rd and the
tail embedding t ∈ Rd are first projected onto the relation-
specific hyperplane: hr = h−w>r hwr and tr = t−w>r twr .
Then, the projected embeddings are used to compute the
score for the triple (h, r, t):

f(h, r, t) = −‖hr + dr − tr‖22 . (5)

TransR TransR [21] is an extension of TransH that ex-
plicitly considers entities and relations as different objects
and therefore represents them in different vector spaces. For
a triple (h, r, t) ∈ K, the entity embeddings, h, t ∈ Rd,
are first projected into the relation space by means of a
relation-specific projection matrix Mr ∈ Rk×d: hr = Mrh
and tr = Mrt. Finally, the score of the triple (h, r, t) is
computed:

f(h, r, t) = −‖hr + r− tr‖22 (6)

where r ∈ Rk.
TransD TransD [22] is an extension of TransR that,

like TransR, considers entities and relations as objects liv-
ing in different vector spaces. However, instead of per-
forming the same relation-specific projection for all en-
tity embeddings, entity-relation-specific projection matrices
Mr,h,Mt,h ∈ Rk×d are constructed. To do so, all head
entities, tail entities, and relations are represented by two
vectors, h,hp, t, tp ∈ Rd and r, rp ∈ Rk, respectively. The
first set of embeddings is used for calculating the entity-
relation-specific projection matrices: Mr,h = rphTp + Ĩ and
Mr,t = rptTp + Ĩ, where Ĩ ∈ Rk×d is a k × d matrix with

ALI et al. 4

ones on the diagonal and zeros elsewhere. Next, h and t are
projected into the relation space by means of the constructed
projection matrices: hr = Mr,hh and tr = Mr,tt. Finally, the
plausibility score for (h, r, t) ∈ K is given by:

f(h, r, t) = −‖hr + r− tr‖22 . (7)

RotatE RotatE [23] models relations as rotations from
head to tail entities in the complex space: t = h � r, where
h, r, t ∈ Cd and |ri| = 1, that is the complex elements of
r are restricted to have a modulus of one. Because of the
latter, ri can be represented as eiθr,i , which corresponds to
a counterclockwise rotation by θr,i radians. The interaction
model is then defined as:

f(h, r, t) = −‖h� r− t‖ , (8)

which allows to model symmetry, antisymmetry, inversion,
and composition [23].

MuRE MuRE [24] is the Euclidean counterpart of MuRP,
a hyperbolic interaction model that is capable of effectively
modeling hierarchies in KG. Its interaction model involves
a distance function:

f(h, r, t) = −‖Rh− t + r‖22 + bh + bt (9)

where the head entity is transformed by the diagonal
matrix R ∈ Rd×d and the tail entity by the relation r. bh

and bt represent scalar offsets.
KG2E KG2E [25] aims to explicitly model (un)certainties

in entities and relations (e.g. influenced by the number
of triples observed for these entities and relations). There-
fore, entities and relations are represented by probability
distributions, in particular by multi-variate Gaussian dis-
tributions N i(µi,Σi) where the mean µi ∈ Rd denotes
the position in the vector space and the diagonal variance
Σi ∈ Rd×d models the uncertainty. Inspired by the TransE
model, relations are modeled as transformations from head
to tail entities: H − T ≈ R where H ∼ N h(µh,Σh),
H ∼ N t(µt,Σt), R ∼ Pr = N r(µr,Σr) and H − T ∼
Pe = Nh−t(µh − µt,Σh + Σt) (since head and tail
entities are considered to be independent with regards to
the relations). The interaction model measures the similarity
between Pe and Pr by means of the Kullback-Leibler (KL)
divergence:

f(h, r, t) = DKL(Pe,Pr)

=
1

2

{
tr(Σ−1

r Σe) + (µr − µe)TΣ−1
r (µr − µe)

−log(
det(Σe)

det(Σr)
)− d

}
.

(10)

Besides the asymmetric KL divergence, the authors propose
a symmetric variant which uses the expected likelihood.

3.1.2 Semantic Matching Interaction Models
RESCAL RESCAL [26] is a bilinear model that models
entities as vectors and relations as matrices. The relation
matrices Wr ∈ Rd×d contain weights wi,j that capture
the amount of interaction between the i-th latent factor of
h ∈ Rd and the j-th latent factor of t ∈ Rd [11], [26]. Thus,
the plausibility score of (h, r, t) ∈ K is given by:

f(h, r, t) = hTWrt =
d∑
i=1

d∑
j=1

w
(r)
ij hitj (11)

DistMult DistMult [5] is a simplification of RESCAL
where the relation matrices Wr ∈ Rd×d are restricted to
diagonal matrices:

f(h, r, t) = hTWrt =
d∑
i=1

hi · diag(Wr)i · ti . (12)

Because of its restriction to diagonal matrices DistMult is
computational more efficient than RESCAL, but at the same
time less expressive. For instance, it is not able to model
anti-symmetric relations, since f(h, r, t) = f(t, r, h).

ComplEx ComplEx [27] is an extension of DistMult that
uses complex valued representations for the entities and
relations. Entities and relations are represented as vectors
h, r, t ∈ Cd, and the plausibility score is computed using the
Hadamard product:

f(h, r, t) =Re(h� r� t) (13)

where Re(x) denotes the real component of the complex
valued vector x. Because the Hadamard product is not
commutative in the complex space, ComplEx can model
anti-symmetric relations in contrast to DistMult.

QuatE QuatE [28] learns hypercomplex valued represen-
tations (quaternion embeddings) for entities and relations,
i.e., ei, rj ∈ Hd. Hypercomplex representations extend com-
plex representations by representing each number with one
real and three imaginary components. In QuatE, relations
are modelled as rotations in the hypercomplex space. More
precisely, the relation is used to rotate the head entity:
hr = h⊗r, where in this context ⊗ represents the Hamilton
product. The final score is obtained by computing the inner
product between the rotated head and the the tail entity:

f(h, r, t) = hr · t (14)

In contrast to ComplEx, QuatE is capable of modeling
composition patterns.

SimplE SimplE [29] is an extension of canonical
polyadic (CP) [29], one of the early tensor factorization
approaches. In CP, each entity e ∈ E is represented by
two vectors he, te ∈ Rd and each relation by a single vector
r ∈ Rd. Depending whether an entity participates in a triple
as the head or tail entity, either he or te is used. Both entity
representations are learned independently, i.e. observing a
triple (e1, r, e2), the method only updates he1 and te2 . In
contrast to CP, SimplE introduces for each relation r the
inverse relation r′, and formulates the interaction model
based on both:

f(h, r, t) =
1

2

(〈
hei , r, tej

〉
+
〈
hej , r

′, tei
〉)

. (15)

Therefore, for each triple (e1, r, e2) ∈ K, both he1 and te2 as
well as he2 and te1 are updated [29].

TuckER TuckER [30] is a linear model that is based
on the tensor factorization method Tucker [31] in which
a three-mode tensor X ∈ RI×J×K is decomposed into
a set of factor matrices A ∈ RI×P , B ∈ RJ×Q, and
C ∈ RK×R and a core tensor Z ∈ RP×Q×R (of lower rank):
X ≈ Z ×1 A ×2 B ×3 C, where ×n is the tensor product,
with n denoting along which mode the tensor product is
computed. In TuckER, a KG is considered as a binary tensor
which is factorized using the Tucker factorization where

ALI et al. 5

E = A = C ∈ Rne×de denotes the entity embedding matrix,
R = B ∈ Rnr×dr represents the relation embedding matrix,
and W = Z ∈ Rde×dr×de is the core tensor that indicates
the extent of interaction between the different factors. The
interaction model is defined as:

f(h, r, t) = W×1 h×2 r×3 t , (16)

where h, t correspond to rows of E and r to a row of R.
ProjE ProjE [32] is a neural network-based approach

with a combination and a projection layer. The interaction
model first combines h and r by a combination operator [32]:
h⊗ r = Deh + Drr + bc, where De,Dr ∈ Rk×k are diagonal
matrices which are used as shared parameters among all
entities and relations, and bc ∈ Rk represents the candidate
bias vector shared across all entities. Next, the score for the
triple (h, r, t) ∈ K is computed:

f(h, r, t) = g(t z(h⊗ r) + bp) , (17)

where g and z are activation functions, and bp represents
the shared projection bias vector.

HolE Holographic embeddings (HolE) [33] make use
of the circular correlation operator to compute interactions
between latent features of entities and relations:

f(h, r, t) = σ(rT (h ? t)) . (18)

where the circular correlation ? : Rd × Rd → Rd is defined
as [a ?b]i =

∑d−1
k=0 ak ∗b(i+k) mod d. By using the correlation

operator each component [h ? t]i represents a sum over a
fixed partition over pairwise interactions. This enables the
model to put semantic similar interactions into the same
partition and share weights through r. Similarly irrelevant
interactions of features could also be placed into the same
partition which could be assigned a small weight in r.

ERMLP ERMLP [34] is a multi-layer perceptron based
approach that uses a single hidden layer and represents
entities and relations as vectors. In the input-layer, for each
triple the embeddings of head, relation, and tail are con-
catenated and passed to the hidden layer. The output-layer
consists of a single neuron that computes the plausibility
score of the triple:

f(h, r, t) = wT g(W[h; r; t]), (19)

where W ∈ Rk×3d represents the weight matrix of the
hidden layer, w ∈ Rk, the weights of the output layer,
and g denotes an activation function such as the hyperbolic
tangent.

Neural Tensor Network The Neural Tensor Network
(NTN) [35] uses a bilinear tensor layer instead of a standard
linear neural network layer:

f(h, r, t) = uTr · tanh(hWrt + Vr[h; t] + br) , (20)

where Wr ∈ Rd×d×k is the relation specific tensor, and the
weight matrix Vr ∈ Rk×2d, the bias vector br, and the
weight vector ur ∈ Rk are the standard parameters of a
neural network, which are also relation specific. The result
of the tensor product hWrt is a vector x ∈ Rk where each
entry xi is computed based on the slice i of the tensor Wr :
xi = hWi

rt [35]. As indicated by the interaction model, NTN
defines for each relation a separate neural network which

makes the model very expressive, but at the same time
computationally expensive.

ConvKB ConvKB [36] uses a convolutional neural net-
work (CNN) whose feature maps capture global interactions
of the input. Each triple (h, r, t) ∈ K is represented as a
input matrix A = [h; r; t] ∈ Rd×3 in which the columns
represent the embeddings for h, r and t. In the convolution
layer, a set of convolutional filters ωi ∈ R1×3, i = 1, . . . , τ,
are applied on the input in order to compute for each
dimension global interactions of the embedded triple. Each
ωi is applied on every row of A creating a feature map
vi = [vi,1, ..., vi,d] ∈ Rd:

vi = g(ωjA + b) , (21)

where b ∈ R denotes a bias term and g an activation
function which is employed element-wise. Based on the
resulting feature maps v1, . . . , vτ , the plausibility score of
a triple is given by:

f(h, r, t) = [vi; . . . ; vτ] ·w , (22)

where [vi; . . . ; vτ] ∈ Rτd×1 and w ∈ Rτd×1 is a shared
weight vector. ConvKB may be seen as a restriction of ER-
MLP with a certain weight sharing pattern in the first layer.

ConvE ConvE [37] is a CNN-based approach. For each
triple (h, r, t), the input to ConvE is a matrix A ∈ R2×d

where the first row of A represents h ∈ Rd and the second
row represents r ∈ Rd. A is reshaped to a matrix B ∈ Rm×n
where the first m/2 half rows represent h and the remaining
m/2 half rows represent r. In the convolution layer, a set of
2-dimensional convolutional filters Ω = {ωi | ωi ∈ Rr×c}
are applied on B that capture interactions between h and r.
The resulting feature maps are reshaped and concatenated
in order to create a feature vector v ∈ R|Ω|rc. In the next
step, v is mapped into the entity space using a linear
transformation W ∈ R|Ω|rc×d, that is eh,r = vTW. The
score for the triple (h, r, t) ∈ K is then given by:

f(h, r, t) = eh,rt . (23)

Since the interaction model can be decomposed into
f(h, r, t) = 〈f ′(h, r), t〉, the model is particularly designed
to 1-N scoring, i.e. efficient computation of scores for (h, r, t)
for fixed h, r and many different t.

3.2 Training Approaches
Because most KGs contain only positive examples, we
require training approaches involving techniques such as
negative sampling to avoid over-generalization to true facts.
Here, we describe two common training approaches found
in the literature: the local closed world assumption (LCWA)
and the stochastic local closed world assumption (sLCWA).
It should be noted that the LCWA and the sLCWA do not
affect the evaluation.

3.2.1 Local closed world assumption
The LCWA was introduced by [34] and used in subsequent
works as an approach to generate negative examples during
training [37], [30]. In this setting, for any triple (h, r, t) ∈ K
that has been observed, a set T −(h, r) of negative exam-
ples is created by considering all triples (h, r, ti) /∈ K as
false. Therefore, for our exemplary KG (Figure 1) for the

ALI et al. 6

An
na Ca

r
DH

L
De

ut
sc

he
_B

an
k

Ge
rm

an
y

Jo
hn

Pe
te

r
Sa

ra
h

Un
iv

er
sit

y_
of

_O
xf

or
d

Anna
Car

DHL
Deutsche_Bank

Germany
John

Peter
Sarah

University_of_Oxford

LCWA

An
na Ca

r
DH

L
De

ut
sc

he
_B

an
k

Ge
rm

an
y

Jo
hn

Pe
te

r
Sa

ra
h

Un
iv

er
sit

y_
of

_O
xf

or
d

sLCWA

Fig. 3. Visualization of different training approaches for the relation
works_at in the KG in Figure 1. Red color indicates positive examples,
i.e. true triples present in the KG. Dark blue color denotes triples used
as negative examples in LCWA. Light blue color sampling candidates for
negative examples in sLCWA. Yellow color indicates triples that are not
considered.

pair (Peter, works at), the triple (Peter, works at, DHL) is a
false fact since for this pair only the triple (Peter, works at,
Deutsche Bank) is part of the KG. Similarly, we can construct
H−(r, t) based on all triples (hi, r, t) /∈ K, orR−(h, t) based
on the triples (h, ri, t) /∈ K. Constructing R−(h, t) is a
popular choice in visual relation detection domain [38], [39].
However, most of the works in knowledge graph modeling
construct only T −(h, r) as the set of negative examples, and
in the context of this work refer to T −(h, r) as the set of
negatives examples when speaking about LCWA.

3.2.2 Stochastic local closed world assumption
Under the stochastic local closed world assumption
(sLCWA), instead of considering all possible triples
(h, r, ti) /∈ K, (hi, r, t) /∈ K or (h, ri, t) /∈ K as false, we
randomly take samples of these sets.

Two common approaches for generating negative sam-
ples are uniform negative sampling (UNS) [19] and
Bernoulli negative sampling (BNS) [20] in which negative
triples are created by corrupting a positive triple (h, r, t) ∈
K by replacing either h or t. We denote with N the set of all
potential negative triples:

T (h, r) = {(h, r, t′) | t′ ∈ E ∧ t′ 6= t} (24)
H(r, t) = {(h′, r, t) | h′ ∈ E ∧ h′ 6= h} (25)

N =
⋃

(h,r,t)∈K

T (h, r) ∪H(r, t) . (26)

Theoretically, we would need to exclude all positive
triples from this set of candidates for negative triples, i.e.,
N− = N \K. In practice, however, since usually |N | � |K|,
the likelihood of generating a false negative is rather low.
Therefore, the additional filter step is often omitted to lower
computational cost. It should be taken into account that a
corrupted triple that is not part of the KG can represent a
true fact.

UNS and BNS differ in the way they define sample
weights for (h′, r, t) or (h, r, t′):

Uniform negative sampling With uniform negative
sampling (UNS) [19], the first step is to randomly (uni-
formly) determine whether h or t shall be corrupted for a
positive triple (h, r, t) ∈ K. Afterwards, an entity e ∈ E is
uniformly sampled and selected as the corrupted head/tail
entity.

Bernoulli negative sampling With Bernoulli negative
sampling (BNS) [20], the probability of corrupting h or t in
(h, r, t) ∈ K is determined by the property of the relation r:
if the relation is a one-to-many relation (e.g. motherOf), BNS
assigns a higher probability to replace h, and if it is a many-
to-one relation (e.g. bornIn) it assigns a higher probability
to replace t. More precisely, for each relation r ∈ R the
average number of tails per head (tph) and heads per tail
(hpt) are first computed. These statistics are then used to
define a Bernoulli distribution with parameter tph

tph+hpt . For
a triple (h, r, t) ∈ K the head is corrupted with probability
tph

tph+hpt and the tail with probability hpt
tph+hpt . The described

approach reduces the chance of creating corrupted triples
that represent true facts [20].

3.3 Loss Functions

The loss function can have a significant influence on the
performance of KGEMs [7]. In the following, we describe
pointwise, pairwise, and setwise loss functions that have been
frequently be used within KGEMs. For additional discussion
and a slightly different categorization we refer to the work
of Mohamed et al. [7].

3.3.1 Pointwise Loss Functions
Let f denote the interaction model of a KGEM. With ti,
we denote a triple (i.e. ti ∈ K), and with li ∈ {0, 1} or
l̂i ∈ {−1, 1} its corresponding label, where 1 corresponds
to the label of the positive triples, and 0 / -1 to the label
of the negative triples. Pointwise loss functions compute an
independent loss term for each triple-label pair, i.e. for a
batch B = {(ti, li)}|B|i=1, the loss is given as

L =
1

|B|
∑

(ti,li)∈B

L(ti, li) (27)

In the following, we describe four different pointwise losses:
The square error loss, binary cross entropy loss (BCEL), pointwise
hinge loss, and logistic loss.

Square Error Loss The square error loss function com-
putes the squared difference between the predicted scores
and the labels li ∈ {0, 1} [7]:

L(ti, li) =
1

2
(f(ti)− li)2 (28)

The squared error loss strongly penalizes predictions that
deviate considerably from the labels, and is usually used
for regression problems. For simple models it often permits
more efficient optimization algorithms involving analyti-
cal solutions of sub-problems, e.g. the Alternating Least
Squares algorithm used by [26].

Binary cross entropy loss The binary cross entropy loss
is defined as [37]:

L(ti, li) =− (li · log(σ(f(ti)))

+ (1− li) · log(1− σ(f(ti)))),
(29)

ALI et al. 7

where li ∈ {0, 1} and σ represents the logistic sigmoid func-
tion. Thus, the problem is framed as a binary classification
problem of triples, where the model’s outputs are regarded
as logits. The loss is not well-suited for translational distance
models because these models produce a negative distance
as score and cannot produce positive model outputs. ConvE
and TuckER were originally trained in a multi-class setting
using the binary cross entropy loss where each (h, r)-pair
has been classified against e ∈ E simultaneously, i.e., if
|E| = n, the label vector for each (h, r)-pair has n entries
indicating whether the triple (h, r, ei) is (not) part of the
KG, and along each dimension of the label vector a binary
classification is performed. It should be noted that there
exist different implementation variants of the binary cross
entropy loss that address numerical stability. ConvE and
TuckER employed a numerically unstable variant, and in the
context of this work, we refer to this variant when referring
to the binary cross entropy loss.

Pointwise Logistic Loss/Softplus loss An alternative,
but equivalent formulation of the binary cross entropy loss
is the pointwise logistic loss (or Softplus loss (SPL)):

L(ti, li) = log(1 + exp(−l̂i · f(ti)) (30)

where l̂i ∈ {−1, 1} [7]. It has been used to train ComplEx,
ConvKB, and SimplE. We consider both variants separately
because both have been used in different model imple-
mentations, and their implementation details might yield
different results (e.g., to numerical stability).

Pointwise Hinge Loss The pointwise hinge loss sets the
score of positive examples larger than a margin parameter
λ while reducing the scores of negative examples to values
below −λ:

L(ti, li) = max(0, λ− l̂i · f(ti)) (31)

where l̂i ∈ {−1, 1}. The loss penalizes scores of positive
examples which are smaller than λ, but does not impose any
restriction on values > λ. Similarly, negative scores larger
than −λ contribute to the loss, whereas all values smaller
than −λ do not have any loss contribution [7]. Thereby, the
model is not encouraged to further optimize triples which
are already predicted well enough (according to the margin
parameter λ).

3.3.2 Pairwise Loss Functions
Next, we describe widely applied pairwise loss functions
that are used within KGEMs, namely the pairwise hinge loss
and the pairwise logistic loss. They both compare the scores
of a positive triple t+ and a negative triple t−. The negative
triple in a pair is usually obtained by corrupting the positive
one. Thus, the pairs often share common head or tail entities
and relations. For a batch of pairs B = {(t+i , t

−
i)}|B|i=1, the

loss is given as

L =
1

|B|
∑

(t+i ,t
−
i)∈B

L(f(t−i)− f(t+i)) . (32)

Hence, the loss function evaluates the difference in scores
∆ = f(t−i)−f(t+i) between a positive and a negative triple,
rather than their absolute scores. This is in accordance to
the OWA assumption, where we do not assume to have
negative labels, but just ”less positive” ones.

Pairwise Hinge Loss/Margin ranking loss The pairwise
hinge loss or margin ranking loss (MRL) is given by

L(∆) = max(0, λ+ ∆) . (33)

Pairwise Logistic Loss The pairwise logistic loss is de-
fined as [7]:

L(∆) = log(1 + exp(∆)) . (34)

Thus, it can be seen as a soft-margin formulation of the
pairwise hinge loss with a margin of zero.

3.3.3 Setwise Loss Functions
Setwise loss functions neither compare individual scores,
or pairs of them, but rather more than two triples’ scores.
Here, we describe the self-adversarial negative sampling
loss (NSSAL) and the cross entropy loss (CEL) as exam-
ples of such loss functions that have been applied within
KGEMs [23], [7].

Self-adversarial negative sampling loss The Self-
adversarial negative sampling loss (NSSAL) addresses the
limitation that many negative examples are trivial and
do not provide helpful information. The authors of [23]
propose to overcome this limitation by sampling negative
samples according to the scores predicted by the interaction
model [23]:

p((h′i, r, t
′
i)|(hi, ri, ti)) =

exp(αf(h′i, r, t
′
i))∑n

j=1 exp(αf(h′j , r, t
′
j))

, (35)

where (hi, ri, ti) ∈ K denotes a true triple,
{(h′i, r, t′i)}Ki=1 it’s set of negative samples generated, and
α ∈ R a temperature parameter. Because sampling from
this distribution may be computationally expensive, the
probabilities obtained by Equation 35 are used to weight
the generated negative examples in the loss function [23].

L =− log(σ(γ + f(h, r, t)))

−
K∑
i=1

p((h′, r, t′)) · log(σ(−(γ + f(h′i, r, t
′
i)))) .

(36)

Thus, negative samples for which the model predicts a high
score relative to other samples are weighted stronger.

Cross entropy loss The cross entropy loss (CEL) has
been successfully applied together with 1-N scoring, i.e.,
predicting for each (h, r)-pair simultaneously a score for
each possible tail entity, and framing the problem as a
multi-class classification problem [3], [8]. To apply the CEL,
first, the labels are normalized in order to form a proper
probability distribution. Second, the predicted scores for the
tail entities of (h, r)-pair are normalized by a softmax:

p(t | h, r) =
exp(f(h, r, t))∑

t′∈E
exp(f(h, r, t′))

. (37)

Finally, the cross entropy between the distribution of the
normalized scores and the normalized label distribution is
computed:

L = −
∑
t′∈E

I[(h, r, t′) ∈ K] · log(p(t | h, r)) , (38)

ALI et al. 8

where I denotes the indicator function. Note that this loss
differs from the multi-class binary cross entropy as it applies
a softmax normalization implying that this is a single-label
multi-class problem.

3.4 Explicitly Modeling Inverse Relations

Inverse relations introduced by [29] and [40] are explicitly
modeled by extending the set of relations R by a set of
inverse relations rinv ∈ Rinv with Rinv ∩ R = ∅. This
is achieved by training an inverse triple (t, rinv, h) for
each triple (h, r, t) ∈ K. Equipping a KGEM with inverse
relations implicitly doubles the relation embedding space of
any model that has relation embeddings. The goal is to alter
the scoring function, such that the task of predicting the
head entities for (r, t) pairs becomes the task of predicting
tail entities for (t, rinv) pairs. The explicit training of the
implicitly known inverse relations can lead to better model
performance [40] and can for some models increase the
computational efficiency [37].

4 EVALUATION METRICS FOR KGEMS

KGEMs are usually evaluated based on link prediction,
which is on KG defined as predicting the tail/head entities
for (h, r)/(r, t) pairs. For instance, given queries of the
form (Sarah, studied at, ?) or (?, CEO of, Deutsche Bank) the
capability of a link predictor to predict the correct entities
that answer the query, i.e. (Sarah, studied at, University of
Oxford) and (Sarah, CEO of, Deutsche Bank) is measured.

However, given the fact that usually true negative ex-
amples are not available, both the training and the test
set contain only true facts. For this reason, the evaluation
procedure is defined as a ranking task in which the capa-
bility of the model to differentiate corrupted triples from
known true triples is assessed [19]. For each test triple
t+ = (h, r, t) ∈ Ktest two sets of corrupted triples are
constructed:

1) H(r, t) = {(h′, r, t) | h′ ∈ E−{h}which contains all
the triples where the head entity has been corrupted,
and

2) T (h, r) = {(h, r, t′) | t′ ∈ E − {t}} that contains all
the triples with corrupted tail entity.

For each t+ and its corresponding corrupted triples, the
scores are computed and the entities sorted accordingly.
Next, the rank of every t+ among its corrupted triples is
determined, i.e. the position in the score-sorted list.

Among the corrupted triples in H(r, t) / T (h, r), there
might be true triples that are part of the KG. If these false
negatives are ranked higher than the current test triple
t+, the results might get distorted. Therefore, the filtered
evaluation setting has been proposed [19], in which the
corrupted triples are filtered to exclude known true facts
from the train and test set. Thus, the rank does not decrease
when ranking another true entity higher.

Moreover, we want to draw attention to the fact that
the metrics can be further be distorted by unknown false
negatives, i.e., true triples that are contained in the set of
corrupted triples but are not part of the KG (and therefore
cannot be filtered out). Therefore, it is essential to investigate

the predicted scores of a KGEM and not solely rely on the
computed metrics.

Based upon these individual ranks, the following mea-
sures are frequently used to summarize the overall perfor-
mance:

Mean rank The mean rank (MR) represents the average
rank of the test triples, i.e.

MR =
1

|Ktest|
∑

t∈Ktest

rank(t) (39)

Smaller values indicate better performance.
Adjusted mean rank Because the interpretation of the

MR depends on the number of available candidate triples,
comparing MRs across different datasets (or inclusion of
inverse triples) is difficult. This is sometimes further ex-
acerbated in the filtered setting because the number of
candidates varies. Therefore, with fewer candidates avail-
able, it becomes easier to achieve low ranks. The adjusted
mean rank (AMR) [10] compensates for this problem by
comparing the mean rank against the expected mean rank
under a model with random scores:

AMR =
MR

1
2

∑
t∈Ktest

(ξ(t) + 1)
(40)

where ξ(t) denotes the number of candidate triples against
which the true triple t ∈ Ktest is ranked. In the unfiltered
setting we have ξ(t) = |E| − 1 for all t ∈ Ktest. Thereby,
the measure also adjusts for chance, as a random scoring
achieves an expected adjusted mean rank of 1. The AMR
has a fixed value range from 0 to 1, where smaller values
(AMR� 1) indicate better performance.

Mean reciprocal rank The mean reciprocal rank (MRR)
is defined as:

MRR =
1

|Ktest|
∑

t∈Ktest

1

rank(t)
(41)

where Ktest is a set of test triples, i.e. the MRR is the
mean over reciprocal individual ranks. However, the MRR
is flawed since the reciprocal rank is an ordinal scale and
not an interval scale, i.e. computing the arithmetic mean is
statistically incorrect [41], [42]. Still, it is often used for early
stopping since it is a smooth measure with stronger weight
on small ranks, and less affected by outlier individual ranks
than the mean rank. The MRR has a fixed value range from
0 to 1, where larger values indicate better performance.

Hits@K Hits@K denotes the ratio of the test triples that
have been ranked among the top k triples, i.e.,

Hits@k =
|{t ∈ Ktest | rank(t) ≤ k}|

|Ktest|
(42)

Larger values indicate better performance.
Additional Metrics Further metrics that might be rele-

vant are the area under the Receiver Operating Characteris-
tic curve (AUC-ROC) and the area under the precision-recall
curve (AUC-PR) [11]. However, these metrics require the
number of true positives, false positives, true negatives, and
false negatives, which in most cases cannot be computed
since the KGs are usually incomplete.

ALI et al. 9

5 EXISTING BENCHMARK DATASETS

In this section, we describe the benchmark datasets that
have been established to evaluate KGEMs. A summary is
also given in Table 1.

FB15K Freebase is a large cross-domain KG consisting of
around 1.2 billion triples and more than 80 million entities.
Bordes et al. [19] extracted a subset of Freebase, which
is used as a benchmark dataset and named it FB15K. It
contains 14,951 entities, 1,345 relations, as well as more than
half a million triples describing facts about movies, actors,
awards, sports, and sports teams [37].

FB15K-237 FB15K has a test-leakage, i.e. a major part of
the test triples (∼81%) are inverses of triples contained in the
training set: for most of the test triples of the form (h, r, t),
there exists a triple (h, r′, t) or (t, r′, h) in the training set.
Therefore, Toutanova and Chen [43] constructed FB15K-237
in which inverse relations were removed [43]. FB15K-237
contains 14,541 entities and 237 relations.

WN18 WordNet1 is a lexical knowledge base in which
entities represent terms and are called synsets. Relations
in WordNet represent conceptual-semantic and lexical rela-
tionships (e.g. hyponym). Bordes et al. [17] extracted a subset
of WordNet named WN18 that is frequently used to evaluate
KGEMs. It contains 40,943 synsets and 18 relations.

WN18RR Similarly to FB15K, WN18 also has a test-
leakage (of approximately 94%) [43]. For instance, for most
of the test triples of the form (h, hyponym, t), there exists a
triple (t, hypernym, o) in the training set. Dettmers et al. [37]
have shown that a simple rule-based system can obtain
results competitive to the state of the art results on WN18.
For this reason, they constructed WN18RR by removing in-
verse relations similarly to the procedure applied to FB15K.
WN18RR contains 40,943 entities and 11 relations.

Kinships The Kinships [44] dataset describes relation-
ships between members of the Australian tribe Alyawarra
and consists of 10,686 triples. It contains 104 entities repre-
senting members of the tribe and 26 relationship types that
represent kinship terms such as Adiadya or Umbaidya [17].

Nations The Nations [45] dataset contains data about
countries and their relationships with other countries. Ex-
emplary relations are economic aid and accusation [17].

Unified Medical Language System [46] The Unified
Medical Language System (UMLS) [46] is an ontology that
describes relationships between high-level concepts in the
biomedical domain. Examples of contained concepts are
Cell, Tissue, and Disease, and exemplary relations are part of
and exhibits [17], [46].

YAGO3-10 Yet Another Great Ontology (YAGO) [47]
is a KG containing facts that have been extracted from
Wikipedia and aligned with WordNet in order to exploit
the large amount of information contained in Wikipedia and
the taxonomic information included in WordNet. It contains
general facts about public figures, geographical entities,
movies, and further entities, and it has a taxonomy for
those concepts. YAGO3-10 is a subset of YAGO3 [48] (which
is an extension of YAGO) that contains entities associated
with at least ten different relations. In total, YAGO3-10 has
123,182 entities and 37 relations, and most of the triples

1. https://wordnet.princeton.edu/

TABLE 1
Existing Benchmark Datasets.

Dataset Triples Entities Relations

FB15K 592,213 14.951 1,345
FB15K-237 272,115 14,541 237
WN18 151,442 40,943 18
WN18RR 93,003 40,943 11
Kinships 10,686 104 26
Nations 11,191 14 56
UMLS 893,025 135 49
YAGO3-10 1,079,40 132,182 37

describe attributes of persons such as citizenship, gender,
and profession [37].

6 REPRODUCIBILITY STUDIES

The goal of the reproducibility studies was to investigate
whether it is possible to replicate experiments based on the
information provided in each model’s accompanying paper.
If specific information was missing, such as the number
of training epochs, we tried to find this information in
the accompanying source code if it was accessible. For our
study, we focused on the two most frequently used bench-
mark datasets, FB15K and WN18, as well as their respective
subsets FB15K-237 and WN18RR. Table 5 (Appendix A1)
illustrates for which models results were reported (in the
accompanying publications) for the considered datasets. A
checkmark denotes that results were reported, and green
background indicates that the entire experimental setup for
the corresponding dataset was described. Results have not
been reported for every model for every dataset because
some of the benchmark datasets were created after the
models were published. Therefore, these models have been
excluded from our reproducibility study.

Experimental Setup For each KGEM, we applied iden-
tical training and evaluation settings as described in their
concomitant papers. We ran each experiment four times
with random seeds to measure the variance in the obtained
results. We evaluated the models based on the ranking
metrics MR, AMR, MRR, and Hits@K. As discussed in [4],
[10], the exact computation of ranks differs across different
codebases, and can lead to significant differences [4]. We
follow the nomenclature of Berrendorf et al. [10], and report
scores based on the optimistic, pessimistic, and realistic rank
definitions.

Tables 8-11 (Appendix A3-A4) represent the results for
FB15K, FB15K-237, WN18, and WN18RR where experi-
ments highlighted in black were reproducible, in blue soft-
reproducible experiments (i.e., could be reproduced by a
margin ≤ 5%), and experiments highlighted in orange
could not be reproduced. In the following, we discuss the
observations that we made during our experiments.

6.1 Reproductions Requiring Alternate Hyper-
Parameters
One of the observations we made is that for some exper-
iments, results could only be reproduced with a different
set of hyper-parameter values. For instance, the results for
TransE could only be reproduced by adapting the batch

ALI et al. 10

size and the number of training epochs. We trained TransE
on WN18 for 4000 epochs compared to a reported num-
ber of 1000 epochs in order to obtain comparable results.
Furthermore, for RotatE on FB15K and WN18, we received
better results when adapting the learning rate. The reason
for these differences might be explained by the implemen-
tation details of the underlying frameworks which have
been used to train the models. Authors of early KGEMs
often implemented their training algorithms themselves or
used frameworks that were popular at the respective time
but are not used anymore. Therefore, differences between
the former and current frameworks may require an adap-
tion of the hyper-parameter values. Even within the same
framework, bug fixes or optimizations of the framework
can lead to different results based on the used version. Our
benchmarking study highlights that with adapted settings,
results can be reproduced and even improved.

6.2 Unreported Hyper-parameters Impedes Reproduc-
tion
Some experiments did not report the full experimental setup
impeding the reproduction of results. For example, the em-
beddings in the ConvKB experiments have been pre-trained
based on TransE. However, the batch size for training TransE
has not been reported, which can significantly affect the
results, as previously discussed. Furthermore, we obtained
a high deviation for the reported results for HolE on FB15K.
The apparent reason is that we could not find the hyper-
parameter setting for FB15K, such that we used the same
setting as for WN18, which we found in the accompanying
implementation.

6.3 Two Perspectives: Publication versus Implementa-
tion
While preparing our experiments, we observed that for
some experiments, essential aspects, which are part of the
released source code, have not been discussed in the paper.
For instance, in the publication describing ConvE, it is not
mentioned that inverse triples have been added to the KGs
in a pre-processing step. This step seems to be essential
to reproduce the results. A second example is SimplE, for
which the predicted scores have been clamped to the range
of [−20, 20]. This step was not mentioned in the publication,
but it can have a significant effect when the model is
evaluated based on an optimistic ranking approach, which
is the case for SimplE.

6.4 Lack of Official Implementations Impedes Repro-
duction
During our experiments, we observed that for DistMult and
TransD, we were able to reproduce the results on WN18,
but not on FB15K. A reason might be differences in the
implementation details of the frameworks used to train
and evaluate the models. For example, the initialization
of the embeddings or the normalization of the loss values
could have an impact on the performance. Since there exists
no official implementation (see Table 5 in Appendix A1)
for DistMult and TransD, it is not possible to check the
above-mentioned aspects. Furthermore, we were not able to

reproduce the results for TransH for which also no official
implementation is available. There exist reference imple-
mentations2, which slightly differ from the model initially
proposed.

6.5 Reproducibility is Dependent on The Ranking Ap-
proach

As discussed in [4], [10], the ranking metrics have been
implemented differently by various authors. In our experi-
ments, we report results based on three common implemen-
tations of the ranking metrics: i.) realistic, ii.) optimistic and
iii.) pessimistic ranking (Section 4). If a model predicts the
same score for many triples, there will be a large discrepancy
between the three ranking approaches. We could observe
such a discrepancy for SimplE for which the results on
FB15K (Table 8 in Appendix A3) and WN18 (Table 10 in
Appendix A4) were almost 0% based on the realistic ranking
approach, but were much higher based on the optimistic
ranking approach. Similar observations for other KGEM
have been made in [4].

7 BENCHMARKING

In our benchmarking studies, we evaluated a large set
of different combinations of interaction models, training
approaches, loss functions, and the effect of explicitly mod-
eling inverse relations. Additionally, we evaluated how well
the interaction models can model symmetry, anti-symmetry
and composition patterns (Appendix 8.1). In particular, we
investigated 21 interaction models, two training approaches,
and five loss functions on four datasets. We refer to a spe-
cific combination of interaction model, training approach,
loss function, and whether inverse relations are explicitly
modeled as a configuration, e.g., RotatE + LCWA + SPL + in-
verse relations. We do not refer to different hyper-parameter
values such as batch size or learning rate when we use the
term configuration. For each configuration, we used ran-
dom search to perform the hyper-parameter optimizations
over all other hyper-parameters and applied early stopping
on the validation set. Each hyper-parameter optimization
experiment lasted for a maximum of 24 hours or 100 itera-
tions, in which new hyper-parameters have been sampled
in each iteration. Overall, we performed individual hyper-
parameter optimizations for more than 1,000 configurations.
We retrain the model with the best hyper-parameter setting
and report evaluation results on the test set.

Before presenting our results, we provide an overview of
the experimental setup, comprising the investigated inter-
action models, training approaches, loss functions, negative
samplers, and datasets. We used the sLCWA and LCWA
as training approaches. For the sLCWA we applied a 1:k-
Scoring as usually done throughout the literature [19], [27],
where k denotes the number of negative examples for each
positive. For the LCWA, we applied a 1:N-Scoring, i.e.,
we sample each batch against all negatives examples as
typically done for training with the LCWA [37]. Table 6
(Appendix A1) shows the hyper-parameter ranges for the
sLCWA and the LCWA assumptions.

2. https://github.com/thunlp/OpenKE

ALI et al. 11

Datasets We performed experiments on the following
four datasets: WN18RR, FB15K-237, Kinships and YAGO3-
10. We selected WN18RR and FB15K-237 since they are
widely applied benchmarking datasets. We chose Kinships
and YAGO3-10 to investigate the performance of KGEMs on
a small and a larger dataset.

Interaction Models We investigated all interaction mod-
els described in Section 3.1. Because of our vast experi-
mental setup and the size of YAGO3-10, we restricted the
number of interaction models on YAGO3-10 as otherwise,
the computational effort would be prohibitive. Based on
their variety of model types as described in Section 3.1,
we selected the following interaction models: ComplEx,
ConvKB, DistMult, ERMLP, HolE, MuRE, QuatE, RESCAL,
RotatE, SE, TransD, and TransE.

Training Approaches We trained the interaction models
based on the sLCWA (Section 3.2.2) and the LCWA (Sec-
tion 3.2.1) training approaches. Due of the extent of our
benchmarking study and the fact that YAGO3-10 contains
more than 132,000 entities, which makes the training based
on the LCWA with 1-n scoring expensive, we restricted the
training approach to the sLCWA for YAGO3-10.

Loss Functions We investigated MRL, BCEL, SPL,
NSSAL, and CEL since they represent the variety of types
described in Section 3.3 and because they have been pre-
viously shown to yield good results. MRL has not been
historically used in the 1-N scoring setting likely due to the
fact that in 1-N scoring, the number of positive and negative
scores in each batch is not known in advance and dynamic.
Thus, the number of possible pairs varies as well ranging
from N − 1 to (N/2)2 for each (h, r) combination. The
accompanying variance in memory requirements for each
batch thus poses practical challenges. Therefore, we did not
use the MRL in combination with the 1-N scoring setting.

Negative Sampler When using the sLCWA, we gener-
ated negative samples with UNS. When training with the
LCWA and 1-N scoring, no explicit negative sampling was
required.

Early Stopping We evaluated each model every 50
epochs and performed early stopping with a patience of
100 epochs on all datasets except for YAGO3-10. There,
considering the larger number of triples seen in each epoch
we evaluated each model every 10 epochs and performed
early stopping with a patience of 50 epochs.

Below, we describe the results of our benchmarking
study. In the four following subsections, we summarize the
results for each dataset (i.e., Kinships, WN18RR, FB15K-
237, YAGO3-10) along with a discussion of the effect of the
models’ individual components (i.e., training approaches,
loss functions, the explicit modeling of inverse relations)
and optimizers on the performance. Finally, we compare the
model complexity versus performance. In the appendix, we
provide further results. In particular, we provide for each
model the results of all tested combinations of interaction
model, training approach, and loss function.

7.1 Results on the Kinships Dataset

Investigating the model performances on Kinhsips is in-
teresting because it is a comparatively small KG and thus
permits for each configuration a large number of HPO

iterations for all interaction models. Figure 4 provides a
general overview of the results, i.e., performance of the
interaction models, loss functions, training approach, the
effect of modeling inverse relations, and the effect of the
optimizers. Overall, it can be observed that for most inter-
action models, several well-performing configurations can
be determined. However, some interaction models heav-
ily depend on specific configurations such as KG2E and
QuatE. Although link prediction on Kinships seems to be
relatively easy, there are several translational distance-based
interaction models that perform relatively poor (i.e., TransD,
TransE, TransH, TransR, and UM). The poor performance of
UM is not surprising considering that it omits the multi-
relational information of the data. Finally, the results illus-
trate that Adam outperforms Adadelta (in many cases with
high margin). Therefore, we decided to progress only with
Adam as optimizer for the remaining datasets in order to
reduce the computational costs.

Impact of the Training approach Figure 5 depicts the
effect of the training approaches. We focus only on the BCEL
and the SPL (which is equivalent to BCEL, but numerical
more stable, see Section 3.3.1) since they have been trained
with both training approaches. It can be observed that some
interaction models such as MuRE perform equally well on
both training approaches on Kinships whereas others such
as RESCAL benefit from one of the training approaches (in
this case from the sLCWA).

Impact of the Loss Function
Figure 4 highlights that selecting the appropriate loss

function is crucial also for relatively small dataset such
as Kinships. Although all five loss functions achieve high
performance, all except the MRL exhibit high variance.
Comparing an interaction model that has been trained with
the MRL with an interaction model that has been trained
with a different loss function can lead to misleading con-
clusions since finding a suitable configuration for the loss
functions except for the MRL is more difficult.

Impact of Explicitly Modeling Inverse Relations
Figures 4 and 6 present the effect of explicitly model-

ing inverse relations. Overall, explicitly modeling inverse
relations results in less variance across the investigated
configurations (Figure 4). Further investigating the effect of
modeling of inverse relations on the different loss functions
and training approaches (Figure 6), it can be observed that in
general, the LCWA benefits from explicit usage of inverse re-
lations in terms of robustness. This is to be expected since, in
the LCWA, the model only learns to perform tail predictions,
and without explicitly modeling inverse relations, the model
might have difficulties in correctly predicting head entities.
However, when explicitly modeling inverse relations, the
head predictions are obtained by predicting the tail entities
of the corresponding inverse triples (see Section 3.4)

Interestingly, MRL and NSSAL-based configurations,
which are both only trained with the sLCWA (i.e., the model
already learns to perform head and tail predictions) are
more robust when trained with inverse relations. Therefore,
depending on the dataset, it might be helpful to employ
inverse relation for these loss functions even though they
might be trained with sLCWA.

Model Complexity versus Performance Figure 17 (Ap-
pendix A9) plots the model size against the obtained per-

ALI et al. 12

Co
m

plE
x

Co
nv

E
Co

nv
KB

Di
stM

ult
ER

M
LP

Ho
lE

KG
2E

M
uR

E

NT
N

Pr
ojE

Qua
tE

RE
SC

AL
Ro

ta
tE SE

Si
m

plE
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.2

0.4

0.6

0.8

1.0
hi

ts
@

10
Model

BC
EL

 (L
CW

A)
BC

EL
 (s

LC
W

A)
CE

L

M
RL

NS
SA

L
SP

L (
LC

W
A)

SP
L (

sL
CW

A)

Loss / Trainer

Fa
lse Tr
ue

Inv.

Ad
ad

elt
a

Ad
am

Opt.

Fig. 4. Overall hits@10 results for Kinships where box-plots summarize the best results across different configurations, i.e., combinations of
interaction models, training approaches, loss functions, and the explicit usage of inverse relations.

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

ComplEx
ConvE

ConvKB
DistMult
ERMLP

HolE
KG2E
MuRE

NTN
ProjE

QuatE
RESCAL

RotatE
SE

SimplE
TransD
TransE
TransH
TransR
TuckER

UM

BCEL

Training Approach
LCWA
sLCWA

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

SPL

Fig. 5. Impact of training approach on the performance for a fixed
interaction model and loss function for the Kinships dataset based on
Adam.

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

BCEL (LCWA)

BCEL (sLCWA)

CEL

MRL

NSSAL

SPL (LCWA)

SPL (sLCWA)

Kinships

inverse_relations
False
True

Fig. 6. Impact of explicitly modeling inverse relations on the performance
for a fixed loss function for the Kinships dataset.

formance. The results highlight that there is no strong cor-
relation between model size and performance, i.e., models
with a small number of parameters can perform equally
well as large models on the Kinships data set. The skyline
comprises small UM models, some intermediate HolE and
ProjE models, and larger RotatE and TuckER models. A full
list is provided in Table 14 in Appendix A6.

7.2 Results on the WN18RR Dataset

Figure 7 depicts the overall results over WN18RR. A de-
tailed overview of all configurations can be found in Fig-
ure 20 in Appendix A12. The results highlight that there
are several combinations of interaction models, loss func-
tions, and training approaches that obtain hits@10 results
that are competitive with state-of-the-art results3. In par-
ticular, ComplEx (53.74%), ConvE (56.33% compared to
52.00% in the original paper [37]), DistMult (52.62%), MuRE
(57.90% compared to 55.50% in the original paper [24]),
KG2E (52.30%), ProjE (51,73%), TransE (56.98%), RESCAL
(53.92%), RotatE (60.09% compared to 56.61% in the original
paper [23]), SimplE (50.89%), and TuckER (56.09% compared
to 52.6% in the original paper [30]) obtained high perfor-
mance. Especially the result obtained by TransE is impres-
sive since with a suitable configuration, it beats most of
the published state-of-the-art results. The results highlight
that determining an appropriate combination of interaction
model, loss function, training approach, and the decision
to explicitly modeling inverse relation is fundamental since
many interaction models such as ConvE and KG2E reveal
a high variance across different configurations. The results
for ComplEx and RESCAL further underpin this observa-
tion. They reveal competitive results with very specialized
configurations that represent outliers. Another interesting
observation is the performance of UM, which does not
model relations, but can still compete with some of the other
interaction models on WN18RR. This observation might
indicate that the relational patterns in WN18RR are not too
diverse across relations.

Impact of the Training Approach Figures 7 and 8 depict
the impact of the training approach. Again, we focus only
on BCEL and SPL since they have been trained under both
the sLCWA and LCWA. The figures highlight that for both
realizations of the binary cross entropy loss, the LCWA
achieves higher maximum performance, but at the same
time, it reveals a larger variance on both loss functions.
Consequently, it may be more difficult to find configurations
that obtain high performance. The overall lower variance of
SPL can be explained by the fact that it is numerically more
stable than the BCEL.

Figure 8 shows the impact of the training approaches
for fixed interaction models and used loss functions. The

3. https://paperswithcode.com/sota/link-prediction-on-wn18rr

ALI et al. 13

Co
m

plE
x

Co
nv

E
Co

nv
KB

Di
stM

ult
ER

M
LP

Ho
lE

KG
2E

M
uR

E

NT
N

Pr
ojE

Qua
tE

RE
SC

AL
Ro

ta
tE SE

Si
m

plE
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.2

0.4

0.6

0.8

1.0
hi

ts
@

10
Model

BC
EL

 (L
CW

A)
BC

EL
 (s

LC
W

A)
CE

L

M
RL

NS
SA

L
SP

L (
LC

W
A)

SP
L (

sL
CW

A)

Loss / Trainer

Fa
lse Tr
ue

Inv.

Fig. 7. Overall hits@10 results for WN18RR where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations.

results indicate that for some combinations of interaction
models and loss functions, the training approach’s choice
has a significant impact on the results. For instance, ConvE,
RotatE, TransE and TuckER reveal stronger performance
when trained with the LCWA whereas TransH suffer under
the LCWA.

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

ComplEx
ConvE

DistMult
ERMLP

HolE
KG2E
MuRE
ProjE

QuatE
RESCAL

RotatE
SimplE
TransD
TransE
TransH
TransR
TuckER

UM

BCEL

Training Approach
LCWA
sLCWA

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

SPL

Fig. 8. Impact of training approach on the performance for a fixed
interaction model and loss function for the WN18RR dataset.

Impact of the Loss Function Figure 7 depicts the perfor-
mance of the different loss functions. State-of-the-art results
for WN18RR are currently between 50% and 60%, and for
each loss function, at least 50% could be achieved (Figure
20 in Appendix A12). However, the MRL is comparably less
competitive than the other loss functions. This observation
is especially important considering that early KGEMs have
often been trained with the MRL. The results highlight
that there is a trade-off between highest performance and
robustness, i.e., SPL and BCEL achieve the highest perfor-
mance (when trained under the LCWA), but also have high
variance across different configurations (especially BCEL +
LCWA).

Figure 24 (Appendix A16) reveals that some interaction
models can obtain a further performance boost when con-
figured with specific loss functions. For instance, the perfor-
mance of ComplEx, ProjE and RESCAL can be increased by
a significant margin when composed together with the CEL.

Impact of Explicitly Modeling Inverse Relations Fig-
ure 9 illustrates that it is easier to find a strong performing
sLCWA-configurations when trained without inverse rela-
tions. Surprising is that for LCWA based configurations,
the interaction models are still competitive when trained

without inverse relations. This observation is surprising
because KGEMs that are configured with the LCWA and
without inverse relations are not explicitly trained to predict
the head entities of triples.

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

BCEL (LCWA)

BCEL (sLCWA)

CEL

MRL

NSSAL

SPL (LCWA)

SPL (sLCWA)

WN18RR

inverse_relations
False
True

Fig. 9. Impact of explicitly modeling inverse relations on the performance
for a fixed loss function for the WN18RR dataset.

Model Complexity vs. Performance Figure 17 (Ap-
pendix A9) highlights that there is no significant corre-
lation between model size and performance. Instead, the
results show that with an appropriate configuration, the
model complexity can be significantly reduced (Table 15
in Appendix A6). For instance, for RotatE, several high-
performing configurations have been found (Figure 20 in the
Appendix A12), and the second-best configuration achieved
a hits@10 value of 58.33% while trained with an embedding
dimension of 64 (in the complex space). This is especially
interesting considering that RotatE originally obtained a
performance of 57.1% hits@10 [23] with an embedding
dimension of 500 (in the complex space) using the sLCWA
as training approach and the NSSAL as loss function 4. By
changing the training approach and the loss function, the
embedding dimension could be reduced significantly while
getting at the same time an improvement in the hits@10
score.

4. https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding

ALI et al. 14

7.3 Results on the FB15K-237 Dataset
Figure 10 provides an overall overview of the results ob-
tained on FB15K-237. For the results for each individual
configuration, we refer to Figure 21 in Appendix A13. We
can observe that TuckER outperforms the other interaction
models followed by RotatE. DistMult again obtains surpris-
ingly good results (Table 21 in Appendix A13) considering
that the interaction model enforces symmetric relations. The
results illustrate again that choosing a suitable composition
is essential for the performance of an interaction model.
For instance, TuckER and QuatE perform well only with
dedicated compositions. A further example is DistMult,
which again obtains surprisingly good results (Table 21
in Appendix A13) considering that the interaction model
enforces symmetric relations. DistMult, however, achieves a
strong performance only when composed with the LCWA
and the CEL (Table 17 in Appendix A7), highlighting that
a simple interaction model can obtain strong performance
when composed beneficially.

Impact of the Training Approach Figure 10 shows that
for both, BCEL and SPL, the LCWA obtains significantly
higher results, but they express a high variance at the same
time. Figures 11 and 25 (Appendix A17) illustrate that some
interaction models are extremely sensitive to the choice of
the training approaches. For instance, it can be observed that
RotatE, TransE, and TuckER suffer when trained together
with the sLCWA for both loss functions. Table 17 (Appendix
A7) shows that most of the interaction models obtain their
best performance on FB15K-237 when trained together with
the LCWA.

Impact of the Loss Function Figure 10 illustrates that
the BCEL and SPL outperform the other loss functions, but
they also exhibit higher variance. Figure 25 (Appendix A17)
expresses that some interaction models seem to be more
sensitive to the usage of different loss function. For instance,
ConvE and TuckER suffer from the MRL and the NSSAL,
DistMult together with the CEL outperforms the other loss
functions. However, TransE performs similarly for all loss
functions except the NSSAL.

Impact of Explicitly Modeling Inverse Relations Fig-
ure 12 reveals, as for the previous datasets, that in general,
the usage of inverse relations is crucial for the training based
on the LCWA approach. Different from the results obtained
for WN18RR, the LCWA is not competitive when trained
without inverse relations.

Model Complexity vs. Performance Figure 17 (Ap-
pendix A9) illustrates that for FB15K-237, there is no clear
correlation between model size and performance. Tiny mod-
els can already obtain similar performance as larger models.
The skyline comprises an intermediate UM, TransE and
DistMult models, and a larger TuckER model. A full list
is provided in Table 13 (Appendix A6).

7.4 Results on the YAGO3-10 Dataset
YAGO3-10 is the largest benchmark dataset in our study.
Therefore, it is of interest to investigate how the different
interaction models perform on a larger KG. As mentioned
in the introduction of this chapter, we reduced the experi-
mental setup for YAGO3-10 in order to reduce the computa-
tional complexity of our entire study. Figure 13 depicts the

overall results obtained for YAGO3-10. Detailed results for
all configurations are illustrated in Figure 22 in Appendix
A14.

The results highlight the previous observation that the
performance of many KGEMs heavily depends on the
choice of its components and is dataset-specific. For in-
stance, MuRE, the best-performing interaction model, and
especially RotatE, which is among the top-performing inter-
action models, exhibit high variance across their configura-
tions. TransE, which was among the top-performing inter-
action models on WN18RR, performed poorly on YAGO3-
10. One might conclude that TransE performs better on
smaller KGs, but the results obtained on Kinships do not
support this assumption. It should be taken into account
that some interaction models might benefit from being
trained with the LCWA on YAGO3-10 as observed for
TransE on WN18RR. Therefore, TransE might perform much
better when trained with the LCWA approach. Remarkably,
ComplEx and QuatE seem to be robust for all sLCWA
configurations. With regards to the loss functions, all loss
functions except MRL obtain comparable results. Though,
the MRL is more robust than other loss functions.

Impact of the Loss Function Figure 13 shows again that
the choice of the loss functions has an import impact on
the models’ performance: the margin ranking loss and the
self-adversarial negative sampling loss are less competitive
than the binary cross entropy loss/Softplus loss. Figure 22
(Appendix A 14) highlights that some interaction models are
susceptible to the choice of the loss function. For instance,
RotatE and TransE suffer when trained with BCEL and SPL
whereas ERMLP suffers when trained with the MRL.

Impact of Explicitly Modeling Inverse Relations Fig-
ure 14 shows the effect of explicitly modeling inverse rela-
tions for fixed loss functions (it should be noted that the
results are obtained based only on the sLCWA training
approach). In contrast to the results observed for WN18RR
and FB15K-237, the MRL benefits from explicitly modeling
inverse relations. Furthermore, also the SPL obtains its best
performance with inverse inverse relations.

Model Complexity vs. Performance Figure 17 (Ap-
pendix A9) expresses that there is a low correlation between
model size and performance for YAGO3-10. However, the
improvement is tiny compared to the differences in model
size. It should be taken into account that for KGEMs, the
model size is usually dependent on the number of entities
and relations. Therefore, dependent on the space complexity
of the interaction model (Table 4 in Appendix A1), the
size can grow fast for large KGs. The skyline comprises
an intermediate TransE, DistMult and ConvKB model, and
a larger MuRE model. A full list is provided in Table 16
(Appendix A6).

8 RELATIONAL PATTERN ANALYSIS

Knowledge graphs exhibit relational patterns such as sym-
metry (e.g., the relation marriedTo), and the performance of
KGEMs depend on how well these patterns can be modeled.
Four major relational patterns that have been investigated
in the literature are symmetry, anti-symmetry, inversion, and
composition [23], [27], [43]. Here, we provide a large-scale

ALI et al. 15

Co
m

plE
x

Co
nv

E
Co

nv
KB

Di
stM

ult
ER

M
LP

Ho
lE

KG
2E

M
uR

E

NT
N

Pr
ojE

Qua
tE

RE
SC

AL
Ro

ta
tE SE

Si
m

plE
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.2

0.4

0.6

0.8

1.0
hi

ts
@

10
Model

BC
EL

 (L
CW

A)
BC

EL
 (s

LC
W

A)
CE

L

M
RL

NS
SA

L
SP

L (
LC

W
A)

SP
L (

sL
CW

A)

Loss / Trainer

Fa
lse Tr
ue

Inv.

Fig. 10. Overall hits@10 results for FB15K-237 where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations.

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

ComplEx
ConvE

DistMult
ERMLP

HolE
KG2E
MuRE

NTN
ProjE

QuatE
RESCAL

RotatE
SimplE
TransD
TransE
TransH
TuckER

UM

BCEL

Training Approach
LCWA
sLCWA

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

SPL

Fig. 11. Impact of training approach on the performance for a fixed
interaction model and loss function for the FB15K-237 dataset.

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

BCEL (LCWA)

BCEL (sLCWA)

CEL

MRL

NSSAL

SPL (LCWA)

SPL (sLCWA)

FB15k237

inverse_relations
False
True

Fig. 12. Impact of explicitly modeling inverse relations on the perfor-
mance for a fixed loss function for the FB15K-237 dataset.

performance analysis of our investigated KGEMs in mod-
eling symmetry, anti-symmetry, and composition patterns for
the datasets FB15k-237, WN18RR, and YAGO3-10. First, we
provide statistics about the support and confidence of the sym-
metry, anti-symmetry, inversion, and composition patterns
in the FB15k-237, WN18RR and YAGO3-10 datasets. Next,
we describe our experimental setup. Finally, we present the
results of our relational pattern analysis.

8.1 Relational Patterns and their Detection

Here, we formally define the relational patterns symmetry,
anti-symmetry, inversion, and composition patterns accord-
ing to [23], the measures support and confidence, and provide
an overview of the support and confidence of the these pat-
terns in the FB15k-237, WN18RR and YAGO3-10 datasets.

Definition 1 (Symmetric Relation). A relation r ∈ R is
symmetric, if (h, r, t) ∈ T =⇒ (t, r, h) ∈ T

Definition 2 (Anti-Symmetric Relation). A relation r ∈ R is
anti-symmetric, if (h, r, t) ∈ T =⇒ (t, r, h) /∈ T

Definition 3 (Inverse Relation). A relation r ∈ R is inverse
to rinv ∈ R, if (h, r, t) ∈ T =⇒ (t, rinv, h) ∈ T . If there
exists a r′ ∈ R with r′ 6= r and r′ is inverse to r, then we
call r an inverse relation.

Definition 4 (Composite Relation). A relation r ∈ R is a
composition of two relations r1, r2 ∈ R, if (a, r1, b) ∈
T ∧ (b, r2, c) ∈ T =⇒ (a, r, c) ∈ T . We call r a
composite relation, if such two relations exist.

Since KGs are known to be incomplete, a false an-
tecedent, i.e., right-hand side of a rule, may not only be
caused by the relation not being of the relation type of inter-
est, but also originate from the KG’s incompleteness. Thus,
we detect relation types using a support and confidence
threshold, defined akin to the concepts of association rule
mining.

The support of one of the aforementioned patterns p for
a relation r indicates the number of different assignments of
entities such that the precedent, i.e., the left-hand side of a
rule, holds. For most of the simple rules this is equivalent to
the relation frequency, but, e.g., for composite relations, we
need to consider all pairs of triples with matching the can-
didate relations r1, r2 and being linked by the intermediate
entity b.

The confidence of a relational pattern is the number of
times the right-hand side holds divided by the support.
Thus, it can be interpreted as an estimate of the the con-
ditional probability of the antecedent, given the precedent
holds.

ALI et al. 16

Co
m

plE
x

Co
nv

KB
Di

stM
ult

ER
M

LP
Ho

lE

M
uR

E
Qua

tE
RE

SC
AL

Ro
ta

tE SE

Tr
an

sD
Tr

an
sE

0.0

0.2

0.4

0.6

0.8

1.0

hi
ts

@
10

Model

BC
EL

 (s
LC

W
A)

M
RL

NS
SA

L
SP

L (
sL

CW
A)

Loss / Trainer

Fa
lse Tr
ue

Inv.

Fig. 13. Overall hits@10 results for YAGO3-10 where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations. In contrast, to the previous datasets, the models have only been trained
based on the stochastic local closed world assumption.

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

BCEL

MRL

NSSAL

SPL

YAGO310

inverse_relations
False
True

Fig. 14. Impact of explicitly modeling inverse relations on the perfor-
mance for a fixed loss function for the YAGO3-10 dataset.

TABLE 2
Frequency of detected relation patterns across the benchmark

datasets.

pattern anti-symmetry composition symmetry
dataset

fb15k237 205 147 3
wn18rr 7 1 3
yago310 30 3 2

8.2 Relation Patterns in Benchmark Datasets

Table 2 shows the frequency of the detected pattern types
for the three studied benchmark datasets. Similar to related
work we used a confidence threshold of 97% [43]. Note that
we did not detect a single inverse relation, since FB15k-237
and WN18RR have been explicitly preprocessed to remove
such.

8.3 Experimental Setup

To measure the performance of the investigated KGEMs
in modeling symmetry, anti-symmetry, and composition
patterns, we slightly adapted the standard link prediction
evaluation procedure (Section 4). Instead of computing the
metrics based on all test triples, we extracted for each

fb
15

k2
37

wn
18

rr

ya
go

31
0

dataset

0.0

0.2

0.4

0.6

0.8

1.0

H@
10

pattern
symmetry
anti-symmetry
composition

Fig. 15. Performance Distribution of all best models per configuration in
H@10.

relational pattern all test triples that contain the associated
relations, aggregated the single ranks obtained of each triple
in the subset, and computed the hits@10 metric for each
subset. Therefore, we can express how well a KGEM can
model a specific relational pattern.

8.4 Results

Figure 15 shows the overall performance on pattern types
per dataset. We show the distribution of best models’ per-
formance for each configuration in terms of H@10. We
generally observe a tendency that symmetric relations are
easier to model than anti-symmetric and composite rela-
tions, which seem to be equally challenging.

Figure 16 (Appendix A2) shows the performance of best
models’ for each configuration for each dataset and pattern
type, grouped by interaction function. For the most simple
pattern, symmetry, almost all interaction functions can ob-
tain strong results on WN18RR, with NTN, TransD and SE
slightly falling behind. For FB15k237, we observe similar
results, except that SimplE and KG2E fail to capture this
pattern (while performing still sufficiently good on other
patterns). On YAGO3-10, translation-based methods such as
TransE or TransD cannot match the performance of, Com-
plEx, RotatE and DistMult, with ER-MLP’s performance in
between.

ALI et al. 17

On the more difficult anti-symmetry and composition
patterns, the differences are more pronounced. Overall, Ro-
tatE and TransE obtain the best results, whereas UM and
NTN cannot obtain good results.

9 DISCUSSION & FUTURE WORK

Table 7 (Appendix A1) illustrates the extent of our studies
and Table 3 (Appendix 18) summarizes the main find-
ings our work. Although the re-implementation of all ma-
chine learning components into a unified, fully configurable
framework was a major effort, we believe it is essential to
analyze reproducibility and obtain fair results on bench-
marking. In particular, we were able to address the issue
of incompatible evaluation procedures and preprocessing
steps in previous publications that are not obvious. We
highlighted that the evaluation metrics, which usually are
utilized to evaluate the performance of knowledge graph
embedding models, are realized differently depending on
the definition of the rank. Specifically, three major rank
definitions are employed: optimistic, realistic, and pessimistic
ranking. Because the optimistic and pessimistic ranking
can lead to distorted conclusions in cases where a KGEM
predicts the same score for many triples, we recommend
evaluating knowledge graph embedding models based on
the realistic ranking approach.

During our reproducibility study, we found that the re-
production of experiments is a major challenge and, in many
cases, not possible with the available information in current
publications. In particular, we observed the following four
main aspects:

• For a set of experiments, the results can sometimes
only be reproduced with a different set of hyper-
parameter values.

• For some experiments, the entire experimental setup
was not provided, impeding the reproduction of
experiments.

• The lack of an official implementation hampers the
reproduction of results.

• Some results are dependent on the utilized rank-
ing approach (average, optimistic, and pessimistic
ranking approach). For example, the optimistic rank
may lead to incorrect conclusions about the model’s
performance.

Our benchmarking study shows that the term KGEM
should be used with caution and should be differentiated
from the actual interaction model since our results highlight
that the specific combination of the interaction model, train-
ing approach, loss function, and the usage of explicit inverse
relations is often fundamental for the performance.

No configuration performs best across all datasets. De-
pending on the dataset, several configurations can be found
that achieve comparable results (Tables 17-20 in Appendix
A7-A8, and Figures 19-22 in Appendix A11-A14). Moreover,
with an appropriate configuration, the model size can signif-
icantly be compressed (see Pareto-optimal configurations in
Tables 13-16 in Appendix A6) that has especially a practical
relevance when looking for a trade-off between required
memory and performance.

The results also highlight that even interaction models
such as TransE that have been considered as baselines can
outperform state-of-the-art interaction models when trained
with an appropriate training approach and loss function.
This raises the question of the necessity of the vast num-
ber of available interaction models. However, for some
interaction models such as RotatE, MuRE or TuckER, we
can observe a good performance across all datasets (note:
TuckER has not been evaluated on YAGO3-10). For RotatE,
we even obtained the state-of-the-art results on WN18RR
(similar results were obtained by Graph Attenuated Atten-
tion Networks [49]), and for ConvE, MuRE, and TuckER,
we obtained results superior to the originally published
ones. ComplEx proved to be a very robust interaction model
across different configurations. This can, in particular, be ob-
served from the results obtained on YAGO3-10 (Figure 13).

We discovered that no loss function consistently achieves
the best results. Instead it can be seen that with different loss
functions, such as the BCEL, NSSAL, and SPL, good results
can be obtained across all datasets. Remarkably, the MRL
is overall the worst-performing loss function. However, one
might argue that the MRL is the most compatible loss func-
tion with the sLCWA since it does not assume artificially
generated negative examples to be actually false in contrast
to the other loss functions used. The MRL only learns to
score positive examples higher than corresponding negative
examples, but it does not ensure that a negative example is
scored lower than every other positive example. Thus, the
absolute score values are not interpretable and cannot be
used to compare triples without common head/tail entities.
They can only be interpreted relatively, and only when
comparing scores for triples with the same (hr)/(rt). Al-
though loss functions such as BCEL or SPL treat generated
negative triples as true negatives that actually contain also
unknown positive examples, they obtain good performance.
This might be explained by the fact that usually the set of
unknown triples are dominated by false triples. Therefore, it
is likely that a major part of the generated triples are actually
negative. Consequently, the KGEM learns to distinguish
better positive from negative examples.

Considering the explicit usage of inverse relations, we
found out that the impact of inverse relations can be sig-
nificant, especially when the interaction model is trained
under the LCWA. This might be explained by the fact that
based on the LCWA-training, the KGEM only learns to
perform one-side predictions (i.e., it learns to either predict
head or tail entities), but during the evaluation, it is asked
to perform both-side predictions. Through the inclusion of
inverse relations, the model learns to perform both-side
predictions based on one side, i.e., (∗, r, t) can be predicted
through (t, rinverse, ∗). Overall, our results indicate that
further investigations on FB15K-237 and YAGO3-10 might
lead to results that are competitive to the state-of-the-art.

Looking forward, it would be of great interest to re-
investigate previously performed studies that analyze the
relationship between the performance of KGEMs and the
properties of the underlying KGs to verify that their findings
indeed can be attributed to the interaction model alone, rather
than the exact configuration including the loss function,
the training approach and the explicit modeling of inverse
relations. Further, the effect of explicitly modeling inverse

ALI et al. 18

TABLE 3
Summary of main insights over all datasets. Each component (i.e., interaction model, loss function, and training approach) is considered to be

among the top-ten performing configurations when they occur at least once in the top-ten performing configurations. Note that a single component
is part of several configurations, and therefore, can occur multiple times in the top-ten performing configurations.

Interaction Models

RotatE Among top-ten-performing interaction models across all datasets.
MuRE Among top-ten-performing interaction models on WN18RR, FB15K-237, and YAGO3-10.
ConvE Among top-ten-performing interaction models on Kinships and FB15K-237 (has not been evaluated on YAGO3-10).
ComplEx Among top-ten-performing interaction models on Kinships and YAGO3-10.
TuckER Among top-ten-performing interaction models for Kinships, and FB15K-237 (has not been evaluated on YAGO3-10).
DistMult Among top-ten-performing interaction models on FB15K-237.
QuatE Among top-ten-performing interaction models on YAGO3-10.
TransE Among top-ten-performing interaction models on WN18RR.
SE Among top-ten-performing interaction models on Kinships.

Loss Functions

BCEL Among top-ten-performing loss functions across all datasets.
NSSAL Among top-ten-performing loss functions across all datasets.
SPL Among top-ten-performing loss functions across all datasets.
CEL Among top-ten-performing loss functions on Kinships and FB15K-237 (has not been evaluated on YAGO3-10).
MRL Among top-ten-performing loss functions on Kinships.

Training Approaches

sLCWA Among top-ten-performing training approaches across all datasets.
LCWA Among top-ten-performing training approaches on Kinships, WN18RR and FB15K-237 (has not been evaluated on YAGO3-

10).

Explicit Modeling of Inverse Relations

Is usually beneficial in combination with the local closed world assumption.

Configurations

Performance Appropriate combination of interaction model, training assumption, loss function, choice of explicitly modeling inverse
relations is crucial for the performance, e.g., TransE can compete when with several state-of-the-art interaction models on
WN18RR when appropriate configuration is selected.
There is no single best configuration that works best for all dataset.

Variance Some interaction models exhibit a high variance across different configurations, e.g., RotatE on YAGO3-10 (Figure 13 on
page 16)

Pareto-Optimal
Configurations

Tables 13-16 in Appendix A6 describe Pareto-optimal configurations. It can be seen that there are configurations that require
fewer parameters while obtaining almost the same performance. In some cases, for the same interaction model, the model
can be significantly compressed.

Reproducibility

Results For FB15K, four out of 13, for WN18, five out of 13, for FB15K-237, two out of three, and for WN18RR, three out of five
experiments can be categorized as soft-reproducible.

Code For four out of 15 models, no official implementation was available.
Parameters For six out of 15 papers, source code was available and full experimental setup was precisely described.

General Insights

SOTA For WN18RR, we achieve based on a RotatE-configuration (together with Graph Attenuated Attention Networks [49]) state-
of-the-art results in terms of hits@10 through our study (60.09% Hits@10). Furthermore, we found a TransE configuration
that achieves high performance beating most of the published SOTA results (56.98% Hits@10). Based on our results, we
emphasize to further investigate the hyper-parameters space for the most promising configurations for the remaining
benchmarking datasets.

Improvements For ConvE (56.33% compared to 52.00% [37]), MuRE (57.90% compared to 55.50% [24]) and TuckER (56.09% compared
to 52.6% [30]), we are beating the reported results in the original papers due selecting appropriate configurations and
hyper-parameters on WN18RR.

relations has not been analyzed in depth, in particular how
the learned representations of a relation and its inverse
are related to each other. Ultimately, we believe our work
provides an empirical foundation for such studies and a
practical tool to execute them.

ACKNOWLEDGMENT

We want to thank the Center for Information Services and
High Performance Computing (ZIH) at TU Dresden for
generous allocations of computer time and the Technical
University of Denmark for providing us access to their
DTU Compute GPU cluster that enabled us to conduct our

studies. This work was funded by the German Federal Min-
istry of Education and Research (BMBF) under Grant No.
01IS18036A and Grant No. 01IS18050D (project “MLWin”),
the Innovation Fund Denmark with the Danish Center for
Big Data Analytics driven Innovation (DABAI), and the
Defense Advanced Research Projects Agency (DARPA) Au-
tomating Scientific Knowledge Extraction (ASKE) program
under grant HR00111990009.

REFERENCES

[1] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph em-
bedding: A survey of approaches and applications,” IEEE Trans.

ALI et al. 19

Knowl. Data Eng., vol. 29, no. 12, pp. 2724–2743, 2017.
[2] F. Akrami, L. Guo, W. Hu, and C. Li, “Re-evaluating embedding-

based knowledge graph completion methods,” in CIKM. ACM,
2018, pp. 1779–1782.

[3] R. Kadlec, O. Bajgar, and J. Kleindienst, “Knowledge base comple-
tion: Baselines strike back,” in Rep4NLP@ACL. Association for
Computational Linguistics, 2017, pp. 69–74.

[4] Z. Sun, S. Vashishth, S. Sanyal, P. P. Talukdar, and Y. Yang, “A
re-evaluation of knowledge graph completion methods,” in ACL.
Association for Computational Linguistics, 2020, pp. 5516–5522.

[5] B. Yang, W. Yih, X. He, J. Gao, and L. Deng, “Embedding entities
and relations for learning and inference in knowledge bases,” in
ICLR (Poster), 2015.

[6] F. Akrami, M. S. Saeef, Q. Zhang, W. Hu, and C. Li, “Realistic re-
evaluation of knowledge graph completion methods: An experi-
mental study,” in SIGMOD Conference. ACM, 2020, pp. 1995–2010.

[7] S. K. Mohamed, V. Novácek, P. Vandenbussche, and E. Muñoz,
“Loss functions in knowledge graph embedding models,” in
DL4KG@ESWC, ser. CEUR Workshop Proceedings, vol. 2377.
CEUR-WS.org, 2019, pp. 1–10.

[8] D. Ruffinelli, S. Broscheit, and R. Gemulla, “You CAN teach an
old dog new tricks! on training knowledge graph embeddings,”
in ICLR. OpenReview.net, 2020.

[9] A. Rossi, D. Firmani, A. Matinata, P. Merialdo, and D. Barbosa,
“Knowledge graph embedding for link prediction: A comparative
analysis,” CoRR, vol. abs/2002.00819, 2020.

[10] M. Berrendorf, E. Faerman, L. Vermue, and V. Tresp, “Interpretable
and fair comparison of link prediction or entity alignment meth-
ods with adjusted mean rank,” CoRR, vol. abs/2002.06914, 2020.

[11] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review
of relational machine learning for knowledge graphs,” Proc. IEEE,
vol. 104, no. 1, pp. 11–33, 2016.

[12] B. Kotnis and V. Nastase, “Analysis of the impact of negative
sampling on link prediction in knowledge graphs,” CoRR, vol.
abs/1708.06816, 2017.

[13] L. A. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek, “Amie:
association rule mining under incomplete evidence in ontological
knowledge bases,” in Proceedings of the 22nd international conference
on World Wide Web, 2013, pp. 413–422.

[14] S. Ji, S. Pan, E. Cambria, P. Marttinen, and S. Y. Philip, “A
survey on knowledge graphs: Representation, acquisition, and
applications,” IEEE Transactions on Neural Networks and Learning
Systems, 2021.

[15] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning
on graphs: Methods and applications,” IEEE Data Eng. Bull.,
vol. 40, no. 3, pp. 52–74, 2017.

[16] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth,
and P. Poupart, “Representation learning for dynamic graphs: A
survey,” J. Mach. Learn. Res., vol. 21, pp. 70:1–70:73, 2020.

[17] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic
matching energy function for learning with multi-relational data -
application to word-sense disambiguation,” Mach. Learn., vol. 94,
no. 2, pp. 233–259, 2014.

[18] A. Bordes, J. Weston, R. Collobert, and Y. Bengio, “Learning
structured embeddings of knowledge bases,” in AAAI. AAAI
Press, 2011.

[19] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and
O. Yakhnenko, “Translating embeddings for modeling multi-
relational data,” in NIPS, 2013, pp. 2787–2795.

[20] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes,” in AAAI. AAAI Press,
2014, pp. 1112–1119.

[21] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,” in AAAI.
AAAI Press, 2015, pp. 2181–2187.

[22] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph
embedding via dynamic mapping matrix,” in ACL (1). The
Association for Computer Linguistics, 2015, pp. 687–696.

[23] Z. Sun, Z. Deng, J. Nie, and J. Tang, “Rotate: Knowledge graph
embedding by relational rotation in complex space,” in ICLR
(Poster). OpenReview.net, 2019.

[24] I. Balazevic, C. Allen, and T. M. Hospedales, “Multi-relational
poincaré graph embeddings,” in NeurIPS, 2019, pp. 4465–4475.

[25] S. He, K. Liu, G. Ji, and J. Zhao, “Learning to represent knowledge
graphs with gaussian embedding,” in CIKM. ACM, 2015, pp.
623–632.

[26] M. Nickel, V. Tresp, and H. Kriegel, “A three-way model for
collective learning on multi-relational data,” in ICML. Omnipress,
2011, pp. 809–816.

[27] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard,
“Complex embeddings for simple link prediction,” in ICML, ser.
JMLR Workshop and Conference Proceedings, vol. 48. JMLR.org,
2016, pp. 2071–2080.

[28] S. Zhang, Y. Tay, L. Yao, and Q. Liu, “Quaternion knowledge graph
embeddings,” in NeurIPS, 2019, pp. 2731–2741.

[29] S. M. Kazemi and D. Poole, “Simple embedding for link prediction
in knowledge graphs,” in NeurIPS, 2018, pp. 4289–4300.

[30] I. Balazevic, C. Allen, and T. M. Hospedales, “Tucker: Tensor fac-
torization for knowledge graph completion,” in EMNLP/IJCNLP
(1). Association for Computational Linguistics, 2019, pp. 5184–
5193.

[31] L. R. Tucker et al., “The extension of factor analysis to three-
dimensional matrices,” Contributions to mathematical psychology,
vol. 110119, 1964.

[32] B. Shi and T. Weninger, “Proje: Embedding projection for knowl-
edge graph completion,” in AAAI. AAAI Press, 2017, pp. 1236–
1242.

[33] M. Nickel, L. Rosasco, and T. A. Poggio, “Holographic embed-
dings of knowledge graphs,” in AAAI. AAAI Press, 2016, pp.
1955–1961.

[34] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang, “Knowledge vault: a web-
scale approach to probabilistic knowledge fusion,” in KDD. ACM,
2014, pp. 601–610.

[35] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng, “Reasoning with
neural tensor networks for knowledge base completion,” in NIPS,
2013, pp. 926–934.

[36] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung, “A
novel embedding model for knowledge base completion based
on convolutional neural network,” arXiv preprint arXiv:1712.02121,
2017.

[37] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolu-
tional 2d knowledge graph embeddings,” in AAAI. AAAI Press,
2018, pp. 1811–1818.

[38] H. Zhang, Z. Kyaw, S. Chang, and T. Chua, “Visual translation
embedding network for visual relation detection,” in CVPR. IEEE
Computer Society, 2017, pp. 3107–3115.

[39] S. Sharifzadeh, M. Berrendorf, and V. Tresp, “Improving visual
relation detection using depth maps,” CoRR, vol. abs/1905.00966,
2019.

[40] T. Lacroix, N. Usunier, and G. Obozinski, “Canonical tensor
decomposition for knowledge base completion,” in ICML, ser.
Proceedings of Machine Learning Research, vol. 80. PMLR, 2018,
pp. 2869–2878.

[41] N. Fuhr, “Some common mistakes in IR evaluation, and how they
can be avoided,” SIGIR Forum, vol. 51, no. 3, pp. 32–41, 2017.

[42] S. S. Stevens, “On the theory of scales of measurement,” Science,
vol. 103, no. 2684, pp. 677–680, 1946.

[43] K. Toutanova and D. Chen, “Observed versus latent features for
knowledge base and text inference,” in Proceedings of the 3rd Work-
shop on Continuous Vector Space Models and their Compositionality,
2015, pp. 57–66.

[44] W. W. Denham, “The detection of patterns in alyawara nonverbal
behavior,” Ph.D. dissertation, University of Washington, Seattle.,
1973.

[45] R. J. Rummel, The dimensionality of nations project: attributes of
nations and behavior of nations dyads, 1950-1965. Inter-university
Consortium for Political Research, 1976, no. 5409.

[46] A. T. McCray, “An upper-level ontology for the biomedical do-
main,” International Journal of Genomics, vol. 4, no. 1, pp. 80–84,
2003.

[47] T. Rebele, F. M. Suchanek, J. Hoffart, J. Biega, E. Kuzey, and
G. Weikum, “YAGO: A multilingual knowledge base from
wikipedia, wordnet, and geonames,” in International Semantic Web
Conference (2), ser. Lecture Notes in Computer Science, vol. 9982,
2016, pp. 177–185.

[48] F. Mahdisoltani, J. Biega, and F. M. Suchanek, “YAGO3:
A knowledge base from multilingual wikipedias,” in CIDR.
www.cidrdb.org, 2015.

[49] R. Wang, B. Li, S. Hu, W. Du, and M. Zhang, “Knowledge graph
embedding via graph attenuated attention networks,” IEEE Access,
vol. 8, pp. 5212–5224, 2020.

ALI et al. 20

Mehdi Ali Mehdi Ali received his M.Sc. degree
in Computer Science with a focus on intelligent
systems from the University of Bonn. Currently,
he is a Ph.D. candidate at the computer sci-
ence department of the University of Bonn and
a research associate at the Fraunhofer Institute
IAIS. In his Ph.D., he focuses on machine learn-
ing models for (knowledge) graphs, multi-modal
models that combine graph and textual informa-
tion, and reproducibility in the field of knowledge
graph embedding models.

Max Berrendorf Max Berrendorf received his
B.Sc and M.Sc. degree in Computer Science
with a minor in Mathematics from RWTH Aachen
University. Currently he is pursuing a Ph.D. de-
gree at the chair of Database Systems and
Data Mining at Ludwig-Maximilians-Universität
München. In his research, he focuses on ma-
chine learning on graphs, in particular knowl-
edge graphs, graph matching problems, and re-
producibility in machine learning.

Charles Tapley Hoyt Dr. Charles Tapley Hoyt
completed his Ph.D. in Computational Life Sci-
ences from the University of Bonn in 2019 and
is now affiliated with the Laboratory of Sys-
tems Pharmacology at Harvard Medical School,
Boston, USA. His interests are in the biologi-
cal applications of knowledge graph embedding
models towards proteochemometrics, target pri-
oritization, drug repositioning, predictive toxicol-
ogy, and precision medicine.

Laurent Vermue Laurent Vermue received his
M.Sc. degree in Industrial Engineering and Man-
agement at the Technical University of Berlin
and MMSc. degree in Management Science and
Engineering at the Tongji University. Currently he
is a Ph.D. student at the Section for Statistics
and Data Analysis and the Section for Cognitive
Systems at DTU Compute, Technical University
of Denmark. His research interests include ma-
chine learning, complex network modeling and
open research software.

Mikhail Galkin Dr. Mikhail Galkin received his
Ph.D. degree in Computer Science from the
University of Bonn in 2018 studying knowledge
graphs, their creation, integration, and querying.
Currently, he is a postdoctoral fellow at Mon-
treal Institute for Learning Algorithms (Mila) and
McGill University. His interests include applica-
tions of knowledge graphs and graph represen-
tation learning to neural reasoning and natural
language processing.

Sahand Sharifzadeh Sahand Sharifzadeh re-
ceived his M.Sc degree from Technical Uni-
versity of Munich majoring in Computer Vi-
sion and Artificial Intelligence. Currently, he
is a Ph.D. candidate at Ludwig-Maximilians-
Universität München. In his research, he focuses
on extracting graphs from images and text, as
well as knowledge graph modeling. He often col-
laborates with biologists, physicists and robotic
engineers as interdisciplinary machine learning
research is one of his interests.

Asja Fischer Asja Fischer is professor for ma-
chine learning at Ruhr University Bochum. Her
research interests are focus on the development,
analysis, and application of deep learning mod-
els and methods. Before becoming a profes-
sor in Bochum she was assistant professor at
Bonn university, and a post-doctoral researcher
at the Montreal Institute for Learning Algorithms
(MILA). Between 2010 and 2015, she was em-
ployed both at the Institute for Neural Compu-
tation at the Ruhr University Bochum and the

Department of Computer Science at the University of Copenhagen
working on her PhD, which she defended in Copenhagen in 2014.
Before, she studied Biology, Bioinformatics, Mathematics, and Cognitive
Science at the Ruhr-University Bochum, the Universidade de Lisboa,
and the University of Osnabrück.

Volker Tresp Volker Tresp received the Diploma
degree from the University of Goettingen, Ger-
many, in 1984 and the M.Sc. and Ph.D. degrees
from Yale University, New Haven, CT, USA, in
1986 and 1989, respectively. Since 1989, he has
been the head of various research teams in ma-
chine learning at Siemens, Research and Tech-
nology, Munich, Germany. He filed more than
70 patent applications and was inventor of the
year of Siemens in 1996. He has published more
than 100 scientific articles and administered over

20 Ph.D. dissertations. The company Panoratio is a spin-off out of his
team. His research focus in recent years has been machine learning in
information networks for modeling knowledge graphs, medical decision
processes, and sensor networks. He is the coordinator of one of the
first nationally funded big data projects for the realization of precision
medicine. In 2011, he became a Honorary Professor at the Ludwig
Maximilian University of Munich, Germany, where he teaches an annual
course on machine learning.

Jens Lehmann Prof. Dr. Jens Lehmann leads
the ”Smart Data Analytics” research group at
the University of Bonn and Fraunhofer IAIS with
40 researchers. His research interests involve
knowledge graphs, machine learning, question
answering, distributed computing and knowl-
edge representation. He is particularly excited
about the combination of data- and knowledge-
driven AI methods. Prof. Lehmann won more
than 10 international awards for his research
work. He is founder, leader or contributor of sev-

eral community research projects, including SANSA, DL-Learner, DBpe-
dia and LinkedGeoData. Previously, he completed his PhD with ”summa
cum laude” at the University of Leipzig with visits to the University of
Oxford. He studied Computer Science at the Technical University of
Dresden.

ALI et al. A1

TABLE 4
Investigated interaction models [33] and their required number of

parameters. k corresponds to the number of neurons in the hidden
layer, nf to the number of convolutional kernels, kr and kc to the height

and width of the convolutional kernels.

Model Parameters

ComplExa |E|2d+ |R|2d

ConvEb |E|d+ |R|d+ d+ nfkrkc + 2 + 2nf + 2d
+(h− kr + 1)(w − kc + 1)nfd+ |E|

ConvKB |E|d+ |R|d+ nf (d+ 4) + 1
DistMult |E|d+ |R|d
ER-MLP |E|d+ |R|d+ k(3d+ 2) + 1
HolE |E|d+ |R|d
KG2E |E|2d+ 2|R|d
MuRE |E|(d+ 2) + 3|R|d
NTN |E|d+ |R|k(d2 + 2d+ 2)
ProjE |E|d+ |R|d+ 3d+ 1
QuatEc |E|4d+ |R|4d
RESCAL |E|d+ |R|d2
RotatEa |E|2d+ |R|d
SE |E|d+ 2|R|d2
SimplE |E|2d+ 2|R|d
TransE |E|d+ |R|d
TransH |E|d+ 2|R|d
TransR |E|de + |R|dr + dedr
UM |E|d
TuckER |E|de + |R|dr + d2edr + 4de

a 2d, because of complex valued vectors, i.e. imaginary
and real part of a number.

b w and h correspond to the height and weight of the
reshaped input.

c 4d, because of hyper-complex valued (quaternion) vec-
tors, i.e. a real part and three imaginary parts of a
quaternion.

TABLE 5
Denotes for each proposed model whether results have been reported
for FB15K, WN18, or their alterations. Furthermore, it indicates whether

an official implementation exists where P corresponds to a PyTorch
based implementation, T to a TensorFlow based implementation, and O

to other implementations. A green background indicates that the full
experimental setup was available. The models highlighted with * where

included in the reproducibility study.

Model Code FB15K FB15K-237 WN18 WN18RR

ComplEx* O X X
ConvE* P X X X X
ConvKB* T X X
DistMult* - X X
ER-MLP -
HolE* O X X
KG2E* - X X
MuRE* P X X
NTN -
ProjE T X X
QuatE*a P X X X X
UM -
RESCAL O
RotatE* P X X X X
SE O
SimplE* T, P X X
TransD* - X X
TransE* O X X
TransH* - X X
TransR* O X X
TuckER* P X X X X
UM -
a Code is based on the framework OpenKE https://github.com/

thunlp/OpenKE.

TABLE 6
Hyper-Parameter Ranges for Ablation Experiments

Hyper-Parameter Range

Sh
ar

ed

Embedding-Dimension {64,128,256}
Initialization {Xavier}
Optimizersa {Adam, Adadelta}
Learning Rate (log scale) [0.001, 0.1)
Batch Sizeb {128, 256, 512}
Model inverse relations {Yes, No}
Epochs 1,000

sL
C

W
A

Loss {BCEL, MRL, NSSAL, SPL}
Margin for MRL {0.5, 1.5, ... , 9.5}
Margin for NSSAL {1, 3, 5, ... , 29}
ADVT for NSSAL {0.1, 0.2, ... , 1.0}
Number of Negativesc {1, 2, ... , 100}

LC
W

A Loss {BCEL, CEL, SPL}
Label Smoothing (log scale) [0.001, 1.0)

a For Kinships, we evaluated Adam and Adadelta, and for the
remaining datasets we sticked to Adam since it performed
almost in every experiment at least equally good as Adadelta
and in many experiments significantly better.

b For YAGO3-10, the batch-size has been sampled from the set
{1024, 2048, 2096, 8192}.

c For YAGO3-10, the number of negative triples per each each
positive has been sampled from the set {1, 2, ..., 50}.

TABLE 7
Evaluation statistics

Metric Value

Datasets 4
Interaction Models 21
Training approaches 2
Loss Functions 5
Negative Samplers 1
Optimizers 2
Ablation Studies 1,207
Number of Experiments 73,683
Compute Time (hours) 24,804

https://github.com/thunlp/OpenKE
https://github.com/thunlp/OpenKE

ALI et al. A2

Co
m

pl
Ex

Co
nv

E
Co

nv
KB

Di
st

M
ul

t
ER

M
LP

Ho
lE

KG
2E

M
uR

E
NT

N
Pr

oj
E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE
Si

m
pl

E
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.2

0.4

0.6

0.8

1.0

H@
10

dataset = fb15k237 | pattern = symmetry

Co
m

pl
Ex

Co
nv

E
Co

nv
KB

Di
st

M
ul

t
ER

M
LP

Ho
lE

KG
2E

M
uR

E
NT

N
Pr

oj
E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE
Si

m
pl

E
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.1

0.2

0.3

0.4

0.5

dataset = fb15k237 | pattern = anti-symmetry

Co
m

pl
Ex

Co
nv

E
Co

nv
KB

Di
st

M
ul

t
ER

M
LP

Ho
lE

KG
2E

M
uR

E
NT

N
Pr

oj
E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE
Si

m
pl

E
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.2

0.4

dataset = fb15k237 | pattern = composition

Co
m

pl
Ex

Co
nv

E
Co

nv
KB

Di
st

M
ul

t
ER

M
LP

Ho
lE

KG
2E

M
uR

E
NT

N
Pr

oj
E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE
Si

m
pl

E
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.2

0.4

0.6

0.8

1.0

H@
10

dataset = wn18rr | pattern = symmetry

Co
m

pl
Ex

Co
nv

E
Co

nv
KB

Di
st

M
ul

t
ER

M
LP

Ho
lE

KG
2E

M
uR

E
NT

N
Pr

oj
E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE
Si

m
pl

E
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.1

0.2

0.3

0.4
dataset = wn18rr | pattern = anti-symmetry

Co
m

pl
Ex

Co
nv

E
Co

nv
KB

Di
st

M
ul

t
ER

M
LP

Ho
lE

KG
2E

M
uR

E
NT

N
Pr

oj
E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE
Si

m
pl

E
Tr

an
sD

Tr
an

sE
Tr

an
sH

Tr
an

sR
Tu

ck
ER UM

0.0

0.1

0.2

0.3

0.4
dataset = wn18rr | pattern = composition

Co
m

pl
Ex

Co
nv

KB
Di

st
M

ul
t

ER
M

LP
Ho

lE

M
uR

E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE

Tr
an

sD
Tr

an
sE

model

0.0

0.2

0.4

0.6

0.8

1.0

H@
10

dataset = yago310 | pattern = symmetry

Co
m

pl
Ex

Co
nv

KB
Di

st
M

ul
t

ER
M

LP
Ho

lE

M
uR

E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE

Tr
an

sD
Tr

an
sE

model

0.0

0.2

0.4

0.6

dataset = yago310 | pattern = anti-symmetry

Co
m

pl
Ex

Co
nv

KB
Di

st
M

ul
t

ER
M

LP
Ho

lE

M
uR

E

Qu
at

E
RE

SC
AL

Ro
ta

tE SE

Tr
an

sD
Tr

an
sE

model

0.0

0.1

0.2

0.3

0.4

0.5
dataset = yago310 | pattern = composition

Fig. 16. Performance of best models’ for each configuration for each dataset and pattern type, grouped by interaction function.

ALI et al. A3

ADDITIONAL RESULTS FROM REPRODUCIBILITY STUDY

TABLE 8
Reproduction of Studies on FB15K where pub refers to published results, R to results based on the realistic ranking, O to results based on the
optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined

due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they
differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ComplEx pub (O) 69.20 59.90 75.90 84.00
R 21.94 ± 0.71 12.73 ± 0.74 24.18 ± 0.65 30.67 ± 0.60 40.61 ± 0.74 170.56 ± 17.18 2.31 ± 0.23

ConvE pub (ND) 65.70 55.80 72.30 83.10 51.00
R 75.45 ± 0.17 68.26 ± 0.27 80.47 ± 0.08 83.94 ± 0.01 87.68 ± 0.04 43.97 ± 0.60 0.60 ± 0.01

DistMult pub (U) 35.00 57.70
R 28.47 ± 0.23 18.59 ± 0.19 31.77 ± 0.29 38.24 ± 0.38 47.81 ± 0.36 127.16 ± 0.85 1.72 ± 0.01

HolE pub (ND) 52.40 40.20 61.30 73.90
R 39.72 ± 0.32 27.15 ± 0.33 46.13 ± 0.40 54.05 ± 0.36 64.02 ± 0.27 186.22 ± 6.21 2.52 ± 0.08

KG2E pub (U) 71.50 59.00
R 0.63 ± 0.08 0.15 ± 0.04 0.41 ± 0.11 0.66 ± 0.17 1.25 ± 0.21 5784.42 ± 22.26 78.31 ± 0.30

QuatE1 pub (O) 77.00 70.00 82.10 87.80 41.00
R 22.19 ± 0.17 14.65 ± 0.16 23.76 ± 0.26 29.37 ± 0.40 37.42 ± 0.39 229.99 ± 1.57 3.11 ± 0.02

RotatE pub (ND) 79.70 74.60 83.00 88.40 40.00
R 64.94 ± 0.03 53.05 ± 0.05 73.31 ± 0.06 78.74 ± 0.06 84.85 ± 0.03 35.66 ± 0.06 0.48 ± 0.00

SimplE pub (O) 72.70 66.00 77.30 83.80
R 0.04 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.00 7386.02 ± 2.11 99.99 ± 0.03
O 23.62 ± 12.90 11.67 ± 8.68 24.65 ± 16.33 34.28 ± 20.19 51.91 ± 24.57 148.27 ± 89.28
P 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.00 14623.77 ± 91.95

TransD pub (U) 77.30 91.00
R 37.30 ± 0.05 24.45 ± 0.08 44.22 ± 0.09 51.78 ± 0.09 61.31 ± 0.07 146.55 ± 3.10 1.98 ± 0.04

TransE pub (U) 47.10 125.00
R 29.11 ± 0.20 17.99 ± 0.27 33.53 ± 0.18 40.76 ± 0.21 50.84 ± 0.28 122.01 ± 1.09 1.65 ± 0.01

TransH pub (U) 64.40 87.00
R 2.59 ± 0.27 1.89 ± 0.35 2.87 ± 0.23 3.16 ± 0.11 3.46 ± 0.15 6318.90 ± 18.86 85.54 ± 0.26

TransR pub (ND) 68.70 77.00
R 1.23 ± 0.04 0.38 ± 0.00 1.34 ± 0.10 1.93 ± 0.12 2.79 ± 0.09 6130.41 ± 9.59 82.99 ± 0.13

TuckER pub (ND) 79.50 74.10 83.30 89.20
R 79.02 ± 0.12 73.10 ± 0.11 83.05 ± 0.13 85.93 ± 0.16 89.10 ± 0.10 40.35 ± 0.83 0.55 ± 0.01

TABLE 9
Reproduction of Studies on FB15K-237 where pub refers to published results, R to results based on the realistic ranking, O to results based on

the optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined
due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they

differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ConvE pub (ND) 32.50 23.70 35.60 50.10 244.00
R 29.69 ± 0.19 21.13 ± 0.21 32.32 ± 0.19 38.57 ± 0.12 47.19 ± 0.08 245.83 ± 4.97 3.45 ± 0.07

ConvKB pub (O) 39.60 51.70 257.00
R 4.22 ± 0.18 2.75 ± 0.27 3.65 ± 0.19 4.44 ± 0.19 7.18 ± 0.71 4314.45 ± 27.24 60.46 ± 0.38

MuRE pub (R) 33.60 24.50 37.00 52.10
R 25.16 ± 0.20 16.12 ± 0.30 27.67 ± 0.21 34.21 ± 0.32 43.78 ± 0.13 190.61 ± 0.58 2.67 ± 0.01

QuatE1 pub (O) 31.10 22.10 34.20 49.50 176.00
R 0.26 ± 0.02 0.18 ± 0.03 0.23 ± 0.02 0.25 ± 0.02 0.30 ± 0.01 7119.76 ± 36.06 99.78 ± 0.51

RotatE pub (ND) 33.80 24.10 37.50 53.30 177.00
R 28.79 ± 0.07 19.74 ± 0.08 31.67 ± 0.05 37.89 ± 0.07 47.13 ± 0.07 176.70 ± 0.48 2.48 ± 0.01

TuckER pub (ND) 35.80 26.60 39.40 54.40
R 35.51 ± 0.08 26.20 ± 0.15 39.05 ± 0.10 45.59 ± 0.12 54.11 ± 0.04 152.46 ± 2.32 2.14 ± 0.03

ALI et al. A4

TABLE 10
Reproduction of Studies on WN18 where pub refers to published results, R to results based on the realistic ranking, O to results based on the
optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined

due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they
differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ComplEx pub (O) 94.10 93.60 94.50 94.70
R 18.28 ± 2.10 11.65 ± 1.32 19.04 ± 2.44 23.38 ± 3.06 30.70 ± 3.90 442.51 ± 47.32 2.16 ± 0.23

ConvE pub (ND) 94.30 93.50 94.60 95.60 374.00
R 94.23 ± 0.08 93.54 ± 0.16 94.68 ± 0.04 95.03 ± 0.02 95.39 ± 0.09 462.53 ± 32.15 2.26 ± 0.16

DistMult pub (U) 83.00 94.20
R 82.41 ± 0.24 74.74 ± 0.31 89.09 ± 0.19 91.36 ± 0.22 93.44 ± 0.15 454.41 ± 43.08 2.22 ± 0.21

HolE pub (ND) 93.80 93.00 94.50 94.90
R 73.43 ± 0.40 63.22 ± 0.57 81.80 ± 0.40 85.81 ± 0.20 89.30 ± 0.26 786.05 ± 33.16 3.84 ± 0.16

KG2E pub (U) 92.80 331.00
R 3.73 ± 0.22 1.46 ± 0.19 3.27 ± 0.26 4.77 ± 0.32 7.39 ± 0.33 2732.49 ± 57.69 13.35 ± 0.28
O 3.74 ± 0.22 1.46 ± 0.19 3.27 ± 0.26 4.77 ± 0.32 7.39 ± 0.33 2732.49 ± 57.69

QuatE1 pub (O) 94.90 94.10 95.40 96.00 388.00
R 67.28 ± 0.70 58.38 ± 0.88 73.05 ± 0.61 77.86 ± 0.53 83.25 ± 0.38 327.12 ± 12.44 1.60 ± 0.06

RotatE pub (ND) 94.90 94.40 95.20 95.90 309.00
R 93.71 ± 0.03 92.27 ± 0.03 94.87 ± 0.06 95.34 ± 0.04 95.83 ± 0.05 270.22 ± 7.24 1.32 ± 0.04

SimplE pub (O) 94.20 93.90 94.40 94.70
R 0.04 ± 0.02 0.01 ± 0.01 0.03 ± 0.02 0.04 ± 0.03 0.06 ± 0.03 20355.98 ± 19.42 99.48 ± 0.09
O 32.95 ± 8.10 28.19 ± 6.94 33.94 ± 8.84 37.28 ± 9.69 42.40 ± 10.53 469.49 ± 161.36
P 0.03 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 0.04 ± 0.03 0.06 ± 0.03 40242.47 ± 195.66

TransD pub (U) 92.20 212.00
R 37.33 ± 0.52 4.31 ± 0.42 67.90 ± 0.93 81.01 ± 0.30 87.80 ± 0.33 460.00 ± 7.40 2.25 ± 0.04

TransE pub (U) 89.20 251.00
R 37.04 ± 1.37 9.29 ± 1.83 60.28 ± 1.25 72.02 ± 0.75 81.51 ± 0.52 489.84 ± 42.13 2.39 ± 0.21

TransH pub (U) 82.30 388.00
R 0.17 ± 0.17 0.08 ± 0.12 0.17 ± 0.20 0.21 ± 0.24 0.31 ± 0.29 19551.68 ± 166.54 95.55 ± 0.81

TransR pub (ND) 92.00 225.00
R 0.24 ± 0.03 0.00 ± 0.01 0.22 ± 0.05 0.38 ± 0.05 0.63 ± 0.07 18882.20 ± 240.51 92.27 ± 1.18

TuckER pub (ND) 95.30 94.90 95.50 95.80
R 94.89 ± 0.05 94.52 ± 0.05 95.17 ± 0.07 95.30 ± 0.07 95.50 ± 0.06 532.05 ± 45.91 2.60 ± 0.22

TABLE 11
Reproduction of Studies on WN18RR where pub refers to published results, R to results based on the realistic ranking, O to results based on the
optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined

due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they
differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ConvE pub (ND) 43.00 40.00 44.00 52.00 4187.00
R 45.28 ± 0.13 41.93 ± 0.19 46.64 ± 0.25 49.07 ± 0.22 51.98 ± 0.24 5203.77 ± 129.07 25.67 ± 0.64

ConvKB pub (O) 24.80 52.50 2554.00
R 0.34 ± 0.05 0.11 ± 0.04 0.27 ± 0.02 0.43 ± 0.06 0.63 ± 0.08 13905.99 ± 962.71 68.60 ± 4.75

QuatE1 pub (O) 48.10 43.60 50.00 56.40 3472.00
R 0.58 ± 0.05 0.38 ± 0.06 0.56 ± 0.08 0.66 ± 0.06 0.88 ± 0.09 20404.47 ± 196.81 100.65 ± 0.97

RotatE pub (ND) 47.60 42.80 49.20 57.10 3340.00
R 49.39 ± 0.06 45.49 ± 0.12 51.03 ± 0.10 53.36 ± 0.15 57.05 ± 0.14 4046.79 ± 89.15 19.96 ± 0.44

TuckER pub (ND) 47.00 44.30 48.20 52.60
R 47.62 ± 0.58 44.91 ± 0.62 48.81 ± 0.59 50.40 ± 0.58 52.80 ± 0.45 5646.84 ± 146.30 27.85 ± 0.72

a For MuRE, we obtained non-finite loss values while training on WN18RR with the setting defined in [24]. This might be explained by the
fact that the specified learning rate of 50 is comparably large. In our benchmarking study, we show that we can outperform the published
results with a different setting (Section 7.2).

ALI et al. A5

TABLE 12
Model sizes in bytes for the best reported configurations studied for the the reproducibility study.

Dataset FB15K FB15K-237 WN18 WN18RR
Model

ComplEx 26.1 MB - 49.2 MB -
ConvE 22.5 MB 20.3 MB 41.2 MB 40.9 MB
ConvKB - 5.9 MB - 8.2 MB
DistMult 6.5 MB - 16.4 MB -
HolE 9.8 MB - 24.6 MB -
KG2E 6.5 MB - 16.4 MB -
RotatE 130.4 MB 117.9 MB 163.8 MB 162.3 MB
SimplE 26.1 MB - 65.5 MB -
TransD 6.5 MB - 16.4 MB -
TransE 3.3 MB - 3.3 MB -
TransH 7.1 MB - 8.2 MB -
TransR 16.7 MB - 8.4 MB -
TuckER 46.1 MB - 37.6 MB -

ALI et al. A6

ADDITIONAL RESULTS FROM BENCHMARKING STUDY

TABLE 13
Pareto-optimal models for FB15k237 regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

TuckER BCEL LCWA yes 8.0 MiB 52.857
DistMult CEL LCWA yes 3.7 MiB 47.387
TransE SPL LCWA no 3.6 MiB 45.318
UM MRL sLCWA no 3.5 MiB 3.432
UM MRL sLCWA yes 3.5 MiB 3.305

TABLE 14
Pareto-optimal models for Kinships regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

TuckER SPL LCWA yes 1.0 MiB 98.603
RotatE MRL sLCWA yes 154.0 KiB 98.557
RotatE MRL sLCWA no 129.0 KiB 98.324
SimplE BCEL LCWA yes 77.0 KiB 97.765
ProjE SPL sLCWA yes 39.3 KiB 96.648
ProjE SPL sLCWA no 33.0 KiB 94.600
HolE CEL LCWA no 32.2 KiB 88.873
UM SPL LCWA yes 26.0 KiB 11.313
UM SPL sLCWA yes 26.0 KiB 6.844

TABLE 15
Pareto-optimal models for WN18RR regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

RotatE BCEL LCWA yes 79.3 MiB 60.089
RotatE SPL LCWA yes 19.8 MiB 58.328
TuckER CEL LCWA yes 11.9 MiB 56.088
MuRE SPL LCWA no 10.2 MiB 55.489
TransH MRL sLCWA no 9.9 MiB 48.170
UM SPL LCWA yes 9.9 MiB 44.682
UM SPL sLCWA yes 9.9 MiB 39.022

TABLE 16
Pareto-optimal models for YAGO310 regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

MuRE SPL sLCWA yes 61.1 MiB 66.851
ConvKB NSSAL sLCWA no 30.1 MiB 52.921
DistMult SPL sLCWA yes 30.1 MiB 50.562
TransE BCEL sLCWA no 30.1 MiB 14.663

ALI et al. A7

TABLE 17
Best configuration for each model in FB15k237

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx CEL LCWA True 44.838
ConvE BCEL LCWA True 49.212
ConvKB SPL sLCWA False 32.261
DistMult CEL LCWA True 47.387
ERMLP BCEL LCWA True 45.100
HolE CEL LCWA True 42.225
KG2E SPL LCWA True 45.501
MuRE BCEL LCWA True 47.199
NTN SPL sLCWA False 20.342
ProjE BCEL LCWA True 41.616
QuatE CEL LCWA True 46.166
RESCAL CEL LCWA True 46.460
RotatE NSSAL sLCWA False 49.750
SE NSSAL sLCWA True 39.427
SimplE CEL LCWA True 40.307
TransD MRL sLCWA True 41.856
TransE MRL sLCWA False 46.423
TransH MRL sLCWA False 35.295
TransR CEL LCWA True 39.187
TuckER BCEL LCWA True 52.857
UM CEL LCWA False 8.024

TABLE 18
Best configuration for each model in Kinships

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx CEL LCWA True 98.371
ConvE NSSAL sLCWA True 98.557
ConvKB NSSAL sLCWA True 97.067
DistMult CEL LCWA True 93.529
ERMLP SPL sLCWA True 97.486
HolE CEL LCWA True 93.715
KG2E MRL sLCWA True 91.853
MuRE SPL LCWA True 95.019
NTN BCEL sLCWA True 93.622
ProjE SPL sLCWA True 96.648
QuatE CEL LCWA True 98.184
RESCAL SPL sLCWA True 97.719
RotatE NSSAL sLCWA False 98.557
SE NSSAL sLCWA True 98.324
SimplE BCEL sLCWA False 98.277
TransD CEL LCWA True 45.205
TransE CEL LCWA True 92.877
TransH CEL LCWA True 52.048
TransR MRL sLCWA False 73.324
TuckER SPL LCWA True 98.603
UM SPL LCWA True 11.313

ALI et al. A8

TABLE 19
Best configuration for each model in WN18RR

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx CEL LCWA False 53.745
ConvE CEL LCWA True 56.327
ConvKB NSSAL sLCWA True 42.083
DistMult CEL LCWA True 52.616
ERMLP SPL sLCWA True 47.657
HolE CEL LCWA False 50.017
KG2E SPL LCWA False 52.035
MuRE SPL LCWA True 57.900
NTN MRL sLCWA False 31.857
ProjE CEL LCWA True 51.727
QuatE CEL LCWA False 55.010
RESCAL CEL LCWA False 53.916
RotatE BCEL LCWA True 60.089
SE SPL sLCWA False 45.486
SimplE CEL LCWA True 50.889
TransD MRL sLCWA False 46.546
TransE SPL LCWA False 56.977
TransH MRL sLCWA False 48.170
TransR MRL sLCWA False 42.510
TuckER CEL LCWA True 56.088
UM SPL LCWA False 44.887

TABLE 20
Best configuration for each model in YAGO310

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx BCEL sLCWA True 62.575
ConvKB SPL sLCWA True 58.149
DistMult BCEL sLCWA False 55.580
ERMLP BCEL sLCWA True 58.531
HolE BCEL sLCWA False 60.177
MuRE SPL sLCWA True 66.851
QuatE SPL sLCWA True 60.709
RESCAL SPL sLCWA True 54.045
RotatE NSSAL sLCWA True 63.077
SE NSSAL sLCWA True 29.757
TransD MRL sLCWA False 35.397
TransE MRL sLCWA True 49.217

ALI et al. A9

10
7

10
8

0.0

0.1

0.2

0.3

0.4

0.5

hi
ts

@
10

FB15k237

10
5

10
6

10
7

0.2

0.4

0.6

0.8

1.0
Kinships

10
7

10
8

Model Bytes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

hi
ts

@
10

WN18RR

10
8

Model Bytes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
YAGO310

Model
ConvKB
DistMult
HolE
MuRE
ProjE
RotatE
SimplE
TransE
TransH
TuckER
UM

Fig. 17. Scatter plots comparing model size in number of bytes and model performance in terms of Hits@10 for all trained models on each dataset.
The color indicates the model type, and the model size is shown on a logarithmic axis. Pareto-optimal models are highlighted by cross symbols. In
general we only see a low correlation between model size and performance. A more thorough comparison can be found in Figures 4, 7, 10, and 13.

ALI et al. A10

BCEL CEL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransR

TuckER

UM

23.37% 97.21% 19.74%

93.62% 95.34% 93.90%

20.90% 66.15% 18.76%

7.59% 84.73% 9.87%

72.44% 57.26% 68.39%

87.76% 89.90% 88.18%

10.01% 69.41% 25.74%

91.62% 88.41% 91.39%

10.61% 9.87% 10.01%

16.99% 84.50% 17.04%

87.66% 96.28% 90.27%

59.03% 91.39% 89.76%

11.96% 96.65% 10.29%

95.20% 95.53% 95.67%

39.20% 94.32% 43.11%

27.23% 38.45% 23.65%

70.95% 83.85% 64.15%

57.45% 62.06% 53.49%

97.16% 97.16% 96.65%

8.89% 7.22% 10.01%

training_approach = LCWA

BCEL MRL NSSAL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransR

TuckER

UM

98.14% 97.49% 98.18% 97.86%

92.88% 95.95% 96.42% 95.95%

77.14% 92.55% 89.43% 93.62%

64.62% 85.94% 58.38% 57.82%

88.83% 91.06% 91.48% 90.97%

87.90% 87.85% 87.80% 87.57%

10.29% 91.81% 91.06% 52.14%

93.58% 93.39% 94.83% 94.93%

10.66% 9.96% 11.31% 9.03%

55.77% 89.29% 91.11% 85.15%

97.67% 96.88% 97.30% 97.25%

91.15% 87.10% 93.20% 94.46%

88.45% 97.53% 95.95% 87.29%

97.37% 97.58% 97.21% 97.00%

92.60% 90.46% 95.81% 94.32%

28.68% 35.10% 29.10% 27.23%

69.79% 87.01% 88.92% 69.97%

71.97% 72.44% 65.36% 70.90%

96.97% 96.14% 87.29% 97.21%

10.34% 5.45% 4.84% 8.19%

inverse_relations = False

training_approach = sLCWA

BCEL CEL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransR

TuckER

UM

84.22% 98.04% 91.90%

98.09% 98.32% 97.72%

23.74% 87.20% 21.23%

10.38% 90.46% 10.47%

89.48% 90.27% 86.31%

87.48% 93.72% 86.92%

10.89% 86.64% 30.87%

91.81% 93.81% 91.99%

10.34% 9.64% 10.99%

33.71% 92.13% 23.51%

95.44% 96.32% 95.72%

93.67% 96.14% 95.16%

9.54% 97.02% 10.47%

96.23% 97.49% 96.32%

77.14% 95.72% 79.70%

23.18% 44.93% 25.00%

74.58% 92.88% 67.78%

56.61% 70.48% 55.96%

97.95% 98.18% 98.37%

10.01% 7.36% 11.31%

BCEL MRL NSSAL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransR

TuckER

UM

98.09% 96.93% 98.32% 97.72%

97.49% 97.72% 98.56% 97.72%

92.50% 96.09% 90.41% 87.94%

59.64% 87.52% 57.73% 58.75%

94.13% 95.07% 94.74% 93.44%

88.13% 88.69% 86.87% 87.99%

9.54% 91.85% 90.69% 83.52%

94.41% 93.85% 94.60% 94.55%

11.17% 10.99% 9.96% 9.92%

90.50% 91.90% 94.18% 92.32%

96.97% 97.44% 97.72% 97.35%

96.32% 93.72% 96.83% 97.11%

88.13% 97.95% 96.88% 88.31%

96.88% 97.11% 98.32% 96.51%

96.23% 93.72% 95.16% 95.07%

29.42% 40.32% 27.47% 27.65%

68.90% 86.13% 88.97% 70.25%

59.45% 70.62% 68.44% 67.46%

96.46% 98.04% 98.28% 97.81%

9.68% 6.47% 5.03% 6.84%

inverse_relations = True

Fig. 18. Results for all configurations on Kinships based on Adadelta. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.

ALI et al. A11

BCEL CEL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

94.23% 97.63% 94.88%

95.58% 95.58% 95.90%

93.90% 89.06% 92.88%

86.27% 90.22% 85.57%

92.04% 70.07% 90.83%

87.34% 88.87% 88.31%

11.13% 16.62% 13.64%

94.79% 88.27% 94.74%

82.73% 89.20% 86.13%

92.64% 92.32% 88.83%

88.27% 97.11% 90.50%

57.22% 95.95% 84.31%

98.18% 97.72% 92.27%

94.18% 95.11% 94.83%

96.42% 97.16% 91.67%

36.50% 40.50% 23.70%

64.43% 79.61% 67.23%

26.72% 43.67% 27.33%

64.57% 66.95% 63.64%

97.81% 97.58% 97.63%

9.92% 9.26% 10.38%

training_approach = LCWA

BCEL MRL NSSAL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

98.04% 95.44% 97.30% 97.30%

97.11% 96.51% 71.14% 96.42%

91.62% 96.00% 95.72% 95.53%

87.66% 86.55% 88.31% 87.62%

93.44% 95.72% 95.30% 95.95%

88.59% 88.18% 87.80% 87.24%

12.06% 89.34% 18.95% 14.01%

94.83% 92.88% 94.74% 94.65%

86.31% 84.78% 56.05% 90.46%

94.79% 92.64% 92.74% 94.60%

97.72% 95.11% 97.63% 97.67%

93.48% 92.27% 95.72% 97.44%

94.46% 98.32% 98.56% 94.32%

96.79% 96.46% 96.74% 97.02%

98.28% 95.95% 97.77% 97.72%

37.76% 44.83% 39.15% 34.54%

69.65% 78.82% 89.85% 68.95%

38.45% 49.53% 35.52% 29.56%

70.62% 73.32% 69.09% 72.86%

94.37% 91.48% 61.55% 97.07%

9.50% 8.38% 9.92% 8.80%

inverse_relations = False

training_approach = sLCWA

BCEL CEL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

97.21% 98.37% 96.42%

98.37% 98.28% 98.23%

96.32% 95.25% 94.37%

87.62% 93.53% 86.03%

96.14% 95.07% 95.20%

89.53% 93.30% 88.31%

10.34% 18.53% 14.01%

94.83% 93.53% 95.02%

87.06% 90.69% 89.71%

95.20% 94.97% 92.97%

94.83% 98.18% 95.53%

87.10% 96.93% 89.62%

98.00% 98.18% 93.16%

96.60% 97.21% 96.51%

97.77% 98.00% 94.46%

43.53% 45.20% 39.80%

69.97% 86.96% 65.69%

36.87% 52.05% 37.06%

71.51% 73.09% 72.63%

98.42% 98.37% 98.60%

9.31% 9.50% 10.20%

BCEL MRL NSSAL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

98.23% 95.81% 97.49% 97.95%

46.97% 96.88% 97.07% 94.88%

96.60% 96.18% 97.07% 96.79%

87.71% 87.29% 85.99% 88.18%

97.49% 96.46% 97.11% 97.49%

89.01% 87.85% 87.90% 87.71%

11.45% 91.29% 70.48% 53.45%

94.37% 92.74% 93.25% 94.04%

93.62% 89.99% 70.76% 10.80%

95.25% 94.41% 95.20% 96.65%

97.25% 94.23% 96.60% 97.35%

88.64% 91.67% 95.44% 97.72%

94.74% 98.56% 98.46% 94.69%

96.97% 96.42% 96.97% 97.25%

98.28% 95.39% 97.16% 98.04%

40.08% 42.36% 34.64% 32.77%

68.25% 87.38% 82.68% 67.97%

34.54% 47.58% 32.54% 35.66%

71.93% 72.11% 70.95% 73.23%

72.25% 96.83% 64.71% 90.83%

11.17% 6.52% 8.38% 8.75%

inverse_relations = True

Fig. 19. Results for all configurations on Kinships based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.

ALI et al. A12

BCEL CEL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

45.57% 53.74% 41.23%

50.55% 48.65% 49.52%

42.17% 48.82% 45.78%

15.51% 35.36% 19.27%

47.55% 50.02% 38.87%

0.02% 42.72% 52.03%

54.05% 48.07% 55.49%

1.09%

45.08% 48.20% 39.23%

44.20% 55.01%

39.43% 53.92% 37.84%

59.08% 50.14% 57.99%

9.73%

45.84% 49.42% 38.20%

0.10% 16.16% 0.09%

3.98% 34.30% 56.98%

2.36% 9.75% 0.85%

1.09% 14.36% 0.15%

53.30% 52.84% 52.14%

44.68% 41.14% 44.89%

training_approach = LCWA

BCEL MRL NSSAL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

44.27% 42.97% 42.72% 43.72%

14.09% 3.37% 29.34% 36.41%

39.71% 40.22% 38.94% 37.59%

49.38% 50.00% 50.00% 45.43%

26.93% 30.57% 14.35% 24.30%

45.95% 40.83% 43.57% 45.91%

0.02% 45.14% 45.91% 46.60%

56.43% 45.76% 51.13% 56.89%

0.10% 31.86% 0.14%

42.46% 40.70% 41.11% 43.16%

44.68% 51.09% 41.89% 41.72%

39.21% 36.22% 42.58% 40.87%

51.28% 50.79% 58.02% 51.23%

41.81% 45.49%

42.25% 38.65% 40.71% 42.42%

44.66% 46.55% 36.92% 44.25%

43.16% 48.91% 49.64% 42.56%

25.12% 48.17% 7.66% 38.25%

34.97% 42.51% 34.18% 35.41%

34.52% 12.98% 2.21% 35.45%

40.15% 39.60% 42.31% 39.79%

inverse_relations = False

training_approach = sLCWA

BCEL CEL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

44.03% 10.70% 38.22%

53.73% 56.33% 53.51%

46.03% 52.62% 44.07%

42.68% 46.27% 41.34%

44.75% 29.62% 34.05%

0.00% 48.02% 50.53%

3.28% 53.25% 57.90%

0.00%

45.33% 51.73% 42.92%

49.38% 52.07% 50.82%

35.48% 52.99% 40.77%

60.09% 56.74% 58.33%

2.58%

43.62% 50.89% 39.91%

0.12% 29.60% 0.02%

56.74% 46.82% 23.63%

1.45% 13.83% 1.80%

0.10% 37.62% 0.09%

56.09% 52.33%

43.95% 42.17% 44.68%

BCEL MRL NSSAL SPL

ComplEx

ConvE

ConvKB

DistMult

ERMLP

HolE

KG2E

MuRE

NTN

ProjE

QuatE

RESCAL

RotatE

SE

SimplE

TransD

TransE

TransH

TransR

TuckER

UM

42.53% 42.53% 40.75% 42.24%

38.17% 1.98% 40.89% 33.67%

40.15% 38.24% 42.08% 37.65%

51.16% 46.48% 47.76% 45.13%

47.35% 41.81% 45.67% 47.66%

45.52% 39.38% 42.77% 45.62%

0.03% 42.65% 43.76% 46.07%

57.83% 46.07% 56.79% 55.63%

24.38% 24.15% 0.02%

42.61% 42.08% 43.67% 41.64%

38.89% 49.57% 38.82% 43.30%

39.28% 37.40% 41.35% 42.17%

49.86% 49.13% 57.40% 49.06%

40.44% 41.69%

40.89% 38.56% 39.43% 41.88%

44.03% 44.56% 33.62% 38.78%

44.39% 48.96% 50.67% 42.37%

33.50% 38.01% 4.67% 3.37%

32.95% 10.89% 28.69% 34.42%

16.89% 41.26% 0.38% 1.59%

39.88% 39.84% 41.76% 39.02%

inverse_relations = True

Fig. 20. Results for all configurations on WN18RR based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.

ALI et al. A13

BCEL CEL SPL

ComplEx
ConvE

ConvKB
DistMult
ERMLP

HolE
KG2E
MuRE

NTN
ProjE

QuatE
RESCAL

RotatE
SE

SimplE
TransD
TransE
TransH
TransR
TuckER

UM

27.67% 40.33% 21.80%
36.26% 31.35% 33.38%

34.36% 40.87% 33.69%
28.06% 28.02% 26.76%
38.45% 32.30% 32.99%
0.05% 22.27% 42.37%
42.65% 29.25% 41.77%
10.21%
31.65% 29.45% 24.52%
31.14% 24.00% 23.23%
26.81% 36.92% 21.33%
47.81% 45.76% 43.96%

24.24% 36.11% 20.97%
4.31% 26.51% 0.87%
44.54% 33.94% 45.32%
16.42% 21.58% 21.15%
10.81% 21.84% 9.79%
46.33% 42.22% 44.93%
6.27% 8.02% 6.84%

training_approach = LCWA

BCEL MRL NSSAL SPL

ComplEx
ConvE

ConvKB
DistMult
ERMLP

HolE
KG2E
MuRE

NTN
ProjE

QuatE
RESCAL

RotatE
SE

SimplE
TransD
TransE
TransH
TransR
TuckER

UM

37.29% 29.09% 30.27% 33.85%
3.89% 8.28% 4.53% 0.96%
30.32% 28.08% 31.47% 32.26%
33.70% 40.41% 35.24% 34.34%
36.07% 35.47% 29.18% 34.93%
35.42% 31.30% 25.58% 34.70%
0.06% 38.28% 38.19% 42.70%
43.24% 38.41% 45.07% 43.63%
2.44% 9.89% 0.03% 20.34%
30.87% 32.50% 26.45% 30.24%
27.38% 31.08% 26.92% 29.35%
26.20% 32.81% 32.46% 35.63%
38.37% 43.22% 49.75% 38.37%
24.17% 33.96% 38.89% 34.04%
29.62% 24.71% 30.48% 29.68%
28.96% 35.01% 27.10% 31.02%
30.97% 46.42% 42.16% 35.84%
27.54% 35.29% 25.31% 26.93%

36.14% 7.85%
5.13% 5.37% 3.99% 2.33%
6.12% 3.43% 5.70% 6.30%

inverse_relations = False

training_approach = sLCWA

BCEL CEL SPL

ComplEx
ConvE

ConvKB
DistMult
ERMLP

HolE
KG2E
MuRE

NTN
ProjE

QuatE
RESCAL

RotatE
SE

SimplE
TransD
TransE
TransH
TransR
TuckER

UM

33.76% 44.84% 29.16%
49.21% 45.90%

40.60% 47.39% 39.34%
45.10% 41.30% 40.27%
38.15% 42.23% 33.32%
0.79% 37.70% 45.50%
47.20% 34.37% 45.22%
18.10%
41.62% 41.57% 34.13%
30.15% 46.17% 34.08%
45.39% 46.46% 33.34%
44.29% 47.04% 44.25%

35.68% 40.31% 21.81%
3.00% 28.55% 3.52%
39.15% 45.51% 42.79%
27.27% 25.95% 27.67%
15.95% 39.19% 11.77%
52.86% 50.58% 52.85%
6.51% 7.98% 7.28%

BCEL MRL NSSAL SPL

ComplEx
ConvE

ConvKB
DistMult
ERMLP

HolE
KG2E
MuRE

NTN
ProjE

QuatE
RESCAL

RotatE
SE

SimplE
TransD
TransE
TransH
TransR
TuckER

UM

33.32% 30.99% 28.96% 28.51%
0.00% 1.26% 0.69% 3.73%

28.35%
32.68% 39.13% 35.31% 34.24%
35.69% 37.76% 31.23% 37.08%
37.00% 31.05% 32.01% 36.22%
0.65% 36.41% 34.19% 40.68%
44.14% 37.21% 43.52% 43.15%
12.30% 2.05% 1.27% 3.03%
26.34% 35.28% 23.86% 26.52%
26.91% 29.80% 21.85% 29.97%
30.32% 32.04% 26.45% 33.59%
37.91% 37.94% 48.61% 38.40%
30.45% 26.80% 39.43% 21.96%
27.75% 16.82% 26.54% 28.28%
25.65% 41.86% 24.76% 29.87%
30.44% 43.53% 40.49% 35.11%
24.42% 27.45% 23.11% 26.03%

33.89% 12.20%
2.84% 7.00% 2.33% 2.92%
6.09% 3.31% 5.82% 6.17%

inverse_relations = True

Fig. 21. Results for all configurations on FB15K-237 based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.

ALI et al. A14

BCEL MRL NSSAL SPL

ComplEx

ConvKB

DistMult

ERMLP

HolE

MuRE

QuatE

RESCAL

RotatE

SE

TransD

TransE

60.63% 52.80% 60.89% 62.30%

54.97% 50.27% 52.92% 52.06%

55.58% 48.46% 35.72% 53.39%

57.99% 40.26% 53.11% 56.65%

60.18% 39.94% 56.18%

66.17% 52.76% 64.94%

56.84% 40.66% 57.19%

41.76% 35.32% 52.87% 49.21%

17.03% 55.80% 62.58% 16.51%

4.55% 16.71% 23.68% 8.68%

15.52% 35.40% 5.71% 13.44%

14.66% 41.31% 42.04% 16.74%

inverse_relations = False

training_approach = sLCWA

BCEL MRL NSSAL SPL

ComplEx

ConvKB

DistMult

ERMLP

HolE

MuRE

QuatE

RESCAL

RotatE

SE

TransD

TransE

62.58% 55.42% 61.12% 61.35%

52.67% 46.34% 45.49% 58.15%

46.59% 55.55% 47.05% 50.56%

58.53% 34.30% 52.96% 46.85%

53.87% 41.91% 53.36%

48.05% 52.20% 50.35% 66.85%

60.37% 56.17% 60.47% 60.71%

3.49% 43.22% 41.84% 54.04%

16.23% 57.44% 63.08% 16.77%

10.33% 28.69% 29.76% 8.56%

13.99% 0.81% 12.81%

15.40% 49.22% 36.46% 18.67%

inverse_relations = True

Fig. 22. Results for all configurations on YAGO3-10 based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.

ALI et al. A15

BCEL

CEL

MRL

NSSAL

SPL

ComplEx

Training Approach
LCWA
sLCWA

ConvE ConvKB DistMult

BCEL

CEL

MRL

NSSAL

SPL

ERMLP HolE KG2E MuRE

BCEL

CEL

MRL

NSSAL

SPL

NTN ProjE QuatE RESCAL

BCEL

CEL

MRL

NSSAL

SPL

RotatE SimplE SE TransD

BCEL

CEL

MRL

NSSAL

SPL

TransE

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TransH

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TransR

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TuckER

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

BCEL

CEL

MRL

NSSAL

SPL

UM

Fig. 23. Impact of the training approach on the performance for a fixed interaction model and loss function for the Kinships dataset (results represent
for each setting the best-performing configuration). BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss, MRL to the margin
ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed world assumption
training approach and sLCWA to the stochastic local closed world assumption training approach.

ALI et al. A16

BCEL

CEL

MRL

NSSAL

SPL

ComplEx

Training Approach
LCWA
sLCWA

ConvE ConvKB DistMult

BCEL

CEL

MRL

NSSAL

SPL

ERMLP HolE KG2E MuRE

BCEL

CEL

MRL

NSSAL

SPL

NTN ProjE QuatE RESCAL

BCEL

CEL

MRL

NSSAL

SPL

RotatE SimplE SE TransD

BCEL

CEL

MRL

NSSAL

SPL

TransE

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TransH

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TransR

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TuckER

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

BCEL

CEL

MRL

NSSAL

SPL

UM

Fig. 24. Impact of the training approach on the performance for a fixed interaction model and loss function for the WN18RR dataset (results represent
for each setting the best-performing configuration). BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss, MRL to the margin
ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed world assumption
training approach and sLCWA to the stochastic local closed world assumption training approach.

ALI et al. A17

BCEL

CEL

MRL

NSSAL

SPL

ComplEx

Training Approach
LCWA
sLCWA

ConvE ConvKB DistMult

BCEL

CEL

MRL

NSSAL

SPL

ERMLP HolE KG2E MuRE

BCEL

CEL

MRL

NSSAL

SPL

NTN ProjE QuatE RESCAL

BCEL

CEL

MRL

NSSAL

SPL

RotatE SimplE SE TransD

BCEL

CEL

MRL

NSSAL

SPL

TransE

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TransH

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TransR

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

TuckER

0.0 0.2 0.4 0.6 0.8 1.0
hits@10

BCEL

CEL

MRL

NSSAL

SPL

UM

Fig. 25. Impact of the training approach on the performance for a fixed interaction model and loss function for the FB15K-237 dataset (results
represent for each setting the best-performing configuration). BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss, MRL
to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed world
assumption training approach and sLCWA to the stochastic local closed world assumption training approach.

	1 Introduction
	2 Knowledge Graphs
	3 Knowledge graph embedding models
	3.1 Interaction Models
	3.1.1 Translational Distance Interaction Models
	3.1.2 Semantic Matching Interaction Models

	3.2 Training Approaches
	3.2.1 Local closed world assumption
	3.2.2 Stochastic local closed world assumption

	3.3 Loss Functions
	3.3.1 Pointwise Loss Functions
	3.3.2 Pairwise Loss Functions
	3.3.3 Setwise Loss Functions

	3.4 Explicitly Modeling Inverse Relations

	4 Evaluation Metrics for KGEMs
	5 Existing Benchmark Datasets
	6 Reproducibility Studies
	6.1 Reproductions Requiring Alternate Hyper-Parameters
	6.2 Unreported Hyper-parameters Impedes Reproduction
	6.3 Two Perspectives: Publication versus Implementation
	6.4 Lack of Official Implementations Impedes Reproduction
	6.5 Reproducibility is Dependent on The Ranking Approach

	7 Benchmarking
	7.1 Results on the Kinships Dataset
	7.2 Results on the WN18RR Dataset
	7.3 Results on the FB15K-237 Dataset
	7.4 Results on the YAGO3-10 Dataset

	8 Relational Pattern Analysis
	8.1 Relational Patterns and their Detection
	8.2 Relation Patterns in Benchmark Datasets
	8.3 Experimental Setup
	8.4 Results

	9 Discussion & Future Work
	References
	Biographies
	Mehdi Ali
	Max Berrendorf
	Charles Tapley Hoyt
	Laurent Vermue
	Mikhail Galkin
	Sahand Sharifzadeh
	Asja Fischer
	Volker Tresp
	Jens Lehmann

