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ABSTRACT SPARQL query generation from natural language questions is complex because it requires an
understanding of both the question and underlying knowledge graph (KG) patterns. Most SPARQL query
generation approaches are template-based, tailored to a specific knowledge graph and require pipelines with
multiple steps, including entity and relation linking. Template-based approaches are also difficult to adapt
for new KGs and require manual efforts from domain experts to construct query templates. To overcome this
hurdle, we propose a new approach, dubbed SGPT, that combines the benefits of end-to-end and modular
systems and leverages recent advances in large-scale language models. Specifically, we devise a novel
embedding technique that can encode linguistic features from the question which enables the system to learn
complex question patterns. In addition, we propose training techniques that allow the system to implicitly
employ the graph-specific information (i.e., entities and relations) into the language model’s parameters and
generate SPARQL queries accurately. Finally, we introduce a strategy to adapt standard automatic metrics
for evaluating SPARQL query generation. A comprehensive evaluation demonstrates the effectiveness of
SGPT over state-of-the-art methods across several benchmark datasets.

INDEX TERMS Knowledge based systems, knowledge graph, information retrieval, query generation,
language models.

I. INTRODUCTION
SPARQL is a query language used to express queries across
diverse data sources, whether the data is stored natively as
RDF or viewed as RDF via middleware. In recent years, the
conversion of natural language questions (NLQs) to SPARQL
queries gained further popularity to the growing number of
graph-based applications [1]–[3]. Automatic query genera-
tion from NLQ is a long-standing research challenge with
several factors contributing to its difficulty, including but
not limited to understanding the complex aspects of syntax
and semantics of the natural language question (i.e., ellipsis,
ambiguity, lexical gap), error propagation in NLP pipelines,
and skewed distribution of question types in training datasets.

The associate editor coordinating the review of this manuscript and
approving it for publication was Adnan Abid.

Additionally, changing the underlying KG requires rewriting
the SPARQL query for a given NLQ as illustrated in Figure 1.

Several approaches for SPARQL query generation have
been presented recently [6]–[11]. The widely adopted
approaches involve query schema or template classification
and filling in the slots in the templates using available
sub-graph information such as linked entities and rela-
tions [9], [10], [12], [13]. A different line of research is
centered around transforming natural language questions
to their corresponding SPARQL queries in a sequence-
to-sequence manner [8], [14]. Despite substantial research
efforts, adapting these systems to arbitrary KGs and han-
dling low-frequency question types is difficult. The main
challenges can be summarized as follows: (1) SPARQL tem-
plates are usually created manually or semi-automatically by
domain experts, which is both time consuming and cost inten-
sive, (2) The query templates are tailored to a particular KG,
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FIGURE 1. An illustration of a SPARQL query used to answer a natural
question over Wikidata [4] and DBpedia [5]. Here, Q339, P398, P31,
Q184246 are the Wikidata ID of Pluto, child astronomical body, instance
of, and moon of Pluto, respectively.

which results in potentially changing of the whole template
set when the underlying graph is changed, (3) The extension
of template sets to handle new question types is performed
manually or semi-automatically, and (4) In pipeline-based
approaches, the SPARQL generation module is dependent
on the performance of the preceding modules (i.e., entity
and relation linkers as well as ranking algorithms) and, thus,
suffer from error propagation.

TABLE 1. Comparison of SPARQL queries for two different questions with
same wording.

Addressing the shortcomings, we propose a new approach,
dubbed SGPT, for SPARQL query generation. SGPT encodes
the linguistic features of an NLQ and corresponding
sub-graph information (i.e, entities, if provided), and lever-
ages a generative language model (LM) to generate SPARQL
queries. We hypothesize that a deeper understanding of the
NLQ is crucial for generating a correct query, since a slight
deviation in the syntactic structure of the question may result
in a different SPARQL query. Table 1 demonstrates such an
example, where the queries are Wikidata knowledge graph-
based [4], and Q33999, and Q4971429 are Wikidata entity
IDs of the entity Actor and British Prince, respectively. The
Wikidata relation IDsP106,P26 andP97 refer to the relations
Occupation, Spouse, and Noble title, respectively. Specifi-
cally, besides the standard word and positional embedding
layers, we design special embedding layers that embed an
arbitrary number of linguistic features of an NLQ, such
as parts-of-speech (POS) tags and dependency tree features
(i.e., dependency relations and information about tree node’s

children). A stack of Transformer [15]-encoders is employed
to encode the linguistic features. The proposed embedding
techniques facilitate SGPT to inject additional knowledge
(i.e., entities) as well as allow the integration of SGPT into
pipeline-based systems in a modular fashion. Furthermore,
we employ the Transformer [15]-decoder based language
model GPT-2 [16], to generate SPARQL queries. Our train-
ing methodology enables SGPT to embed an arbitrary KG
directly into the model parameters. Moreover, the system
does not require any query template or KG as input at infer-
ence time.

The evaluation of SPARQL query generation is a crucial
step for developing NLQ to SPARQL systems. A widely
used metric BLEU [17], was primarily designed to evaluate
machine translation (MT) and later adopted for evaluating
natural language generation (NLG). However, in contrast to
natural language sequences, SPARQL is a formal language
and includes query-specific terms, patterns and variables
which the standard automatic metrics such as BLEU do not
consider when computing n-gram overlaps. To overcome this
shortcoming, we propose a variable normalization algorithm
to adopt BLEU and F1 score for measuring the performance
of SPARQL query generation. We call the adopted metrics
SP-BLEU and SP-F1.

To assess the performance of SGPT, we conduct exper-
iments on three publicly available datasets: LC-QuAD
2.0 [18], VQuAnDA [19] and QALD-9 [20]. We evaluate
the system-generated SPARQL queries using both human
and automatic metrics. Furthermore, by an ablation study
we examine the impact of individual components on SGPT’s
overall performance to verify their effectiveness. Moreover,
we conduct extensive analysis to demonstrate SGPT’s capac-
ity to comprehend diverse, complex questions and generate
correct SPARQL queries. The empirical evaluation confirms
that SGPT significantly outperforms state-of-the-art methods
in generating SPARQL queries from natural language ques-
tions across several benchmark datasets. We open source the
code and model.1 The key contributions of this work can be
summarized as follows:
• Anovel embedding technique, that embeds the linguistic
features of a question and graph information for the
SPARQL query generation task.

• A generative system, SGPT, that utilizes the linguistic
features of a natural language question and learns to
embed the KG into language model’s parameters. SGPT
can be used as either as a standalone system or can be
integrated into modular pipelines.

• An algorithm to adapt standard evaluation metrics
for measuring the performance of SPARQL query
generation.

• A comprehensive evaluation that demonstrates the capa-
bilities of SGPT in generating complex and correct
SPARQL queries across various knowledge graph based
benchmarks.

1https://github.com/rashad101/SGPT-SPARQL-query-generation
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Rest of the part of this paper is organized as follows.
In Section II, we review the previous research efforts on
various methods for natural language question to SPARQL
query generation. In section III, we provide background
about SPARQL query language and dependency tree, which
we utilize in our research. The proposed SGPT approach is
described in section IV. In Section V, details about the data,
training setup, baseline systems, and evaluation metrics are
provided. Additionally, the qualitative and quantitative results
are also discussed. A comprehensive analysis of the proposed
system is provided in Section VI, including ablation study,
case studies, effectiveness of different components, error
analysis and limitations. Finally, in Section VII, we summa-
rize the key findings and identify future study areas.

II. RELATED WORK
A. MANUAL AND SEMI-AUTOMATIC APPROACHES
The early research on SPARQL query generation
primarily focused on hand-crafted query construction
[21]–[26]. In these approaches, SPARQL queries were man-
ually designed to test the coverage and inference capabil-
ities of ontology systems. A different research direction
emphasised on query generation from datasets [27], [28].
Görlitz et al. [27] carefully explored an RDF dataset and
defined a set of query characteristics for the query selection
purpose. The authors employed a query generation heuristic
to predict the final SPARQL representation, which checks all
possible combinations of query patterns based on the defined
query characteristics. In another paper, Qiao et al. [28] pro-
posed a technique to construct a synthetic graph from a
given RDF graph employing three separate algorithms to
generate various types of SPARQL queries. However, the
algorithm-generated queries are limited by six triples and
can have at most two attributes. An ontology-based semi-
automatic method was proposed by Dibowski et al. [29],
where a user interface is provided to modify or select relevant
concepts from the ontology for generating the SPARQL
query. Nevertheless, manual efforts make it difficult to adapt
these systems for large scale knowledge bases such as Wiki-
data [4] and DBpedia [5].

B. SCHEMA-BASED APPROACHES
Recently, to alleviate the manual efforts, a schema-based
SPARQL query generation has received significant research
attention [6], [7], [30]. These approaches aim to gener-
ate an intermediary schema representation (template) of
the SPARQL query. The slots in the SPARQL schema
are then filled up based on the defined heuristics to rank
and obtain the final SPARQL query. In another schema-
driven approach, Zenz et al. [31] proposed a method to bind
domain-specific keywords to generate query template. The
authors followed an incremental refinement strategy to obtain
the final SPARQL query from a query template. In a differ-
ent work, Unger et al. [30] introduced a method to generate
SPARQL query templates, utilizing the semantic structure of

the question. More recently, a classification based approach
was proposed by Vollmers et al. [10], where semantically
similar types of questions are classified to obtain a query
template. Nevertheless, the query generation task remains
limited due to the fixed number of schema. To extend the
coverage of these systems for additional types of questions
and queries, manual schema creation is required.

C. OTHER APPROACHES
In a different direction of solutions, Soru et al. [8] developed
a sequence-to-sequence system that utilizes bi-directional
LSTM [32] for generating SPARQL templates. An interpreter
reconstructs the final SPARQL query from the query tem-
plate using rule-based heuristics. However, the method can-
not handle out-of-vocabulary words in the test set and lacks
understanding of the question, thus frequently generating
incorrect graph patterns in the query. Recently, Zafar et al. [9]
exploited syntactic features to train a SPARQL query rank-
ing model leveraging Tree-LSTM [33]. The similarity score
between syntactic features of a question and a query is used
for ranking candidate queries. Since the syntactic features
are not learned and are only used to compute tree-similarity,
the system does not generalize well when encountering an
unseen question. Furthermore, the system needs to find all
query patterns from the extracted sub-graph to predict the
final SPARQL query, otherwise it fails to generate the query.

The approaches stated above are difficult to adjust for a
new and arbitrary KG since they require manual construction
of SPARQL queries for adaption and lack understanding of
the question. In contrast to the approaches mentioned above,
this research aims to encode the linguistic features of an NLQ
and leverages a pre-trained language model to both learn the
graph patterns and generate SPARQL queries.

III. PRELIMINARIES
A. SPARQL QUERY LANGUAGE
The term ‘‘SPARQL’’ stands for SPARQL Protocol and
RDF Query Language. According to the official definition,
a SPARQL query can be formally considered as a tuple
〈GP,DS, SM ,R〉, where GP is a graph pattern (query pat-
tern), DS is an RDF dataset, SM is a set of solution modifiers
(ORDER, PROJECTION, DISTINCT, OFFSET, LIMIT),
R is a result form (SELECT, CONSTRUCT, DESCRIBE and
ASK).2 Figure 2 illustrates the terms used in the formaliza-
tion. Similar to the previous works, SGPT aims at generating
the query body which includes the result form, graph pattern,
and solution modifiers.

B. DEPENDENCY TREE
Dependency and constituency trees are used in computa-
tional linguistics to express syntactic dependencies between
words in a sentence. A dependency tree, unlike a constituency
tree, may express non-adjacent and non-projective relations
in a sentence, which are common in spoken language.

2https://www.w3.org/2001/sw/DataAccess/rq23/defns
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FIGURE 2. SPARQL query components.

FIGURE 3. A dependency tree parsed from the question, What is the
capital city of Germany?. The text in red represents the dependency
relation between two nodes. In this paper, the root node of the
dependency tree is designated as level 0 node. The levels of other nodes
are assigned with respected to distance from the root node at level 0. The
POS-tags are highlighted in green for demonstration purposes only and
are not part of the dependency tree.

A dependency tree is a graph with words as nodes and
dependency relations as edges, as depicted in Figure 3.
Every node has exactly one parent node except the root
node, which has no parent [34]. In Figure 3, the annotations
follow part-of-speech tagset from Universal Dependencies3

and dependency relations from Stanford Dependencies.4 The
POS-tags, dependency relations, and information about
immediate syntactic dependents of the token (level in
Figure 3), are leveraged in this paper to understand the NLQ
for SPARQL generation.

IV. APPROACH: SGPT
A. PROBLEM DEFINITION
We define a knowledge graph as a multi-relational graph
G = (E,R), where E is a set of entities in the knowledge
graph andR is a set of relations that connects two entities in
the knowledge graph. This paper proposes separate training

3https://universaldependencies.org/u/pos/index.html
4https://downloads.cs.stanford.edu/nlp/software/dependencies_manual.

pdf

techniques for two use cases, 1) only a natural question is
available, 2) both the question and entities mentioned in the
question are provided. In the second case, we consider the
provided set of entities as additional knowledge K. Given a
natural language question Q (for the first case) or an addi-
tional knowledge K and a natural questionQ (for the second
case), the goal of SGPT is to generate a SPARQL query S.
We define SGPTQ as the system for the first use case and
SGPTQ,K for the second use case. Formally, in SGPTQ, the
probability distribution of generating a SPARQL query by the
language model is defined as:

pθ (S|Q) =
n∏
i=1

pθ (si|s1, . . . , si−1,Q), (1)

and in SGPTQ,K the probability distribution is as follows:

pθ (S|Q,K) =
n∏
i=1

pθ (si|s1, . . . , si−1,Q,K), (2)

where θ is model’s parameters, n is the length of the query
and si is the token generated at i-th time step.

We use the terms ‘‘SPARQL query’’ and ‘‘query’’ inter-
changeably throughout this paper. The term ‘‘SGPT’’ refers
to both SGPTQ and SGPTQ,K, if there is no design or
implementation difference between them for the describe
concept or operation. SGPT follows the encoder-decoder
design paradigm. The approach is described in depth in the
following subsections.

B. ENCODING
We design special embedding layers to embed the linguistic
features of the question. The idea of special embedding was
initially suggested by Devlin et al. [35]. The idea has been
recently adopted for encoding structural information such as
in table parsing [36] and graph-based dialogue generation
task [37]. Unlike these prior works, in this work special
embedding layers are designed to capture the linguistic char-
acteristics of an NLQ. A stack of Transformer [15]-encoders
then encodes these embeddings.

1) INPUT SEQUENCE CONSTRUCTION
A Pre-processor component in SGPT takesQ andK as input
and constructs the input sequence. The input sequence in
SGPTQ starts with a [BOS] token, then the questionQ and an
[EOS] token that marks the end of the sequence as depicted
in Figure 4.

Similarly, in SGPTQ,K the input sequence starts and ends
with [BOS] and [EOS] tokens, respectively. The question is
separated by a [Q] token from the additional knowledge K,
in the input sequence. Furthermore, each entity in the addi-
tional knowledge is preceded by an [E] token in the input
sequence (see Figure 5).

To allow generalisation, the entity positions in the question
and query are masked in SGPTQ,K. A Pre-processor masks
both the entities in the question and the entities (including
their prefix) in the query by a generic ENT token for training.

VOLUME 10, 2022 70715
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FIGURE 4. An illustration of special embedding layers used in SGPTQ.

FIGURE 5. The question and knowledge embedding techniques used in SGPTQ,K. The dotted red box indicates the separation of additional knowledge
from the question.

The entities in the query that do not appear in the question
are not masked and learned in the model’s parameters. For
multiple entities in the question the generic masks are as
follows: ENT1, ENT2,..,ENTn, where n is the number of entities
present in the question. For instance, if the question contains
two entities, the first is masked by the ENT1 token and the
second by the ENT2 token. Figure 5 depicts a masked input
sequence.

Generally, relation linking is challenging because, the sur-
face form of the relation in the question often differs from
the label of the relation in the KG [38]. This leads to relation
linking-based error propagation in the pipeline-based sys-
tems [39], [40]. To alleviate the error propagation, we del-
egated the relation learning task to the GPT-2 model, which
learns the KG (i.e., entity and relation) in its parameters.

2) EMBEDDING THE INPUT SEQUENCE
The constructed input sequence is passed through five dif-
ferent embedding layers to capture different properties of the
input. The embedding layers are described below:

(i) Word embedding layer encodes the token level infor-
mation of the input sequence. A pre-trained GPT-2 [16] tok-
enizer is used to tokenize the input sequence.

(ii) POS-tag embedding layer embeds the part-of-speech
tag of the corresponding token in the word embedding layer.
POS-tags are used to understand the use of word in the
question better, since a particular word may have different
meaning based on the usage in a sentence.

(iii) Dependency relation embedding layer encodes the
dependency relations between pairs of words in the question.

(iv)Dependency level embedding layer embeds the infor-
mation about the children of the tokens in the word embed-
ding layer, extracted from the dependency tree.

(v) Positional embedding layer embeds the absolute posi-
tion information of the input sequence.

SGPT computes the sum of POS-tag, dependency relation
and dependency level embeddings and apply Layer Normal-
ization [41] to obtain the linguistic context of the NLQ. Layer
Normalization normalizes the embedding and prevents the
model’s weights from exploding. The encoding of linguistic
context is discussed in the next section. The word and posi-
tional embeddings are utilized by a GPT-2 decoder, discussed
in §IV-C.

3) LINGUISTIC CONTEXT ENCODING
A stack of Transformer-encoders [15] is employed in this
paper to encode the linguistic context. The output of the
l-th encoder layer is formalized as follows:

hli =
N∑
j=1

αlij(h
l−1
j WV )

αlij =
exp(t lij)∑N
p=1 exp(t

l
ip)

t lij =
(hl−1i WQ)(hl−1j WK )

√
d

i = 1, 2, . . . .,N (3)

where WQ, WK , and WV are trainable weights, N is the
sequence length, and d is the dimension of query, key and
value vectors. The output is then passed to a Feed-Forward
Neural Network (FFNN), preceded and followed by residual
connections and normalization layers as follows:

h′li = LayerNorm(hli + h
l−1
i )

h′′li = W l
2ReLU (W l+1

1 h′li + b1)+ b2

ĥli = LayerNorm(h′li + h
′′l
i), (4)

where W l
2 and W l+1

1 are trainable weights and b1 and b2
are bias terms. A rectified linear unit (ReLU) is employed
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as the activation function in the FFNN network. The output
of the last encoder layer ĥli is then passed to a GPT-2 model
for decoding. Figure 6 illustrates a high-level architecture of
SGPT.

FIGURE 6. System architecture.

C. DECODING
A GPT-2 [16] language model is used in this paper to model
SPARQL query generation. However, any Transformer [15]
decoder-based LM can be used. GTP-2 is a multi-headed
attention-based language model. The attention, computed in
each of GPT-2’s heads is formalized as follows:

F(Q,K ,V ) = softmax(
1
√
dk

(QKT )+M )V ,

Hi = F(QWQ
i ,KW

K
i ,VW

V
i ), (5)

where F(·) computes the masked attention. The attention
mask is denoted asM , whereHi is the i-th head and dk=dm/h.
Here, dm is the model’s dimension and h denotes the num-
ber of heads. Q, K and V are query, key and value where
WQ
i ,W

K
i ,W

V
i are trainable weights. Model parameters in θ

are trained to minimize the negative log-likelihood LQ (for
SGPTQ) andLQ,K (for SGPTQ,K) for next-token prediction.
Formally, the loss LQ and LQ,K are defined as follows:

LQ = −
n∑
i

log p(si|s1, . . . , si−1,Q),

LQ,K = −
n∑
i

log p(si|s1, . . . , si−1,Q,K), (6)

where n is the maximum query length. During inference,
Top-k sampling decoding [42] is utilized to generate a word

token at each time step. It is noteworthy that the entities
that were masked by the pre-processor of SGPTQ,K in the
question also appear masked in the decoded query. Once the
sequence decoding is completed, the Post-processor compo-
nent replaces the entity masks with their corresponding entity
identifier.

V. EXPERIMENTS AND RESULTS
A. DATA
We evaluate SGPT on three publicly available datasets.

1) LC-QuAD 2.0 [18]: A large-scale question answer-
ing dataset, which includes for each complex natural lan-
guage question its corresponding query template, SPARQL
query and annotations. We chose LC-QuAD 2.0 to evaluate
Wikidata-based questions.

2)VQuAnDa [19]: A verbalization dataset which contains
natural language questions and their corresponding SPARQL
queries for extracting answers. VQuAnDa contains DBpedia-
based questions.

3) QALD-9 [20]: QALD-9 is a small yet challenging
multilingual question answering dataset based on DBpedia.
The dataset contains questions in 3 to 8 different languages.
Within the scope of this paper, we select the English data.

TABLE 2. Dataset statistics.

TABLE 3. Statistics of question types.

The dataset statistics are summarized in Table 2. The
original train and test splits of LC-QuAD 2.0, VQuAnDa
and QALD-9 are 24,180/6,046, 4,000/1,000 and 408/150,
respectively. For the validation during the training, we split
the training set and use 10%-15% data as the validation set,
based on the dataset size. In LC-QuAD, 2.0 we removed
the data from train set with empty question and query field.
Natural language questions are treated as complex when
answering them requires multiple graph patterns. Depend-
ing on the complexity, the following question types are
distinguished [18]:
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• Boolean: Question where the answer is either True or
False.

• Count: That computes the number of occurrence of a
particular thing.

• Rank: Questions seek answer which is in a particular
order.

• Simple: Questions correspond to semantics of natural
language question that is obtained by matching just one
hop relations of the entity.

• String: Questions, for which answers contain a particular
word or letter.

• Two Hop: Questions, in which semantic interpretation
corresponds to two hop of the entity’s connection in
the knowledge graph i.e. two set of triples in the where
clause of the SPARQL query.

• Two Intent: Questions seek for minimum two answer for
the same question for example, mother of a person and
also the child of same person.

The question types statistics of the benchmark datasets are
reported in Table 3.

B. TRAINING SETTINGS
We use a stack of Transformer-encoders with 8 heads
and 6 layers to encode linguistic features. For decoding
we employ the GPT-2 [16] model with 117M parameters
throughout this paper. As an optimizer, AdamW [43] with
ε = 1e-8 and a value of 6.25e-5 is used as learning rate.
GELU [44] is used as the activation function. The optimum
hyper-parameters for each dataset were determined using
grid search based on the performance on the validation set.
We used spaCy5 to annotate the NLQ with the POS-tags
and dependency relations, based on the work of [45]. All
experiments were run in a distributed training environment
with 2 GPUs, each with 12 GBs of RAM. The training takes
215, 125 and 35 minutes on LC-QuAD 2.0, VQuAnDa, and
QALD-9, respectively.

C. EVALUATION METRICS
1) AUTOMATIC METRICS
Following the baseline models, we use BLEU [17] and F1
score as automatic metrics for the evaluation. Generally,
SPARQL queries in the used data sets were created manually
or semi-automatically by domain experts. This means that the
choice of variable names depends on the domain experts and
can vary. Hence, we argue that these metrics are incapable of
capturing the variations in the variables used in a the query,
since BLEU computes n-gram overlaps and F1 is computed
by token-level precision and recall. We propose an adap-
tion, where variables in both reference and predicted queries
are normalized before the standard evaluation performed
by BLEU and F1 and named them SP-BLEU and SP-F1,
respectively. The proposed normalization technique is shown
in Algorithm 1. Our proposed variable name normalization
technique allows the automatic metric to evaluate a predicted

5https://spacy.io/

Algorithm 1: Query Normalization
Input: A SPARQL query S
Output: A normalized SPARQL query Sn
Vo← ∅, Vn← ∅ F initializing empty sets
i← 0, io← 0, Sn← ∅
for w ∈ S do

if w startswith ‘?’ then
tc←− ∅
if w ∈ Vo then

io←− indexOf (w,Vo) F position of w in Vo
tc←− Vo[io]

else
Vo←− add(w,Vo)F adds a value w to the set
Vo
i←− i+ 1
tc←− string(?var i) F converts to string

Sn←− concat(Sn, tc) F string concatenation

else
Sn←− concat(Sn, tc) F string concatenation

return Sn

query regardless of the annotated variable names. An exam-
ple of query normalization is demonstrated in Table 8. The
normalisation results in the metrics more closely reflect-
ing actual performance. We compare all systems on both
the standard automated metrics and the proposed metrics
(discussed in §V-E).

2) HUMAN EVALUATION
We further conducted a human evaluation to manually
assess the quality of generated queries. We randomly chose
75 examples (25 from each dataset) and asked two domain
experts to evaluate the system generated queries based on
the following criteria: 1) Syntax validity - how structurally
correct the generate queries are, and 2) Content validity -
how correct the entities and relations are. We asked the
reviewers to rate the system generated queries on a scale of
1 to 5 (higher is better). The inter-annotator agreement score
(Cohen’s kappa κ) of the annotated data is 0.86.

D. BASELINES
We compare SGPT with both sequence-to-sequence and
template-based methods.

SQG [9]: A set of candidate queries are created in
SQG based on the sub-graph patterns, which are then
ranked and arranged based on structural similarity, utilizing
Tree-LSTM [33].

NSpM [8]: A sequence-to-sequence strategy in which a
Bidirectional Long Short-Term Memory Network
(Bi-LSTM) learns to generate a template SPARQL from a
natural language question.

TeBaQA [10]: The TeBaQA model depends on template
classes which it generates from the training dataset, to pre-
dict the SPARQL query. To generate the SPARQL query,
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TABLE 4. Performance of SGPT and baseline models on three benchmark datasets. Best scores are in bold.

FIGURE 7. Question type-wise performance of SGPTQ,K and baseline models on the test set of VQuAnDa and QALD-9.

TABLE 5. Results on data where baseline models could generate queries.

FIGURE 8. Question type-wise performance of SGPTQ on LC-QuAD
2.0 test set.

the model first classifies the input question and predicts a
template class. The slots in the template class are filled in by
indexed entities and relations guided by a rule-based lookup.
The generated queries are then ranked to obtain the final
SPARQL query representation.

We train and evaluate the baseline models with their rec-
ommended settings.

E. QUANTITATIVE RESULTS
Table 4 summarises the performance of SGPT and baseline
systems. In the first set of results where additional knowledge

K is not provided, SGPTQ outperformed the other genera-
tive system, NSpM, significantly across all metrics. In many
cases NSpM failed to recognize the correct question types,
thus frequently generated wrong queries. In the second set
of results, using additional knowledge, the baseline mod-
els obtained very low scores because of their limited tem-
plate coverage. We further investigated the performance of
baseline models and observed that SQG managed to gen-
erate queries for 46% and 45.33% of the test NLQs of
VQuAnDa and QALD-9, respectively. TeBaQA could gener-
ate queries for 30.55% and 40.67% of the same test NLQs.
These template-based systems fail to generate queries pri-
marily for two reasons: 1) They could not classify or find
a suitable template for a give question 2) They failed to
fill in all the slots in the selected template, resulting in no
query predicted. We report the comparison of performance
on the data where baseline models could generate queries
in Table 5. The results suggest that SGPT outperformed the
baseline models significantly in most cases. Despite given
the correct subjects detected from the question, template-
based systems failed to generate queries frequently. The
main reason is that SPARQL queries oftentimes include
intermediary entities which leads to correct answer but do
not appear in the question. Our proposed training technique
allows SGPT to learn those entities in the model’s param-
eters and thus can effectively generate correct SPARQL
queries.

Finally, we investigated the capabilities of SGPT and the
baselines models on diverse types of questions, depicted in
Figure 7 and 8. The improvements over all the baselines
across benchmark datasets confirms SGPT’s capacity to han-
dling diverse types of questions.
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TABLE 6. Case study showing a comparison between SGPT and baseline system’s outputs.

TABLE 7. Ablation study.

TABLE 8. An illustration of query normalization.

TABLE 9. Human evaluation results.

F. QUALITATIVE RESULTS
We conducted a human evaluation to assess the system gener-
ated SPARQL queries. We observed that SGPT is capable of
generating queries with correct syntax, reported in Table 9.
We also noticed that template-based approaches obtained
comparatively low syntax validity score because they failed
to generate queries in some cases. Overall, generative sys-
tems received a high syntax validity score as they learned
the SPARQL pattern well. Figure 9 depicts the score distri-
bution of human annotation and corresponding BLEU and
SP-BLEU scores from automaticmetrics. Human judgements

are normalized to a scale of 0 to 100. The Spearman corre-
lation co-efficient between BLEU and human judgement is
0.94, where for SP-BLEU and human judgement it is 0.97.
This confirms that our proposed normalization algorithm
enables the metric to correlate better with human judgement.

FIGURE 9. Human evaluation score distribution.

VI. ANALYSIS
A. ABLATION STUDY
Table 7 summarizes the results of the ablation study con-
ducted to investigate how various components of SGPT affect
its overall performance. The seq2seq approach denotes the
SGPT model without the special layers: POS-tag embed-
ding, dependency relation embedding and dependency level
embedding. The results in Table 7 exhibit that adding syn-
tactic features improves SGPT’s capability to understand the
question and generate the correct query. A remarkable gain in
the performance is noticeable after adding of the POS-tag and
dependency relation embedding layers, in both SGPTK and
SGPTK,Q. Adding dependency level embedding which cap-
tures information about token’s immediate syntactic depen-
dents, however, only slightly improved the results further.

B. CASE STUDY
Table 6 shows two NLQs with corresponding reference query
and SPARQL queries, generated by the compared systems.
The first NLQ is from LCQuAD 2.0 (Wikidata-based), and
the second is from the QALD-9 dataset (DBpedia-based).
In the first case where no additional knowledge is provided,
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TABLE 10. Three error cases where the texts highlighted in green indicate the correct entry in the reference query and red indicating wrong predication in
the system generated query. The text in yellow shows the masked entity.

TABLE 11. Performance of entity and relation generation.

SGPTQ generated a query with correct content and syn-
tax, whereas NSpM failed to generate the correct content.
This demonstrates SGPT’s capabilities of understanding the
question and generating a query with correct content from
the KG. Despite having additional knowledge provided for a
challenging question (second case), SQG and TeBaQA failed
to generate a correct query. They could not find a template
that could both classify and fill in all the slots correctly. This
exhibits the advantage of SGPT over template-based and slot-
filling approaches in handling complex query patterns.

C. EFFECTIVENESS OF ENTITY MASKING STRATEGY
Masking entities and relations in the question is a widely
adopted strategy for generating and classifying SPARQL
query templates. In NSpM [8], all entities in a question are
masked with a generic <A> token. During inference, the
final query is obtained by replacing <A> with all possible
entity combinations and ranking. Similarly, in TeBaQA the
slots in the predicted template are filled in by checking
all possible indexed entities and relations. In contrast, our
proposed masking strategy in SGPTQ,K eliminates the need
for any slot-filling component. The entity masking strategy
used in SGPTQ,K’s training allows the system to learn the
patterns of entity positions in the question and generate corre-
sponding correct query. SGPTQ,K achieves an absolute 3.8%,
1.9%, and 1.1% increase of BLEU score on LC-QuAD 2.0,
VQuAnDA, and QALD-9 respectively, when the entities are
masked in the input sequence instead of keeping their initial
mentions.

D. EFFECTIVE ENTITY AND RELATION GENERATION
Table 11 shows the study results, which we conducted to
investigate how well our proposed model learns the KG in
its parameters. The performance suggest that SGPT can learn

the knowledge graph in its parameters with high accuracy.
The metric F1 (E) denotes the F1 scores between the entity
sets of ground truth and system generated queries. Similarly,
F1 (R) shows the performance of relation prediction. Despite
given the correct knowledge, SQG and TeBaQA failed to
achieve high F1-scores for entity and relation linking. This is
due to the fact that the generated query may include entities
from the NLQ as well as intermediate entities and relations
that are not explicitly present in the NLQ. The intermediary
entities and relations are required to resolve the answers,
which is dependent on the complexity of the question and
hence cannot be specified in a template-based setting.

E. ERROR ANALYSIS AND LIMITATIONS
We performed an error analysis to inspect whether SGPT
has not generated correct SPARQL queries. Table 10 shows
such erroneous examples where the first one shows an
error of SGPTQ,K in generating the wrong masked query.
Although the system could infer that the question is
about death, it predicted the wrong, though similar rela-
tion dbo:deathPlace instead of dbp:placeOfDeath. The
first two error cases are from DBpedia-based questions
where the third example is based on Wikidata. In the sec-
ond case, SGPTQ correctly detected the query type and
the topic about British Columbia. However, it generated the
wrong entity dbr:British_Columbia_republic instead
of dbr:British_Columbia. Similarly, in the third example,
the system could infer, that the question is about a state,
but predicted a Wikidata entity ID with the wrong type of
state Q3624078 (sovereign state) instate of Q842112 (social-
ist state). Despite the failed cases, the generated queries in
Table 10 confirm SPGT’s capability of generating queries
with correct syntax and query type.

Since SGPT learns the graph patterns in the model’s
parameters, fine-tuning is required if the graph is updated.
Nevertheless, the proposed training techniques allow the sys-
tem to learn intermediary graph patterns required to generate
a complete SPARQL query, that are not detectable from the
input question. The current version of this work only supports
English language. To adapt SGPT for other languages, a POS-
tagger, a dependency parser and a pre-trained languagemodel
of the target language are required. Despite the limitations,
SGPT comeswith the advantages of a training facility without
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query templates, adaptable to arbitrary KG, and extendable
for pipeline-based systems.

VII. CONCLUSION
We have presented SGPT, a SPARQL query generation sys-
tem, improving the state-of-the-art across multiple bench-
mark datasets. Our proposed training technique eliminates the
need for manual annotation and is applicable to arbitrary RDF
datasets. The key contributions of SGPT include 1) a new
encoding technique for the linguistic features of a question
and (optionally) entities in the question, that allows deeper
question understanding during SPARQL generation, 2) train-
ing techniques that leverage a pre-trained language model to
generate a SPARQL query and can be adapted to questions
from different knowledge graphs, 3) improved evaluation
metrics to measure the performance of SPARQL query gen-
eration. An extensive empirical assessment confirms SGPT
effectiveness in handling diverse types of questions and gen-
erating correct SPARQL queries. In future, we intend to
integrate an automatic knowledge retrieval component and
provide support for multiple languages.
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