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Abstract. Ontologies – providing an explicit schema for underlying
data – often serve as background knowledge for machine learning ap-
proaches. Similar to ILP methods, concept learning utilizes such ontolo-
gies to learn concept expressions from examples in a supervised man-
ner. This learning process is usually cast as a search process through
the space of ontologically valid concept expressions, guided by heuris-
tics. Such heuristics usually try to balance explorative and exploitative
behaviors of the learning algorithms. While exploration ensures a good
coverage of the search space, exploitation focuses on those parts of the
search space likely to contain accurate concept expressions. However, at
their extreme ends, both paradigms are impractical: A totally random
explorative approach will only find good solutions by chance, whereas
a greedy but myopic, exploitative attempt might easily get trapped in
local optima. To combine the advantages of both paradigms, different
meta-heuristics have been proposed. In this paper, we examine the Sim-
ulated Annealing meta-heuristic and how it can be used to balance the
exploration-exploitation trade-off in concept learning. In different exper-
imental settings, we analyse how and where existing concept learning
algorithms can benefit from the Simulated Annealing meta-heuristic.

Keywords: Inductive Logic Programming (ILP) · Description Logic
(DL) · Concept Learning (CL) · Meta-heuristics.

1 Introduction

The availability of vast amounts of structured data with explicit semantics of-
fers great opportunities for analytics in downstream AI tasks. One such data
source is the Linked Open Data cloud4 which is a distributed and interlinked
collection of knowledge bases expressed by means of ontologies covering many
different domains. Ontologies provide means for a logic-based description of a
domain of interest and allow to express terminological knowledge such as hi-
erarchies of relations and concepts i.e. categories to classify individuals with

4 https://lod-cloud.net/

https://lod-cloud.net/
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common relevant features [1]. Further, knowledge bases also provide assertional
knowledge, i.e. statements about individuals of the domain and how they relate
to each other. An established formalism to express such background knowledge
are Description Logics (DL) [1] which allow to formulate statements about the
domain of interest in the form of axioms. One way to gain insights from such
relational data is to inductively learn from positive and negative examples. Start-
ing with a set of example individuals for a target concept, a concept description
is learned s.t. it accurately covers positive examples while not covering negative
examples [12]. Such concept descriptions can then serve as human and machine
readable binary classifiers to classify unseen individuals w.r.t. the target con-
cept. The idea of concept learning (CL) is often cast as a systematic search in
the space of possible concept descriptions which is mainly aiming to maximize
the example classification accuracy.

A common approach for exploring the search space is to follow a refinement-
based approach which is guided by a heuristic [12]. Such approaches often take
advantage of iteratively improving intermediate concept descriptions based on a
given quality measure e.g. accuracy. This procedure can be seen as Hill Climbing
where the whole refinement process is understood as a sequence of incremental
changes to a candidate concept expression [16]. As many Hill Climbing methods,
a concept learning algorithm might be prone to get stuck in a local optimum,
which renders the algorithm myopic. In CL, this occurs when an intermediate
candidate concept description scores too low with respect to the employed qual-
ity measure. Such concept descriptions are then ignored in further refinement
iterations, but may be essential steps on the refinement path towards the opti-
mal solution which is then never found by the algorithm. Such myopic behavior
is usually caused by applying a heuristic which is greedily guiding the search
process to achieve sensible solutions, while being incapable of leaving local op-
tima or plateaus. To remedy this, different solutions have been explored in the
field of mathematical optimization, however, only very few of them have been
applied to CL. As one promising attempt to tackle myopia in CL, we extend ex-
isting algorithms with the established Simulated Annealing meta-heuristic. As
our main contribution of this article, we propose a formalism to integrate Simu-
lated Annealing into concept learning. Furthermore, we provide an evaluation of
the resulting algorithm showing that we are able to tackle the myopia problem
and achieve competitive results on synthetic and real world learning problems.

2 Related Work

Inductive Learning Systems. Different research fields have addressed induc-
tive inference of general principles or patterns from specific facts considering
background knowledge. Most prominently Inductive Logic Programming (ILP)
contributes several systems implementing different strategies [14]. In CL the
goals of ILP are adapted and extended using a different family of knowledge
representation languages, namely Description Logics. Here, a common task is to
learn concept descriptions from individuals serving as positive and negative ex-
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amples. Such concept descriptions should cover the positive examples while not
covering the negative ones. Several concept learning systems have been developed
in this regard namely YingYang [9], DL-Foil [5,8] and the DL-Learner [2].

YingYang is one of the early systems with the main strategy of applying
the counterfactual method, i.e. finding concepts that cover negative examples
and conjunctively add the negations of such concepts to the overall solution to
rule out the wrongly covered negative examples.

DL-Foil is a ‘Foil-like’ algorithm that applies a sequential covering ap-
proach to concept learning. It partly reuses other CL techniques but extends
the binary setting of evaluating the covered positive and negative examples to a
three-valued setting, also considering examples of uncertain membership when
evaluating a concept description.

The DL-Learner framework is a collection of learning algorithms and strate-
gies for CL. The most prominent algorithms are the OWL Class Expression
Learner (OCEL) [11] and the Class Expression Learner for Ontology Engineer-
ing (CELOE) [10]. Inspired by OCEL and CELOE, the authors of [18] proposed
the ParCEL algorithm which was subsequently implemented in the DL-Learner
framework. ParCEL tries to compute multiple partial concept descriptions in
parallel which are eventually combined to form the target concept. This idea
is further extended, in a way similar to the counterfactuals idea, by the same
authors which lead to the SPaCEL algorithm [19].

Extended Meta-heuristics Approaches. Each of the aforementioned sys-
tems employs refinement strategies to systematically explore the space of onto-
logically valid concept descriptions. Similar to the findings made for refinement
operators in the ILP domain [17], certain properties of upward and downward re-
finement operators in Description Logics were investigated [6,4,12]. Starting with
an initial concept description, new concepts are derived by applying refinement
rules through a downward (upward) refinement operator. Usually, the refined
concepts are evaluated based on a heuristic which guides the search process by
picking promising concepts for the next refinement iteration.

This basic paradigm lends itself for comparison with the Hill Climbing opti-
mization techniques. In [3] the authors relate refinement-based ILP methods to
Hill Climbing and propose to apply certain meta-heuristics, namely Beam Search,
Look-Ahead methods, and the introduction of Determinate Literals, to overcome
the Hill Climbing search-inherent myopia problem. Similarly, in [17] the authors
introduce Simulated Annealing for non-myopic ILP. However, this approach can-
not be applied to concept learning without modifications. A more general inves-
tigation about the introduction of randomized restarts into the search process
was performed in [20]. Whereas the core idea of randomly picking a clause from
an active set of considered clauses is similar to the random choice from the built
search tree in CL as proposed here, many details differ.

Also motivated by the Hill Climbing analogy, in [16,15] DL-Focl is pro-
posed, which extends DL-Foil by meta-heuristic strategies such as Repeated
Hill Climbing, Look-Ahead mechanisms, and Tabu Search. In this paper we ex-
tend the research on meta-heuristics in CL learning by considering the Simulated
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Table 1: Terms and Notations in Description Logics (summarized from [1]).

Notation Description

NC ,NR,NI Set of all concept names, role names, and individual names respectively
A,B,C,D Concepts (or “classes”) denoting sets of individuals where A,B are atomic concepts
⊺,� Concept denoting the complete domain ∆, and the empty concept, respectively
r, s Roles (or “object properties”)
⊓,⊔,¬ Concept/role constructors allowing to define the concept/role intersection, union,

and negation, respectively
∃r.C,∀r.C Existential and universal restriction on the role r, respectively
C ⊑D Inclusion axiom, meaning that C is a sub-concept/subclass of D
a, b Individuals of a considered domain ∆
C(a), r(a, b) Class assertion stating that individual a is an instance of concept C, and role assertion

stating that individuals a and b are related via role R
K ⊧ α Entailment of axiom α from knowledge base K

Annealing technique to systematically adjust explorative and exploitative traits
of a learning algorithm.

3 Approach

Balancing exploration and exploitation when searching solutions is one of the
key aspects in designing CL algorithms. Heuristics guiding an algorithm’s be-
havior in this respect can follow established patterns published in the meta-
heuristics literature [3,17,16], or combine different, more specific strategies as
in [11,10]. Especially for refinement-based CL approaches, many meta-heuristics
from combinatorial optimization theory are applicable. We concentrate on the
Simulated Annealing meta-heuristic and its application to concept learning us-
ing the OCEL [11] and CELOE [10] algorithms. We further introduce the notion
of Adaptive Simulated Annealing for concept learning and provide the details
about the respective Simluated Annealing extensions for OCEL and CELOE.

3.1 Notation and Preliminaries

To express knowledge of a certain domain of discourse ∆ we distinguish indi-
viduals being elements of the domain, and concepts, or “classes”, representing
sets of individuals. The relations between individuals are expressed by roles. An
overview of the basic notations is given in Table 1. We also refer to candidate
solutions, or hypotheses, as well as their refinements (in an abstract or more
concrete sense). For notational clarity, a single candidate solution is denoted by
the Greek letter σ, whereas sets of candidate solutions are represented by the
uppercase Greek letter Σ (both optionally with indexes).

3.2 Concept Learning in Description Logics

We focus on the problem of inductively learning a (usually complex) concept de-
scribing a set of observed individuals from NI . Given the set N+

= {a+1 , a
+
2 , . . .} ⊆

NI of positive examples, and the set N−
= {a−1 , a

−
2 , . . .} ⊆ NI of negative examples

a target concept Ct shall be learned, such that K ⊧ Ct(a
+
i ) for all a+i ∈ N

+, and
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Fig. 1: Terms and Spaces in Concept Learning.

⊺

Person

Person ⊓ ∃attends.⊺

Person ⊓ ∃attends.Lecture
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. . .

. . .

Car . . .

Fig. 2: Search tree of an example refinement

K /⊧ Ct(a
−
i ) for all a−i ∈ N−, i.e. positive examples are entailed by the complex

concept (not the negative examples). Refinement-based CL approaches achieve
this by traversing the space of all ontologically valid concept descriptions, i.e. the
search space. This is done in a systematic manner, e.g. by applying concept con-
structors and introducing existential/universal restrictions [12]. In this context,
such generated concept descriptions are often called hypotheses. Given a quasi-
ordered space (Σ,⪯), a downward (upward) refinement operator ρ is a mapping
from Σ to 2Σ such that for any σ ∈ Σ we have that σ′ ∈ ρ(σ) implies σ′ ⪯ σ
(σ ⪯ σ′) [10]. Depending on the properties of the refinement operator this spans
a certain hypothesis space. Since we are extending the OCEL and CELOE algo-
rithms we are assuming a downward refinement operator ρ which is complete and
proper, as reported in [12]. Moreover, as in [12], we restrict the concept length of
the hypotheses generated in each refinement step to achieve finiteness. Further,
we consider downward refinement operators over the quasi-ordered space (L,⊑),
i.e. over concept descriptions L and the subsumption relation ⊑ s.t. for each re-
finement C ′

∈ ρ(C) of an input concept C it holds that C ′
⊑ C. ρ, in general,

is capable of generating concepts in the DL language ALCHOQ with concrete
roles. An example refinement process is shown in Figure 2. The set of nodes in
this refinement graph can be seen as a sub-space of the hypothesis space which
is dynamically extended per iteration. Moreover, the refinement operator ρ, in
combination with the learning algorithm (OCEL or CELOE), eliminate redun-
dancies up to weak equality [12,10]. Hence, the refinement graph forms a tree
known as search tree in the literature [12,10].

This example also illustrates the problem of myopia. Imagine we have a set
of individuals representing CS students as positive examples, and another set
of individuals representing philosophy students as negative examples. The back-
ground knowledge base contains information about the students’ courses and the
course taxonomy (with the axioms CSLecture ⊑ Lecture and PhilosophyLecture ⊑
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Algorithm 1: Basic concept learning algorithm
Result: Best hypothesis σbest

1 SearchTree ← initial empty search tree
2 σbest ← initial candidate expression
3 SearchTree.add(σbest)
4 repeat
5 # Find hypothesis in the whole search tree with highest score according to heuristc χ
6 for σtmp in SearchTree do
7 if χ(σtmp) > χ(σbest) then
8 σbest ← σtmp

9 Σρ,σbest
← ρ(σbest)

10 for σnew in Σρ,σbest
do

11 if σnew is not too weak then
12 SearchTree.add(σnew)

13 until stop criterion is satisfied;

Lecture). Now, if we want to learn a concept description for CS students, a
valid hypothesis telling CS students apart from philosophy students would be
Person ⊓ ∃attends.CSLecture. However, during the refinement process, the hy-
potheses that are generated in all but the last iteration cover positive and neg-
ative examples to the same extent. Thus, a greedy and myopic learning algo-
rithm could prune the refinement chain in earlier iterations, e.g. after refining
to Person⊓∃attends.⊺ as it does not bring any quality improvements in terms of
the concept description’s classification accuracy.

A heuristic, being the component in a CL setting that takes care of the
assessment of generated hypotheses, assigns numeric quality scores. Thus, it
makes two hypotheses comparable, and imposes an order on the elements of the
hypothesis space. Moreover, a heuristic may mark certain refinements as ‘too
weak’ for further consideration, thus ‘cutting’ refinement edges in the search tree
which will then never be followed. This quality-based pruning further restricts
the considered part of the hypothesis space as sketched in Figure 1. There are
several actual quality metrics proposed for the binary [10] and three-valued [16]
CL settings. Further, a heuristic might as well consider structural properties of
a concept, e.g. penalizing overly complex hypotheses. In essence, the heuristic of
a CL algorithm defines the exploitation strategy. However, it may also contain
explorative traits, e.g. when penalizing hypotheses that were refined already
too often, thus forcing the algorithm to explore other regions of the hypothesis
space. In the CL model we introduced here, the heuristic is the core component
to balance the exploration vs. exploitation trade-off. It will be denoted as a
function χ ∶ Σ ↦ R mapping hypotheses to real numbers in the following.

Having the notions of a refinement and a quality score in place, the analogies
to the Hill Climbing strategy can be illustrated. In essence, Hill Climbing can be
explained as iteratively assessing new candidate solutions retrieved by refining
a given candidate and adopt new candidates if the quality score improved [13]
(cf. Algorithm 2). To compare this with concept learning, a basic algorithm de-
scription abstracted from OCEL and CELOE is provided in Algorithm 1. One
difference between refinement-based CL and Hill Climbing is that the refine-
ment operator in concept learning, ρ, is defined to return a set of candidates,
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whereas the refinement in Hill Climbing, ρhc, returns just one refined hypothesis
per invocation. Another difference is that a Hill Climbing algorithm would just
keep track of the current best candidate hypothesis, whereas the CL algorithm
presented here keeps track of the whole pruned sub space of the hypothesis
space, explored so far. It is stored in the form of a search tree making use of
the predecessor/successor relations imposed by the refinement operator. While
this comes with a certain memory overhead, the search tree approach is more
flexible, especially when the assessment scores of hypotheses may be dynamic.
Also, since this allows to get a good overview of how well a certain region of
the hypothesis space is explored (e.g. in terms of the number of the child nodes,
tree depth etc.) this is of particular use for a balanced exploration strategy. In
this regard, even though we kept the variable name σbest to ease the comparison
with Algorithm 2, the hypothesis refined in a certain iteration does not have to
be the best, e.g. in terms of its classification quality, but should rather be un-
derstood as the best choice in terms of the “exploration-exploitation” strategy
of the applied heuristic. Accordingly, neither OCEL nor CELOE strictly follow
a greedy (and thus myopic) Hill Climbing approach but apply such balancing
strategies. In their default settings both algorithms have built-in measures to
escape local optima. However, the presented concept learning model can still
be used to implement a pure greedy Hill Climbing-based approach by defining
the heuristic accordingly. To do so, in Section 4 we configure the OCEL and
CELOE algorithm in the most greedy way to show the potentials of a more bal-
anced heuristic in terms of exploration. In the following, we will introduce the
established Simulated Annealing meta-heuristic which dynamically adjusts the
explorative and exploitative traits of a learning algorithm.

3.3 Simulated Annealing

When applying a Hill Climbing strategy, a refinement will only be applied if it
improves the quality of the hypothesis w.r.t. a heuristc χ. Then every move will
go ‘uphill’ which makes Hill Climbing a purely exploitative approach leading to
myopia in case of local optima. The Simulated Annealing meta-heuristic dynam-
ically adds explorative facets to the Hill Climbing procedure in a controlled way.
This means, that with some probability, a move might go ‘downhill’, irrespec-
tive of the check whether the quality of a refined hypothesis ρhc(σ) improved
over the initial hypothesis σ. The probability of allowing such downhill moves

is given by p = e
χ(ρhc(σ))−χ(σ)

t . This probability depends on the magnitude of the
quality degradation of ρhc(σ) over σ, where greater degradations make it less
likely to take a downhill move. On the other hand, p depends on the parameter
t which is usually interpreted as the temperature of the Simulated Annealing
process. Higher temperatures increase the probability of taking downhill steps
(which favors exploration), whereas lower temperatures decrease the probability
p making the process more Hill Climbing-like. Simulated Annealing starts with
a high temperature and cools down during the execution, turning the initially
fully explorative strategy into a fully exploitative one. A sketch of the whole
procedure is given in Algorithm 3. Besides cooling down one ‘degree’ at each
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Algorithm 2: Hill Climbing
Result: The best solution σ
σ ← initial candidate solution
repeat

σnew ← ρhc(σ) ;
if χ(σnew) > χ(σ) then

σ ← σnew

until σ is the ideal solution or we
run out of time;

Algorithm 3: Simulated Annealing
Result: The best solution σbest

t← high initial temperature
σ ← initial candidate solution
σbest ← σ
repeat

σnew ← ρhc(σ));

p← e
χ(σnew)−χ(σ)

t

if χ(σnew) > χ(σ) or rand(0,1)< p then
σ ← σnew

t← t − 1
if χ(σ) > χ(σbest) then

σbest ← σ

until σbest is the ideal solution, we run out
of time, or t = 0;

iteration (as shown in Algorithm 3), other cooling schedules are possible, too.
If we relax the stop criterion of t being equal to 0, it might be the case

that, after being cooled down, the algorithm gets stuck in a local optimum.
To remedy this, the Simulated Annealing approach can be extended to ‘heat up’
again, whenever there are no improvements. We will call this Adaptive Simulated
Annealing and will investigate its performance impact in Section 4. For this
adaptive attempt further parameters need to be adjusted. First, analogous to
the cooling schedule, there should be a strategy how fast to heat up again. Besides
this, one needs to declare when to heat up, i.e. after how many iterations without
improvement the cooling process will be reverted to a more explorative strategy.

3.4 Simulated Annealing in Concept Learning

The application of Simulated Annealing to concept learning follows the same
goal of balancing exploration and exploitation during the learning process in a
systematic way. The core intuition is to be more explorative when the hypothe-
ses are of lower quality and gradually switch to a more greedy strategy when
the quality of the learned concepts increases. Other than the aforementioned
Hill Climbing approach, the refinement operator we consider in our CL setting
returns a set of hypotheses, not just a single refinement. Therefore, introducing
explorative behavior goes beyond probabilistically accepting or rejecting a single
refinement. Instead, we refer to the search tree to introduce probabilistic, explo-
rative moves. To pick a node from the search tree for applying the refinement
operator, we usually choose the best one w.r.t. the algorithm’s search heuristic
(line 6-8 in Algorithm 1). In the proposed Simulated Annealing approach to con-
cept learning, this is replaced by randomly choosing an arbitrary node with the
probability p. The definition of p, however, also needs to be adjusted. Since we
no longer have one hypothesis and just one refined version of it, we cannot refer
to the quality improvement induced by the refinement step, anymore. To follow
the intuition for introducing Simulated Annealing into the CL process, we base
the value of p on the quality of the currently best hypothesis χ(σbest). Accord-

ingly, p is adjusted to p = e
−χ(σbest)

t . In its basic form, the proposed approach will
decrease t after each iteration (i.e. the repeat loop in line 4-13 of Algorithm 1).
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The value of t is not considered as a stop criterion. To introduce an adaptive
behavior for each iteration, we keep track whether the quality score of the best
hypothesis, i.e. χ(σbest), improved. After a certain number of iterations without
improvements, the temperature t is increased again, pushing the algorithm back
to a more explorative behavior.

4 Empirical Evaluation

For empirical evaluations, we implemented our Simulated Annealing approach
as part of the DL-Learner framework. In particular, we extended the OCEL
and CELOE algorithms to investigate the potential of this meta-heuristic in
CL. A new heuristic was designed realising the Simulated Annealing strategy
as introduced in Subsection 3.4. OCEL and CELOE can be run in a pure or
adaptive Simulated Annealing setting. Both versions are evaluated in our exper-
iments. The source code of the implemented algorithms is freely available in the
feature/extended-metaheuristics branch of the DL-Learner GitHub project5. In
the following, we explain the evaluation setting and discuss the results.

4.1 Evaluation Setup

Two types of evaluation setups have been considered: 1) a setting for evaluating
an algorithm’s capabilities of tackling the myopia problem, 2) a setting for pro-
viding insights into the performance of the CL approaches on real world learning
problems. For the first part, we developed a dataset generator which can create
knowledge bases in OWL of arbitrary size (in terms of the defined classes, ob-
ject properties, datatype properties and individuals). For each dataset, a target
concept description Ctarget ≡ ∃r1.(⋯∃rn.C+)⋯) is generated, where all ri (with
1 ≤ i ≤ n) and C+ ∈ NC are chosen randomly. The parameter n defines the (nest-
ing) depth of the nested existential restriction. Further, the generator declares
a defined number of positive and negative examples, as well as additional in-
dividuals being neither part of the positive nor part of the negative examples.
The dataset generator takes care of creating axioms such that all positive ex-
amples will be instances of the target concept. Moreover, the atomic class filler
concept C+ has a sibling class C−, such that all negative examples are instances
of ∃r1.(⋯∃rn.C−)⋯). Accordingly, all hypotheses on the refinement chain up the
second last step will cover positive and negative examples to the same extent.
We generated three learning scenarios for each depth n ∈ {2,3,4}. The datasets
are available for download on the dataset generator project page on GitHub6.
All datasets have 50 classes, 20 object properties, 10 data properties, as well as
50 positive and 50 negative example individuals. Moreover, the total number of
individuals is 300 per each dataset for depth 2, 400 for each dataset of depth 3,

5 https://github.com/SmartDataAnalytics/DL-Learner/tree/feature/

extended-metaheuristics
6 https://github.com/patrickwestphal/learning_scenario_generators/

releases/tag/v0.1.0

https://github.com/SmartDataAnalytics/DL-Learner/tree/feature/extended-metaheuristics
https://github.com/SmartDataAnalytics/DL-Learner/tree/feature/extended-metaheuristics
https://github.com/patrickwestphal/learning_scenario_generators/releases/tag/v0.1.0
https://github.com/patrickwestphal/learning_scenario_generators/releases/tag/v0.1.0
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and 500 for each dataset of depth 4. The number of axioms for depth 2 datasets
is 989, 985, and 986, respectively. For depth 3, the generated datasets have an ax-
iom count of 1297, 1348, and 1371, respectively, and for depth 4 it is 1738, 1705,
and 1694. We refer to this part of the evaluation as synthetic datasets. In the
second part of our evaluation we used the datasets provided by the SML-Bench
benchmarking system7. The properties of the respective datasets and learning
problems are discussed in [21].

In the evaluation, we compare OCEL and CELOE with different configura-
tions. As a baseline for both of the algorithms we configured OCEL and CELOE
to be as greedy (and thus, myopic) as possible. Please note that the applied set-
tings still will not make OCEL and CELOE purely greedy algorithms but still
leave some measures against myopic behavior in place which cannot be disabled.
We will refer to these baseline settings as OCEL (greedy) and CELOE (greedy).

We compare these two base line systems with their respective versions hav-
ing the Simulated Annealing extensions in place. The start temperature for t
is set to 2000 for each system. We configure them to be evaluated in two dif-
ferent settings: One configuration using the ‘pure’ Simulated Annealing method
(OCEL SA, CELOE SA), and one version applying Adaptive Simulated Anneal-
ing (OCEL ASA, CELOE ASA). For OCEL ASA and CELOE ASA we set the
reHeatThreshold to 2, which means that the temperature will be increased after
two iterations without improvement.

For comparison against the algorithms in their default settings we also eval-
uated OCEL (default) and CELOE (default). For all OCEL versions we set the
required noisePercentage parameter to 35, which makes OCEL accept a candi-
date expression even if 35% of the examples were misclassified. This parameter
was set to a higher value to make OCEL accept and report hypotheses even if
they are quite weak, instead of just returning an error message saying that no
concept could be learned that complies with the (stricter) noise setting. We could
not compare with other concept learning systems, e.g. those presented in [8,7,15],
since, to the best of our knowledge, the respective implementations are tied to
pre-defined evaluation scenarios and it would require a considerable refactoring
effort to make them run standalone. All experiments were executed on a machine
with 2 Intel Xeon ‘Broadwell’ CPUs with 8 cores running at 2.1GHz with 128GB
of RAM using the SML-Bench benchmark executor.

4.2 Results

Synthetic Datasets The experiments performed on the synthetic datasets al-
low us to investigate the influence of the allotted execution time and the com-
plexity of the target concept to learn. Whereas it is expected that a greater
execution time will lead to better results, we are also interested in the learning
behavior of the different algorithms having only a restricted time budget. We

7 https://github.com/SmartDataAnalytics/SML-Bench/tree/updates/

learningtasks

https://github.com/SmartDataAnalytics/SML-Bench/tree/updates/learningtasks
https://github.com/SmartDataAnalytics/SML-Bench/tree/updates/learningtasks
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Table 2: Evaluation results on synthetic datasets with a nesting depth of 2.
Reported are the average accuracy and its standard deviation (top), as well
as average F1-score and its standard deviation (bottom) of the 10-fold cross
validation across all three datasets.

Run-
time

OCEL (de-
fault)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

5s 0.76 ±0.17 0.76 ±0.17 0.71 ±0.17 0.71 ±0.17 1.00 ±0.00 0.50 ±0.00 0.50 ±0.00 0.50 ±0.00
10s 0.76 ±0.17 0.76 ±0.17 0.71 ±0.17 0.71 ±0.17 1.00 ±0.00 0.50 ±0.00 0.67 ±0.24 0.67 ±0.24
30s 0.76 ±0.17 0.76 ±0.17 0.73 ±0.17 0.73 ±0.18 1.00 ±0.00 0.50 ±0.00 0.68 ±0.24 0.68 ±0.24
60s 0.76 ±0.17 0.73 ±0.16 0.73 ±0.18 0.70 ±0.16 1.00 ±0.00 0.50 ±0.00 1.00 ±0.00 1.00 ±0.00

Run-
time

OCEL (de-
fault)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

5s 0.61 ±0.32 0.61 ±0.32 0.53 ±0.32 0.53 ±0.32 1.00 ±0.00 0.67 ±0.00 0.67 ±0.00 0.67 ±0.00
10s 0.61 ±0.32 0.61 ±0.32 0.52 ±0.32 0.52 ±0.32 1.00 ±0.00 0.67 ±0.00 0.78 ±0.16 0.78 ±0.16
30s 0.61 ±0.32 0.61 ±0.32 0.56 ±0.32 0.56 ±0.33 1.00 ±0.00 0.67 ±0.00 0.79 ±0.16 0.79 ±0.16
60s 0.61 ±0.32 0.56 ±0.33 0.55 ±0.34 0.52 ±0.31 1.00 ±0.00 0.67 ±0.00 1.00 ±0.00 1.00 ±0.00

compared all OCEL and CELOE variants on the synthetic datasets with dif-
ferent nesting depths n. We chose nesting depths of 2, 3, and 4. With higher
nesting depths the performance of all the evaluated learning algorithms dropped
and rendered a comparison rather meaningless. We performed our evaluation in
a 10-fold cross validation setting on each of three different random learning sce-
narios we generated per nesting depth and report the overall average accuracy
and F1-score of the best solutions found together with their standard deviations.
We repeated the evaluation run with different allotted execution times ranging
from 5s to 60s. The results are discussed for each nesting depth.

Nesting depth = 2 (Table 2). With a nesting depth of 2 the target con-
cept description to learn has the shape of a doubly nested existential restriction
∃r1.(∃r2.C+). This expression is still simple enough to favor CELOE’s learn-
ing strategy of finding simple and human-readable concept descriptions. It can
be seen that the explorative trait of the Simulated Annealing variants seem-
ingly come as an overhead here, that does not pay off unless a long enough
execution time is granted. The OCEL variants perform worse than CELOE (de-
fault) and establish a middle ground with accuracies around 75%. It can be
seen that especially OCEL (default) and OCEL (greedy) behave very similar
in terms of the susceptibility to execution time constraints. This also suggests
that, other than CELOE (greedy), the OCEL (greedy) still has enough built-in
explorative characteristics that allow it to overcome myopia irrespective of the
settings we applied. This also holds for the following experiments which renders
OCEL (greedy) rather unsuitable as a myopic base line for OCEL SA and OCEL
ASA. However, we still kept it for reference.

Nesting depth = 3 (Table 3). With the more complex structure of the tar-
get concept description ∃r1.(∃r2.(∃r3.C+)) the CELOE variants fall behind in
terms of accuracy, as expected due to their bias for simpler concepts. The num-
bers still show a considerable advantage of applying the Simulated Annealing
meta-heuristic in terms of accuracy and give the overall best F1-scores for this
experiment which shows the potential of adding further explorative traits to
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Table 3: Evaluation results on synthetic datasets with a nesting depth of 3.
Reported are the average accuracy and its standard deviation (top), as well
as average F1-score and its standard deviation (bottom) of the 10-fold cross
validation across all three datasets.

Run-
time

OCEL (de-
fault)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

5s 0.74 ±0.22 0.51 ±0.16 0.79 ±0.27 0.76 ±0.27 0.52 ±0.06 0.50 ±0.04 0.68 ±0.23 0.68 ±0.23
10s 0.74 ±0.22 0.72 ±0.24 0.80 ±0.27 0.76 ±0.27 0.52 ±0.06 0.50 ±0.04 0.68 ±0.23 0.68 ±0.23
30s 0.74 ±0.22 0.74 ±0.22 0.78 ±0.22 0.77 ±0.23 0.52 ±0.06 0.50 ±0.04 0.68 ±0.23 0.68 ±0.23
60s 0.74 ±0.22 0.73 ±0.22 0.78 ±0.22 0.76 ±0.23 0.52 ±0.06 0.50 ±0.04 0.69 ±0.23 0.69 ±0.23

Run-
time

OCEL (de-
fault)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

5s 0.63 ±0.31 0.36 ±0.17 0.73 ±0.32 0.71 ±0.32 0.67 ±0.03 0.66 ±0.03 0.78 ±0.16 0.78 ±0.16
10s 0.63 ±0.31 0.62 ±0.32 0.74 ±0.32 0.71 ±0.32 0.67 ±0.03 0.66 ±0.03 0.78 ±0.16 0.78 ±0.16
30s 0.63 ±0.31 0.63 ±0.31 0.70 ±0.31 0.73 ±0.28 0.67 ±0.04 0.66 ±0.03 0.78 ±0.16 0.78 ±0.16
60s 0.63 ±0.31 0.61 ±0.31 0.69 ±0.31 0.70 ±0.30 0.67 ±0.04 0.66 ±0.03 0.78 ±0.16 0.78 ±0.16

CELOE’s heuristic. However, it can be seen, that the adaptive setting seemingly
hardly influences the outcomes of CELOE ASA in comparison with CELOE SA.

The OCEL variants in general perform better in terms of accuracy and pro-
vide a similar F1-score compared to CELOE (default) and CELOE (greedy).
The execution time constraints do not influence OCEL (default) but drastically
do so in case of the other OCEL variants. Especially in case of very short exe-
cution times OCEL (greedy), OCEL SA, and OCEL ASA fail to find solutions
for a considerable number of folds across all datasets. Accordingly, the num-
bers provided by SML-Bench might be misleading, as it only gives the averages
of the folds where a solution was found. In Table 3 we marked these cases in
brown. For the Simulated Annealing variants this shows that a sufficiently long
runtime is needed to benefit from their explorative nature. With increased ex-
ecution times, however, this ‘exploration penalty’ pays off and OCEL SA and
OCEL ASA outperform the other OCEL variants both in terms of accuracy and
F1-score. Furthermore in case of OCEL we can see an influence of the adaptive
setting of OCEL ASA which gives an improved F1-score in our experiment.

Overall, this scenario seems to mark the sweet spot as the target concept
description to learn is complex enough to gain advantage from additional explo-
rative characteristics during the learning phase. Whereas runtime restrictions
do not matter for the CELOE variants, OCEL’s Simulated Annealing adaptions
seem to need a certain amount of time to guarantee that an acceptable solution
(w.r.t. to the configured noise setting mentioned above) can be found.

Nesting depth = 4 (Table 4). With a nesting depth of 4, i.e. the target concept
structure ∃r1.(∃r2.(∃r3.(∃r4.C+))), the performance of most of the examined
algorithm decreased. The experiment seems to mark a tipping point especially for
the OCEL variants as none of them managed to find acceptable solutions (given
their configured noise settings) for all the folds across the datasets. Accordingly,
the results should be interpreted with caution as they might relate to different
subsets of the training and test folds. For CELOE in particular the accuracy and
F1-score of the Simulated Annealing variants dropped compared to the nesting
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Table 4: Evaluation results on synthetic datasets with a nesting depth of 4.
Reported are the average accuracy and its standard deviation (top), as well as
the average F1-score and its standard deviation (bottom) of the 10-fold cross
validation across all three datasets.

Run-
time

OCEL (de-
fault)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

5s 0.61 ±0.18 0.60 ±0.18 0.59 ±0.19 0.62 ±0.13 0.54 ±0.11 0.49 ±0.03 0.53 ±0.10 0.53 ±0.10
10s 0.65 ±0.14 0.65 ±0.10 0.60 ±0.13 0.60 ±0.13 0.54 ±0.11 0.49 ±0.03 0.53 ±0.10 0.53 ±0.10
30s 0.61 ±0.18 0.62 ±0.18 0.62 ±0.13 0.60 ±0.13 0.53 ±0.11 0.49 ±0.03 0.53 ±0.11 0.53 ±0.11
60s 0.61 ±0.18 0.60 ±0.18 0.59 ±0.19 0.62 ±0.13 0.53 ±0.11 0.49 ±0.03 0.53 ±0.11 0.53 ±0.11

Run-
time

OCEL (de-
fault)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

5s 0.50 ±0.28 0.48 ±0.28 0.53 ±0.26 0.55 ±0.19 0.68 ±0.08 0.66 ±0.02 0.67 ±0.08 0.67 ±0.08
10s 0.57 ±0.20 0.54 ±0.18 0.58 ±0.16 0.58 ±0.16 0.68 ±0.08 0.66 ±0.02 0.67 ±0.08 0.67 ±0.08
30s 0.50 ±0.28 0.53 ±0.26 0.55 ±0.19 0.57 ±0.16 0.67 ±0.08 0.66 ±0.02 0.67 ±0.08 0.67 ±0.08
60s 0.50 ±0.28 0.48 ±0.28 0.53 ±0.26 0.55 ±0.19 0.67 ±0.08 0.66 ±0.02 0.67 ±0.08 0.67 ±0.08

depth of 3. This suggests that explorative behavior does not bring any advantages
in a complex setting like this. Judging from the results of OCEL and CELOE
in their default settings, this might be due to their exploitative strategies which
are unfit for such a scenario, but which are essential for a balanced learning
approach taking advantage of both exploration and exploitation. Accordingly,
this suggests that a tailored heuristic would be needed to manage such scenarios,
which is beyond the scope of this work.

Overall, however, in this experimentation setting we could show that the ex-
isting learning algorithms OCEL and CELOE can benefit from the Simulated
Annealing meta-heuristic, especially in more complex cases which require a non-
myopic search approach. In the following subsection we will examine the perfor-
mance of the Simulated Annealing-based approaches on the real-world learning
tasks provided by the SML-Bench framework.

SML-Bench The experiments performed with the SML-Bench dataset library
will give an overview of how well the proposed Simulated Annealing extensions
work on real world problems. We chose all the datasets evaluated in [21] and
granted a maximum execution time of 3 minutes. (Longer execution times gave
no substantial improvements in terms of the results.) Overall it can be seen that
the Simulated Annealing variants are competitive w.r.t. their base algorithms. In
some cases, namely carcinogenesis/1, mutagenesis/42 and premierleague/1, the
time spent on exploration seems to cause that OCEL SA and OCEL ASA could
not find acceptable solutions for all folds that comply with their noise settings.
However, in case of carcinogenesis/1 OCEL in its standard settings even failed on
all but one fold which suggests that this not a problem inherent to the Simulated
Annealing approach. We marked these cases in brown in Table 5. The only
dataset where the Simulated Annealing variants did not provide any benefits is
mammographic/1. Here, the base algorithms outperform the extensions in terms
of accuracy, as well as F1-score. In all other cases we can see improvements, either
for OCEL or CELOE. Except for the premierleague/1 and pyrimidine/1 datasets
OCEL SA and OCEL ASA outperform OCEL (default). It seems, though, that
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Table 5: Average accuracy and its standard deviation (top), and average F1-
score and its standard deviation (bottom) of 10-fold cross validation run on
SML-Bench datasets

Learning
problem

OCEL
(default)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

carc./1 0.23 ±0.00 0.66 ±0.18 0.66 ±0.18 0.64 ±0.24 0.55 ±0.02 0.54 ±0.01 0.55 ±0.02 0.55 ±0.02
hepat./1 0.68 ±0.08 0.68 ±0.08 0.71 ±0.07 0.71 ±0.07 0.49 ±0.06 0.41 ±0.01 0.47 ±0.05 0.47 ±0.05
lymph./1 0.73 ±0.12 0.73 ±0.12 0.73 ±0.12 0.73 ±0.12 0.70 ±0.15 0.77 ±0.11 0.76 ±0.15 0.76 ±0.15
mam./1 0.82 ±0.05 0.82 ±0.05 0.77 ±0.08 0.77 ±0.08 0.49 ±0.02 0.46 ±0.00 0.46 ±0.00 0.46 ±0.00
mut./42 0.49 ±0.34 0.55 ±0.36 0.71 ±0.10 0.75 ±0.04 0.94 ±0.13 0.30 ±0.07 0.90 ±0.20 0.90 ±0.20
nctrer/1 0.80 ±0.09 0.80 ±0.09 0.82 ±0.11 0.82 ±0.11 0.59 ±0.03 0.59 ±0.01 0.61 ±0.04 0.61 ±0.04
prem./1 0.85 ±0.10 no results 0.83 ±0.15 0.83 ±0.15 0.98 ±0.05 0.49 ±0.02 0.64 ±0.25 0.64 ±0.25
pyrim./1 0.85 ±0.24 0.85 ±0.24 0.75 ±0.26 0.75 ±0.26 0.83 ±0.17 0.50 ±0.00 0.88 ±0.13 0.88 ±0.13

Learning
problem

OCEL
(default)

OCEL
(greedy)

OCEL SA OCEL
ASA

CELOE
(default)

CELOE
(greedy)

CELOE
SA

CELOE
ASA

carc./1 0.15 ±0.00 0.65 ±0.20 0.65 ±0.20 0.62 ±0.27 0.71 ±0.01 0.70 ±0.01 0.71 ±0.01 0.71 ±0.01
hepat./1 0.53 ±0.14 0.53 ±0.13 0.58 ±0.26 0.58 ±0.26 0.61 ±0.03 0.58 ±0.01 0.61 ±0.02 0.61 ±0.02
lymph./1 0.76 ±0.10 0.76 ±0.10 0.76 ±0.10 0.76 ±0.10 0.78 ±0.10 0.82 ±0.09 0.81 ±0.11 0.81 ±0.11
mam./1 0.78 ±0.08 0.78 ±0.08 0.73 ±0.12 0.73 ±0.12 0.64 ±0.01 0.63 ±0.00 0.63 ±0.00 0.63 ±0.00
mut./42 0.25 ±0.42 0.32 ±0.43 0.10 ±0.25 0.17 ±0.31 0.93 ±0.14 0.46 ±0.08 0.90 ±0.16 0.90 ±0.16
nctrer/1 0.84 ±0.06 0.84 ±0.06 0.87 ±0.07 0.87 ±0.07 0.74 ±0.01 0.74 ±0.01 0.75 ±0.02 0.75 ±0.02
prem./1 0.81 ±0.13 no results 0.83 ±0.16 0.83 ±0.16 0.98 ±0.05 0.66 ±0.02 0.76 ±0.17 0.76 ±0.17
pyrim./1 0.84 ±0.22 0.84 ±0.22 0.67 ±0.38 0.67 ±0.38 0.84 ±0.15 0.67 ±0.00 0.89 ±0.13 0.89 ±0.13

the Adaptive Simulated Annealing approach provides very similar results to the
‘pure’ variant. This would suggest, that switching back to a more explorative
strategy does not bring great advantages over keeping the exploitative strategy
in OCEL. This picture is even more clear in case of CELOE SA and CELOE
ASA which always provided the same numbers throughout all experiments (incl.
those on the synthetic datasets). Nonetheless, CELOE’s Simulated Annealing
variants could prove better or equal to CELOE (default) in most of the cases.
Overall, even though the Simulated Annealing variants proved to be better suited
to learn the complex target expressions in the synthetic experiments this does
not mean that they usually will produce more complex hypotheses. The results
of the SML-Bench experiments rather show that while the learned expressions
do differ, there are no such tendencies towards more complex class expressions.

5 Conclusions

In this paper we proposed an extension for two established concept learning
algorithms from the DL-Learner framework based on the Simulated Annealing
meta-heuristic. The design of the algorithm extensions is motivated by the goal
to overcome the myopia problem by means of a systematic strategy for balancing
the exploration and exploitation traits of a concept learning algorithm. On ded-
icated synthetic datasets we showed that our approach does indeed outperform
OCEL and CELOE in more greedy, exploitation-oriented configurations, as well
as in their default settings. We could further prove the competitiveness of our
Simulated Annealing approach on real world concept learning problems privided
by the SML-Bench benchmarking framework.
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In future work, we will investigate settings for improving the Adaptive Sim-
ulated Annealing, especially for the CELOE algorithm where the ‘re-heat strat-
egy’ only had a minor impact. Further, we will examine other options to decide
whether to focus more on explorative or exploitative search. Besides this, gained
insights will also help to investigate related meta-heuristics not evaluated on the
concept learning setting, yet.
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