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ABSTRACT
This paper addresses the task of conversational question answering
(ConvQA) over knowledge graphs (KGs). The majority of exist-
ing ConvQA methods rely on full supervision signals with a strict
assumption of the availability of gold logical forms of queries to
extract answers from the KG. However, creating such a gold logical
form is not viable for each potential question in a real-world sce-
nario. Hence, in the case of missing gold logical forms, the existing
information retrieval-based approaches use weak supervision via
heuristics or reinforcement learning, formulating ConvQA as a
KG path ranking problem. Despite missing gold logical forms, an
abundance of conversational contexts, such as entire dialog history
with fluent responses and domain information, can be incorpo-
rated to effectively reach the correct KG path. This work proposes
a contrastive representation learning-based approach to rank KG
paths effectively. Our approach solves two key challenges. Firstly,
it allows weak supervision-based learning that omits the neces-
sity of gold annotations. Second, it incorporates the conversational
context (entire dialog history and domain information) to jointly
learn its homogeneous representation with KG paths to improve
contrastive representations for effective path ranking. We eval-
uate our approach on standard datasets for ConvQA, on which
it significantly outperforms existing baselines on all domains and
overall. Specifically, in some cases, the Mean Reciprocal Rank (MRR)
and Hit@5 ranking metrics improve by absolute 10 and 18 points,
respectively, compared to the state-of-the-art performance.

CCS CONCEPTS
• Information systems→ Question answering.

KEYWORDS
contrastive learning, conversations, question answering, KG
∗work done prior to joining Amazon

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557267

Figure 1:Motivating example illustrating a sample conversa-
tion [10]. For conversational question answering over KGs,
the availability of the entire dialog history with fluent re-
sponses and domain information acts as context source in
determining the ranking of KG paths while retrieving cor-
rect answers. Our proposed approachmodels conversational
context and KG paths in a shared space by jointly learning
the embeddings for homogeneous representation.
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1 INTRODUCTION
Question answering over knowledge graphs (KGQA) is an essential
task that maps a user’s utterance to a formal query in order to
retrieve the correct answer [39]. Recently, with the increasing pop-
ularity of intelligent personal assistants (e.g., Alexa, Cortana), the
research focus of the scientific community has shifted to Conver-
sational Question Answering over KGs (ConvQA) with multi-turn
dialogues [10, 17, 33].

For the KGQA setup, the existing scientific-literature can be
broadly classified into two categories [12, 43]: (i) semantic parsing
approaches, where the goal is to map questions into a logical form,
which is then executed over the knowledge graph to extract the cor-
rect answers. (ii) Information retrieval approaches aim to retrieve
a question-specific graph and apply ranking algorithms to select
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entities for top positions (i.e., rank KG paths). The two approaches
follow either a parse-then execute paradigm or a retrieval-and-
rank paradigm. For ConvQA over KGs, there has been significant
progress on semantic parsing-based approaches [17, 33, 38]. How-
ever, collecting training data for semantic parsing approaches is
challenging, and time-consuming [23] since each question must
be associated with a gold logical form. While for the information-
retrieval/ranking-based approaches, only the correct answers (e.g.,
entities/KG paths) are required for each question.
State of the Art Limitations. Existing ranking-based ConvQA
techniques formulate the task as a path ranking problem and pro-
pose either a heuristic approach [10] or a reinforcement learning
model [21] to learn from question reformulations (by solely rely-
ing on the user). However, these techniques have their inherent
limitations. For instance, the rule-based approaches generally re-
quire tedious manual labor to generate rules, are error-prone, and
are prone to bias [8]. Furthermore, existing scientific literature
points to several limitations in solely relying on users for query
reformulation, and focused on automatic query suggestion/related
query recommendations techniques [6, 7]. Firstly, entirely relying
on users creates a heavy cognitive load on them [31]. Secondly,
reformulation query issued within a time interval that is short
enough (such as five minutes) implies dissatisfaction [14]. Lastly, a
recent study points out that critical issues for conversational sys-
tems concerning reformulations have not been widely analyzed
in the literature, especially the reformulations’ implicit ambiguity
[22]. Hence, for advancing IR-based ConvQA methods, there is a
desirable ask for approaches that are independent of availability
of gold-logical form, heuristic rules, or its sole dependency on the
users for query reformulation.

1.1 Proposed Approach, Motivation, and
Contributions

This paper addresses a relatively unexplored research area: the
ranking-based ConvQA task for answering conversational ques-
tions posed against a knowledge graph. In this context, we propose
PRALINE (PathRanking for conversAtionaL questIon aNswEring),
a novel contrastive representation learning approach to rank KG
paths for retrieving the correct answers effectively. Furthermore,
we enrich the learning process by incorporating the available con-
versational context, i.e., (1) the entire dialog history with (2) fluent
responses and (3) domain information (c.f. Figure 1). Our rationale
for critical choices are following:
Why Contrastive Learning for ConvQA?
Contrastive learning [9, 34] aims at learning representations of
data by contrasting similar and dissimilar samples. For our task, the
data contains conversations and respective answers (label) for each
conversational question. However, there is no discrete information
on how the answers were extracted. Therefore fully supervised
learning approaches such as semantic parsing [33, 38] cannot be
directly applied without annotations. Consequently, we can design
an approach with contrastive learning by only augmenting the data
with KG paths that lead to the correct answers. These KG paths have
as starting points the context entities mentioned in the conversation
and landing points the answers. Furthermore, extracted KG paths
leading to correct answers are marked as positive, while others

are negative. In this way, contrastive learning is ideal for our task
since it allows us to rank KG paths that are considered positive and
answer conversational questions.
Why Conversational Context to Enrich Learning Process?
Conversational context plays a vital role in human understand-
ing [13] and question answering [26]. To further enhance learning,
we seek additional conversational context to improve the ranking
performance and allow contrastive learning approach to distin-
guish between positive and negative paths. Such information can
be the conversation domain and fluent natural language answers
[3, 16, 18, 20] instead of standalone KG answers (answer labels).
Identifying the domain of the conversation allows us to enrich the
representations and efficiently contrast negative paths that do not
use properties of the particular domain. Moreover, fluent natural
language answers will supplement the conversations with addi-
tional textual context to support the learning and ranking process.
Contributions: We make the following key contributions in the
paper: 1) We propose PRALINE, the first contrastive learning based
approach for ConvQA that jointly models the available conversa-
tional context (full dialog history with fluent responses and domain)
and KG paths in a common space for learning joint embedding repre-
sentations to improve KG path ranking. 2) We systematically study
the impact of incorporating additional context on the performance
of PRALINE. Results on standard datasets show a considerable im-
provement over previous baselines. To facilitate reproducibility and
reuse, our framework implementation and the results are publicly
available1. The structure of the paper is as follows: Section 2 sum-
marizes the related work. Section 3 provides the concepts, notations
and tasks definitions. Section 4 presents the proposed PRALINE
framework. Section 5 describes the experiments, including the ex-
perimental setup, the results, the ablation study and error analysis.
We conclude in Section 6.

2 RELATEDWORK
Considering KGQA is a widely studied research topic, we stick to
the work closely related to our proposed approach (detailed surveys
are in [12, 43]).
Single-shot KGQA. Several KGQA works handle the task as a se-
mantic graph generation and re-ranking. Bast and Haussmann [1]
compare a set of manually defined query templates against the natu-
ral language question and generate a set of query graph candidates
by enriching the templates with potential relations. Yih et al. [41]
creates grounded query graph candidates using a staged heuristic
search algorithm and employs a neural ranking model to score and
find the optimal semantic graph. Yu et al. [42] use a hierarchical rep-
resentation of KG relations in a neural query graph ranking model.
Authors compare the results against a local sub-sequence alignment
model with cross attention [32]. Maheshwari et al. [28] conduct an
empirical investigation of neural query graph ranking approaches
by experimenting with six different ranking models. The proposed
approach is a self-attention-based slot matching model that exploits
the inherent structure of query graphs.
ConvQA over KGs. Most recent works on ConvQA [17, 33, 38]
employ the semantic parsing approach to answer conversational
questions. The first work in this area Saha et al. [36] propose a

1https://github.com/endrikacupaj/PRALINE
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hybrid model of the HRED model [37] and the key-value mem-
ory network model [30]. The model consists of three components;
where the first one is the hierarchical encoder, which computes the
utterance representation. The next module is a higher-level encoder
that computes the context representation. The second component
is the Key-Value Memory Network that stores each candidate tuples
as a key-value pair. The key contains the concatenated embedding
of the relation and the subject. The last component is the decoder
used to create an end-to-end solution and produce multiple types
of answers. Other approaches extend similar idea, although using
multi-task learning paradigm [17, 33]. Christmann et al. [10] pro-
poses an approach that answers conversational questions over a
knowledge graph (KG) by maintaining conversation context using
entities and predicates seen so far and automatically inferring miss-
ing or ambiguous pieces for follow-up questions. The core of this
method is a graph exploration algorithm that judiciously expands a
frontier to find and rank candidate answers for the given question.
Kaiser et al. [21] present a reinforcement learning model that can
learn from a conversational stream of questions and reformulations.
Authors model the answering process as multiple agents walking
in parallel on the KG, where the walks are determined by actions
sampled using a policy network. The policy network takes the
question and the conversational context as inputs and is trained
via noisy rewards obtained from the reformulation likelihood. Our
work lies closely with Christmann et al. [10], Kaiser et al. [21].
However, these approaches focus either on the rule-based method
or require explicit feedback from (non-expert) users creating ad-
ditional issues/dependencies such as higher cognitive load on the
user, potential bias, and error-prone. Further, these approaches ig-
nore the entire dialog history and do not consider fluent responses
as contextual sources. Therefore, our focus is to explore a weak
supervision method that relies solely on conversation context and
available KG candidate paths to retrieve the final answer.
Contrastive LearningApproaches. Earlywork [9] in contrastive
learning introduces the concept of contrastive loss for facial recog-
nition. It takes a pair of inputs and aims for minimal embedding
distance when they are from the same class but maximizes the
distance otherwise. Later, there were several approaches extended
contrastive learning to different use-cases such as identifying im-
age captions [35], computing code from an augmented image [5],
feature clustering [4], and dense information retrieval [15]. In our
setting, the challenge is to adapt contrastive learning to compute a
joint loss between conversation utterances, their additional context
(fluent responses, domain), and candidate KG paths. Now we detail
how to address these challenges in our proposed approach.

3 CONCEPTS, NOTATION AND PROBLEM
FORMULATION

We define a KG as a tuple K = (E,R,T +) where E denotes the
set of entities (vertices), R is the set of relations (edges), and T + ⊆
E × R × E is a set of all triples. A triple 𝜏 = (𝑒ℎ, 𝑟ℎ,𝑡 , 𝑒𝑡 ) ∈ T +
indicates that, for the relation 𝑟ℎ,𝑡 ∈ R, 𝑒ℎ is the head entity (ori-
gin of the relation) while 𝑒𝑡 is the tail entity. For a KG, a conver-
sation C with T turns is composed from a set of a sequence of
questions Q = {𝑞𝑡 } and corresponding answers A = {𝑎𝑡 }, where

Notation Concept

K, E,R,T + Knowledge Graph, entities, relations, triples
C, 𝑡 Conversation, turn
𝑞𝑡 , 𝑎𝑡 Question and answer at turn t
𝑣𝑡 Fluent response at turn t
𝜏𝑡 Domain information at turn t
C𝑡 Conversation history at turn t
E𝑐 ,P𝑐 Context entities, context KG paths
D𝑡+,D𝑡− Set of positive and negative context paths for 𝑞𝑡

𝑠𝑡 Input sequence (contains C𝑡 and 𝑞𝑡 )
𝑑 Space dimension
ℎ ( ·) Contextual embeddings
\ ( ·) Trainable parameters
𝑾 ( ·) Weight matrix for linear layer
𝜔 ( ·) Probability distribution over vocabulary
𝜙𝑐 , 𝜙𝑝 Joint embeddings for conversation and path

Table 1: Notation for concepts in PRALINE.

𝑡 = 0, 1, ...,T, such that C = ⟨(𝑞0, 𝑎0), (𝑞1, 𝑎1), ..., (𝑞T, 𝑎T)⟩. Fur-
thermore, each question 𝑞𝑡 is a sequence of tokens 𝑞𝑡

𝑖
, such that

⟨𝑞𝑡1, ..., 𝑞
𝑡
|𝑞𝑡 |⟩, where |𝑞

𝑡 | is the number of tokens in 𝑞𝑡 . For each
question 𝑞𝑡 we have a conversation history C𝑡 , where for question
𝑞0 the conversation history is ∅. We define answer 𝑎𝑡 for question
𝑞𝑡 is a set of entities or literals in K . We define fluent responses as
𝑣𝑡 , which is a sequence of tokens 𝑣𝑡

𝑖
, where 𝑎𝑡 ∈ 𝑣𝑡 . Similar to ques-

tion 𝑞𝑡 we have ⟨𝑣𝑡1, ..., 𝑣
𝑡
|𝑣𝑡 |⟩, where |𝑣

𝑡 | is the number of tokens
in 𝑣𝑡 . With fluent answers the conversation C can be illustrated as
C = ⟨(𝑞0, 𝑣0), (𝑞1, 𝑣1), ..., (𝑞T, 𝑣T)⟩.

We define the following two concepts explicitly:
Context Entities. The set of context entities E𝑐 ⊆ E contains
entities mentioned in question 𝑞𝑡 , answer 𝑎𝑡 and conversation C.
Context Paths. Context KG paths P𝑐 are extracted given the con-
text entities E𝑐 , where P𝑐 ⊆ {E𝑐 ×R×E}+ {E𝑐 ×R×E ×R×E}+
{E𝑐 ×R ×E ×R ×E ×R ×E}. This means that extracted KG paths
P𝑐 will be either 1-hop, 2-hop or 3-hop paths where all of them start
with context entities E𝑐 . For a question 𝑞𝑡 , we define D𝑡+ ⊆ P𝑡𝑐
and D𝑡− ⊆ P𝑡𝑐 the set of positive/correct and negative/incorrect
context paths, respectively. Where, D𝑡+ ∪ D𝑡− = P𝑡𝑐 .
Problem Formulation. For the ConvQA task, given a knowledge
graph K , a natural language question 𝑞𝑡 , the conversation history
C𝑡 , and the set of context entities E𝑡𝑐 , the goal is to extract all the
potential KG paths P𝑡𝑐 . We formulate the ConvQA task as an IR
problem where we score and rank P𝑡𝑐 to select top context paths
𝑝𝑡𝑐 ∈ P𝑡𝑐 which leads us to entities or literals that match the gold
answer 𝑎𝑡 , which is also the answer of the question 𝑞𝑡 . We achieve
this by employing contrastive representation learning, which aims
to learn an embedding space where similar sample pairs have rep-
resentations close to each other while dissimilar ones are far apart.

4 APPROACH
In a conversation, the input data consists of questions 𝑞𝑡 and an-
swers 𝑎𝑡 , extracted from the knowledge graph. We propose a con-
trastive learning approach PRALINE to rank KG paths. In particular,
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Figure 2: PRALINE (Path Ranking for conversAtionaL questIon aNswEring) architecture. It consists of three steps: 1) Extract
KG paths and domains and represent themusing a BERTmodel. 2) Learn the conversational context using a BARTmodel and a
domain identification pointer. 3) A contrastive rankingmodule that learns a joint embedding space 𝜙𝑐 , 𝜙𝑝 for the conversation
(contextual embeddings ℎ (𝑒𝑛𝑐) & selected domain embeddings ℎ (𝑑𝑚) ) and the context path ℎ (𝑝) .

PRALINE ranks (KG) context paths P𝑡𝑐 depending on the particular
utterance in a conversation. Figure 2 illustrates how PRALINE op-
erates. It consists of three step processes: 1) first step preprocess
and extract potential candidate paths (and their domain). 2) the
second step collects and encodes possible conversation context.
The available answer labels do not provide much information to
enrich the learning process; therefore, fluent responses are utilized.
3) Last step jointly embeds conversation, its context, and candidate
KG paths in a common space to apply a contrastive ranking module
to rank KG paths effectively.

The last two steps are jointly trained in an end-to-end manner,
post preprocessing. Furthermore, our approach does not explicitly
depends on conversation context, and this context is used as addi-
tional signals. As we observe in experiments, such contexts can be
omitted (cf. Table 5). Also, the implementation choices to encode ei-
ther the embeddings during preprocessing steps (e.g., BERT [11]) or
domain identifier (for example, pointer network [40] ) are used for
empirical effectiveness using state-of-the-art techniques proposed
to solve individual sub-tasks in the ConvQA task. Hence, the ap-
proach can be implemented using other implementation choices, as
we see in ablation later in the section 5. We now detail the approach.

4.1 Preprocessing & Extracting
Representations

For our approach, we identify context entities E𝑐 and extract poten-
tial candidates for KG paths similar to Kaiser et al. [21] and do not
claim as our novelty. After extracting the KG paths P𝑐 , we initialize
their representations using sentence embeddings that implicitly
employ underlying hidden states from BERT network [11]. We treat
each KG path as a sentence and feed that as an input to BERT. The
KG path representations are used for the contrastive ranking task.
Similarly, we preprocess and embed the domains of the conversa-
tions to generate the representation ℎ (𝑑𝑚) . The embedded domains
are implicitly utilized during the ranking process.

Please note that this step is not part of the trainable architecture
we describe in the next two steps, and models such as BERT are
only used during preprocessing phase.

4.2 Learning Conversational Context
Encoding Conversation History and Question
As the first step of our framework, we utilize a BART-based bidirec-
tional encoder [25] in order to encode both the conversation history
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C𝑡 and current question 𝑞𝑡 at turn 𝑡 . The conversation history also
contains fluent responses from previous turns (e.g. 𝑣𝑡−1, 𝑣𝑡−2, ...).
Here we concatenate the conversation history C𝑡 and current ques-
tion 𝑞𝑡 using a helper token [𝑆𝐸𝑃] to create the input sequence
𝑠𝑡 = C𝑡 ⊕ [𝑆𝐸𝑃] ⊕ 𝑞𝑡 , where ⊕ is the operation of sequence
concatenation.2 Next, we tokenize the input sequence 𝑠𝑡 into |𝑠𝑡 |
tokens {𝑠𝑡1, ..., 𝑠

𝑡
|𝑠𝑡 |}, where |𝑠

𝑡 | = |C𝑡 | + |𝑞𝑡 | + 1, using a byte-level
Byte-Pair-Encoding tokenizer. Then, we forward the tokenized se-
quence into the encoder and it outputs the contextual embeddings
ℎ (𝑒𝑛𝑐) = {ℎ (𝑒𝑛𝑐)1 , . . . , ℎ

(𝑒𝑛𝑐)
𝑛 }, where ℎ (𝑒𝑛𝑐)

𝑖
∈ R𝑑 , 𝑑 is the space

dimension, 𝑖 ∈ {1, ..., 𝑛} and 𝑛 = |𝑠𝑡 |. We define the encoder as:

ℎ (𝑒𝑛𝑐) = 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑥 ;\ (𝑒𝑛𝑐) ), (1)

where \ (𝑒𝑛𝑐) are the encoder’s trainable parameters.
Considering that fluent responses provide additional textual

context compared to answer labels, we enable PRALINE to gener-
ate fluent responses and employ them for forthcoming questions.
This justifies why PRALINE utilizes BART, a sequence-to-sequence
model pretrained to reconstruct/generate text. For generating the
response 𝑣𝑡 we employ a BART-based decoder where we provide
the encoder contextual embeddings ℎ (𝑒𝑛𝑐) of the input sequence
𝑠𝑡 . The decoder vocabulary is defined as:

𝑉 (𝑑𝑒𝑐) = 𝑉 (𝑣) ∪ { [𝐴𝑁𝑆] }, (2)

where 𝑉 (𝑣) is the vocabulary with all the distinct tokens from
the generation task. We also employ an additional helper token
to specify the position of the answer 𝑎𝑡 on the final generated
sequence. A linear layer and a softmax follow the decoder in order
to calculate each token’s probability score in the vocabulary. We
define the decoder stack output as follows:

ℎ (𝑑𝑒𝑐) = 𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ (𝑒𝑛𝑐) ;\ (𝑑𝑒𝑐) ),

𝜔
(𝑑𝑒𝑐)
𝑖

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑾 (𝑑𝑒𝑐)ℎ (𝑑𝑒𝑐)
𝑖
),

(3)

where ℎ (𝑑𝑒𝑐)
𝑖

is the hidden state in time step 𝑖 , \ (𝑑𝑒𝑐) are the de-
coder trainable parameters, 𝑾 (𝑑𝑒𝑐) ∈ R |𝑉 (𝑑𝑒𝑐 ) |×𝑑 are the linear
layer weights, and 𝜔 (𝑑𝑒𝑐)

𝑖
∈ R |𝑉 (𝑑𝑒𝑐 ) | is the probability distribution

over the decoder vocabulary in time step 𝑖 . The |𝑉 (𝑑𝑒𝑐) | denotes
the decoder’s vocabulary size.

Domain Identification Pointer
The second step is a domain identification pointer network. This
module is responsible for identifying the KG domain of the in-
put sequence 𝑠𝑡 and employs a pointer architecture inspired from
Vinyals et al. [40]. In general, pointer networks are robust to handle
different vocabulary sizes for each time step [40] which was our
rationale for their integration in PRALINE. Another advantage of
using pointer networks compared to simple classifiers is that the
vocabulary of the domains can be updated during evaluation or
inference.

We define the vocabulary as𝑉 (𝑑𝑚) = {𝜏1, . . . , 𝜏𝑛𝑑𝑚 }, where 𝑛𝑑𝑚
is the total number of domains in the KG. To compute the pointer
scores for each domain candidate, we use the encoder contextual

2With the same [𝑆𝐸𝑃 ] token, the questions and fluent answers are separated inside
the conversation history.

embeddings ℎ (𝑒𝑛𝑐) . We model the pointer networks with a feed-
forward linear network followed by a softmax layer. We can define
the domain pointer as:

𝜔
(𝑑𝑚)
𝑖

= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑾 (𝑑𝑚)1 𝑢
(𝑑𝑚)
𝑡 ), (4)

where 𝜔 (𝑑𝑚)
𝑖

∈ R |𝑉 (𝑑𝑚) | is the probability distribution over the
domain vocabulary. The weight matrix 𝑾 (𝑑𝑚)1 ∈ R1×𝑑𝑘𝑔 . Also,
𝑢
(𝑑𝑚)
𝑡 is a joint representation that includes the domain embeddings
and the contextual embeddings, computed as:

𝑢
(𝑑𝑚)
𝑡 = 𝑡𝑎𝑛ℎ(𝑾 (𝑑𝑚)2 𝜏 + ℎ (𝑒𝑛𝑐) ), (5)

where the weight matrix𝑾 (𝑑𝑚)2 ∈ R𝑑×𝑑𝑘𝑔 . We denote with 𝑑𝑘𝑔 the
dimension used for domain (KG) embeddings.3 𝜏 ∈ R𝑑𝑘𝑔×|𝑉 (𝑑𝑚) |
are the domain embeddings. 𝑡𝑎𝑛ℎ is the non-linear layer.

4.3 Contrastive KG-path Ranking
We propose a contrastive ranking module by employing two iden-
tical sequential networks in order to generate joint embeddings for
a conversation (input sequence 𝑠𝑡 ) and a context path 𝑝𝑡𝑐 at turn 𝑡 .
Each sequential network contains two linear layers separated with
a 𝑅𝑒𝐿𝑈 activation function, and appended with a 𝑡𝑎ℎ𝑛 non-linear
layer. Here, as input we consider the concatenation of the encoder
contextual embeddings ℎ (𝑒𝑛𝑐) together with the embedded domain
selected from the domain identification pointer (cf. equation 4).
In this way we incorporate also the domain information when we
create the joint embeddings. For a conversation, the encoder contex-
tual embeddings are ℎ (𝑒𝑛𝑐) where ℎ (𝑒𝑛𝑐) ∈ R |𝑠𝑡 |×𝑑 . The contextual
embeddings contain representations of dimension space 𝑑 for each
token of the input sequence 𝑠𝑡 . While, for the domain embedding
ℎ (𝑑𝑚) and for each context path embedding ℎ (𝑝) (both initialized
using BERT embeddings), we have ℎ (𝑑𝑚) ∈ R𝑑𝑘𝑔 and ℎ (𝑝) ∈ R𝑑𝑘𝑔 ,
respectively (implementation details explained in 5.1). In order to
match the space dimensions R |𝑠𝑡 |×𝑑 and R𝑑 , a𝑚𝑎𝑥 layer is applied
to the encoder contextual embeddings ℎ (𝑒𝑛𝑐) before forwarding it
to the sequential network of the module. We define this as:

ℎ
(𝑒𝑛𝑐)
𝑚𝑎𝑥 =𝑚𝑎𝑥0ℎ

(𝑒𝑛𝑐) , (6)

where𝑚𝑎𝑥0 indicates the max operation performed in dimension
𝑧𝑒𝑟𝑜 , and ℎ

(𝑒𝑛𝑐)
𝑚𝑎𝑥 ∈ R𝑑 . Overall, we define the module sequential

networks as:

𝜙𝑐 = 𝑡𝑎ℎ𝑛(𝑾 (𝑐𝑟𝑘)2 𝑅𝑒𝐿𝑈 (𝑾 (𝑐𝑟𝑘)1 [ℎ (𝑒𝑛𝑐)𝑚𝑎𝑥 ;ℎ (𝑑𝑚) ])),

𝜙𝑝 = 𝑡𝑎ℎ𝑛(𝑾 (𝑝𝑟𝑘)2 𝑅𝑒𝐿𝑈 (𝑾 (𝑝𝑟𝑘)1 ℎ (𝑝) )),
(7)

where 𝑾 (𝑐𝑟𝑘)1 ∈ R𝑑×2𝑑 , 𝑾 (𝑝𝑟𝑘)1 ∈ R𝑑×𝑑 are the weight matrices
for the first linear layers. 𝑾 (𝑐𝑟𝑘)2 ∈ R𝑑×𝑑 , 𝑾 (𝑝𝑟𝑘)2 ∈ R𝑑×𝑑 are
the weight matrices for the second linear layers. 𝜙𝑐 ∈ R𝑑 and
𝜙𝑝 ∈ R𝑑 are the final joint embeddings on space dimension 𝑑 of
the conversation and context path, respectively.

Given a batch of (conversational context, KG paths) pairs during
training, this module computes the cosine similarity between all
possible candidates within this batch. The conversation and KG

3For our experiments we employ 𝑑𝑘𝑔 = 𝑑
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Algorithm 1: Proposed Algorithm of PRALINE
Input: Training set 𝑆𝑡𝑟𝑎𝑖𝑛 = {(𝑞𝑡 ,𝐶𝑡 , 𝑣𝑡 , 𝜏𝑡 ,D𝑡+

𝑐 ,D𝑡−
𝑐 )}

1 for 𝑆𝑏𝑎𝑡𝑐ℎ ∈ 𝑆𝑡𝑟𝑎𝑖𝑛 do
2 𝑞𝑏 ← 𝑔𝑒𝑡𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛𝑠 (𝑆𝑏𝑎𝑡𝑐ℎ)
3 𝐶𝑏 ← 𝑔𝑒𝑡𝐶𝑜𝑛𝑣𝐻𝑖𝑠𝑡𝑜𝑟𝑦 (𝑆𝑏𝑎𝑡𝑐ℎ)
4 𝑣𝑏 ← 𝑔𝑒𝑡𝐹𝑙𝑢𝑒𝑛𝑡𝐴𝑛𝑠𝑤𝑒𝑟𝑠 (𝑆𝑏𝑎𝑡𝑐ℎ)
5 𝜏𝑏 ← 𝑔𝑒𝑡𝐷𝑜𝑚𝑎𝑖𝑛𝑠 (𝑆𝑏𝑎𝑡𝑐ℎ)

6 𝑦
(𝑟𝑘)
𝑏

: 𝑦 (𝑟𝑘)
𝑏
∈ R{1,−1}×𝑏

7 for 𝑦 (𝑟𝑘)
𝑖
∈ 𝑦 (𝑟𝑘)

𝑏
do

8 if 𝑦 (𝑟𝑘)
𝑖

= 1 then
9 D+ ← 𝑔𝑒𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑃𝑎𝑡ℎ𝑠 (𝑆𝑏𝑎𝑡𝑐ℎ)

10 𝑝𝑖 ∼ 𝑠𝑎𝑚𝑝𝑙𝑒𝑃𝑎𝑡ℎ(D+)
11 else
12 D− ← 𝑔𝑒𝑡𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑃𝑎𝑡ℎ𝑠 (𝑆𝑏𝑎𝑡𝑐ℎ)
13 𝑝𝑖 ∼ 𝑠𝑎𝑚𝑝𝑙𝑒𝑃𝑎𝑡ℎ(D−)
14 end
15 end

16 ℎ
(𝑝)
𝑏
← 𝑒𝑚𝑏𝑒𝑑𝑃𝑎𝑡ℎ𝑠 (𝑝𝑏 )

17 ℎ
(𝑑𝑚)
𝑏

← 𝑒𝑚𝑏𝑒𝑑𝐷𝑜𝑚𝑎𝑖𝑛𝑠 (𝜏𝑏 )

18 begin PRALINE forward
19 ℎ

(𝑒𝑛𝑐)
𝑏

← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑞𝑏 ,𝐶𝑏 )
20 𝜔

(𝑑𝑒𝑐)
𝑏

← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑑𝑒𝑐𝑜𝑑𝑒𝑟 (ℎ (𝑒𝑛𝑐)
𝑏

, 𝑣𝑏 )

21 𝜔
(𝑑𝑚)
𝑏

← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑑𝑜𝑚𝑎𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑒𝑟 (ℎ (𝑒𝑛𝑐)
𝑏
)

22 𝜙𝑐
𝑏
, 𝜙

𝑝

𝑏
← 𝑃𝑅𝐴𝐿𝐼𝑁𝐸.𝑟𝑎𝑛𝑘𝑖𝑛𝑔(ℎ (𝑒𝑛𝑐)

𝑏
, ℎ
(𝑑𝑚)
𝑏

, ℎ
(𝑝)
𝑏
)

23 end
24 𝐿𝑑𝑚

𝑏
= 1

𝑏

∑𝑏
𝑖=1 −

∑𝑚
𝑗=1 𝑙𝑜𝑔𝑝 (𝑦

(𝑑𝑚)
𝑗
|𝜔 (𝑑𝑚)

𝑖
)

25 𝐿𝑑𝑒𝑐
𝑏

= 1
𝑏

∑𝑏
𝑖=1 −

∑𝑛
𝑘=1

𝑙𝑜𝑔𝑝 (𝑦 (𝑑𝑒𝑐)
𝑙

|𝜔 (𝑑𝑒𝑐)
𝑖

)

26 𝐿𝑟𝑘
𝑏

= 1
𝑏

∑𝑏
𝑖=1

{
1 − 𝑐𝑜𝑠 (𝜙𝑐

𝑖
, 𝜙

𝑝

𝑖
), if 𝑦 (𝑟𝑘)

𝑖
= 1

𝑚𝑎𝑥 (0, 𝑐𝑜𝑠 (𝜙𝑐
𝑖
, 𝜙

𝑝

𝑖
) − 𝛼), if 𝑦 (𝑟𝑘)

𝑖
= −1

27 Update PRALINE weights w.r.t. _1𝐿𝑑𝑚𝑏 +_2𝐿𝑟𝑘𝑏 +_3𝐿
𝑑𝑒𝑐
𝑏

28 end

path sequential networks are jointly trained to maximize the simi-
larity between the correct pairs while minimizing the similarity for
incorrect pairs.

4.4 Joint Contrastive Learning
PRALINE consists of three trainable modules for which a loss func-
tion is applied. The encoder is trained based on the signal received
from the domain identification pointer, contrastive ranking module,
and decoder. For training simultaneously all the modules/tasks, we
perform a weighted average of all the single losses as follows:

𝐿 = _1𝐿
𝑑𝑚 + _2𝐿𝑟𝑘 + _3𝐿𝑑𝑒𝑐 , (8)

where _1, _2, _3 are the relative weights. 𝐿𝑑𝑚 and 𝐿𝑑𝑒𝑐 are the re-
spective negative log-likelihood losses of the domain identification

pointer and decoder modules. While the 𝐿𝑟𝑘 is the cosine embed-
ding loss for the ranking module. These losses are defined as:

𝐿𝑑𝑚 = −
𝑚∑︁
𝑗=1

𝑙𝑜𝑔𝑝 (𝑦 (𝑑𝑚)
𝑗
|𝑥),

𝐿𝑟𝑘 =

{
1 − 𝑐𝑜𝑠 (𝜙𝑐 , 𝜙𝑝 ), if 𝑦 (𝑟𝑘) = 1

𝑚𝑎𝑥 (0, 𝑐𝑜𝑠 (𝜙𝑐 , 𝜙𝑝 ) − 𝛼), if 𝑦 (𝑟𝑘) = −1
,

𝐿𝑑𝑒𝑐 = −
𝑛∑︁
𝑙=1

𝑙𝑜𝑔𝑝 (𝑦 (𝑑𝑒𝑐)
𝑙

|𝑥),

(9)

where𝑛 is the length of the gold fluent response.𝑦 (𝑑𝑚)
𝑗

∈ 𝑉 (𝑑𝑚) are
the gold labels for the domain identification pointer and 𝑦 (𝑑𝑒𝑐)

𝑙
∈

𝑉 (𝑑𝑒𝑐) are the gold labels for the decoder. 𝑦 (𝑟𝑘) ∈ {1,−1} are
the gold labels for the ranking module. 𝑐𝑜𝑠 (·) is the normalized
cosine similarity and 𝛼 is the margin. The model benefits from each
module’s supervision signals, which improves the performance
in the given task (cf. section 5). Algorithm 1 illustrates high-level
pseudo-code for PRALINE’s learning process.

4.5 Inference
Once training is complete, for inference, we first identify the context
entities E𝑐 in the input question 𝑞𝑡 and conversational history C𝑡 .
Using the context entities E𝑐 , we extract the context paths P𝑐 from
the knowledge graph. After we follow the following four steps: i)
encode the input conversation and question, ii) identify the domain
of the encoded conversation, iii) employ both domain information
and encoded conversation to score all candidate paths via their
cosine similarity and rank them to retrieve the answer from the
highest scored path. iv) Using the encoded conversation and the
retrieved response, generate the fluent response via the decoder.

5 EXPERIMENTS
5.1 Experimental Setup
Model Configurations. Table 2 summarizes the hyperparameters
used for the experiments. For all the modules in the PRALINE
framework, we employ a space dimension 𝑑 = 768. We utilize a
BART (base) [25] model for the encoder and decoder. For training
parameters, we employ a batch size of 32, a learning rate of 1𝑒 − 4,
and we train for 120 epochs and store the models’ checkpoints. For
the optimization, we use the AdamW algorithm with weight decay
fix as introduced in [27]. We apply residual dropout in different
parts and modules of our framework (such as domain pointer and
ranking) with a probability of 0.1. As mentioned above, we use
BERT pre-trainedmodel for generating the initial embeddings of the
domains and KG paths. We also restrict PRALINE’s input sequence
(𝐶𝑡 + 𝑞𝑡 ) size to 150 tokens. For the domain pointer and decoder
negative log-likelihood losses, we apply relative weights _1 and _2
of 0.25. Finally, for the path ranking cosine embedding loss, we use
a margin 𝛼 of 0.1 and relative weight _3 of 1.0.
Datasets and Models for Comparison. For ConvQA over KGs,
we compare our framework on two relevant datasets ConvQues-
tions [10] and ConvRef [21]. We further employed fluent responses
for both datasets [19]. Our first baseline is CONVEX [10] which



Contrastive Representation Learning for Conversational Question Answering over Knowledge Graphs CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Hyperparameters Value

epochs 120

batch size 32

learning rate 1𝑒 − 4
dropout ratio 0.1
optimizer AdamW
model dim 768
𝑣𝑡 max length 50

𝐶𝑡 + 𝑞𝑡 max length 150

domain pre-trained embeddings BERT
KG paths pre-trained embeddings BERT
_1, _2, _3 0.25, 1.0, 0.25
margin 𝛼 0.1

Table 2: Hyperparameters for PRALINE.

detects answers to conversational utterances over KGs in a two-
stage process based on judicious graph expansion. First, it detects
frontier nodes that define the context at a given turn. Then, it finds
high-scoring candidate answers in the vicinity of the frontier nodes.
The second baseline and current state-of-the-art is CONQUER [21],
an RL-based method for conversational QA over KGs, which lever-
ages implicit negative feedback when users reformulate previously
failed questions. A recently proposed model OAT [29] reports val-
ues on ConvQuestions that proposes a semantic parsing-based
approach. Focal entity [24] is another recently release baseline. For
ConvQuestions, we took baseline values from official leaderboard
and for ConvRef, values are from the baseline papers.
Evaluation Metrics. For evaluating the ConvQA performance,
we use the following ranking metrics which are also employed
by the previous baselines: i) Precision at the top rank (P@1) 2)
Mean Reciprocal Rank (MRR) is the average across the reciprocal
of the rank at which the first context path was retrieved. 3) Hit
at 5 (H@5) is the fraction of times a correct answer was retrieved
within the top-5 positions. We report precision, recall, and F1-score
for the domain identification task, while for response generation,
we employ BLEU-4 and METEOR.

5.2 Results
Research Questions: We conduct our experiments and analysis
in response to the question RQ: For a given conversation utterance,
what is the efficacy of contrastive learning approach implemented
in PRALINE for ranking the KG paths? As such, our research ques-
tion is further divided into sub-research questions RQ1.1: what is
the effect of conversational context on the efficiency of PRALINE?
RQ1.2: what is the task specific (domain identification, fluent re-
sponse generation etc) performance in the PRALINE?
Overall Performance onConvQAdatasets. Table 3 summarizes
the results comparing PRALINE against the previous baselines.
PRALINE outperforms previous baselines in all metrics on the Con-
vQuestions dataset. Specifically, for P@1, PRALINE performs by
0.029 points better than CONQUER, 0.108 points compared to
CONVEX, and 0.042 points against OAT. For H@5 and MRR, the
margin is even more prominent, with 0.186 and 0.100 total points,
respectively, compared against CONQUER. While for CONVEX,
the margins increase to 0.310 for H@5 and 0.198 for MRR. For
OAT, only the MRR is available, and PRALINE outperforms it by

Dataset ConvQues. ConvRef

Model P@1 H@5 MRR P@1 H@5 MRR

CONVEX [10] 0.184 0.219 0.200 0.225 0.257 0.241
CONQUER [21] 0.240 0.343 0.279 0.353 0.429 0.387
OAT [29] 0.250 - 0.260 - - -
Focal Entity [24] 0.248 - 0.248 - - -

PRALINE 0.292 0.529 0.398 0.335 0.599 0.441

Table 3: Overall results on employed datasets. The effect of
incorporating conversational context in PRALINE has pos-
itively impacted empirical results, achieving better results
than baselines. Best values are in bold. The total trainable
parameters for PRALINE are 143M. However, OAT has 260M
trainable parameters.

0.138. For the ConvRef dataset, PRALINE performs better in all
metrics compared to CONVEX, where the margin for all metrics is
more than 0.100 absolute points. Moreover, it surpasses CONQUER
on ranking metrics H@5 and MRR with 0.160 and 0.046 points.
ConvRef is an extended version of ConvQuestions with multiple
question reformulations. CONQUER was sophisticatedly designed
to leverage those reformulations and boost the results [21]. On
the other hand, PRALINE treats the reformulated questions in the
same manner as it does with the original questions from the Con-
vQuestions benchmark. Therefore the increase for P@1 is not that
significant. The effect of reformulated questions as the additional
context has not been extensively studied in the scope of the work,
and we leave it for future work.
Ranking Performance Across Domains.We further investigate
the ranking performance of PRALINE across different domains for
both benchmarks considering this is the main focus of our work. Ta-
ble 4 illustrates detailed ranking results for H@5 and MRR as both
are ranking metrics. As shown, for the ConvQuestions benchmark,
PRALINE superiority is evident in all five domains against the base-
lines. However, we obtain the lowest ranking results in the Music
domain with 0.405 for H@5 and 0.279 for MRR. Analyzing some of
the conversational examples in that domain indicated that we did
not have gold positive KG paths for all the instances in the dataset.
Therefore, PRALINE could not have a complete training process
for all possible conversations and paths. Such issues have also im-
pacted the baselines. Next, we can see that the highest-ranking
results are obtained in the Books domain, where PRALINE achieves
the impressive 0.739 for H@5, which is almost 0.300 points higher
than CONQUER. Furthermore, the highest MRR (0.599) is achieved
in this domain. The results for this domain are heavily impacted be-
cause we managed to extract gold-standard paths for most dataset
instances. Also, the number of KG relations used in positive paths is
proportionately smaller than other domains, positively impacting
the ranking task for all models. On the ConvRef benchmark, PRA-
LINE still outperforms CONQUER on all domains. Here, PRALINE
shows substantially improved results in two domains (TV series,
Books) compared to results in ConvQuestions. We conclude that
employing contrastive learning to rank KG paths has a positive
impact on the overall empirical performance of PRALINE (success-
fully answering RQ). Furthermore, as we illustrate below in the
ablation study, the conversational context (entire dialog history
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Dataset ConvQuestions

Domain Movies TV Series Music Books Soccer
Models H@5 MRR H@5 MRR H@5 MRR H@5 MRR H@5 MRR
CONVEX [10] 0.355 0.305 0.269 0.218 0.293 0.237 0.303 0.246 0.284 0.234
CONQUER [21] 0.357 0.316 0.382 0.325 0.320 0.263 0.464 0.417 0.310 0.268
PRALINE 0.561 0.426 0.457 0.378 0.405 0.279 0.739 0.599 0.492 0.344

Dataset ConvRef

Domain Movies TV Series Music Books Soccer
Models H@5 MRR H@5 MRR H@5 MRR H@5 MRR H@5 MRR
CONQUER [21] 0.436 0.405 0.442 0.392 0.398 0.357 0.554 0.502 0.360 0.316
PRALINE 0.567 0.429 0.545 0.466 0.495 0.329 0.835 0.659 0.564 0.378

Table 4: To compare the KG path ranking performance, we report fine-grained results across different domains of both bench-
marks on ranking metrics. CONVEX does not report domain-specific values on ConvRef dataset, hence omitted from the
respective table. PRALINE maintains an empirical edge on baselines while ranking the KG paths. Best values are in bold.

Dataset ConvQues. ConvRef

Model P@1 H@5 MRR P@1 H@5 MRR
PRALINE 0.292 0.529 0.398 0.335 0.599 0.441
w/o full conv. 0.214 0.375 0.299 0.247 0.449 0.324
w/o domain 0.247 0.436 0.296 0.266 0.472 0.356
w/o fluent resp. 0.265 0.441 0.324 0.279 0.503 0.397
train separately 0.255 0.413 0.328 0.304 0.529 0.408

Table 5: The effectiveness of including the entire dialog his-
tory, fluent responses, and domain information. The first
row (from top) contains the results of PRALINE with all
available contexts. The second row omits the full conversa-
tional history and includes only the previous turn. The third
and forth-row selectively remove the domain information
and fluent response respectively. In the last row, we show
results when we train modules independently, illustrating
the advantage of joint training of PRALINE modules.

with fluent responses and domain information) plays a vital role in
the substantially improved results.

5.3 Ablation Study
We perform various ablation studies on PRALINE to illustrate the
effectiveness of the proposed approach and related architecture
choices. Table 5 summarizes the results of the ablation studies.
Effect of Full Conversational History. Our idea here is to study
the empirical advantage of incorporating entire dialog history.
Hence, we created a PRALINE configuration (w/o full conv.) that
only considers dialog history from the previous turn, disregard-
ing full history. As a result, there is a drop in the performance for
PRALINE (w/o full conv.), illustrated in Table 5.
Effect of Domain Information. For the second ablation experi-
ment, we remove the domain information (domain pointer module)
from PRALINE. We can see the importance of such information

in our approach. All metrics results have dropped, indicating the
effect of it. In PRALINE, domain information is used to improve the
conversation representation and indirectly filter out KG paths that
are not relevant. Usually, such paths contain KG relations that are
not used in the particular domain and add noise while ranking the
correct paths.
Effect of Fluent Response. To show the effectiveness of using
fluent responses in conversational history, we perform an ablation
experiment where we remove and replace them with standalone an-
swers extracted from the KG (e.g. entities, literals). We can observe
that the ranking performance drops significantly. In particular, we
obtain a drop between 0.060 − 0.080 for H@5 and MRR ranking
metrics and 0.027 for P@1. Fluent answers provide additional con-
text in the conversational history and, therefore, support PRALINE
to generate more accurate representations for the ranking task.
Such context is crucial for our results. Hence, we conclude that
conversational contexts (full dialog history with fluent responses
and domain information) positively impact the KG path ranking,
and it successfully answers RQ1.1.
Effect of Joint Training. As a last ablation experiment, we study
the case of whether joint training of PRALINE modules is effective.
To do so, we train each module independently without sharing
any sub-module parameters (e.g., encoder). Ablation results indi-
cate lower scores for all metrics. Furthermore, we observed that
all modules were overfitting much faster during this experiment
than PRALINE’s joint training. Intuitively, observed behavior is
reasonable since the more tasks we are jointly learning; PRALINE
generates better embedding representations that capture all the
tasks, yielding a lower chance of overfitting.

5.4 Detailed Architecture Analysis
We calculated the task-specific performance of different modules
in our framework to justify choosing various modules. Figure 3
presents PRALINE’s detailed ranking results for H@5 and H@10
ranking metrics. We achieve the highest scores in the “Books” do-
main, with H@10 of 0.871 on the ConvRef benchmark. On the
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Figure 3: PRALINE H@5 and H@10 ranking results.

Dataset ConvQuestions ConvRef

Task Pres. Rec. F1 Pres. Rec. F1
Domain Pointer 0.951 0.946 0.947 0.958 0.959 0.952

Table 6: Domain identification results.

Dataset ConvQuestions ConvRef

Task BLEU-4 METEOR BLEU-4 METEOR
Decoder 0.289 0.626 0.327 0.684

Table 7: Fluent response generation results.

other hand, we have the lowest scores in the “Music” domain. Inter-
estingly, for most domains, results for H@5 and H@10 are relatively
close, indicating that PRALINE tends to rank the correct paths in
top positions, illustrating the robustness of our approach.

Table 6 illustrates performance of domain identification pointer
on both benchmarks. For both benchmarks, the F1 score is around
0.95. The robust results justify the use of pointer network, which
also complement the ablation study in Table 5 for PRALINE (w/o
domain) configuration.

Table 7 presents the results of PRALINE’s fluent response gener-
ation. We obtain a BLEU-4 score of 0.289 on ConvQuestions and
0.327 on ConvRef, while for METEOR, the scores are 0.626 and
0.684, respectively. Here, the score margins between the bench-
marks are larger compared to the domain pointer task. This is due
to the additional questions in ConvRef further supporting PRA-
LINE to avoid overfitting for the response generation task. Here
we conclude that the scores of individual modules are considered
adequate and support PRALINE’s performance in Tables 5 and 3
(successfully answering RQ1.2).

5.5 Error Analysis
For the error analysis, we randomly sampled 250 incorrect pre-
dictions (with equal predictions from each domain). We detail the
reasons for two types of errors observed in the analysis:
Incorrect ranking of Pathswith Semantically Similar KGRe-
lations. PRALINE often wrongly-ranks paths when they contain
semantically similar relations. For instance, given the question
“What kind of book is it?” and its entire conversation history: 𝑞1)
“What is the name of the writer of The Secret Garden?” 𝑣1) “The name
of the writer of The Secret Garden is Frances Eliza Hodgson Burnett.”
𝑞2) “Where does the story take place?” 𝑣2) “The story takes place in
Yorkshire.” 𝑞3) “When was the book published?” 𝑣3) “The book was
published in 1910.”. PRALINE is required to find the gold path that
contains the KG relation "main subject (P921)" since this one points
to the correct answer, which is “adventure (Q1436734)”. However,
PRALINE here ranks higher paths that contain the KG relation
“genre (P136)”. For the example mentioned above, there are three
KG paths with relation “genre”, and all of them are ranked in the
top three positions. As we can see, the relations “main subject” and
“genre” are semantically similar and, therefore, hard to distinguish
which one to rank higher. For the particular example, the relation
“genre” is ranked higher since it is used more across the gold KG
paths in training data. In this work, we focused on context derived
from the conversation and have not considered widely available
KG context such as entity/relation aliases, types, etc.
Absence of Gold KG Paths. Several examples (over 25%) with
missing gold paths in training datasets significantly affect the learn-
ing process. For the test sets, there were 19% of conversational
turns without gold KG paths. These examples are directly counted
as wrong instances and negatively affect our results.With amore so-
phisticated annotation process for gold KG paths, PRALINE results
would have been improved.

6 CONCLUSIONS AND FUTUREWORK
Our central research question was to study the impact of contrastive
representation learning for conversational question answering over
knowledge graphs. To accomplish this, we formulate the task as a
KG path ranking problem, and we leverage conversational contexts
such as full dialog history with fluent responses and domain infor-
mation. The approach implemented in the PRALINE framework
and its associated empirical advantage over baselines provides con-
clusive evidence of the effectiveness of the contrastive learning for
the task. We conclude that a joint embedding of conversation and
KG-paths in a homogeneous space positively impacts the overall
ranking metrics. Furthermore, our systematic ablation studies il-
lustrate each conversation context’s impact (entire conversation
history, fluent responses, and domain information) on PRALINE’s
performance. Based on our findings, extensive evaluations, and
gained insights in this paper, we point readers to the following fu-
ture research directions: 1) The error analysis shows limitations in
finding the correct KG relation. Relation extraction and linking it to
KGs for conversations is a key open research question. It would be
a logical next step to incorporate KG context for relation extraction
similar to RECON [2]. 2) The hit@5 results are relatively high com-
pared to precision@1 for PRALINE and baselines, with an expansive
room for empirical improvement by proposing new approaches.
We believe our findings will pave the way for more research on this
relatively unexplored IR task in the ConvQA domain.
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