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Abstract
For many years, link prediction on knowledge
graphs (KGs) has been a purely transductive task,
not allowing for reasoning on unseen entities. Re-
cently, increasing efforts are put into exploring semi-
and fully inductive scenarios, enabling inference
over unseen and emerging entities. Still, all these
approaches only consider triple-based KGs, whereas
their richer counterparts, hyper-relational KGs (e.g.,
Wikidata), have not yet been properly studied. In
this work, we study the benefits of employing hyper-
relational KGs on a wide range of semi- and fully
inductive link prediction tasks powered by recent
advancements in graph neural networks. Our exper-
iments demonstrate that qualifiers over typed edges
can lead to performance improvements of 6% of
absolute gains (for the Hits@10 metric) compared
to triple-only baselines. Our code is available at
https://github.com/mali-git/hyper relational ilp.

1 Introduction
Knowledge graphs are known for their incompleteness [Nickel
et al., 2016], therefore predicting missing links is one of
the most important applications of machine learning over
KGs [Nickel et al., 2011; Bordes et al., 2013]. A flurry [Ali et
al., 2021b; Ji et al., 2020] of approaches has been developed
over the years. Most of them operate over triple-based KGs in
the transductive setup, where all entities are known at training
time. Such approaches can neither operate on unseen entities,
which might emerge after updating the graph, nor on new
(sub-)graphs comprised of completely new entities. Those
scenarios are often unified under the inductive link prediction
(LP) setup. A variety of NLP tasks building upon KGs have
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inductive nature, for instance, entity linking or information
extraction. Hence, being able to work in inductive settings
becomes crucial for KG representation learning algorithms.
For instance (see Fig. 1 in [Ali et al., 2021a]), the director-
genre pattern from the seen graph allows to predict a missing
genre link for The Martian in the unseen subgraph.

Several recent works [Teru et al., 2020; Daza et al., 2021]
investigate inductive LP but usually focus on a custom induc-
tive setting. Further, their underlying KG structure is based
on triples only. On the other hand, new, more expressive
KGs like Wikidata [Vrandecic and Krötzsch, 2014] exhibit a
hyper-relational nature where each triple (a typed edge in a
graph) can be further instantiated with a set of explicit relation-
entity pairs, known as qualifiers in the Wikidata model. Re-
cently, it was shown [Galkin et al., 2020] that employing hyper-
relational KGs yields significant gains in the transductive LP
task compared to their triple-only counterparts. However, the
effect of such KGs on inductive LP is unclear. Intuitively (Fig.
1 in [Ali et al., 2021a]), the (nominee: Matt Damon) qualifier
provides a helpful signal to predict Best Actor as an object
of nominated for of The Martian given that Good Will
Hunting received such an award with the same nominee.

Therefore, in our ISWC 2021 paper [Ali et al., 2021a], we
systematically study hyper-relational KGs in different induc-
tive settings:
• We propose a classification of inductive LP scenarios that

describes the settings formally and, to the best of our knowl-
edge, integrates all relevant existing works. Specifically,
we distinguish fully-inductive scenarios, where target links
are to be predicted in a new subgraph of unseen entities,
and semi-inductive ones where unseen nodes have to be
connected to a known graph.

• We adapt two existing baseline models for the two inductive
LP tasks probing them in the hyper-relational settings.

• Our experiments suggest that models supporting hyper-
relational facts indeed improve link prediction in both in-
ductive settings compared to strong triple-only baselines by
more than 6% Hits@10.
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2 Background
We assume the reader to be familiar with the standard link pre-
diction setting (e.g. from [Nickel et al., 2011]) and introduce
the specifics of the setting with qualifiers.

Let G = (E ,R,S) be a hyper-relational KG where E
is a set of entities, R is a set of relations, and S a set of
statements. Each statement can be formalized as a 4-tuple
(h, r, t, q) of a head and tail entity1 h, t ∈ E , a relation
r ∈ R, and a set of qualifiers, which are relation-entity pairs
q ⊆ P(R× E) where P denotes the power set. For example,
see Fig. 1 in [Ali et al., 2021a] contains a statement (Good
Will Hunting, nominated for, Best Actor, {(nominee,
Matt Damon)}) where (nominee, Matt Damon) is a quali-
fier pair for the main triple. We define the set of all possible
statements as set

S(EH ,R, ET , EQ) = EH ×R× ET ×P(R× EQ)

with a set of relations R, a set of head, tail and qualifier entities
EH , ET , EQ ⊆ E . Strain is the set of training statements and
Seval are evaluation statements. We assume that we have a
feature vector xe ∈ Rd associated with each entity e ∈ E .
Such feature vectors can, for instance, be obtained from entity
descriptions available in some KGs or represent topological
features [Belkin and Niyogi, 2001].

In this work, we focus on the setting with one fixed set of
known relations. That is, we do not require xr ∈ Rd features
for relations but learn relation embeddings during training.

3 Inductive Link Prediction
Recent works have pointed out the practical relevance of dif-
ferent inductive LP scenarios. However, there exists a termi-
nology gap as different authors employ different names for
describing conceptually the same task or, conversely, use the
same inductive LP term for practically different setups. We
propose a unified framework that provides an overview of the
area and describes the settings formally.

Let E• denote the set of entities occurring in the training
statements Strain at any position (head, tail, or qualifier), and
E◦ ⊆ E \E• denote a set of unseen entities. In the transductive
setting, all entities in the evaluation statements are seen during
training, i.e., Seval ⊆ S(E•,R, E•, E•). In contrast, in induc-
tive settings, Seval, used in validation and testing, may contain
unseen entities. In order to be able to learn representations
for these entities at inference time, inductive approaches may
consider an additional set Sinf of inference statements about
(un)seen entities; of course Sinf ∩ Seval = ∅.

The fully-inductive setting (FI) is akin to transfer learn-
ing where link prediction is performed over a set of enti-
ties not seen before, i.e., Seval ⊆ S(E◦,R, E◦, E◦). This
is made possible by providing an auxiliary inference graph
Sinf ⊆ S(E◦,R, E◦, E◦) containing statements about the un-
seen entities in Seval. For instance, in Fig. 1 in [Ali et
al., 2021a], the training graph is comprised of entities Matt
Damon, Good Will Hunting, Best Actor, Gus Van
Sant, Milk, Drama. The inference graph contains new
entities The Martian, Alien, Ridley Scott, Blade

1We use entity and node interchangeably

Runner, Sci-fi with one missing link to be predicted. The
fully-inductive setting is considered in [Teru et al., 2020;
Daza et al., 2021].

In the semi-inductive setting (SI), new, unseen entities are to
be connected to seen entities, i.e., Seval ⊆ S(E•,R, E◦, E•) ∪
S(E◦,R, E•, E•). Illustrating with Fig. 1 in [Ali et al.,
2021a], The Martian as the only unseen entity connect-
ing to the seen graph, the semi-inductive statement connects
The Martian to the seen Best Actor. Note that there are
other practically relevant examples beyond KGs, such as pre-
dicting interaction links between a new drug and a graph
containing existing proteins/drugs [Bagherian et al., 2020;
Gaudelet et al., 2020]. We hypothesize that, in most sce-
narios, we are not given any additional information about
the new entity, and thus have Sinf = ∅; we will focus on
this case in this paper. However, the variation where Sinf

may contain k statements connecting the unseen entity to
seen ones has been considered too [Albooyeh et al., 2020;
Bhowmik and de Melo, 2020; Clouâtre et al., 2021] and is
known as k-shot learning scenario.

A mix of the fully- and semi-inductive settings where eval-
uation statements may contain two instead of just one un-
seen entity is studied in [Daza et al., 2021; Baek et al., 2020;
Wang et al., 2020]. That is, unseen entities might be connected
to the seen graph, i.e., Seval may contain seen entities, and, at
the same time, the unseen entities might be connected to each
other; i.e, Sinf ̸= ∅.

Our framework is general enough to allow Seval to contain
new, unseen relations r having their features xr at hand. Since
research so far has focused on the setting where all relations
are seen in training, we will do so, too.

We hypothesize that qualifiers, being explicit attributes over
typed edges, provide a strong inductive bias for LP tasks. In
this work, for simplicity, we require both qualifier relations
and entities to be seen in the training graph, i.e., EQ ⊆ E• and
RQ ⊆ R, although the framework accommodates a more gen-
eral case of unseen qualifiers given their respective features.

4 Inductive Link Prediction with Qualifiers
Both semi- and fully-inductive tasks assume node features to
be given. Recall that relation embeddings are learned and,
often, to reduce the computational complexity, their dimen-
sionality is smaller than that of node features.

Encoders. In the semi-inductive setting, an unseen en-
tity arrives without any graph structure pointing to existing
entities, i.e., Sinf = ∅. This fact renders message passing
approaches [Gilmer et al., 2017] less applicable, so we resort
to a simple linear layer to project all entity features (including
those of qualifiers) into the relation space: ϕ : Rdf → Rdr .

In the fully inductive setting, we are given a non-empty
inference graph Sinf ̸= ∅, and we probe two encoders: (i) the
same linear projection of features as in the semi-inductive sce-
nario which does not consider the graph structure; (ii) GNNs
which can naturally work in the inductive settings [Chami et
al., 2020]. However, the majority of existing GNN encoders
for multi-relational KGs like CompGCN [Vashishth et al.,
2020] are limited to only triple KG representation. To the best
of our knowledge, only the recently proposed STARE [Galkin
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Model #QP WD20K (100) V1 WD20K (100) V2

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 22.78 5.73 1.92 8.22 12.33 36.71 3.99 1.47 4.87 9.22
CompGCN 0 37.02 10.42 5.75 15.07 18.36 74.00 2.55 0.74 3.39 5.31
QBLP 0 28.91 5.52 1.51 8.08 12.60 35.38 4.94 2.58 5.46 9.66

StarE 2 41.89 9.68 3.73 16.57 20.99 40.60 2.43 0.45 3.86 6.17
StarE 4 35.33 10.41 4.82 15.84 21.76 37.16 5.12 1.41 7.93 12.89
StarE 6 34.86 11.27 6.18 15.93 21.29 47.35 4.99 1.92 6.71 11.06
QBLP 2 18.91 10.45 3.73 16.02 22.65 28.03 6.69 3.49 8.47 12.04
QBLP 4 20.19 10.70 3.99 16.12 24.52 31.30 5.87 2.37 7.85 13.93
QBLP 6 23.65 7.87 2.75 10.44 17.86 34.35 6.53 2.95 9.29 13.13

Table 1: Results on FI WD20K (100) V1 & V2. #QP denotes the number of qualifier pairs used in each statement (including padded pairs).
Best results in bold, second best underlined.

et al., 2020] encoder supports hyper-relational KGs which
we take as a basis for our inductive model. Its aggregation
formula is:

x′
v = f

 ∑
(u,r)∈N (v)

Wλ(r)ϕr(xu, γ(xr,xq)vu)

 (1)

where γ is a function that infuses the vector of aggregated
qualifiers xq into the vector of the main relation xr. The
output of the GNN contains updated node and relation features
based on the adjacency matrix A and qualifiers Q:

X′,R′ = STARE(A,X,R, Q)

Finally, in both inductive settings, we linearize an input
statement in a sequence using a padding index where neces-
sary: [x′

h,x
′
r,x

′
qr1
,x′

qe1
, [PAD], . . .]. Note that statements can

greatly vary in length depending on the amount of qualifier
pairs, and padding mitigates this issue.

Decoder. Given an encoded sequence, we use the same
Transformer-based decoder for all settings:

f(h, r, t, q) = g(x′
h,x

′
r,x

′
qr1
,x′

qe1
, . . .)Tx′

t with

g(x′
1, . . . ,xk) = Agg(Transformer([x′

1, . . . ,x
′
k]))

In this work, we evaluated several aggregation strategies and
found a simple mean pooling over all non-padded sequence
elements to be preferable.

Here and below, we denote the linear encoder + Transformer
decoder model as QBLP (that is, Qualifier-aware BLP, an
extension of BLP [Daza et al., 2021]), and the STARE encoder
+ Transformer decoder, as STARE.

In order to compare results with triple-only approaches, we
trained the models, as usual, on subject and object prediction.

5 Experiments
We design our experiments to investigate whether the incorpo-
ration of qualifiers improves inductive link prediction. In par-
ticular, we investigate the fully-inductive setting (Section 5.1)
and the semi-inductive setting (Section 5.2). We analyze the
impact of the qualifier ratio (i.e., the number of statements with
qualifiers) and the dataset’s size on a model’s performance.

5.1 Fully-Inductive Setting
In the full inductive setting, we analyzed the effect of qual-
ifiers for four different datasets (i.e., WD20K (100) V1 &
V2 and WD20K (66) V1 & V2, which have different ra-
tios of qualifying statements, the numbers in brackets, and
are of different sizes). As triple-only baselines, we evalu-
ated CompGCN [Vashishth et al., 2020] and BLP [Daza et
al., 2021]. To evaluate the effect of qualifiers on the fully-
inductive LP task, we evaluated StarE [Galkin et al., 2020]
and QBLP. It should be noted that StarE without the use of
qualifiers is equivalent to CompGCN.

The main findings (from all experiments) are that (i) for all
datasets, the use of qualifiers leads to increased performance,
and (ii) the ratio of statements with qualifiers and the size of the
dataset has a major impact on the performance. CompGCN
and StarE apply message-passing to obtain enriched entity
representations while BLP and QBLP only apply a linear
transformation. Consequently, CompGCN and StarE require
Sinf to contain useful information in order to obtain the entity
representations while BLP and QBLP are independent of Sinf.
Table 1 shows the results obtained for two of the four datasets.

We observe that the performance gap between BLP/QBLP
(0) and QBLP (2,4,6) is considerably larger than the gap be-
tween CompGCN and StarE. This might be explained by the
fact that QBLP does not take into account the graph structure
provided by Sinf, hence is heavily dependent on additional
information, i.e., the qualifiers compensate for the missing
graph information. The overall performance decrease observ-
able between V1 and V2 could be explained by the datasets’
composition, in particular, in the composition of the training
and inference graphs: Sinf of V2 comprises more entities than
V1, so that each test triple is ranked against more entities, i.e.,
the ranking becomes more difficult. At the same time, the train-
ing graph of V1 is larger than that of V2, i.e., during training
more entities are seen which may improve generalization.

5.2 Semi-inductive Setting
In the SI setting, we evaluated BLP as a triple-only baseline
and QBLP as a statement baseline (i.e., involving qualifiers)
on the WD20K SI datasets. We did not evaluate CompGCN
and StarE since message-passing-based approaches are not
directly applicable in the absence of Sinf. The results highlight
that aggregating qualifier information improves the prediction
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Model #QP WD20K (33) SI WD20K (25) SI

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 4.76 13.95 7.37 17.28 24.65 6.01 12.45 5.98 17.29 23.43
QBLP 0 7.04 28.35 14.44 28.58 36.32 6.75 17.02 8.82 22.10 29.50

QBLP 2 11.51 35.95 20.70 34.98 41.82 5.99 20.36 11.77 24.86 32.26
QBLP 4 11.38 34.35 19.41 33.90 40.20 12.18 21.05 12.32 24.07 30.09
QBLP 6 4.98 25.94 15.20 30.06 38.70 5.73 19.50 11.14 24.73 31.60

Table 2: Results on the WD20K SI datasets. #QP denotes the number of qualifier pairs used in each statement (including padded pairs).Best
results in bold, second best underlined.

WD20K (100) V1 FI

Wikidata ID relation name ∆MR

P2868 subject has role 0.12
P463 member of -0.04
P1552 has quality -0.34

P2241 reason for deprecation -26.44
P47 shares border with -28.91
P750 distributed by -29.12

Table 3: Top 3 worst and best qualifier relations affecting overall MR.

of semi-inductive links despite the fact that the ratio of state-
ments with qualifiers is not very large (37% for SI WD20K
(33), and 30% for SI WD20K (25)). In the case of SI WD20K
(33), the baselines are outperformed even by a large margin.
Overall, the results might indicate that in semi-inductive set-
tings, performance improvements can already be obtained with
a decent amount of statements with qualifiers.

5.3 Qualitative Analysis
We obtain deeper insights on the impact of qualifiers by ana-
lyzing the StarE model on the fully-inductive WD20K (66) V2
dataset. In particular, we study individual ranks for head/tail
prediction of statements with and without qualifiers (see Fig.
2 in [Ali et al., 2021a]) varying the model from zero to four
pairs. First, we group the test statements by the number of
available qualifier pairs. We observe generally smaller ranks
which, in turn, correspond to better predictions when more
qualifier pairs are available. In particular, just one qualifier
pair is enough to significantly reduce the individual ranks.
Note that we have less statements with many qualifiers.

We also study how particular qualifiers affect ranking and
predictions (see Fig. 3 in [Ali et al., 2021a]). For that, we
measure ranks of predictions for distinct statements in the test
set with and without masking the qualifier relation from the
inference graph Sinf . We then compute ∆MR and group them
by used qualifier relations. Interestingly, certain qualifiers, e.g.,
convicted of or including, may deteriorate performance,
which we attribute to the usage of rare, qualifier-only entities.
Nevertheless, other qualifiers largely reduce ranks and hence
very positively impact prediction accuracy.

Finally, we study the average impact of qualifiers on the
whole graph, i.e., we take the whole inference graph and mask
out all qualifier pairs containing one relation and compare
the overall evaluation result on the test set, we count ranks of

all test statements, not only those which have that particular
qualifier) against the non-masked version of the same graph.
We then sort relations by ∆MR and find top 3 most confusing
and most helpful relations across two datasets (cf. Table 3).
On the smaller WD20K (100) V1 where all statements have at
least one qualifier pair, most relations tend to improve MR. For
instance, qualifiers with the distributed by relations reduce
MR by about 29 points. On the larger WD20K (66) V2 some
qualifier relations, e.g., statement is subject of, tend
to introduce more noise and worsen MR which we attribute
to the increased sparsity of the graph given an already rare
qualifier entity. That is, such rare entities might not benefit
enough from message passing.

6 Conclusion
In our ISWC 2021 paper [Ali et al., 2021a], we present a study
of the inductive link prediction problem over hyper-relational
KGs. In particular, we propose a theoretical framework to cat-
egorize various LP tasks to alleviate an existing terminology
discrepancy pivoting on two settings, semi- and fully-inductive
LP. Probing statement-aware models against triple-only base-
lines, we demonstrated that hyper-relational facts considerably
improve LP performance in both inductive. Moreover, our
qualitative analysis show that the achieved gains are consistent
across different setups and still interpretable.

Our findings open up interesting prospects for employing
inductive LP and hyper-relational KGs along several axes,
e.g., large-scale KGs of billions statements, new application
domains including life sciences, drug discovery, and KG-based
NLP applications like question answering or entity linking.
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