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Abstract

Summary: As machine learning and artificial intelligence increasingly attain a larger number of applications in the
biomedical domain, at their core, their utility depends on the data used to train them. Due to the complexity and
high dimensionality of biomedical data, there is a need for approaches that combine prior knowledge around known
biological interactions with patient data. Here, we present CLinical Embedding of Patients (CLEP), a novel approach
that generates new patient representations by leveraging both prior knowledge and patient-level data. First, given a
patient-level dataset and a knowledge graph containing relations across features that can be mapped to the dataset,
CLEP incorporates patients into the knowledge graph as new nodes connected to their most characteristic features.
Next, CLEP employs knowledge graph embedding models to generate new patient representations that can ultim-
ately be used for a variety of downstream tasks, ranging from clustering to classification. We demonstrate how
using new patient representations generated by CLEP significantly improves performance in classifying between
patients and healthy controls for a variety of machine learning models, as compared to the use of the original tran-
scriptomics data. Furthermore, we also show how incorporating patients into a knowledge graph can foster the in-
terpretation and identification of biological features characteristic of a specific disease or patient subgroup. Finally,
we released CLEP as an open source Python package together with examples and documentation.

Availability and implementation: CLEP is available to the bioinformatics community as an open source Python pack-
age at https://github.com/hybrid-kg/clep under the Apache 2.0 License.

Contact: daniel.domingo.fernandez@scai.fraunhofer.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advancements in machine learning (ML) and artificial intelli-
gence (AI) methodologies have initiated a paradigm shift in bioinfor-
matics. As new technologies have steadily generated large volumes
of -omics data, AI methods have garnered great insights into human
health and biology. With the availability of large-scale biological
datasets, ML/AI are becoming highly relevant for biomedical appli-
cations, such as predictive modeling, patient stratification and simu-
lation (Fröhlich et al., 2018). However, despite the successful
application of ML/AI in the biomedical domain, the datasets under-
lying the generation of models can play a far more crucial role in a

given application than the complexity of the model itself. For ex-
ample, in some cases, if data is predictive enough, simpler methods
can outperform state-of-the-art ML/AI methods in prediction tasks
(Lynam et al., 2020; Smith et al., 2020).

The development of novel high-throughput experimental techni-
ques has led to a broad availability of biological data from multiple
entity types (Zitnik et al., 2019). In practice, integrating multiple
data types can be advantageous, particularly in the context of com-
plex diseases, where no single type of data can effectively explain
the cause of dysfunction. However, biological datasets tend to be
both inherently complex and noisy (Fan et al., 2014), making their
integration challenging. Furthermore, biological data typically

VC The Author(s) 2021. Published by Oxford University Press. 3311

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(19), 2021, 3311–3318

doi: 10.1093/bioinformatics/btab340

Advance Access Publication Date: 8 May 2021

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3311/6272574 by guest on 17 N
ovem

ber 2023

https://orcid.org/0000-0003-1653-3920
https://orcid.org/0000-0003-4423-4370
https://orcid.org/0000-0002-2046-6145
https://github.com/hybrid-kg/clep
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab340#supplementary-data
https://academic.oup.com/


contain a far greater number of features than samples due to several
factors, including a lack of available resources and obstacles in sam-
ple collection (Xu and Jackson, 2019). In failing to address these
challenges and generating comprehensive representations of bio-
logical data, novel techniques can suffer in a range of analytic tasks.

One approach adopted by the systems biology community is in
representing biological data in the form of networks. By doing so,
multiple scales of biology can be represented, as can the relation-
ships within and across these scales. These networks are also advan-
taged by their ability to integrate heterogeneous biological data
types (Hu et al., 2017). Generally, one can classify biological net-
works into two categories depending on the source of information
used to generate them (Yu et al., 2013).

The first of these two classes of networks are constructed from
biological data by using a variety of methodologies. For instance,
co-expression networks can be generated from transcriptomics data
to represent pairwise correlations between genes (Langfelder and
Horvath, 2008). Another example is Bayesian networks which can
be used to model conditional interdependencies across heteroge-
neous biological entities (Khanna et al., 2018). While the majority
of these methods transform biological data into networks compris-
ing relations between the biological entities under study, other meth-
ods directly translate patient-level data into networks through
correlation techniques (e.g. Pearson correlation) as an indicator of
similarity between patients. These patient similarity networks close-
ly link patients that are more similar to each other while less similar
patients contain fewer close connections. Patient similarity networks
have been successfully used to represent multimodal patient level-
data for clustering tasks (Cavalli et al., 2017; Pai et al., 2019; Pai
and Bader, 2018; Raphael et al., 2017; Wang et al., 2014a). While
so far, these methods have been mostly employed for clustering tasks
based on patient similarity networks, (Pai et al., 2019) recently
expanded the concept to incorporate gene-level measurements into
pathways (via gene sets) in order to reduce dimensionality and ul-
timately use pathway features for patient classification.

A second class of networks can be generated from prior know-
ledge of known interactions between biological entities. When sets
of these interactions are assembled, they can be used to represent
discrete biological networks. These networks can be referred to as
knowledge graphs (KGs) when they comprise entities from various
biological modalities and the complex interactions between them.
However, despite their advantages, networks cannot be directly rep-
resented in vector space; thus, impeding their direct use by ML/AI
techniques. This impediment has led to the development of method-
ologies (i.e. Knowledge Graph Embedding Models; KGEMs)
designed to encode entities and relations in a KG into a latent fea-
ture space while preserving its structure. While these new represen-
tations can be used for entity disambiguation, clustering and several
downstream ML/AI tasks, they have been primarily used in the bio-
medical domain for link prediction tasks, including the prediction of
side effects (Zitnik et al., 2018), disease-gene associations
(Himmelstein and Baranzini, 2015) and novel therapeutic targets
(Muslu et al., 2020). Recently, the notion of adding patients into
KGs has been proposed from Electronic Health Records (EHRs) (i.e.
MIMIC-III dataset) with the ultimate goal of generating patient
embeddings through KGEMs that can be used for clustering (Gong
et al., 2021) and medicine recommendation tasks (Lin et al., 2020).
However, until now, there have yet to be integrative approaches
which incorporate both patient-similarity networks and KGs from
non-textual patient-level data, such as multi-omics, and prior
knowledge.

In this work, we introduce CLinical Embedding of Patients
(CLEP), a hybrid data- and knowledge-driven framework that
exploits -omics patient-level data and incorporates this information
into a KG. Once the KG has been generated by CLEP, the frame-
work then drives the generation of novel patient representations
through various KGEMs. In building upon previous data-driven
approaches (Pai et al., 2019; Wang et al., 2014a) which have dem-
onstrated the advantages of representing patients as nodes in a net-
work, we show that additionally integrating prior knowledge can
make for more robusts analyses. We showcase our approach by

generating new patient representations derived from two different
transcriptomics datasets and a KG comprising heterogenous pro-
tein–protein interactions from multiple biological databases. Using
the new patient representations, we find that performance on a
panel of ML models trained to classify between patients and con-
trols is significantly improved with respect to the use of original
data. Furthermore, the flexibility of our approach makes it applic-
able to heterogenous multimodal biological datasets, enabling
researchers to generate new patient representations by combining
patient-level data with the prior knowledge contained in a KG.
Finally, we have made CLEP available to the bioinformatics com-
munity as an open source Python package (https://github.com/hy
brid-kg/clep) under the Apache 2.0 License.

2 Materials and methods

2.1 Framework description
Figure 1 illustrates each step of the presented framework. The meth-
odology requires a patient-level dataset and a KG. Patients are incor-
porated into the KG as new nodes and connected to features that
most closely characterize a given patient. Once patients are
embedded into the KG, KGEMs are then used to generate new pa-
tient representations, learnt from both prior knowledge underlying
the KG and the patient-feature connections that have been gener-
ated. Finally, these novel patient representations can subsequently
be employed for a variety of downstream applications, as we dem-
onstrate in the case scenarios section.

2.1.1 Input data

Our framework requires two inputs: a patient-level dataset and a
KG (Fig. 1a). It can be applied to any dataset and KG so long as the
dataset features can be mapped to nodes in the KG. In other words,
if we intend to use CLEP on a transcriptomics dataset such as RNA-
Seq, the KG must contain relationships between genes/proteins that
are mappable to the transcripts that have been measured. We would
like to note that although the framework does not require that all
features in the dataset are also present in the KG, it is recommended
to maximize this overlap.

2.1.2 Incorporating patients into the knowledge graph

The first step of the methodology consists of incorporating patients
as nodes in the KG in order to subsequently generate novel individu-
alized feature representations for each patient (i.e. embeddings)
through the use of KGEMs (Fig. 1b). These models generate the
embeddings by exploiting the topology of the KG. Generating com-
prehensive embeddings requires an approach that can position a pa-
tient node in the KG according to that patient’s most informative
features (i.e. features that distinguish them from patients who pos-
sess clinically different features). This way, patient nodes with simi-
lar features would be close together in a network and would thus
have similar embeddings, while patients with dissimilar features
would be farther away (see example in Fig. 4b). On the other hand,
connecting every patient to a large number of nodes in the KG in-
stead of a smaller node set that represents a patient’s most relevant
features, would result in poor patient representations due to large
overlaps of irrelevant features. The positioning of the patient nodes
in the KG can be seen as a feature selection technique in which our
method identifies the most characteristic features of each patient in
order to generate edges between the patient and these features, thus,
embedding the patient as a node in the KG. The rationale behind
this method is that by connecting patients with their most character-
istic features, we are able to generate a KG that integrates patient-
specific information (i.e. relations between patients and features)
together with prior knowledge (i.e. relations among these features).

To identify the most characteristic features and incorporate
patients into the KG, our methodology leverages the empirical cu-
mulative distribution function (eCDF) based on the quantitative
measurements for each feature in the dataset which can be mapped
to the KG. Using all samples in the dataset or exclusively the healthy
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controls data, we generate a reference distribution with data points
that represent the measurements of each feature. We then identify
patients that fall at the extreme ends of this distribution based on a
predetermined threshold (e.g. 5% of the eCDF) (Fig. 1b). Finally,
these patients are connected to the node in the KG that represents
that particular feature with an edge (i.e. -1 or þ1) depending on the
extreme in which the patient falls. The sign of the edge indicates
whether a particular patient has a higher or lower measurement for
that given feature to differentiate the patient from other patients in
the distribution.

In the Supplementary Text, we present alternative methodologies
that can similarly be used to incorporate patients to the KG.
However, we have focused here on one specific method as it can be
applied to any type of patient-level data and it does not make any
assumptions on the feature distribution as opposed to other methods
which either require pathway information or assume that the fea-
tures are normally distributed.

2.1.3 Generating new patient representations

Once patients have been incorporated into the KG, the next step
involves generating new patient representations through KGEMs
(Fig. 1c). We restricted ourselves to KGEMs since they consider
both directionality and edge types, and our KG contains several
directed edge types. Incorporating edge types during the learning
process can help the model to differentiate between node types (e.g.
patients and biological entities) and node sub-types (e.g. diseased
patients, and controls). CLEP has adopted PyKEEN (Ali et al.,
2021) as the KGEM-software due to its wide range of functionalities
(e.g. a large number of KGEMs, hyperparameter optimization
functionalities).

2.1.4 Applications of patient representations

Once novel patient representations have been generated with CLEP,
they can be used for a vast number of applications including classifi-
cation and clustering tasks (Fig. 1d). Because our approach leverages
prior knowledge of known interactions, we hypothesize that the use
of these representations can yield superior performances on these
tasks with respect to the use of the original patient-level datasets
from which they were generated. Furthermore, our methodology
facilitates biologically meaningful interpretations of patient-level
data by positioning patients into different KG neighborhoods which
may potentially correspond to biological processes that are charac-
teristic for specific patient subgroups.

2.2 Software implementation
CLEP is implemented as a Python package to facilitate its usage
within the scientific community. It contains several workflows cor-
responding to each of the steps presented in the methods from gener-
ating new patient representations to conducting downstream
applications presented in the case scenario. Each workflow is both
accessible through a command line interface (CLI) as well as pro-
grammatically, allowing users to input their own patient-level data-
sets and custom KGs. In total, CLEP offers three different methods
for incorporating patients into the KG, all KGEMs available
through PyKEEN (Ali et al., 2021), and five ML classifiers.
Furthermore, thanks to its flexible implementation, users can inde-
pendently use each of its modules as well as incorporate classifiers
tasks into the framework (Supplementary Fig. S2). Finally, the
source code of the CLEP Python package is available at https://
github.com/hybrid-kg/clep under the Apache 2.0 License, its latest
documentation can be found at https://clep.readthedocs.io, and it is
distributed via PyPI at https://pypi.org/project/clep.

2.3 Case scenarios
2.3.1 Patient-level data

The first dataset, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Mueller et al., 2005), is one of the world’s largest dementia
cohorts and, with more than 1300 citations, the most referential re-
source for data-driven dementia research. In this work, we used the
blood plasma transcriptomic data collected in the study [we refer to
Saykin et al. (2015) and http://adni.loni.usc.edu for details]. The
dataset is already preprocessed and contains a total of 260 cognitive-
ly healthy control participants, 215 patients with early mild cogni-
tive impairment, 225 patients with late mild cognitive impairment
and 44 patients with Alzheimer’s disease. To conduct the binary
classification task, the latter three (i.e. all cognitively impaired
patients) were grouped together into a single class (n¼494).
Preprocessed gene expression data [Robust Multichip Average
(RMA) normalized data] was directly used as a baseline for the

Fig. 1. Schematic illustration of the framework. (a) CLEP requires two inputs: (i) a

patient-level dataset such as multi-omics, and (ii) a KG comprising relations be-

tween features measured in the previously mentioned dataset. (b) Using one of the

proposed methods, CLEP incorporates patients into the KG by connecting them to

their most distinctive features in the dataset. (c) KGEMs are then used to generate

new patient representations based on both data- and knowledge-driven features. (d)

These patient representations can subsequently be used for several downstream

tasks, such as patient classification and stratification. A high quality version of this

figure is available at https://doi.org/10.6084/m9.figshare.12834605
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benchmarking of CLEP. To incorporate the patients into the KG,
the expression of genes whose transcripts appear multiple times
were considered individually.

The second dataset is a transcriptomics dataset containing sam-
ples from three psychiatric disorders (i.e. major depressive disorder,
schizophrenia and bipolar disorder) and healthy controls
(Hagenauer et al., 2018). In total, this dataset contains 172 samples
(41 major depressive disorder, 22 schizophrenia, 26 bipolar disorder
and 83 control samples). Similar to the ADNI dataset, the prepro-
cessed gene expression data (RMA normalized data) from the se-
cond dataset was directly used as a baseline for the validation of
CLEP. Similar to the previous dataset, we grouped the three psychi-
atric indications together to conduct a binary classification task.

2.3.2 Knowledge graph

For the case scenario, we employ a KG referred to as PPI-KG, which
comprises protein–protein interactions from six resources: PathMe
(Domingo-Fernández et al., 2019) [which includes KEGG (Kanehisa
et al., 2017) Reactome (Jassal et al., 2020) and WikiPathways
(Slenter et al., 2018)], BioGrid (Oughtred et al., 2019), IntAct
(Orchard et al., 2014) and Pathway Commons (Rodchenkov et al.,
2020) (Supplementary Text).

2.3.3 Generating representations of patients

We used different thresholds (i.e. the 1%, 1.5%, 2.5%, 5% 10%
and 20% quantiles of the eCDF) to define the tail of the distribution
(i.e. extreme) which is required to incorporate ADNI patients and
the patients of the GSE92538 dataset to the PPI-KG using the eCDF-
based method described in Section 4.1. By applying this method on
each threshold, we generated different KGs (i.e. one for each thresh-
old) by connecting the patients that fall in the extremes of the
reference distributions (Supplementary Table S4). Reference
distributions were generated based on the expression values of
healthy controls for each gene that was present in both the transcrip-
tomics data and the PPI-KG (Supplementary Fig. S3). The vast ma-
jority of nodes in the PPI-KG were among the proteins measured in
the transcriptomics dataset, resulting in 8085 mapped proteins in
total.

We would like to note that the resulting KG (i.e. PPI-KG after
incorporating the ADNI patients) must be split into three triple sets
(i.e. training, validation and testing set) in order to train a KGEM.
Thus, we developed an algorithm that splits a given KG in a way
that relations and nodes are balanced across the three different
splits. The pseudocode for this algorithm can be found in the
Supplementary Figure S1 and is implemented in the CLEP Python
package.

2.3.4 Selected knowledge graph embedding models

We selected RotatE (Sun et al., 2019), TransE (Bordes et al., 2013),
ComplEx (Trouillon et al., 2016) and HolE (Nickel et al., 2016) to
learn the patient embeddings, because they have been shown to be
effective in a large-scale benchmarking study for KGEMs (Ali et al.,
2020). To train the final models, we used the best hyperparameters
obtained by the hyperparameter optimization (Supplementary Table
S3).

2.3.5 Classifying between cognitively impaired and healthy

controls

The new representations generated from KGEMs were used to clas-
sify between normal and cognitively impaired patients (i.e. AD and
MCI) using five different statistical modeling and ML methods
(Table 1).

Prediction performance was evaluated via 5 times repeated 5-
fold cross-validation in which the hyperparameters of the model
were tuned within the cross-validation loop via a grid search
(Fig. 2). The cross-validation prediction performance for the binary
classification task was evaluated using the area under the receiver
operating characteristic curve (AUC-ROC) or the area under the
precision–recall curve (AUC-PR) as a metric.

We then conducted three experiments to evaluate the robustness
of our results. First, we trained the ML models using the new repre-
sentations generated from RotatE with the 5% threshold while per-
muting patient labels (i.e. y-scrambling). Second, we trained the ML
models on patient representations again generated using RotatE
with a 5% threshold but using instead a permuted version of the KG
generated using the XSwap algorithm (Hanhijärvi et al., 2009) in
order to investigate if a KG’s topology makes meaningful improve-
ments to performance. By using this algorithm, we ensured that the
permuted versions preserved the original structure of the original
network (i.e. each node has the same number of in- and out-edges)
but edges were randomly generated. Third, we trained the ML mod-
els using a subset of the PPI-KG corresponding to a single database
(i.e. either WikiPathways or KEGG) in order to investigate the im-
portance of KG size and completeness.

2.3.6 Classifying between psychiatric disorders and healthy

controls

Using the same setting used in the previous dataset (Fig. 2), we
trained the same five ML models to classify between normal samples
and patients with a psychiatric disorder (i.e. bipolar disorder, major
depressive disorder and schizophrenia) using both the raw data and
the new representations of the GSE92538 data generated by CLEP.
Similar to the previous dataset, we used RotatE KGEM and a
threshold value of 2.5% on either side of the control distribution for
generating the new representations.

3 Results

3.1 CLEP’s representations outperform raw data in

classifying cognitively impaired patients and healthy

controls
Here, we present the results of our methodology and demonstrate
how CLEP can improve the performance of ML models on patient
classification tasks within the context of Alzheimer’s disease (AD).
We incorporated ADNI patients (Mueller et al., 2005) into a pro-
tein–protein interaction KG (i.e. PPI-KG) in order to generate novel
patient representations using various KGEMs (see Section 2). We
then compared the performance of several ML models in distin-
guishing between cognitively impaired patients from controls de-
pending on whether the input data was the original transcriptomics
data or novel patient representations. We summarize the perform-
ance of each of the five ML models in Figure 3a and b.

Our results show that using original transcriptomics data as in-
put for the binary classifier leads to relatively low prediction power
(Fig. 3b), as opposed to the new representations generated by CLEP
which substantially increase prediction performance (Fig. 3a). As an
illustration, the SVM model, which was the highest performing,
yielded area under the receiver operator characteristic curve (AUC-
ROC) values ranging from 0.48 to 0.64 when trained on the tran-
scriptomics data. In comparison, the same model, when trained on
the new patient representations, yielded AUC-ROC values between
0.83 and 0.91. This difference was consistent across each of the five
ML models, demonstrating how CLEP generates patient representa-
tions that significantly outperform the original data for this particu-
lar binary classification task. However, it is worth noting that the
performance of the two tree-based methods (i.e. random forest and
XGBoost) is significantly worse than the remaining models, yet they
still outperformed their corresponding counterpart models trained
on the raw data. Furthermore, to validate that the results are not an
effect of the class imbalance between cognitively impaired patients
and healthy controls (Saito and Rehmsmeier, 2015), we reevaluated
the ML models using the area under the precision–recall curve
(AUC-PR) as a metric, which resulted in similar results
(Supplementary Fig. S6). Finally, we would like to note that through
the usage of the KGEMs, the dimension of the patient representa-
tions could significantly be compressed since the input dimension of
the raw transcriptomics was larger than 40 000 features, while the
representations generated by the KGEMs had a dimension of 256.
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To investigate the robustness of our approach, we conducted
two independent experiments. The first experiment consisted of
training each of the five classifiers using new representations with
randomized patient labels (Fig. 3c) in order to confirm that the mod-
els did not fit to arbitrary artifacts in the data. In contrast, in the se-
cond experiment, patient representations were generated on a
permuted version of the original KG (see Section 2 for details) to en-
sure that new representations reflect the information encoded in the
KG by generating patient representations on a permuted version of
the original KG (Fig. 3d). The results of these experiments yielded
models with a performance equivalent to a random classifier (i.e.
AUC-ROC values � 0.5); thus, confirming (i) the robustness of our
model evaluation strategy and (ii) that the new representations are
driven by information in the KG.

While we were able to show how CLEP successfully generated
novel representations that yield superior prediction performance,
the process of generating these representations is non-trivial. As an
initial step, a threshold that determines which patient-measurable
edges will be incorporated into the KG must first be selected as this
parameter influences the KG generated (see Section 4.1). We demon-
strate the effect of the threshold on the previous binary classification
task by training a single classifier using KGs derived from different
thresholds (Supplementary Fig. S4). Unsurprisingly, while lower
threshold settings (i.e. from 1% to 5%) resulted in increased predict-
ive power, higher thresholds (i.e. 10% and 20%) penalized the per-
formance of the model. This can be attributed to the fact that a low

threshold exclusively creates connections between KG nodes and the
patients falling at the extreme ends of a feature distribution, thus
capturing patients that can best characterize a particular feature. On
the other hand, higher thresholds generate a larger number of edges

Table 1. List of statistical modeling and machine learning methods available at CLEP for conducting classification tasks

Model Reference Implementation

Logistic regression with L2 regularization – scikit-learn (Pedregosa et al., 2011)

Logistic regression with elastic net regularization Zou and Hastie (2005) scikit-learn (Pedregosa et al., 2011)

Support Vector Machines Cortes and Vapnik (1995) scikit-learn (Pedregosa et al., 2011)

Random Forest Ho (1995) scikit-learn (Pedregosa et al., 2011)

XGBoost Chen and Guestrin (2016) XGBoost (Chen and Guestrin, 2016)

Fig. 2. Schematic representation of the model evaluation strategy. The first step is to

split the data into training (80%) and hold-out test set (20%). Next, we performed

5-fold stratified cross-validation by further repeatedly splitting the training data into

80% training and 20% validation in order to identify the best hyperparameter set-

tings. Once these five cross-validation rounds were performed, the best hyperpara-

meters were used to train the model on the full training data and the trained model

was evaluated on the held-out test set. This entire strategy was repeated 5 times to

generate 5 AUC-ROC scores that were used to determine the performance of each

of the five models (Table 1). We would like to note that the first split (training-test)

ensured maintaining the overall class distribution and classes have been shuffled be-

forehand to avoid having the same data used in training/test. Furthermore, we chose

AUC-ROC scores as evaluation metrics for both best hyperparameter selection and

model evaluation. A high quality version of this figure is available at https://doi.org/

10.6084/m9.figshare.12834608

Fig. 3. Benchmarking of five ML models trained to classify between cognitively

impared patients and healthy controls. Each boxplot shows the distribution of the

AUC-ROC values over 5 repeats of the 5-fold nested cross-validation procedure.

Statistical modeling and ML methods are listed in Table 1. The new patient repre-

sentations were generated by incorporating ADNI patients into the PPI-KG using a

threshold of 2.5% on the eCDF of the control distribution for each mapped feature.

The RotatE KGEM was trained on the KG using PyKEEN. The patient representa-

tions were used to train the five ML models with the original patient labels (a) and

compared against the raw transcriptomics data (b). To investigate the robustness of

our results, we randomized patient labels and trained the five ML models using the

new representations (c). Furthermore, we trained the five ML models using the new

representations generated from a permuted version of the original KG (d). Both ro-

bustness analyses yielded AUC-ROC values on all machine learning models equiva-

lent to that of a random classifier (i.e. AUC-ROC values �0.5)

Fig. 4. Incorporating patients into a KG fosters biological interpretation and identifi-

cation of patient subgroups. (a) PPI-KG subgraph after incorporating ADNI partici-

pants visualized using a circular layout. Red nodes represent ADNI patients and

blue nodes represent proteins present in the PPI-KG. The majority of connections

are between ADNI patients and their most characteristic proteins, which is repre-

sented by the large number of outgoing edges between the right part of the circle

(where patients are located) and the rest of the KG. (b) Local neighborhood around

the subgroup of cognitively impaired patients investigated in the case scenario. Red

nodes represent patients, dark blue the six proteins linked to the patient subgroup

and light blue other related proteins present in the neighborhood
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between patients and features, resulting both in a loss of specificity
and the ability to distinguish between different patient groups.

The right choice of the KGEM is essential for generating patient
representations that are useful for the classifiers. While the results of
the case scenario are based on RotatE, we also generated patient
representations based on further KGEMs (Supplementary Fig. S5).
We can observe that patient representations generated by RotatE
outperforms the remaining KGEMs by a large margin. It is known
that specific relational patterns that can be modeled by RotatE can-
not be modeled by TransE (Bordes et al., 2013), ComplEx
(Trouillon et al., 2016) and HolE (Nickel et al., 2016). However, to
obtain a clearer picture, relational patterns around patient nodes
could be investigated. Finally, we also investigated the effect the size
of a KG can have on results by evaluating the performance of ML
models on smaller versions of the PPI-KG. As expected, smaller PPI-
KGs resulted in lower performance for each of the ML models
(Supplementary Fig. S7).

3.2 Biological interpretation and patient subgroup

identification through CLEP
Though the advent of machine learning methods have led to a new
range of applications in the biomedical field, these methods inher-
ently come with a tradeoff with regards to interpretability. The
so-called black-box models lack transparency, providing no explan-
ation as to what accounts for the predictions they generate. In the
biomedical field in particular, this can often translate to a lack of
success in clinical practice (Fröhlich et al., 2018); while discrete pat-
terns that arise from ML techniques can be discerned, without an
understanding of the fundamental cause and the characteristic fea-
tures of a disease, clinicians may not have an adequate level of
knowledge to make a confident diagnosis. In this section, we demon-
strate how the hybrid KG generated by CLEP can drive the identifi-
cation of patient-specific mechanisms and pathways made possible
by the incorporation of patients into a KG comprising mechanistic
knowledge (Fig. 4a).

In the previous section, we demonstrated how novel representa-
tions generated on the ADNI dataset outperformed raw data in a
diagnosis prediction task. However, these representations cannot be
directly interpreted as they are low-dimensional vector representa-
tions embedded in a latent space. Nonetheless, because the original
KG comprises biological knowledge, features and/or mechanisms
that are connected to a given embedded patient or patient subgroup
can be easily pinpointed by studying their local neighborhood in the
KG. Thus, using the KG derived from the ADNI dataset, we identi-
fied sets of genes with connections to cognitively impaired patients
(groups) but without any connections to control participants. Of
these gene sets, we focused on a particular set of genes (HS2ST1,
ESR2, IKBKG, UBE2D3, PCGF5 and NFIC), all of which were con-
nected to each other, and were also identified in a subgroup of cog-
nitively impaired patients (n¼15). We then investigated the
interplay of genes in the local neighborhood of the KG around this
subset of patients in order to identify and deconvolute common
pathways that could be responsible for their phenotypic make-up
(Fig. 4b).

To identify the biological pathways these genes participate in,
pathway enrichment analysis was run on this gene set
(Supplementary Table S2). Of the nine enriched pathways we identi-
fied (q-value < 0.05), six were related to Toll-like receptor signaling
(specifically, Toll-like receptor 4 signaling) due to the involvement
of IKBKG and UBE2D3 in this pathway. Interestingly, this inflam-
matory pathway is often noted for its association to AD (Tahara
et al., 2006; Walter et al., 2007), while UBE2D3 has been proposed
as a potential biomarker for Alzheimer’s disease (Wu et al., 2019).
Furthermore, HS2ST1 is a member of the heparan sulfate biosyn-
thetic enzyme family and responsible for the synthesis of heparan
sulfate (HS), the latter of which is known to cause protein aggrega-
tion and lead to neurodegenerative disease (Maı̈za et al., 2018).
Additionally, ESR2 polymorphisms have been linked to cognitive
impairment and an increased risk for AD, predominantly in women
(Ulhaq and Garcia, 2020; Zhao et al., 2015). It is worth noting that

by investigating patient subgroups characterized by particular fea-
tures, we can also assess whether they share common alleles. Finally,
the remaining two genes, HFIC and PCGF5, are both present in the
enriched ‘Gene expression (transcription)’ pathway, and are associ-
ated with the regulation of transcriptional factors.

3.3 CLEP’s representations outperform raw data in

classifying psychiatric conditions and healthy controls
We also reproduced our methodology on an additional dataset con-
taining transcriptomics experiments on psychiatric conditions and
healthy controls (see Section 2). The results for this dataset
resembled the ones observed in the previous case scenario (Fig. 5).
The patient representations generated by CLEP outperformed the
original data in the binary classification task by a large margin. By
investigating the individual ML models, we observed that the differ-
ence in performance between the two tree-based methods (i.e. ran-
dom forest and XGBoost) and the rest was smaller for this dataset.
Similarly to the previous case scenario, SVM yielded the highest per-
formance. However, the variability in performance for the elastic
net, random forest, and XGBoost was significantly larger compared
to the ADNI dataset.

4 Discussion

In this work, we have presented CLEP, a novel hybrid data- and
knowledge-driven framework which leverages patient-level data and
KGs for generating personalized patient representations. In the case
scenarios, we demonstrated the utility of our framework on two in-
dependent datasets by employing transcriptomics data and an inte-
grative KG containing knowledge from several protein–protein
interaction databases. When compared to the raw transcriptomics
data, we have shown how these representations yield superior per-
formance in a binary classification task using a broad panel of ma-
chine-learning models. Furthermore, we have illustrated how
incorporating knowledge from the KG for the generation of patient
representations not only improves performance in classification
tasks, but also facilitates the interpretation of the biological mecha-
nisms that uniquely characterize patients and/or patient subgroups.
In summary, we have shown the utility of a hybrid approach for the
generation of new patient representations that can then be used in a
broad range of applications, ranging from predictive modeling to
personalized medicine. We have also made CLEP available as an ex-
tensible and reproducible software package, enabling researchers to
conduct these experiments on various kinds of datasets and
networks.

Our framework shares several limitations inherent to many ML
methods. The first is the computational cost and time associated
with training and optimizing KGEMs, which could be improved
with the help of libraries focused on using multiple GPUs and dis-
tributing computation across a cluster. The second is that our

Fig. 5. Benchmarking of five ML models trained to classify between psychiatric

patients and healthy controls. Each boxplot shows the distribution of the AUC-

ROC values over 5 repeats of the 5-fold nested cross-validation procedure.

Statistical modeling and ML methods are listed in Table 1. The new patient repre-

sentations were generated by incorporating the patient data from GSE92538 into

the PPI-KG using a threshold of 2.5% on the eCDF of the control distribution for

each mapped feature. The RotatE KGEM was trained on the KG using PyKEEN.

The patient representations were used to train the five ML models with the original

patient labels (a) and compared against the raw transcriptomics data (b)

3316 V.S.Bharadhwaj et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/19/3311/6272574 by guest on 17 N
ovem

ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab340#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab340#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab340#supplementary-data


methodology does not compensate for a lack of training data, as is
often the case with clinical datasets, nor for poor quality data. The
third is that this approach relies on the ability to meaningfully inte-
grate two or more datasets with a KG. If there are too few mappable
features between the clinical data and the KG, then the resulting pa-
tient representations may only have limited quality and utility, and
some patients may be excluded entirely. Fourthly, the methodology
to incorporate patients into the KG has been exclusively devised for
continuous features. Lastly, despite our framework being generaliz-
able to any dataset, there may be cases where CLEP fails to improve
the performance as the original dataset possesses sufficient inform-
ative power for a particular application. In these cases, however,
one could always employ the KG to interpret and identify biological
mechanisms (e.g. pathways in the KG) associated with an individual
or group of patients, as demonstrated in our case scenario.

While we generated two types of edges (i.e. -1 or þ1) between
ADNI patients and proteins in the PPI-KG, we also implicitly gener-
ated negative edges between each ADNI patient and all other pro-
teins to which neither a -1 nor þ1 edge was inferred. Unfortunately,
we were unable to explicitly incorporate them in the training algo-
rithm because PyKEEN, as well as most KGEM packages, generate
negative edges through uniform negative sampling or Bernoulli
negative sampling (Wang et al., 2014b) with respect to the given
positive KG. Thus, we are interested to make improvements to the
upstream package itself to enable these kinds of explicit inclusions,
as there are a growing number of negative edges available in various
biological knowledge sources.

There are a number of applications in precision medicine for the
representations generated by CLEP. For instance, in the AD area,
patient representations of cognitively impared patients could be sys-
tematically used to stratify patients in order to identify shared mech-
anisms that explain their observed phenotype. Furthermore, our
approach can be generalized such that different types of patient-level
data can be integrated and mapped to heterogeneous biological
KGs, thus enabling scientists to combine their datasets with context-
specific knowledge. In the future, we plan to extend this work as
well as to adapt it to well-known network representation learning
methods such as node2vec (Grover and Leskovec, 2016) and LINE
(Tang et al., 2015). Finally, we ambition that our framework could
serve as an integration platform for multimodal datasets including
clinical, imaging and -omics data which could lead to more compre-
hensive patient representations.
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