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Abstract—The last decades have witnessed significant advance-
ments in terms of data generation, management, and mainte-
nance especially in the area of data lakes, and heterogeneous data.
This has resulted in vast amounts of data becoming available
in a variety of forms and formats including RDF. As RDF
data have been created by liberal curation methods (e.g. crowd-
sourcing and automatic extraction tools with limited restriction
and cross-validation on input data), they are prone to various
kinds of errors that can be hidden in different dimensions (i.e.
subject, predicate, and object level). Detecting those errors not
only improves the KGs quality but also makes it possible to detect
anomalous events in the data which can be used for subsequent
analysis. In this paper, we present DistAD, a generic, scalable,
and distributed framework for anomaly detection on large RDF
knowledge graphs. DistAD provides a great granularity for the
end-users to select from a vast number of different algorithms,
methods, and (hyper-)parameters to detect outliers. The proposed
framework is fully open-source, well-documented, and fully
integrated into the active community project Semantic Analytics
Stack (SANSA). The experiments on real-world use cases disclose
that the framework is not only able to handle huge RDF data
but also able to successfully detect hidden anomalies/outliers in
KGs.

Index Terms—RDF Graph, Anomaly Detection, Big Data,
Distributed Computing, Scalable Analytics, SANSA

I. INTRODUCTION

Anomaly Detection (AD) is a branch of data mining ded-
icated to the discovery of uncommon events in datasets and
has several high impact applications in sectors such as security,
finance, health care, law enforcement, and much more [1]. The
goal of anomaly detection is finding an answer to the critical
question, “What is intriguing about a dataset?” It refers to
the task of identifying data point(s) and patterns that do not
conform to the data’s previously specified behavior. Although
numerous techniques for detecting outliers and anomalies
(anomaly and outlier will be used interchangeably in this
paper) in unstructured collections of multiple dimension points
have been developed in recent years, yet with the current in-
terest in large-scale heterogeneous data in Knowledge Graphs
(KGs), most of the traditional algorithms are no longer directly
applicable.

Semantic Web which enables a structural view of the
existing data on the web provides machine-readable formats
as the Resource Description Framework (RDF) [2]. RDF data
are a collection of triples ⟨subject, predicate, object⟩ which
tend to have rich relationships, forming a potentially very large

and complex graph-like structure. Nowadays, many companies
in the fields of science, engineering, and business, including
energy, bioinformatics, life sciences, business intelligence, and
social networks, publish their data in the form of RDF [3]1,2.
Furthermore, the Linked Open Data Project initiative [4] has
aided the Semantic Web in gaining greater attention during the
last decade. Currently, the Linked Open Data (LOD) cloud has
over 10,000 datasets that are available online utilizing the RDF
standard3 and may have sizes up to billions of triples.

KGs are being generated in a variety of ways. Some KGs
such as Wikidata [5] and Freebase [6] have been created
by crowd-sourcing. NELL [7] has been curated by natural
language processing techniques, and DBpedia [8] and YAGO
[9] have been created by automatically extracting knowledge
tools. Due to the variety of approaches and freedom in
inserting the input data, KGs are prone to various kinds
of errors because the entered data is neither restricted nor
cross-validated. These errors can happen at Subject, Predicate
or Object level in the RDF format. For example, there can
be extraction errors like parsing errors, e.g. some events in
Wikipedia have no starting date, and the value for those events
is empty and is written like “- 2001”, so extraction tools may
interpret this value as a negative year, or there can be errors in
the predicate level, such as a person has n birth places4 which
n ≫ 1 (normally, a person has only one birthplace). Moreover,
the errors can happen in a multi-feature manner, for example,
a person’s age can be 5 and it is reasonable, however, the age
of a person who is a president of a country can not be 5. So
in the multi-feature mode, a combination of different values
could yield an anomaly. It is worth mentioning that anomalies
are not necessarily wrong values but the values that do not
conform with the foreseen data behavior. For example, IoT
sensors may generate very high/low values (e.g. temperature),
these values are not necessarily wrong but adequate to trigger
subsequent actions such as alarms.

Although various strategies for detecting outliers and
anomalies have been developed over the years, most stan-
dard analytic approaches are no longer directly applicable to
KGs due to their graph-like, multi-modal nature, and large

1http://www.openphacts.org
2https://ontop-vkg.org
3http://lodstats.aksw.org/
4https://dbpedia.org/page/Alireza Afzal



size. To tackle the aforementioned issues, in this paper, we
propose DistAD, a generic, distributed, and scalable software
framework that can automatically detect anomalies in the KGs
by extracting semantic features from RDF data, clustering
entities, and applying an anomaly detection algorithm on
the level of numeric objects, predicates, and multi-feature
scenarios. DistAD offers flexibility over different parts of the
workflow and lets the end-users select different approaches
and granularity based on their use-cases. In addition, DistAD
is integrated into the SANSA Stack [10] and interacts with
the different SANSA computational layers. This integration
ensures long-term sustainability, as SANSA is an actively
maintained project and uses the community ecosystem (i.e.
mailing list, issue trackers, continuous integration, and web-
site, etc.).

To summarize, the main contributions of this paper are as
follows:

• Introducing a distributed generic framework that can
automatically detect anomalies in a large RDF graph

• Integrating the approach into the SANSA Stack
• Covering the code by unit tests, documenting it in Scala

docs, and providing a tutorial5

• Making DistAD and the framework open-source and
publicly available on GitHub6

• Evaluation of the results over multiple datasets and em-
pirical evaluation of scalability

The rest of the paper is structured as follows: The related
work is discussed in Section II. Preliminaries are presented in
Section III. DistAD workflow, and implementation are detailed
in Section IV. Section V covers the evaluation of the DistAD
and demonstrates the scalability. Finally, we conclude the
paper in Section VI.

II. RELATED WORK

Although Anomaly Detection is already a well-studied field
with the focus specifically on the task of anomaly detection
in non-relational datasets [11], however to the best of our
knowledge there has not been much dedicated research work
particularly on anomaly detection on a large RDF dataset.
Therefore in this section, we discuss a few existing outlier
detection methods.

One of the pioneers in the area of detecting incorrect
numerical data in DBpedia is [12]. The authors performed the
process of finding numerical outliers in two steps. In the first
step, they grouped the subjects based on the type information.
In next step, the outliers detected by IQR (see Section IV-F).
The authors used the FeGeLOD framework [13] for vector-
izing the entities and reported that the runtime on datasets
containing only two properties- DBpedia-owl:populationTotal
and DBpedia-owl:elevation is over 24 hours due to the slow
clustering algorithm.

In another work [14] which is close to [12], the authors
introduced two independent outlier detection approaches. In

5https://sansa-stack.github.io/SANSA-Stack/
6https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.3
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the first phase, they produced a significant sub-population and
then applied outlier detection on the sub-population. In the
second phase, the owl:sameAs property was used to confirm or
reject the outliers and detect if an outlier is a natural outlier or
not. However, to extract the required information, their method
required manual querying of data.

One can consider outlier detection as a quality improvement
process over KGs. For example, [15] used a distance-based
approach to detect incorrect RDF statements by applying a
distance-based clustering method for pointing out the outliers
in linked data. The distance was calculated by a semantic
similarity measure that took into consideration the subject type,
object type, and the underlying schema.

CONOD [16] is a scalable and generic algorithm for nu-
meric outlier detection for DBpedia. It utilized rdf:type and
Linked Hypernyms Dataset (LHD) [17] for creating cohorts.
Cohorts, unlike clusters, could overlap with each other. For
cohorts, [16] used a scalable clustering approach based on
Locality Sensitive Hashing (LSH) [18]. As the authors used
rdf:type and LHD, this approach is only applicable to DBpedia.

In summary, all the above-mentioned methods (except [16])
are not scalable to large-scale knowledge graphs, are complex,
and require manual intervention. In addition, although [16] is
scalable, but can be only applied on DBpedia. On the contrary,
DistAD is distributed and scalable, is automatic and does not
require any user interaction, and operates over arbitrary data.

III. PRELIMINARIES

A. Anomaly Detection

The very first and prominent definition of an outlier dates
back to 1980, and is given in [19]:

“An outlier is an observation that differs so much from other
observations as to arouse suspicion that it was generated by
a different mechanism.”

As the definition indicates, anomalies are not necessarily
wrong values but values that do not conform with the normal
data behavior. In the literature, a wide variety of outlier
detection approaches have been suggested that can be broadly
classified based on nearest neighbors, clusters, or metrics such
as density, distance, depth, and statistics. In Section IV-F we
discuss a few prominent univariate and statistical methods for
outlier detection.

B. Apache Spark

Apache Spark7 is an open-source unified analytics engine
for large-scale data processing. It is available under the Apache
Open Source License. Spark provides an interface for pro-
gramming entire clusters with implicit data parallelism and
fault tolerance and provides a set of data analytics modules
available in Scala, Python, and Java. Moreover, Spark contains
several independent special-purpose libraries such as Spark
Core which includes basic functionalities of Spark like task
scheduling, memory management, fault recovery, and interac-
tion with the storage system, Spark SQL which deals with

7http://spark.apache.org



structured data by providing the DataFrames API, Cluster
Manager which is designed for distributed computing where
parallel operations run on various computer nodes, and last
but least MLlib8 which is a scalable machine learning library
to make practical machine learning scalable.

C. SANSA [10]

As we have integrated our framework into the SANSA
Stack, in this section, it is briefly introduced. SANSA ad-
dresses the need of having a scalable and distributed compu-
tational engine to work with semantic data. It benefits from an
in-memory analytics framework, Apache Spark, and provides
fault-tolerant, highly available, and scalable approaches to
efficiently process RDF data with the support for semantic
technology standards. SANSA provides various layers of func-
tionality for semantic data representation, querying, inference,
and analytics and is available on GitHub9.

IV. DISTAD AS A RESOURCE

We now present DistAD, a generic framework for Anomaly
Detection in KGs. The framework performs anomaly detection
by extracting semantic features from entities for calculating
similarity, applying clustering on the entities, and running
multiple anomaly detection algorithms to detect the outliers
on the different levels and granularity. The output of DistAD
is a list of anomalous RDF triples. a) Availability: All the com-
ponents of the framework are fully integrated into the SANSA
ecosystem within the machine learning layer. The framework
is fully available for the community as an open-source GitHub
repository10. b) Impact: DistAD offers practitioners from the
semantic web domain to detect the outliers in their dataset and
improve the quality of the existing dataset. Moreover, thanks
to its power in handling huge RDF data, it can be used in IoT
domains to detect anomalous events in the RDFized sensor
data in many areas such as energy domain11. c) Usability:
The framework is not only documented on the code level but
we also provide a tutorial on its use 12. We also have numerous
samples available as an example class to significantly assist in
try-out barrier.

DistAD offers options to select different algorithms and
hyperparameters to prepare a customized pipeline for anomaly
detection. Table I lists the possibilities and Figure 1 depicts
the high-level system architecture overview. In the following,
each step of the framework is explained in detail based on
Figure 1.

A. Reading Data (Step 1)

The first step of DistAD is reading the RDF data and loading
it into memory as a dataframe. The RDF data can reside
in normal file systems or HDFS (Hadoop File System). The
framework supports N-Triple and Turtle file formats.

8https://spark.apache.org/mllib/
9https://github.com/SANSA-Stack

10https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/v0.8.3\
DistAD

11https://platoon-project.eu/
12https://sansa-stack.github.io/SANSA-Stack/

B. Similarity Calculation (Step 2)

Most clustering algorithms require a mechanism to calculate
the similarity between different data points. In our framework,
we used DistSim [25]. The semantic similarity estimations of
DistSim operate based on feature sets. These feature sets are
derived from the RDF data by the Feature-Extractor Module,
which is implemented as a Transformer. DistSim provides
multiple modes for the feature extraction module. However,
in this framework, we only use the predicates (OT mode in
[25]) as main features. In short, in this mode, two entities will
be similar if they share many common predicates. This helps
the clustering algorithm to group similar entities together.
Moreover, we implemented two variations, i.e. Full and Partial
similarity. In Full similarity we consider all the existing
predicates of an entity to calculate the similarity between
entities. In Partial mode, we only consider predicates that have
numeric literals as objects. Although the accuracy of the Full
mode is higher due to considering all the available predicates,
the Partial mode benefits from faster operation due to less
number of predicates.

C. Clustering Algorithms (Step 3)

Clustering is a key point in most anomaly detection tech-
niques. The reason why clustering is needed in anomaly
detection in KGs is that the traditional methods may gather all
values of a certain predicate, such as dbp:weight and attempt to
detect anomalies for this feature. However, in KGs, comparing
a feature from different entity types (e.g., the weight of persons
against the weight of vehicles) is logically incorrect. Therefore
here we mention two clustering algorithms that have been
integrated into the DistAD framework.

a) BisectingKmeans [20]: The bisecting K-Means clus-
tering algorithm is a variation on the standard K-Means
algorithm. The method begins with a single cluster containing
all of the points. Iteratively, it discovers divisible clusters on
the bottom level and bisects each one using k-means until
there are k total leaf clusters or none are divisible. To promote
parallelism, the bisecting steps of clusters on the same level
are grouped. If bisecting all divisible clusters on the bottom
level results in more than k leaf clusters, the bigger clusters
take precedence.

Besides the algorithm, we integrated the Silhouette method
with squared Euclidean distance, which is a heuristic approach
to determine the optimal number of clusters in a data set.
The Silhouette coefficient value presents a measure of how
close each point in one cluster is to points in the neighboring
clusters. This measure has a range of [−1, 1], and a higher
Silhouette Coefficient score relates to a model with better-
defined clusters. Our implementation can automatically select
the optional k for the clustering.

b) MinHashLSH: Locality Sensitive Hashing (LSH) [18]
is an important class of hashing techniques that is commonly
used in clustering, approximate nearest neighbor search, and
outlier detection with large datasets. LSH hashes data points
into buckets using a family of functions (“LSH families”), so
that data points that are near to each other are in the same



Fig. 1. System Architecture Abstract Overview

TABLE I
DISTAD CONFIGURABLE COMPONENTS

Feature Options Comments

Similarity Calculation Full Similarity Consider all the predicates to generate features
Partial Similarity Consider only numerical predicates to generate features

Clustering Algorithm BisectingKmeans [20] Hierarchical version of K-Means clustering algorithm
MinHashLSH Cohorting based on Local Sensitivity Hash

Feature Extraction Pivoting/Grouping Basic operation for extracting feature from RDF data
Literal2Feature [21] Sophisticated method for extracting features from RDF data

Anomaly Detection Type
Numeric Literals Detects anomalies only in the numeric values
Predicates Detects anomalies on the predicate level
Multi-feature Detects anomalies on a set of features

Anomaly Detection Algorithms
Interquartile Range [22] Used for single-value features (numeric literals and predicates)
Median Absolute Deviation [23] Used for single-value features (numeric literals and predicates)
Z-score Used for single-value features (numeric literals and predicates)
IsolationForest [24] Used for multi-feature scenarios

Cluster Detection Silhouette Method For detecting the best optimal number of clusters

bucket with a high likelihood. MinHash13 is an LSH family
method for Jaccard distance where input features are sets of
natural numbers. The output of MinHashLSH is a pairwise
Jaccard similarity between data points.

D. Feature Extraction (Step 4)

Before being able to apply any anomaly detection algorithm
on the RDF data, the KGs should be vectorized (Preposition-
alized). This step moves each feature (object, predicate,...) to
a separate column in Spark dataframes for further subsequent
analysis. To this end, we integrated the following approaches.

a) Pivoting/Grouping: Pivoting is a reshaping mecha-
nism that Spark provides over dataframes. Pivoting reshapes
data (produce a “pivot” table) based on column values. The
following example depicts how pivoting works on sample RDF
data if one wants to pivot the listing 1 based on “Predicate”
and aggregate over “Object”. The result is shown in listing 2.

13https://spark.apache.org/docs/latest/ml-features#minhash-for-jaccard-
distance

+-----------------+--------------+-----------+
|Subject |Predicate |Object |
+-----------------+--------------+-----------+
|dbr:Barack_Obama |dbo:birthPlace|dbr:Hawaii |
|dbr:Barack_Obama |dbo:birthDate |1961-08-04 |
|dbr:Angela_Merkel|dbo:birthPlace|dbr:Hamburg|
|dbr:Angela_Merkel|dbo:birthDate |1954-07-17 |
+-----------------+--------------+-----------+

Listing 1. Original dataframe before pivoting

+-----------------+-------------+--------------+
|Subject |dbo:birthDate|dbo:birthPlace|
+-----------------+-------------+--------------+
|dbr:Barack_Obama |1961-08-04 |dbr:Hawaii |
|dbr:Angela_Merkel|1954-07-17 |dbr:Hamburg |
+-----------------+-------------+--------------+

Listing 2. Dataframe after pivoting based on “Predicate” and aggregating
over “Object”

b) Literal2Feature: Literal2Feature [21] is a generic,
distributed, and a scalable software framework that can auto-
matically transform a given RDF dataset to a standard feature
matrix by deep traversing the RDF graph and extracting
literals to a given depth. The result of Literal2Feature is a



SPARQL query that extracts the features. This option helps
the user to extract features that are not in the direct vicinity
of an entity for the outlier detection purpose. A possible
small sample feature extracting SPARQL query created by
the Literal2Feature model is shown in Listing 3. This query
is executed by the SANSA built-in SPARQL engine and the
result is the vectorized RDF dataframe.

SELECT
?movie
?movie__down_title
?movie__down_runtime
WHERE {
?movie a <http://data.linkedmdb.org/movie/film> .
OPTIONAL { ?movie <http://purl.org/dc/terms/title> ?

movie__down_title .}
OPTIONAL { ?movie <http://data.linkedmdb.org/movie/

runtime> ?movie__down_runtime .}
}

Listing 3. Sample SPARQL query of Literal2Feature

E. Anomaly Detection Type (Step 5)

In DistAD, we have provided 3 types of anomaly detection
methods in the framework i.e. a) Numeric Literals b) Predi-
cates c) Multi-Feature

a) Literal Values: Due to the liberty of KG curation
methods, KGs are prone to various kinds of errors. As ex-
plained earlier, the errors may happen in Subject, Predicate or
Object level. For example, there can be extraction errors like
parsing errors, e.g. “3-4” can be interpreted as “3”, and “-4”.

b) Predicates: This type of error happens when an entity
has more/less than a usual number of the same predicate. For
example, a person normally may have none to a few children.
However, if he/she has, for example, 200 children, then this
type of (potential) error should be detected to increase the
quality of the KGs. In this case, the dataframe containing RDF
data is transformed to a new dataframe by grouping based on
subjects and predicates and counting based on predicates.

c) Multi-Feature: Multi-feature anomaly detection helps
users to detect contextual anomalies. Normally, there exists
some hidden correlation between multiple features, for ex-
ample, there is a positive correlation between the height and
the age of a person. By considering these features separately,
the algorithm will not detect a person with 1.8m height as
abnormal. However, having contextual information such as the
person’s age (e.g., 2 years old) can make this combination
anomalous.

F. Anomaly Detection Algorithms (Step 5)

To cover the mentioned anomaly detection methods, we
have integrated multiple prominent anomaly detection algo-
rithms. For detecting anomalies in the numerical literals and
predicates, IQR, MAD, and Z-Score are implemented, and for
the multi-feature scenario, Isolation Forest is integrated.

a) Interquartile Range: The Interquartile Range (IQR)
method [22] is a measure of statistical dispersion. It is based
on finding the first quartile (Q1), the second quartile (Median),
and the third quartile (Q3) of the given numerical dataset.

These quartiles can be clearly seen on a box plot on the data.
IQR is the difference between Q3 and Q1. The data points
which are smaller than Q1 − 1.5 × IQR and greater than
Q3 + 1.5× IQR are considered as outliers. Figure 2 depicts
the IQR and the outliers ranges.

Fig. 2. Box and Whiskers Plot for Interquartile Range

b) Median Absolute Deviation: Median Absolute Devi-
ation (MAD) [23] is a robust measure of the variability of a
univariate sample of quantitative data. It is more resilient to
outliers in a data set than the standard deviation method. For a
univariate data set X1, X2, ..., Xn the MAD is defined as the
median of the absolute deviations from the data’s median, so
if X̃ = median(X) then:

MAD = b×median(|Xi − X̃|)
where b is a constant scale factor, which depends on the
distribution. Any value in the input set X which is greater
than X̃ + 2.5 × MAD and less than X̃ − 2.5 × MAD is
considered an outlier.

c) Z-Score: Z-Score is the number of standard deviations
by which the value of a raw score (i.e., an observed value
or data point) is above or below the mean value of what is
being observed or measured. Raw scores above the mean have
positive standard scores, while those below the mean have
negative standard scores. For example, a Z-score of 2.5 means
the data point is 2.5 units away from the mean, so it can be
considered as an anomaly. The Z-score is defined as:

z − score =
x−mean

standarddeviation
d) Isolation Forest [24], [26]: Isolation Forest (IF) is an

anomaly detection algorithm that identifies anomalies using
isolation. Similar to Random Forests, Isolation Forest is built
based on decision trees. The algorithm constructs an ensemble
of isolation trees from the training data. At the basis of the
Isolation Forest algorithm, there is a tendency of anomalous
instances in a dataset to be easier to separate from the rest
of the sample (isolate), compared to normal points. Randomly
sub-sampled data is processed in an Isolation Forest in a tree
structure based on randomly selected features. Anomalies are
less likely to occur in samples that travel deeper down the tree
since they require more cuts to isolate them. Similarly, the
samples which end up in shorter branches indicate anomalies
as it was easier for the tree to separate them from other
observations.

G. Output (Step 6)
The last step of the framework is saving the output to a file.

The output is the list of anomalous RDF triples. The triples
can be saved as a normal file on a file system or on HDFS.



TABLE II
DATASET STATISTICS

Dataset Accident DBpedia1 DBpedia2

Format Turtle N-Triple N-Triple
#Triples 5,961,107 1,000,000 10,000,000
#Distinct Predicates 63 15,520 29,375
#Distinct Numeric Predicates 5 7,067 14,372
File Size 461 MB 137 MB 1.4 GB

H. Implementation

As the programming language of SANSA is Scala14, we
have selected this language and its APIs in Apache Spark to
provide the distributed implementation of DistAD. Moreover,
we benefit from SANSA IO, ML, and Query layers. Techni-
cally, as it can be seen in Figure 1, DistAD can be divided
into the following steps 1) Read RDF data as a data frame 2)
vectorize the RDF data 3) Cluster the data 4) Extract features
for anomaly detection 5) Run anomaly detection algorithm 6)
Save the anomalies in a file.

V. EXPERIMENTS

In this section, we present two sets of experiments to
analyze different aspects of DistAD. In the first experiment, the
correctness of the extracted anomalies will be analyzed over
different datasets and in the second experiment, the scalability
of the proposed framework will be investigated.

A. Experiment A: Assessment of the detected Anomalies

In this section, we analyze the detected anomalies. To
this end, three datasets have been exploited. Engie-accident
dataset and 1M and 10M triple sample of DBpedia15. Engie
SA16 is a French multinational electric utility company that
operates in the fields of energy transition, electricity generation
and distribution, natural gas, nuclear, renewable energy, and
petroleum. The accident dataset contains data about accidents
that occurred in France in 201817. DBpedia dataset is a sample
of the infobox part which contains most of the literal predicates
in DBpedia. An overview of the datasets is given in Table II.

Without loss of generality, we define the following setups
to show the ability of the framework:

a) Anomaly Detection on Numerical Literals: For this
case, we use DBpedia1 dataset. We select BisectingKmeans
algorithm for clustering, IQR for anomaly detection, Full
mode for the semantic similarity feature extractor, and use
pivoting for vectorization. We also performed the silhouette
method and set the number of clusters to 2. As a result, DistAD
could detect 19,778 triples that contain anomalous values
from 1,232 distinct properties. Some prominent anomalous
properties found by DistAD are dbp:year, dbo:postalCode,
dbo:year2start, etc. and as it can be seen most of the outliers
are found in the date/time related predicates. Manual inspec-
tion of detected outliers revealed that the DBpedia extraction

14https://www.scala-lang.org/
15https://databus.dbpedia.org/dbpedia/collections/latest-core
16https://www.engie.com
17Can not be publicly published due to Intellectual Property concerns

Fig. 3. Accidents which are detected as anomalies

tool can not always extract correctly the information related to
date/time and that leads to the wrong values. Table III shows
a few detected outliers and their corresponding values from
Wikipedia.

b) Anomaly Detection on Predicates: For this case, we
used the same configuration as the previous experiment but
use the larger DBpedia2 dataset. By running DistAD, we
could detect some interesting anomalies in the predicates. For
example, Nasir al-Din al-Tusi has four dbo:birthDate in the
DBpedia dump, however, by manually checking it we realized
that three out of four are locations, not the dates. This error is
propagated to DBpedia because of putting locations under the
Born property in Wikipedia infobox. Moreover, for example,
Alia Toukan has two dbp:father which by checking Wikipedia,
we realized that there is one name as her father but with two
different links which caused this issue.

c) Multi-Feature Anomaly Detection: In this case, we use
the Engie dataset. As BisectingKmeans algorithm performs
well for clustering, we select it for the clustering algorithm.
Regarding anomaly detection, we use IsolationForest and use
Literal2Feature [21] (depth=1) for feature extraction. The
optimal number of clusters for this dataset is set to 4. Figure 3
shows the detected anomalies. As it can be seen, there are a
few accidents that happened outside France and the algorithm
could correctly detect them as anomalies by considering their
geo-coordinates as a feature set and isolating them from the
normal data. These types of anomalies will not be detected if
one considers only latitude or longitude separately. However,
considering them together make it possible to detect contextual
outliers. The dataset contains the data of 55,949 accidents, out
of those 1,962 are outside France, and the framework could
correctly detect all outliers.

B. Experiment B: Scalability

In this experiment, we evaluate the scalability of DistAD
by using different data sizes and varying cluster computing
setups. To be able to have different sizes of datasets, we
have sampled the DBpedia dataset. Table IV lists the datasets
and their characteristic. As the scalability of Literal2Feature
and MinHashLSH has been intensively investigated in [21]
and [16] respectively, for these experiments, we use Bisect-
ingKmeans for clustering, Z-Score for anomaly detection,
Full mode for the semantic similarity feature extractor, and
pivoting/grouping for feature extraction. Moreover, we run



TABLE III
EXAMPLE OF REAL OUTLIERS IN DBPEDIA

Entity Predicate Wikipedia Value DBpedia Value Reason

Ian Turbott dbp:year 1989-2000 19892000ˆˆxsd:integer can not handle hyphen
Bidhan Saran dbo:postalCode 700004, 700006, 700007 700004700006700007ˆˆxsd:integer can not handle commas
Steve Walters dbp:year2start 198?–85 198ˆˆxsd:integer wrong value in Wikipedia

TABLE IV
DATASET DESCRIPTION

Dataset #Triples Size

DBpedia-S 1 M 136 MB
DBpedia-M 10 M 1.4 GB
DBpedia-L 50 M 6.8 GB
DBpedia 97.5 M 13.3 GB
DBpedia × 2 195 M 26.6 GB
DBpedia × 4 390 M 53.2 GB

two algorithms for detecting anomalies on numeric literals and
predicates.

1) Scalability over number of cores: To adjust the dis-
tributed processing power, the number of available cores was
regulated. In this experiment, we selected DBpedia (13.3 GB)
as a pilot dataset and the number of cores was increased start-
ing from 23 = 8 up to 27 = 128. The experiments were carried
out on a small cluster of 4 nodes (1 master, 3 workers): AMD
Opteron(TM) CPU Processor 6376 @ 2300MHz (64 Cores),
256 GB RAM. Moreover, the machines were connected via a
Gigabit network. All experiments are executed three times and
the average value is reported in the results. Figure 4 shows
the scalability over different computing cluster setups. It is
clear that increasing the computational power horizontally,
decreases the execution time. Initially, doubling the number
of cores reduces the execution time by nearly a factor of
two. However, increasing the number of cores only minimally
reduces execution time. This phenomenon is caused by the
overhead of moving data between nodes as well as network
delay.
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Fig. 4. Processing power vs processing time

2) Scalability over dataset size: To analyze the scalability
over different datasets, we fix the computational power to 64

cores and run the experiments for all datasets introduced in
Table IV. By comparing the runtime as shown in Figure 5, we
note that the execution time does not increase exponentially.
Hence, increasing the size of the dataset with the factor of 10
does not necessarily increase the execution time by a factor of
10. This behavior is due to the distribution among available
resources e.g. (memory) and partition size. It can be seen that
by increasing the dataset size from 1.4 GB to 13.3 GB (∼ 12
times bigger), the execution time almost only doubles.
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Fig. 5. Sizeup performance evaluation over 64 Cores

VI. CONCLUSION

In this paper, we introduced DistAD, a generic, distributed,
and scalable framework for anomaly detection in KGs. Dis-
tAD is open-source, available on GitHub, and integrated
into SANSA Stack. By providing full control over different
algorithms, methods, and (hyper-)parameters, DistAD enables
users to have a substantial level of flexibility in using the
framework. Our experiments show that the framework can
correctly detect different types of anomalies in KGs and it
can help to improve the data quality in KGs. Moreover, our
experiments show that DistAD can be successfully scaled over
a cluster of nodes for a large size of data.

In the future, we plan to work on anomaly explainability
over KGs. Especially when performing multi-feature anomaly
detection, it is vital to be able to explain why a specific data
point is considered an anomaly. Moreover, we plan to work
with anomaly detection inductive rules to be able to generate
an automatic SPARQL query to fetch all anomalies.
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