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Abstract—Knowledge graphs (KGs) represent world facts in a
structured form. Although knowledge graphs are quantitatively
huge and consist of millions of triples, the coverage is still
only a small fraction of world’s knowledge. Among the top
approaches of recent years, link prediction using knowledge
graph embedding (KGE) models has gained significant attention
for knowledge graph completion. Various embedding models
have been proposed so far, among which, some recent KGE
models obtain state-of-the-art performance on link prediction
tasks by using embeddings with a high dimension (e.g. 1000)
which accelerate the costs of training and evaluation considering
the large scale of KGs. In this paper, we propose a simple but
effective performance boosting strategy for KGE models by using
multiple low dimensions in different repetition rounds of the same
model. For example, instead of training a model one time with
a large embedding size of 1200, we repeat the training of the
model 6 times in parallel with an embedding size of 200 and
then combine the 6 separate models for testing while the overall
numbers of adjustable parameters are same (6*200=1200) and
the total memory footprint remains the same. We show that
our approach enables different models to better cope with their
expressiveness issues on modeling various graph patterns such
as symmetric, 1-n, n-1 and n-n. In order to justify our findings,
we conduct experiments on various KGE models. Experimental
results on standard benchmark datasets, namely FB15K, FB15K-
237 and WN18RR, show that multiple low-dimensional models
of the same kind outperform the corresponding single high-
dimensional models on link prediction in a certain range and
have advantages in training efficiency by using parallel training
while the overall numbers of adjustable parameters are same.

Index Terms—Graph Embedding, Ensemble Learning, Statis-
tical Relational Learning, Link Prediction

I. INTRODUCTION

Numerous knowledge graphs including lexical datasets and
world’s knowledge, such as WordNet [1], FreeBase [2],
YAGO [3], and DBpedia [4], have been published with differ-
ent utilization purposes. These KGs have become a significant
resource for many AI-based applications such as question
answering and recommendation systems [5]. Therefore, a new
horizon for using machine learning approaches on structured
data at scale has been opened up for leading science and
industry.

Despite all the advantages of KGs in down stream tasks, one
of the main challenges of existing KGs is their incomplete-
ness [6]. Knowledge graph completion using link prediction

approaches aims at addressing the incompleteness of KGs.
Among various link prediction approaches, knowledge graph
embedding (KGE) has gained significant attention recently.
A KGE model takes a KG in the form of triple facts (h, r, t)
where h, t are entities (nodes) and r is a relation (link) between
the entities (e.g. (Berlin, Capital of, Germany)). A vector is
assigned to each element of a triple (h, r, t) in a KG and
all vectors are then adjusted by optimizing a loss function.
The likelihood of a triple is then measured by using a score
function over the embedding vectors (h, r, t). To evaluate
the performances of KGE models on link prediction, several
benchmarks including FB15K, WN18 [6], FB15K237 and
WN18RR [7] are established by extracting subsets from large-
scale KGs, e.g., WordNet [8] and FreeBase [9].

The score functions of models play an important role in
the performance of KGE models. Numerous KGE models
with a focus on score functions have been proposed. Among
them, several recent models, including ComplExN3 [10], Ro-
tatE [11] and QuatE [14] take the advantage of hyper-complex
representations and high-dimensional embeddings to achieve
the state-of-the-art results. The high performances of RotatE,
ComplExN3 and QuatE on FB15K are achieved by using
embeddings with the dimensions of 1000, 1000 and 2000. Due
to the usage of complex-valued vectors and quaternion vectors
of ComplExN3 and QuatE, their best performing settings result
in 4000 adjustable parameters for each entity and relation.
On the other hand, for KGE models with higher embedding
dimensions, there is a risk of the redundancy of parameters
leading to unnecessary consumption on training time as well
as memory space while the generalisation capabilities of the
learned models are not improved. For example, the experimen-
tal results of ComplExN3 shows that the performances of a
ComplExN3 with 500-dimensional embeddings on FB15K237
and WN18RR are almost same as a ComplExN3 with a
embedding dimension of 2000.

Such observations show that the above mentioned state-of-
the-art models take advantages of high embedding dimensions
and multiple-vector representation resulting in a large embed-
ding size d which is equal to the total number of adjustable
parameters of each entity/relation embedding. In other words,
these models use single model with a multi-part high dimen-
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sional embeddings (the total embedding size is 1 × dh). In
contrast to those models, we use the same model multiple (k)
times in parallel trainings with low dimension (the overall
embedding size is k× dl). In order to have a fair comparison,
we enforce k × dl = 1 × dh to guarantee that the overall
numbers of adjustable parameters of multiple low-dimensional
models is equal to the single high-dimensional model. Using
multiple low dimensional model instead of a single high
dimensional model improves the expresivity of various models
in handling various patterns including symmetric, 1-n, n-1 and
n-n. The experimental results on three benchmarks show that
the ensemble of the same KGE model several times trained
with low-dimensions results in a better performances than
training that model once with a high dimension, regarding link
prediction accuracy (higher expectations and lower standard
deviations) and training time.

II. RELATED WORK

KGE models can be roughly classified into two groups,
distance-based models and semantic matching models [5].
Here we review two distance-based KGE models, i.e., TransE,
RotatE and three semantic matching models i.e., DistMult,
ComplEx and ComplExN3. Each KGE model defines a score
function f(h, r, t) which takes embedding vectors of a triple
(h, r, t) and returns a value showing the degree of correctness
of the triple.
TransE [6] computes the score of a triple h, r, t by measuring
the distance between relation-specific translated head (h + r)
and the tail t as

f(h, r, t) = −‖h + r− t‖, (1)

to enforce h + r ≈ t for each positive triple (h, r, t) in the
vector space. The TransE model embeds entities/relation into
d dimensional real space, i.e., h, r, t ∈ Rd.
RotatE [11] aims at mapping each element of the head
embedding (hi) to the corresponding tail embedding ti by
using relation-specific rotation ri = eiθ. The score of each
triple (h, r, t) is computed as

f(h, r, t) = −‖h ◦ r− t‖, (2)

where ◦ is the element-wise multiplication and h, r, t ∈ Cd.
This enforces h ◦ r ≈ t for each positive triple (h, r, t).
DistMult [15] is based on the Bilinear model [16] where each
relation is represented by a diagonal matrix rather than a full
matrix. The formulation of score function is

f(h, r, t) = h>diag(r)t =

d∑
i=0

hi · ri · ti. (3)

This score captures pairwise interactions between only the
components of h and t along the same dimension and thus
can only deal with symmetric relations.
CompEx [17] was proposed as an elegant way to solve the
shortcoming of DistMult in modeling asymmetric relation. Its

main contribution is to embed KGs in complex space. The
score function is defined as

f(h, r, t) = Re(h>diag(r)t) = Re

(
d∑
i=1

hirit̄i

)
, (4)

where r,h, t ∈ Cd, ti represents the complex conjugate of t.
By using this scoring function, triples that have asymmetric
relations can obtain different scores. ComplExN3 [10] extends
ComplEx with weighted nuclear 3-norm (N3 regularization)
and uses a multi-class logistic loss function as optimization
objective to achieve the state-of-the-art results.

Krompass and Tresp [20] integer multiple different KGE
models into one score function and combines them during
the training phase. Likewise, Muroemagi et al. [22] combine
different word embedding models using an iterative method.
However, we focus on stretching and squeezing the dimensions
of the same models which are trained separately and combined
only for testing.

III. PROPOSED APPROACH

Compared to TransE and DistMult, ComplExN3, RotatE
and QuatE take advantages of high-dimensional multi-part
embeddings to achieve state-of-the-art performances on link
prediction. In these models, all parts of embeddings are
adjusted simultaneously. By contrast, in this part we propose
a new approach which combines multiple models of the same
kind where each model contains low-dimensional embeddings
and is trained separately.

Let us have a model M (e.g. RotatE) with the embedding
size d where d is equal to the total number of adjustable
parameters of each entity/relation embedding in a KGE model.
Let E denote the set of all entities and R the set of all
relations present in a knowledge graph. A triple is represented
as (h, r, t), with h, t ∈ E denoting head and tail entities
respectively and r ∈ R the relation between them. We use
Ω = {(h, r, t)} ⊆ E × R × E to denote the set of observed
triples. We follow the steps below in our approach:
(a) We first generate k times copies of an underlying model
M. The jth copy of the model is denoted by Mj , j =
1, . . . , k, and the corresponding dl dimensional embed-
dings of (h, r, t) are denoted by (hj , rj , tj). The vectors
are randomly initialized before training.

(b) We then train each of the models Mj , j = 1, . . . , k
separately with the same loss function. The training
process can speed up by using parallel computing.

(c) Finally, the testing is performed by using the following
score function

f(h, r, t) =
1

k

k∑
j=1

fM(hj , rj , tj), (5)

where fM(hj , rj , tj) is the score of a triple (h, r, t)
computed by the jth copy of the model.

Figure 1 gives an example of representation learning with
the ensemble of multiple DistMult models, named as MDist-
Mult. Firstly, the entity Berlin is represented as a vector with
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Fig. 1. An example of multiple vector representation learning with MDistMult

a dimension of k × dl. Then the vector is divided into k
separate vectors with dimensions of dl. Each separate vector
is trained with a single DistMult model. Given a triple (Berlin,
Capital of, Germany), its overall score is equal to the average
of its scores computed from the k separate DistMult models.

Note that all models are trained on a same dataset with same
hyperparamters and the only two difference between the mod-
els is the random initialization of the embedding vectors and
the random sampling during the training process. To verify the
efficiency of our approach, we keep the overall embedding size
dl of multiple low-dimensional models same as the embedding
size dh of the single high-dimensional model, i.e. k×dl = dh.
We follow the above steps to perform experiments on various
state-of-the-art models, including TransE, RotatE, DistMult,
ComplEx and ComplExN3. We also test DistMultN3, the
extension of DistMult with the N3 regularizer. We will later
elaborate on the embedding initialization and the optimization
objectives of various models as well as the parallel training
mechanism.

A. Initialization

In this work, combined multiple models of the same kind
are trained with same hyperparameters under the uniform
experiment setting and the only two model variations are from
the random initialization of embeddings before the training
process and the random sampling during the training process.

Following the previous work on KGE, we use Xavier uni-
form initialization for semantic matching models and Xavier
norm initialization for distance-based models. Xavier [26]
initialization can make variances of each neuron layer remain
the same and thus bring a faster converge speed. Xavier uni-
form initialization and Xavier norm initialization fill the input
embedding with values drawn from the uniform distribution
U(−a, a) and the normal distribution N (0, σ2) respectively,

where

a =

√
6

din + dout
, σ =

√
2

din + dout
. (6)

For KGE model, din is equal to the embedding size d and
dout = 0. We follow the original experimental settings to
uniformly initialize embeddings for TransE, RotatE and use
Xavier norm initialization for DistMult and ComplEx. On the
other hand, embeddings are initialized as sparse vectors for
ComplExN3 and DistMultN3. Since the random seed is not
fixed in the experiments, embeddings of different copies of
the same model are initialized as different vectors.

B. Optimization
An appropriate loss function is quite important for model

optimization. Most of distance-based KGE models like TransE
use a margin rank loss function as optimization objective [6,
18, 19]. The original work introducing ComplEx obtained the
state-of-the-art results with a binary logistic loss function [17].
RotatE adds a margin parameter into the binary logistic loss
function without the regularization term. This margin-based
logistic loss function has been proven to be helpful to enhance
the performance of distance-based models [11, 12, 13]. In
this work, we utilize the binary logistic loss function to train
TransE, RotatE, DistMult and ComplEx. Given a training triple
(h, r, t), the binary logisitic loss function is defined as follows,

Lb =− log σ(γ + fM(h, r, t))−
η∑
i=1

p(h′i, r, t
′
i)log σ(−γ

− fM(h′i, r, t
′
i)) + λ(||h||22 + ||r||22 + ||t||22). (7)

where f(·) denotes the specific score function of the KGE
model M as defined in the previous section, σ(·) denotes
the sigmoid function, γ denotes the margin of distance-based
model, η is the number of negative samples per positive ones,
(h′i, r, t

′
i) is the ith negative sample corresponding to (h, r, t)

and p(h′i, r, t
′
i) is the weight of the negative sample which is

computed from the following equation,

p(h′i, r, t
′
i) =

exp(fM(h′i, r, t
′
i))∑η

j=1 exp(fM(h′j , r, t
′
j))

. (8)

Notice that the above loss function is exactly same as the
binary logistic loss function used in [17] when γ = 0 and
p(h′i, r, t

′
i) = 1/η. It is also equivalent to margin-based logistic

loss function defined in [11] when λ = 0.
Different from previous work, ComplExN3 performs link

prediction as a multiclass classification task by using the
full negative sampling and the multi-class log-loss with N3
regularization instead of random negative sampling and the
binary logistic loss with L2 regularization [10, 21]. We follow
such setting for DistMultN3. The multiclass log-loss of a
training triple (h, r, t) is defined as follows,

Lm = L1
m + L2

m + λ(||h||33 + ||r||33 + ||t||33),

L1
m = −log(

exp(fM(h, r, t))∑
h′∈E exp(fM(h′ , r, t))

),

L2
m = −log(

exp(fM(h, r, t))∑
t′∈E exp(fM(h, r, t′))

).

(9)



C. Parallel Training

Data parallelism and task parallelism are two common
forms of parallel computing. Data parallelism divides data
equally among multiple processors and instantaneously ex-
ecute the same function over multiple data inputs across
multiple processors. In our case, the training process of each
copy Mj of the model M is taken as a separate task. For
each training task, since it is independent to each other, there
is no risk of being stuck with double buffering or waiting
other tasks. Thus, we can utilize task parallelism and data
parallelism for training multiple KGE models at the same time
in multi-GPU environments.

Multiple models can also be trained parallelly in a single-
GPU environment. A single process may not utilize all the
computation capacity and memory-bandwidth available on the
GPU. Nvidia Multi-Process Service (MPS) [23] allows kernel
and memcopy operations from different processes to overlap
on the GPU, achieving faster computation.

D. Generalization Ability

The performance of a KGE model heavily relies on the
ability of modeling various graph patterns such as symmetric,
1-n, n-1 and n-n patterns. However, not all patterns are
encoded by as single KGE model. For example, TransE as
a baseline suffers from issue of modeling symmetric, 1-n,
n-1 and n-n relations. Here we show that our approach on
training KGE models can help to cope with expresivity issue
of modeling patterns. We showcase the advantage of our
approach on TransE, which is one the baselines that has been
reported to suffer from various experisivity issues in modeling
symmetric, 1-n, n-1 and n-n relations [24].

Symmetric Pattern
Given a symmetric relation r (e.g. SimilarTo), TransE

cannot represent both h+r ≈ t and t+r ≈ h simultaneously
while the relation vector is non-zero. Therefore, given r 6= 0,
TransE can express either

h + r ≈ t, t + r 6= h, or
h + r 6= t, t + r ≈ h.

Therefore, if the score of (h, r, t) becomes zero, the score
of (t, r, h) becomes non-zero. For example, we have either
case 1: f(h, r, t) = 0, f(t, r, h) = η or case 2: f(h, r, t) =
η, f(t, r, h) = 0, which none of them does not show being
symmetric, even with using a very high embedding dimension
(e.g. 1000). That case 1 or case 2 happens depends on the
several random items used in the training (randomness in
initialization, data splitting and reshuffling etc). Therefore, in
different run of a single TransE, case 1 or 2 might be occurred.
Therefore, a single model with any dimension cannot properly
represent symmetric pattern. Now let us train TransE using our
approach, denoted by MTransE. Assume we train two TransE
models with low dimension. Because of using two different
runs, in which each one has its own randomness, there is
a possibility of having case 1 for the first slice of TransE

margin margin

TransE1

TransE2

TransE1

TransE2

TransE1+2

TransE1+2

Fig. 2. An example of MTransE modeling an n-1 relation

(i.e. TransE1) and case 2 for the second slice (TransE2).
Therefore, we have

h1 + r1 ≈ t1, t1 + r1 6= h1, and
h2 + r2 6= t2, t2 + r2 ≈ h2.

where (h1, r1, t1) are embeddings which are associated to
the first slice and (h2, r2, t2) are used for the second slice.
The overall score of (h, r, t) computed by MTransE becomes
f(h, r, t) = 0+η/2 = η/2 and for (t, r, h), the score becomes
f(t, r, h) = η/2 + 0 = η/2. Consequently, it is possible for
MTransE to model symmetric pattern.

n-1 Relation Pattern
In addition to symmetric, TransE suffers from encoding

other patterns such as 1-n, n-1 and n-n relations. Here we
focus on 1-n relation encoding in TransE and our model.

For simplicity of explanation, let n=2. Assume h1, h2 are
two different entities satisfying (h1, r, t) and a(h2, r, t) where
r is an n-1 relation. Since it is less likely that h1 = h2.
Therefore, for the relation r we have either

h1 + r = t,h2 + r 6= t, or

h1 + r 6= t,h2 + r = t.

Therefore, (h1, r, t) and (h2, r, t) get different scores while
both are positive triples (ranked differently).

Using MTransE, it is possible for the model to learn

h1
1 + r1 = t1,h

2
1 + r1 6= t1.

for the first slice and

h1
2 + r2 6= t2,h

2
2 + r2 = t2.

for the second slice. Therefore, we have f(h1, r, t) = 0+η1/2
and f(h2, r, t) = η2/2 + 0 for (h1, r, t), (h2, r, t) respectively.
As shown in Figure 2, these two triples have the possibility of
getting more close scores and consequently are ranked more
closely. The similar arguments can be used for other models
and patterns.

IV. EXPERIMENTS

1) Dataset: We use FB15K [6], FB15K-237 and
WN18RR [7] for evaluation. FB15K contains relation
triples from Freebase, a large tuple database with structured
general human knowledge. Another version of FB15K named
as FB15K-237 has been created to provide a more challenging



KG after removing inverse relations. WN18RR is extracted
from an English lexical database, WordNet, with no inverse
relations. All datasets statistics are shown in Table 1.

TABLE I
STATISTICS OF THE DATASETS

.

Dataset |E| |R| #Train #Valid #Test

FB15K 14951 1345 483142 50000 59071
FB15K237 14541 237 272115 17535 20466
WN18RR 40943 11 86835 3034 3134

2) Evaluation Metric: We evaluate the performance of link
prediction in the filtered setting: we first rank a test triple
(h, r, t) against all other candidate triples not appearing in the
training, validation, or test set, where candidates are generated
by corrupting the subject: (h, r, t′) to get the right rank of
(h, r, t). Likewise, the left rank of (h, r, t) is its rank against
candidate triples (h′, r, t) where (h′, r, t) /∈ Σtrain ∪Σvalid ∪
Σtest. We use Mean Reciprocal Rank (MRR) and Hits@N for
evaluation. The percentage of testing triples which are ranked
lower than N is considered as Hits@N. To compute MRR,
the following formula is used MRR = 1

2n

∑n
i=1

1
RRi

+ 1
LRi

where n is the number of testing triples, RRi and LRi are the
right rank and the left rank of the ith test triple. To alleviate the
noise from the random initialization and the random sampling,
in this paper we train and evaluate each KGE model 10 times
and compute the averages and the standard deviations of its
MRRs and Hits@Ns, no matter whether it is a single model
or a combination model. The averages of MRRs and Hits@Ns
are denoted as MRR and Hits@N, the standard deviations of
MRRs and Hits@Ns are denoted as σMRR and σHits@N.

3) Experimental Setup: We evaluate our proposed
approach by training TransE, RotatE, DistMult, ComplEx,
DistMultN3 and ComplExN3 in both single models with
different dimensions and multiple models with the same
dimensions. In practice, an overly small embedding size
e.g., d < 100 is not commonly used for KGE since a KGE
model with such a small embedding size is typically not
expressive enough to capture the semantics of entities and
relations in a large-size KG, whereas a KGE with a very
large dimension size suffers from over-fitting and excessive
consumptions on memory size and training time. Thus, we set
the embedding size to d = {200, 400, 600, 800, 1000, 1200}.
Another noteworthy point is that we define the embedding
size d as the total number of adjustable parameters in each
embedding. For a complex-valued embedding model, e.g.,
ComplEx, the embedding size is as twice as the embedding
dimension since each dimension has two elements of the
real part and the imaginary part. To train TransE, RotatE,
DistMult and ComplEx, we use an Adam optimizer with a
learning rate lr of 0.0003 and adopt the random negative
sampling. The number of mini batches is fixed as 100, the
ratio of negatives over positive training samples η is tuned
among {1, 3, 5, 8, 10}, the margin γ of a distance-based
model is tuned among {1, 3, 5, 8, 10, 15, 20, 25, 30} and the
regularization coefficient λ of a semantic matching model is

searched in {0.1, 0.03, 0.01, 0.003, 0.001}. For DistMultN3
and ComplExN3, we follow the experimental setting in [10]
to use an Adagrad optimizer with a learning rate lr of 0.1 and
tune the batch size b in {100, 1000}, regularization coefficient
λ in {0.1, 0.05, 0.01, 0.005, 0.001}. We use the early-stop
setting on validation set and set the maximum epoch to 5000.
A combination model of multiple models of a same kind
is named with an initial M, e.g., an MTransE model is the
ensemble of multiple TransE models. The implementation
has been done by using Pytorch on a single GPU device.

V. RESULTS AND DISCUSSION

A. Link Prediction Results

We first study the effect of k on the performance of the
ensemble KGE models (e.g., MTransE, MRotatE, MDistMult,
MComplEx, MDistMultN3 and MComplExN3) by fixing the
overall embedding size d = 1200 and tuning k ∈ {1, 2, . . . , 6}.
As shown in Figure 3, when the embedding sizes are fixed
as 1200, the number of combined KGE models of the same
kind k higher, the performance on FB15K of the combination
KGE model better regarding the averages and the standard
deviations of MRR and Hits@3. This observation supports the
intuition that the ensemble of multiple models can alleviate the
noise from the random initialization of single models.

We further compare the link prediction performances of
single high-dimensional KGE models (e.g., TransE, RotatE,
DistMult, ComplEx, DistMultN3 and ComplExN3) and the
simple ensembles of multiple low-dimensional KGE models
of the same kinds (e.g., MTransE, MRotatE, MDistMult,
MComplEx, MDistMultN3 and MComplExN3) with the same
dimension sizes. The embedding size of each low-dimensional
KGE models are fixed as 200 and we change the embedding
size d of an ensemble model, e.g., MTransE by tuning the
number of the combined low-dimensional models k, i.e.,
d = 200× k, k = 1, 2, . . . , 6.

Figure 4 and Figure 5 show the link prediction results
of the single high-dimensional models and the multiple low-

Fig. 3. Link prediction results of the tested models with the same embedding
size d = 1200 and different numbers k of the combined models on FB15K



Fig. 4. MRR for link prediction of all tested models with different overall embedding sizes d on KGE benchmarks

Fig. 5. Hits@3 for link prediction of the tested models with different overall embedding sizes d on KGE benchmarks

TABLE II
LINK PREDICTION RESULTS ON FB15K AND FB15K-237.

FB15K FB15K-237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE (d = 1200) 0.704 0.604 0.781 0.862 0.277 0.186 0.303 0.464
MTransE (d = 6 ∗ 200) 0.732 0.640 0.802 0.876 0.298 0.202 0.329 0.491
DitMult (d = 1200) 0.688 0.573 0.781 0.855 0.227 0.142 0.249 0.390
MDitMult (d = 6 ∗ 200) 0.718 0.603 0.815 0.883 0.237 0.160 0.260 0.399
ComplEx (d = 1200) 0.696 0.580 0.791 0.862 0.226 0.139 0.249 0.398
MComplEx (d = 6 ∗ 200) 0.710 0.590 0.810 0.886 0.240 0.162 0.264 0.400
RotatE (d = 1200) 0.727 0.630 0.802 0.868 0.290 0.197 0.319 0.478
MRotatE (d = 6 ∗ 200) 0.753 0.656 0.832 0.891 0.307 0.213 0.338 0.496
DitMultN3 (d = 1200) 0.836 0.796 0.865 0.909 0.355 0.260 0.390 0.547
MDitMultN3 (d = 6 ∗ 200) 0.848 0.813 0.869 0.910 0.357 0.263 0.392 0.548
ComplExN3 (d = 1200) 0.843 0.802 0.871 0.910 0.360 0.265 0.395 0.549
MComplExN3 (d = 6 ∗ 200) 0.859 0.829 0.877 0.911 0.364 0.268 0.400 0.555

dimensional models regarding MRR and Hits@3. Averagely,
the ensembles of multiple low-dimensional models outperform
the corresponding high-dimensional single models with the
same overall embedding sizes. We notice that the performance
of a single KGE model might decrease with the embed-

ding size increasing, e.g., RotatE (d = 1000) and RotatE
(d = 1200) have lower MRRs and Hits@3s than RotatE
(d = 800) on FB15K. This observation demonstrates that
using embeddings with an overly large embedding size leads
to a risk of overfitting, especially for distance-based KGE



Fig. 6. Training time per epoch of (M)ComplEx and (M)RotatE with different embedding sizes d

models. By contrast, the ensemble of k+ 1 KGE models of a
same kind always outperforms the ensemble of k KGE models
of the same kind since the new added model improves the
generalization ability of the ensemble model.

To clearly compare the ensemble KGE models and the sin-
gle KGE models which have the same overall embedding sizes
and scoring functions, Table II lists the link prediction results
of all target KGE models with the same overall embedding
size of d = 1200 on FB15K and FB15K237 regarding MRR,
Hits@1, Hits@3 and Hits@10. For any kind of KGE approach,
its high-dimensional model with d = 1200 underperforms the
ensemble of its low-dimensional models with the same overall
embedding size across all metrics. For instance, MComplExN3
with d = 1200 improves 1.6 points of MRR and 2.7 points of
Hits@1 compared to ComplExN3 with d = 1200.

B. Quality Analysis

Table III reports the MRRs of TransE (d = 200×1), TransE
(d = 1200×1) and MTransE (d = 200×6) on link prediction
involving different relation patterns in FB15K. Following the
setting in [24], we separate relations into 4 categories: 1-1, 1-n,
n-1 and n-n. Within the 1345 relations in FB15K, 24% are 1-1,
23% are 1-n, 29% are n-1, and 24% are n-n. We also employ
AMIE+ [25] to extract 24 symmetric relations (r(x,y)⇒r(y,x))
from FB15K with a confidence threshold of 0.8. A few typical
symmetric relations include person/sibling and person/spouse.
As shown in Table III, TransE (d = 1200 × 1) have the
close performance to MTransE (d = 200 × 6) on 1-1 re-
lations, meanwhile MTransE significantly outperforms both
TransE (d = 1200 × 1) and TransE (d = 200 × 1) on
other complex relation patterns. MTransE can enhance the
expressiveness and the generalization ability of TransE by
comprehensively considering the link prediction results of
multiple TransE models to alleviate the negative effect of
TransE’s limitation on modeling 1-n, n-1, n-n and symmetric
relations. More concretely, Table IV gives an example of how
MTransE improves the performance of TransE models on
modeling tv program/language, an n-1 relation. Given four
test triples involving the same relation tv program/language
and the same tail entity English with different head entities,
the first TransE model models triples (”Parks and Reactions”,
tv program/language, English) well while the second TransE
model predicts (”Angel”, tv program/language, English) cor-
rectly. By combining these two models, the ensemble model
MTransE can predict both triples precisely. Meanwhile, the

TABLE III
MRR OF (M)TRANSE MODELS WITH DIFFERENT EMBEDDING SIZE d ON

FB15K REGARDING DIFFERENT RELATION PATTERNS

.

TransE TransE MTransE
Relation (d=200×1) (d=1200×1) (d=200×6)

1-1 0.642 0.663(↑0.021) 0.660(↑0.018)
1-n 0.739 0.748(↑0.009) 0.780(↑0.041)
n-1 0.639 0.650(↑0.011) 0.678(↑0.039)
n-n 0.706 0.709(↑0.003) 0.739(↑0.033)

symmetric 0.358 0.360(↑0.002) 0.411(↑0.053)

TABLE IV
THE FILTERED RANKS OF HEAD ENTITIES h REGARDING THE QUERY (?,

tv program/language, English) OBTAINED FROM TRANSE AND MTRANSE
MODELS

.

TransE1 TransE2 MTransE
Head Entity (h) (d=200×1) (d=200×1) (d=200×2)

”Parks and Recreation” 1 5 1
”Angel” 4 1 1

”Jesus of Nazareth” 16 8 6
”Nurse Jackie” 5 6 3

ranks of other two head entities which are underrated by both
TransE models are improved by the MTransE model.

C. Training Time

By using MPS, we can efficiently train multiple low-
dimensional KGE models on a single GPU simultaneously.
We conduct all experiments on a TITAN X (Pascal) GPU. As
shown in Figure 6, the time cost per epoch of training multiple
low-dimensional KGE models, e.g., MRotatE (d = 200 × k)
and MComplEx (d = 200 × k), is less than training a single
high-dimensional KGE model, e.g., ComplEx and RotatE, with
the same overall embedding size d.

VI. CONCLUSION

In this work, we empirically study the effect of the em-
bedding size on the performance of several common KGE
models and propose a performance boosting training strategy
for KGE models without enlarging the overall embedding
sizes of models. Concretely, we first divide a high-dimensional
embedding into several low-dimensional embedding and input
them into the respective KGE models of the same kind
which are separately trained. All models are combined only
at the query time. Given a triple (h, r, t), its final overall



score is equal to the average of its scores computed from
multiple models. We show that our approach can improve
the generalization ability of KGE models on modeling various
complex relation patterns. And the training processes of multi-
ple KGE models can be completed efficiently by using parallel
training. Experimental results demonstrate that the ensembles
of multiple low-dimensional KGE models of the same kind
outperform the corresponding single high-dimensional KGE
models with the same embedding size.
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