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ABSTRACT Knowledge graphs (KGs) are widely used for modeling scholarly communication, performing
scientometric analyses, and supporting a variety of intelligent services to explore the literature and predict
research dynamics. However, they often suffer from incompleteness (e.g., missing affiliations, references,
research topics), leading to a reduced scope and quality of the resulting analyses. This issue is usually tackled
by computing knowledge graph embeddings (KGEs) and applying link prediction techniques. However, only
a few KGE models are capable of taking weights of facts in the knowledge graph into account. Such weights
can have different meanings, e.g. describe the degree of association or the degree of truth of a certain triple.
In this paper, we propose the Weighted Triple Loss, a new loss function for KGE models that takes full
advantage of the additional numerical weights on facts and it is even tolerant to incorrect weights. We also
extend theRule Loss, a loss function that is able to exploit a set of logical rules, in order to workwith weighted
triples. The evaluation of our solutions on several knowledge graphs indicates significant performance
improvements with respect to the state of the art. Our main use case is the large-scale AIDA knowledge
graph, which describes 21 million research articles. Our approach enables to complete information about
affiliation types, countries, and research topics, greatly improving the scope of the resulting scientometrics
analyses and providing better support to systems for monitoring and predicting research dynamics.

INDEX TERMS Scholarly data, knowledge graphs, knowledge graph embeddings, loss functions, link
prediction, scholarly communication, science of science.

I. INTRODUCTION
Science of Science is a rapidly emerging research field that
studies the interactions among scientific agents in order to
develop tools and policies for accelerating the scientific pro-
cess [12]. The large increase in the volume of scholarly out-
puts, such as articles, data sets, and software packages, yields
unprecedented opportunities to this field, but also results in
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many challenges. This mass of available information has the
potential to support a new generation of intelligent systems
for exploring and improving research efforts, but at the same
time poses a risk to drastically reduce the effectiveness of
previous approaches for analysing available information. For
instance, a recent article in Science [5] reported that the
reaction to the COVID-19 pandemic is being slowed down by
the fact that ‘‘scientists are drowning in COVID-19 papers’’
and need new solutions to efficiently analyse the scientific
literature.
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In order to address this challenge, we urge for struc-
tured, interlinked, and machine-readable representations of
scholarly outputs. Knowledge Graphs (KGs) are becoming
a standard solution for describing the actors (e.g., authors,
organizations), the documents (e.g., publications, patents),
and the research knowledge (e.g., research topics, tasks, tech-
nologies) in this space [17], [57]. One of the main limi-
tations of most KGs is the incompleteness problem, i.e., a
large number of relevant facts are not present in the KG.
Scholarly KGs are typically incomplete regarding crucial
relations such as affiliations, references, research topics, con-
ferences, and many others. This issue is usually tackled by
producing a representation of the nodes and edges based
on knowledge graph embeddings (KGEs) [19] and apply-
ing link prediction techniques [10] to this representation.
Embedding models were successfully applied on KGs in
different domains, including digital libraries [64], biomedi-
cal [23], and social media [50]. However, several KGs contain
also facts with numerical weights in which the relationship
is characterized by a numeric value, which is typically a
confidence value, an intensity, or it further qualifies the infor-
mation in the triple. Such a representation has already been
described, analyzed and verified through a formal declarative
semantics [55], [56]. The resulting model theory is known
as Annotated RDF (aRDF) and builds upon annotated logic.
In aRDF any partially ordered set with a bottom element
can be employed. For a given partially ordered set (A,�),
an element φ is the bottom iff φ � x for all x ∈ A. A might
capture temporal, pedigree, possibilistic or fuzzy values.

In the scholarly domain the uncertainty typically stems
by automatic approaches for disambiguating actors in this
space [20] (e.g., authors, organizations, countries) or classi-
fying articles according to specific categories [16], [41], [58]
(e.g., topics, technologies, industrial sectors) as well as the
limited coverage of complementary knowledge bases, such as
GRID1 (Global Research Identifier Database) and ORCID2

(Open Researcher and Contributor ID). Since most of the
existing KGE models can only handle triples that are either
true or false, they perform quite poorly on KGs that contain
weighted triples. There has been limited work on KGEs able
to consider weighted triples. The main solution in this space
is the Uncertain Knowledge Graph Embeddings (UKGE) [9],
which however cannot properly handle erroneous or approx-
imated weights in the graph. This is the situation, common
in case of data incompleteness, in which the weights are
potentially inaccurate.

In this paper, we propose the Weighted Triple Loss, a new
loss function for KGEmodels that can effectively incorporate
the numerical weights on facts and it is tolerant to incorrect
or approximated weights. This loss is very general and can be
used with different interaction models, e.g., DistMult [63],
TransE [4], ComplEx [54]. We also introduce the Weighted
Rule Loss, a loss function that extends the Rule Loss [34] in

1GRID - https://www.grid.ac/
2ORCID - https://orcid.org/

order to work with weighted triples. This solution exploits a
set of automatically extracted logical rules to further improve
performance.

We implemented a KGE model based on DistMult which
combines these two solutions and applied it on several knowl-
edge graphs, obtaining significant performance improve-
ments with respect to the state of the art.

The motivating scenario for this work concerns the
Academia/Industry DynAmics (AIDA) Knowledge Graph
[1], which was created for supporting an analysis of the
flow of knowledge between academia and industry and sys-
tems for the prediction of research dynamics. The current
version of AIDA integrates the metadata of about 21M
research articles from Microsoft Academic Graph (MAG)
and 8M patents from the Dimensions Dataset3 in the field
of Computer Science. AIDA classifies these documents
according to the research topics from the Computer Science
Ontology (CSO)4 [42] and to the authors’ affiliation types
from the Global Research Identifier Database (GRID) (e.g.,
‘education’, ‘company’, ‘government’, ‘healthcare’). This
knowledge base enables tracking the evolution of research
topics across academia, industry, government institutions,
and other organizations. For instance, it was recently used
for predicting the impact of specific research efforts on the
industrial sector [40]. However, out of the 21M articles, only
5.1M were linked with GRID IDs in the source data and thus
could be associated to their affiliation types and countries.
Completing this data is thus crucial in order to improve the
scope of different kinds of analysis about geopolitical fac-
tors [27], researcher migrations [29], collaboration patterns
between academia and industry [2], and many others.

More in details, our main contributions are:
• The Weighted Triple Loss, a loss function for weighted
triples which is agnostic with respect to their meaning
and tolerant to incorrect weights.

• The Weighted Rule Loss, a second loss function for
weighted triples that takes advantage of a set of auto-
matically extracted logical rules.

• AIDA35k,5 a new dataset describing 35K entities in the
scholarly domain described by weighted triples.

• An evaluation showing that a KGEmodel based on Dist-
Mult that incorporates these loss functions outperforms
several the state-of-the-art alternatives (UKGE, TransE,
Distmult, and ComplEx) on AIDA35k, NL27k, CN15k
and obtains competitive results on PPI5k.

The rest of the paper is organised as follows. In Section II,
we review the literature on current embeddingmodels for data
completion and scholarly knowledge graphs. In Section III,
we present a motivating scenario involving the completion
of the AIDA knowledge graph. In Section IV, we describe
the architecture of the new optimization technique. Section V
reports the evaluation of the model versus alternative

3Dimensions - https://www.dimensions.ai/
4CSO - https://cso.kmi.open.ac.uk/
5AIDA35k - http://aida.kmi.open.ac.uk/aida35k/

VOLUME 9, 2021 116003



M. Nayyeri et al.: Link Prediction of Weighted Triples for KG

solutions. Finally, in Section VI we summarise the main
conclusions and outline future directions of research.

II. PRELIMINARIES AND RELATED WORK
In this section, we provide the background for knowledge
graph embedding models (Section II-A) and then review
the related work. Specifically, in Section II-B we give an
overview of state-of-the-art KGE models that will be used in
the evaluation of our work. In Section II-C we present some
alternative methods for link prediction. In Section II-D we
illustrate loss functions for KGEs. Finally, in Section II-E we
discuss the knowledge graphs covering the scholarly domain.

A. KNOWLEDGE GRAPH EMBEDDING MODELS
A KGE model includes several components: embeddings
(e.g., vector, matrix, tensor), a score function, and a loss
function.

1) TRAINING SAMPLES
Each KGE model requires a set of samples used for training.
The training set should contain both positive and negative
samples where positive means true triples and negative means
false triples. However, each KG T = {(h, r, t)} used for train-
ing contains only positive samples, where negative samples
are not given explicitly. Therefore, for each individual posi-
tive sample, a set of negative samples Nh,r,t = {(h′, r, t ′)} is
randomly generated. This is performed by corrupting either
the head h or the tail t . While most of KGs contain triples of
the form (h, r, t), recent works focus on learning over KGs
facts in the form of (h, r, t,wh,r,t ) where wh,r,t represents the
weight of the triple h, r, t (e.g., the degree of uncertainty for
the triples).

2) EMBEDDINGS
For a given triple (h, r, t), a KGE model mainly aims at
obtaining vector representations for entities (shown in bold h,
t) and the relation r involved in each triple. The embedding
space can be real Rd , complex Cd [51], [54] and quaternion
Hd [65], which are generalized in geometric algebra Gd [62].

3) SCORE FUNCTION
A score function f (h, r, t) takes the embeddings of a triple
(h, r, t) as input and returns a value reflecting its plausibility
in the context of the KG. It is typically used by link prediction
methods for assessing new candidate triples. Most modern
KGE models either use distance functions (e.g., TransE [4],
Trans4E [30], RotatE [51]) or inner product functions based
on semantic matching (e.g., DistMult [63], ComplEx [54],
QuatE [65], RESCAL [36], 5*E [31]) to compute scores
of triples. The embeddings and consequently the scores of
triples depend on the optimization of the loss function, which
is introduced below.

4) LOSS FUNCTION
Typically KGE models employ loss functions that can be
applied only on positive and negative triples, such as Mar-

gin Ranking Loss (MRL) [4], negative likelihood of logistic
model [54], self-adversarial loss [51], SoftMariginal [32] and
full multiclass log loss [22]. An exception is RESCAL [36]
which adopts the Mean Square Error (MSE) loss and thus can
be trained also on weighted triples, where the weight reflects
the uncertainty of a triple. A more recent work [9] combines
the MSE loss with a rule-based loss in order to improve the
ability to learn from weighted triples. In Section II-D we
review these loss functions in detail.

B. OVERVIEW OF KGE MODELS
In this section, we provide a summary of the state-of-the-art
KGE models that are also considered in the evaluation of
this work. We consider two main classes of approaches:
1) distance-based models, which use distance functions
(e.g. L2 norm) for score computation, and 2) semantic
matching-based models, which use inner product.

1) DISTANCE-BASED KGE MODELS
TransE [4] is one of the primary translation-based KGE
models and it is still considered a very competitive approach
due to its simplicity and high performance. The score function
of this model is:

fr (h, t) = −‖h+ r − t‖. (1)

With this simple score function, the TransE model is
mostly used as a baseline and outperforms many of the recent
complex models.

RotatE [51] applies a rotation-based mechanism for trans-
forming the head entity to the tail entity via a relation specific
transformation. It uses a complex space for embedding the
entities and the relations and its score function is:

fr (h, t) = −‖h ◦ r − t‖, (2)

where ◦ is an element-wise product. This model is currently
one of the top performing KGE models for link prediction.

2) SEMANTIC MATCHING-BASED KGE MODELS
ComplEx [54] uses similarity of latent representations for
scoring the positive and negative triples. The name of this
model also represents the space in which it is designed,
complex space. The underlying scoring function is: f (h, t) =
<(hT diag(r) t̄) where t̄ is the conjugate of the vector t and <
returns the real part of the complex number. It uses a matrix
represented as diag(r) where the values of r are the diagonal
elements of the matrix and the non-diagonal elements are
zero.

QuatE [65] uses a mapping of E → Hd , where an entity h
is represented by a quaternion vector h = ah+bhi+chj+dhk,
with ah, bh, ch, dh ∈ Rd . The scoring function of the QuatE
model is:

φ(h, r, t) = h′ · t = 〈a′h, at 〉 + 〈b
′
h, bt 〉 + 〈c

′
h, ct 〉 + 〈d

′
h, dt 〉

(3)

where 〈·, · 〉 is the inner product.
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For the computation of h′, the relation embedding r= pr+
qr i+ ur j+ vrk is normalized to a unit quaternion:

r(n) =
r
|r|
=
pr + qr i+ ur j+ vrk√
p2r + q2r + u2r + v2r

. (4)

Furthermore, the Hamiltonian product (shown by ⊗)
between r(n) and h = ah + bhi+ chj+ dhk is computed as:

h′ = h⊗ r(n) := (ah ◦ p− bh ◦ q− ch ◦ u− dh ◦ v)

+ (ah ◦ q+ bh ◦ p+ ch ◦ v− dh ◦ u) i

+ (ah ◦ u− bh ◦ v+ ch ◦ p+ dh ◦ q) j

+ (ah ◦ v+ bh ◦ u− ch ◦ q+ dh ◦ p)k (5)

DistMult [63] extends the RESCAL [36] model. The
score function of RESCAL is:

fr (h, t) = hTMr t, (6)

where Mr is a relation-specific matrix. DistMult improves
RESCAL using a matrix multiplication for capturing the
relational semantics. The score function of this model uses
a pairwise interaction of the latent features:

fr (h, t) = hT diag(r)t. (7)

C. ALTERNATIVE METHODS FOR LINK PREDICTION
Beside shallow embedding models (e.g., QuatE, ComplEx,
TransE, and RotatE) that are classified as one of the dimen-
sionality reduction-based, many other techniques could be
considered from information theory, clustering, and pertur-
bation [26]. Graph neural networks (GNNs) [61] are one of
the main techniques for link prediction which compute the
state of embeddings for a node according to the local neigh-
borhood [66]. Such models provide a d-dimension vector for
each node and compute embeddings based on local neighbor-
hood. Generally, GNNs have high computation costs which
are problematic in large scale knowledge graphs. Another
family of approaches that gained attention recently is the
few shot learning (FSL) [60]. This does not deal with the
structure of the data but the quantity of the data. In contrast
with other machine learning approaches that need massive
data to do accurate prediction and analysis, FSL approaches
take smaller dataset as input and provide high performance
output.

In terms of weighted triples, there are a few works from
the Semantic Web community [6], [7], [24], [53] where RDF
format is specified for weighted triples. However, in these
works, the weights are not considered as quadratic informa-
tion that extends the triple representation to quadruple, but as
part of the tail of a triple. In [8], the time factor and uncertainty
of triples are represented as weighted triples. However, they
are not using any embedding model of prediction but Markov
Logic Networks.

Some other non-embedding link prediction methods, such
as [25], [46], [47], are also able to take into consideration
weighted triples. However, they can only process simple
undirected graphs, since they do not support multiple rela-
tion types and self-loops. Therefore, they are not applicable

to most KGs, which are typically multi-relational directed
graphs allowing self-loops for some relation types.

D. LOSS FUNCTIONS FOR KGEs
In this paragraph we review several loss functions that are
used by state-of-the-art KGE models.

1) MARGIN RANKING LOSS
The margin ranking loss (MRL) [4], which is inspired by
generalmargin based approaches [3], aims at forcing amargin
between each positive sample (h, r, t) and its corresponding
negative sample (h′, r, t ′). The negative samples are gener-
ated by replacing either the head or tail of positive samples
with a random entity from the KG. The formulation of the
MRL is LMRL =

∑
(h,r,t)∈T

∑
(h′,r,t ′)∈Nh,r,t

[f (h, r, t)+ γ −
f (h′, r, t ′)]+, where [x]+ = max(0, x), T is the set of all
positive samples, Nh,r,t is the set of all negative samples
generated from the triple (h, r, t), and γ is the length of
the margin between positive and negative samples. MRL has
been widely used for training TransE and its variants.

2) LIMIT-BASED SCORING LOSS
When a KGEmodel is trained by using the MRL, the score of
positive triples may be unbounded. In the case of translation
based KGE model (e.g., TransE), such a limitation would
prevent the model from fulfilling the translation in the vector
space, resulting in poor performance [67]. The limit-based
scoring loss [67] aims at avoiding this issue by including
the boundary for the scores of positive triples in the margin
ranking loss.

LLSL =
∑

(h,r,t)∈T

∑
(h′,r,t ′)∈Nh,r,t

[f (h, r, t)+ γ − f (h′, r, t ′)]+

+λ[f (h, r, t)− γ1]+. (8)

The term [f (h, r, t) − γ1]+ enforces the constraint
f (h, r, t) ≤ γ1. Therefore, scores of positive triples are
bounded (by γ1) not to be very large. λ is a multiplier of
the regularization term that determines the degree of impor-
tance of the term [f (h, r, t) − γ1]+ in the optimization. This
loss function improved the performance of translation based
embedding models (TransE, TransH, TransR etc).

3) SOFT MARGIN LOSS (SML)
The soft margin loss [33] aims at handling noisy negative
samples. It adds slack variables (ηh,r,t ) to negative samples
optimization in order to mitigate the negative effect of false
negative samples:

LSML =
∑

(h,r,t)∈T

∑
(h′,r,t ′)∈Nh,r,t

λ η2h,r,t + λ+[f (h, r, t)− γ1]+

+λ− [γ2 − f (h′, r, t ′)− ηh,r,t ]+ (9)

where λ, λ+, λ− are regularization weights used as hyperpa-
rameters. This loss function has been used for training TransE
and RotatE.
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4) SlidE LOSS
The length of the margin is an important factor which affects
the performance of KGE models. In Limit-based Scoring
Loss and Soft Margin Loss the length of the margin is deter-
mined by setting two hyper-parameters by a trial and error
process. The SlidE loss [35] addresses this issue by determin-
ing the center of the margin and automatically adjusting the
length of the margin by means of a trainable variable (η). The
formulation of the SlidE loss is as follows:

LSlidE+ = λe−ση
2
+ λ+ [f (h, r, t)− γ + η]+
+λ− [−f (h′, r, t ′)+ γ + η]+, (10)

where γ is the center of margin, 2η is the length of margin,
and σ is the variance of the Gaussian function that affects the
margin.

5) SELF ADVERSARIAL LOSS (SAL)
Self-Adversarial Loss [51] obtained state-of-the-art perfor-
mances on distance based KGE models. Its formulation is:

L = −
∑

(h,r,t)∈T
log σ (γ − f (h, r, t))

+

∑
(h′,r,t ′)∈Nh,r,t

p(h′, r, t ′) log σ (f (h′, r, t ′)− γ ), (11)

where p(h′, r, t ′) = exp(αf (h′,r,t ′))∑
exp(αf (h′,r,t ′)) , α is adversarial temper-

ature which represents the extent of attention on the score
of negative samples used for random sampling. The loss
assigns higher weights for negative samples with high values
to reduce their scores as much as possible. σ is Sigmoid
function.

6) NEGATIVE LOG LIKELIHOOD LOSS (NLL)
The negative likelihood [54] of the logistic model with regu-
larization is:

LNLL =
∑

(h,r,t)∈T ∪N
λ log(1+ exp(−yh,r,t f (h, r, t)))

+λ||θ ||2, (12)

where θ is used to represent all adjustable parameters for
simplicity purpose and yh,r,t is the label of triples (positive
triples are labeled with 1 and negative triples are labeled
with −1).

7) FULL MULTICLASS LOG LOSS (FMLL)
TheComplExmodel was originally trained using the negative
likelihood log loss. However, it has been recently shown that
the model obtains state-of-the-art performances by using the
full multiclass log-loss [22]. The loss applies full negative
sampling and is defined as:

LFMLL =
∑

(h,r,t)∈T
l(f (h, r, t))), (13)

where l(f (h, r, t))) = l1(f (h, r, t)) + l2(f (h, r, t)),
l1(f (h, r, t)) = −f (h, r, t) + log(

∑
t ′ exp(f (h, r, t

′))),

l2(f (h, r, t)) = −f (h, r, t)+ log(
∑

h′ exp(f (h
′, r, t))), where

log and exp are logarithmic and exponential functions, respec-
tively. The loss gives big (small) scores for positive (negative)
triples.

8) UKGE LOSS
The previously discussed loss functions are suitable for learn-
ing over triples which are either positive or negative and
cannot handle weighted triples.

Recently, the UKGE model used the MSE loss (already
adopted by the RESCAL model) together with probabilis-
tic soft logic loss, for training KGs with uncertain triples
i.e., triples associated with a weight that reflects the confi-
dence of their correctness [9]. This loss is model independent
and it is formulated as:

LUKGE =
∑

(h,r,t)∈Tw∪N
|f (h, r, t)− wh,r,t |2

+

∑
(h,r,t)

∑
g

|ψg(f (h, r, t))|2, (14)

where wh,r,t is the weight of a triple (h, r, t) and Tw is the
set of all the weighted triples. g refers to a rule and ψg is the
weighted distance of the rule g obtained by probabilistic soft
logic.

An important limitation of this loss is that it constrains the
KGE model to learn scores that are very close to the input
ones. This can be problematic when dealing with approxi-
mated or incorrect values that are then incorporated in the
model without any correction. We will discuss this issue
further in Section IV-A.

E. SCHOLARLY KNOWLEDGE GRAPHS
Knowledge graphs about research outputs typically either
focus on the metadata (e.g., titles, abstracts, authors, orga-
nizations) or they offer a machine-readable representation of
the knowledge contained in research articles.

A good example of the first category is Microsoft
Academic Graph (MAG) [59], which is a heterogeneous
knowledge graph containing the metadata of more than 242M
scientific publications, including citations, authors, institu-
tions, journals, conferences, and fields of study. Similarly,
the Semantic Scholar Open Research Corpus6 is a dataset
of about 185M publications released by Semantic Scholar,
an academic search engine provided by the Allen Institute
for Artificial Intelligence. One more knowledge graph is the
OpenCitations Corpus [39], that includes 55M publications
and 655M citations. Scopus is a well-known dataset curated
by Elsevier, which includes about 70M publications and is
often used by governments and funding bodies to compute
performance metrics. The Open Academic Graph (OAG)7 is
a large knowledge graph integrating 208M papers fromMAG
and 172M from AMiner.

6ORC - http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/
7OAG - https://www.openacademic.ai/oag/
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All these resources suffer from data incompleteness to
different degrees. For instance, it is still challenging to iden-
tify and disambiguate affiliations. This hinders our ability to
categorize the articles according to their affiliation type or
country [27]. Similarly, references are usually incomplete,
and the citation count of the same paper tends to vary dra-
matically on different datasets [39].

A second category of knowledge graphs focuses instead
on representing the content of scientific publications. This
objective was traditionally pursued by the semantic web
community, e.g., by creating bibliographic repositories in
the Linked Data Cloud [37], encouraging the Semantic Pub-
lishing paradigm [48], implementing systems for managing
nano-publications [14], [21] and micropublications [44], and
developing a variety of ontologies to describe scholarly data,
e.g., SWRC,8 BIBO,9 BiDO,10 SPAR [38],11 CSO [43].
A recent project is the Open Research Knowledge Graph
(ORKG) [18], which aims at describing research papers in
a structured manner to make them easier to find and com-
pare. Similarly, the Artificial Intelligence Knowledge Graph
(AI-KG)12 describes 1.2M statements extracted from 333K
research publications in the field of AI. Since extracting the
scientific knowledge from research articles is still a very
challenging task, these resources tend also to suffer from data
incompleteness.

III. MOTIVATING SCENARIO: THE AIDA
KNOWLEDGE GRAPH
New scientific knowledge is continuously produced by the
collective effort of a variety of actors, such as universities,
commercial companies, government institutions, non-profit,
and many others. Analysing how these organizations col-
laborate in different research areas and exchange ideas and
persons is crucial for harmonising their efforts as well
as for understanding, monitoring, and anticipating research
dynamics [2].

In order to support such analysis, we recently released
the Academia/Industry DynAmics (AIDA) Knowledge
Graph [1], a resource that includes more than one billion
triples and describes 21M publications from Microsoft
Academic Graph (MAG)13 [59] and 8M patents fromDimen-
sions. AIDA is available at http://aida.kmi.open.ac.uk and can
be downloaded as a dump or queried via a Virtuoso triple-
store (http://aida.kmi.open.ac.uk/sparql/). All the articles and
patents in AIDA are associated with a distribution of topics
from the Computer Science Ontology (CSO) [42], which
is the largest taxonomy in the field, counting more than
14K topics. 5.1M publications and 5.6M patents are also
categorized according to the type of the author’s affilia-
tions from the Global Research Identifier Database (GRID),

8SWRC - http://ontoware.org/swrc
9BIBO - http://bibliontology.com
10BiDO - http://purl.org/spar/bido
11SPAR - http://www.sparontologies.net/
12AI-KG - http://scholkg.kmi.open.ac.uk/
13MAG - https://academic.microsoft.com/

a openly accessible database of research institution identi-
fiers. The classification is composed by eight exclusive cate-
gories: Education, Healthcare, Company, Archive, Nonprofit,
Government, Facility, and Other.

The combination of organization types and topics in AIDA
allows researchers to produce several kinds of advanced anal-
ysis. For instance, it was recently used to improve the state
of the art regarding the prediction of research impact on the
industrial sectors [40].

Table 1 shows, as example, the number of publications in
three well-known research topics classified according to the
percentage of authors in organization type (we show just five
for space constraints). For instance, about 15.7K of Neural
Networks articles have at least one author from a company,
11.7K have at least half of the authors in this category, and
only 8.6K have all the authors from a company. Overall this
data show that these organization types are very different in
terms of contributions. Authors from academia tend mostly
to collaborate among themselves, and the same is true even
if to a lesser degree for authors from companies. Conversely,
the other categories tend to collaborate more with different
types.

For instance, in Computer Science only 8.1% of the articles
involving authors from Universities (Education) include at
least one collaborator from the other categories14 (e.g., Com-
pany, Government). Conversely, authors from companies col-
laborate with at least another category (mostly Education)
in 14.6% of the cases. This number raises to 46.1% for
Government Institutions, 46.6% for Nonprofit, and 69.0% for
Healthcare.

However, these dynamics can vary drastically in different
research areas. For instance, companies tend to collaborate
much more with other categories (mostly universities under
Education) in the fields of Neural Networks (45.7% of col-
laborations) and Semantic Web (49.8%).

The main shortcoming of the current version of AIDA is
that only about 25% of the articles (5.1M out of 21M) and
70% of the patents (5.6M out of the 8M) are associated with
the GRID affiliation type. The missing data are due to the
fact that some affiliations are not present on GRID or they
were not correctly mapped to the relevant GRID IDs in the
original data. In order to improve the scope of the analyses
supported by AIDA is thus critical to address this issue by
mapping articles to the correct organization type.

This scenario motivated us to investigate different mod-
els for link prediction that could be applied on AIDA
and on other knowledge graphs that suffer from the same
issues. However, as previously mentioned, several informa-
tion regarding the documents in AIDA are best represented
as weighted triples. For instance, since the authors of a
paper can have different affiliation types, each category is

14This percentage is computed as the difference between the number
of articles in Computer Science with at least an author from Education
(Computer Science (>0) in Table 1, 3,969,096) and the number of articles
in Computer Science with only authors from Education (Computer Science
(=1.0), 3,648,629).
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TABLE 1. AIDA - Number of papers in a topic with an organization type according to the percentage of authors in the category (> 0, ≥ 0.5, = 1.0).

associated with a weight equal to the fraction of authors
associated with that type. Therefore, a paper that has three
authors associated with the type ‘Education’ and one with the
type ‘Industry’ would be assigned the category ‘Education’
with a weight of 0.75 and the category ‘Company’ with
a weight of 0.25. This can be represented as two weigh-
ted triples: < paperID, hasGridType,Education, 0.75 >

and < paperID, hasGridType,Company, 0.25 >. The same
mechanism is also used to associate articles with countries:
a paper that has half of the authors fromUKwill be associated
with theweighted triple:< paperID, hasCountry,UK , 0.5>.
This same solution is also used to quantify the number of
citations received by a paper in a specific year. When repre-
senting these data as ResourceDescription Framework (RDF)
we need to reify these triples as shown by Figure 1.

These considerations led to the design of the loss func-
tions presented in this paper. In order to complete AIDA
KG, we implemented a version of DistMult that incorporates
the Weighted Triple loss function, labelled in the following
Weighted Graph Embedding (WGE).

In order to empirically evaluate the effectiveness of our loss
functions, we apply them on a subset of the AIDA knowledge
graph which we named AIDA35k, a new dataset including
35K entities from AIDA associated with triples with numer-
ical weights. AIDA35k is a weighted Knowledge Graph K,
where K = {E,R, Tw} and Tw = {(h, r, t,wh,r,t )} ⊂ E ×
R× E × R. wh,r,t is the weight of the fact (h, r, t).

IV. OPTIMISING KGE MODELS FOR WEIGHTED TRIPLES
In this sectionwe propose two loss functions:Weighted Triple
Loss and Rule Loss for Weighted Triples. These loss func-
tions optimise the weighted triples of the form (h, r, t,wh,r,t )
where h and t are the head and tail entities, r is a rela-
tion between them, and wh,r,t is the weight assigned to the
triple (h, r, t).

A. WEIGHTED TRIPLE LOSS
The loss function is agnostic with respect to the kind of
weight. Conceptually, we consider twomain types of weights.
The first is related to the correctness of the triple and indicates
its degree of plausibility. The second refers to the intensity of
the relation and reflects the degree of association between the
head and the tail.

Themain intuition behind theWeighted Triple Loss (WTL)
presented in this paper is that in many practical cases the
weight wh,r,t is estimated on the basis of potentially incom-
plete data and possibly biased computational methods. For
instance, the weights associated with the organization types
in AIDA depend on many factors such as the coverage of
the GRID database in a particular moment in time and the
performance of the disambiguation approaches applied by
MAG. Therefore, these weights are typically approximations
and some of them may be simply incorrect. This limitation
needs to be taken into account during the learning phase.
Therefore WTL allows the model to learn the score f (h, r, t)
of a triple (h, r, t) in the range:

wh,r,t − η
−
2

h,r,t ≤ f (h, r, t) ≤ wh,r,t + η
+
2

h,r,t , (15)

where η−
2

h,r,t and η
+
2

h,r,t are trainable variables which allow the
score f (h, r, t) not to be exactly equal towh,r,t , but rather to be
a number bounded between wh,r,t − η

−
2

h,r,t and wh,r,t + η
+
2

h,r,t .
In order to optimize the embedding vectors of entities and
relations as well as adjusting η−

2

h,r,t and η
+
2

h,r,t , the following
optimization framework is proposed:{
minθ

∑
(h,r,t,wh,r,t )∈{Tw∪N } λ1η

−
2

h,r,t + λ2η
+
2

h,r,t + λ3L,
s.t. wh,r,t − η

−
2

h,r,t ≤ f (h, r, t) ≤ wh,r,t + η
+
2

h,r,t ,

(16)

where λ1, λ2 are hyper-parameters that affect the degree to
which η−h,r,t , η

+

h,r,t are minimized, λ3 is the multiplier of
the regularization term over the embeddings of entities and
relations, θ contains all the adjustable parameters including
the embeddings of entities, relations and η−

2

h,r,t , η
+
2

h,r,t i.e. θ =

{(h, r, t)∪{η−
2

h,r,t , η
+
2

h,r,t }|(h, r, t) ∈ T }.L is the regularization
over the entities and relations embeddings i.e. L = E2

+ R2.
E andR are the embeddings of all the entities and relations in
the KG. For each quadruple in the training set (h, r, t,wh,r,t ),
we generate a corrupted sample using uniform negative sam-
pling technique [4] where either h or t is replaced by a random
entity e ∈ E , i.e., the resulting triples are (h′ = e, r, t,wh′,r,t )
or (h, r, t ′,wh,r,t ′ ). For the corrupted samples, we set their
weightsw to zero.We indicate the set of all corrupted samples
by N .

This solution results in a high tolerance to incorrect
weights. Indeed, the UKGE [9] loss forces the KGE model to
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FIGURE 1. RDF Schema for articles in AIDA.

learn scores that are very close to the input weights, therefore
incorrect values are preserved and incorporated in the model.
Conversely, WTL allows for more flexibility in the learning
process, by allowing for a wider range of scores to be learnt
and as a result the incorrect weights can be corrected by using
contextual information from other triples.

B. WEIGHTED RULE LOSS
1) EXTRACTION OF RULES
In order to include additional logical rules as com-
plementary knowledge, we used the AMIE rule extrac-
tor [13], which is specifically designed for rule extraction
on KGs. A logical rule is generally of the form of

PREMISE
PCA
−−→ CONCLUSION where PREMISE can be

constructed from different relations with joint head or tail.
For instance, the probability of the rule ?e hasAuthor ?a AND

?e hasCountry ?b
0.553
−−−→ ?a workedIn ?b is 55.3% which is

assigned by AMIE.

2) DEFINITION OF THE RULE LOSS FOR WEIGHTED TRIPLES
In order to apply rules to weighted triples we extend the
approach presented in Nayyeri et al. [34]. For a given rule
of the form rule : q1 ∧ q2∧, . . . ,∧qn −→ qn+1 where qi, i =
1, . . . , n + 1 are atoms (weighted triples where relations are
fixed, but entities are variable). To model rule loss for the
above-mentioned rule, we use the following formula.

R = max(wq1∗, . . . , ∗wqn − f (qn+1), 0), (17)

where wqi is the weight of the weighted triples qi, i =
1, . . . , n after grounding of entities (replacing the variables by
entities in E). f (qn+1) is the score of the triple (h, r, t) in the
weighted triples (h, r, t,wh,r,t ) wherewh,r,t is not given in the
training set, but is approximated by the score of the used KGE
model i.e., f (qn+1) = f (h, r, t). For each rulei, i = 1, . . . , l
in the rule set, we provide the corresponding rule lossRi. The
rule loss can be added to the optimization framework as

minθ
∑

(h,r,t,wh,r,t )∈{Tw∪N } λ1η
−
2

h,r,t + λ2η
+
2

h,r,t

+λ3L+ λ4
∑l

i=1Ri,

s.t. wh,r,t − η
−
2

h,r,t ≤ f (h, r, t) ≤ wh,r,t + η
+
2

h,r,t ,

(18)

or added as additional weighted triples T ′w ={(h, r, t,wh,r,t =
wq1∗, . . . , ∗wqn )}, where (h, r, t) is in the head of a rule
q1 ∧ q2∧, . . . ,∧qn −→ (h, r, t). Therefore, the following
optimization problem is suggested

minθ
∑

(h,r,t,wh,r,t )∈{T ∪T ′w∪N } λ1η
−
2

h,r,t + λ2η
+
2

h,r,t

+λ3L, s.t.
wh,r,t − η

−
2

h,r,t ≤ f (h, r, t) ≤ wh,r,t + η
+
2

h,r,t .

(19)

V. EVALUATION
In this section, we compare the performance of i) Weighted
Graph Embedding (WGE), the version of DistMult that incor-
porates the Weighted Triple Loss function (see Section 3),
ii) theUncertainKGEmbedding (UKGE), which uses the loss
function presented in Chen et al. [9] (see Section II-D.h), iii)
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TABLE 2. Representation of some example rules.

TABLE 3. Performance of approaches on the three benchmarks (NL27k, PPI5k, CN15k). In bold the best results.

TABLE 4. Performance of approaches on AIDA35k. In bold the best
results. The reported time is in seconds.

TABLE 5. Statistical information about the datasets. Avg(s) and Std(s) are
the average and standard deviation of the scores.

DistMult [63], iv) TransE [4], and v)ComplEx [54] on several
datasets.

In addition to AIDA35k, which was introduced in
Section 3, we used three other datasets that include weighted
triples: CN15k, NL27k, and PPI5k. These were used in
the evaluation of UKGE [9], which is one of the base-
lines. CN15k is a subgraph of ConceptNet [49] that cov-
ers 15,000 entities and 241,158 uncertain relation facts in
English. NL27k was obtained from NELL [28], an uncer-
tain KG extracted from webpages containing information

about cities, companies, emotions and sports teams. It covers
27,221 entities, 404 relations, and 175,412 uncertain relation
facts. Finally, PPI5k was extracted from the Protein-Protein
Interaction Knowledge Base STRING [52] and contains
271,666 uncertain relation facts for 4,999 proteins and 7
interactions.

The evaluation data are available at http://aida.kmi.open.ac.
uk/aida35k/.

We considered two different versions of the WGE and
UKGE models using two score functions, respectively the
logistic function (WGE_logi and UKGE_logi) and the
bounded rectifier (WGE_rect and UKGE_rect) [9]. These
are defined as follows:

• Logistic Function: 8(x) = 1
1+e−(wx+b)

• Bounded Rectifier: 8(x) = min(max(wx + b, 0), 1).

In addition, since the original article about UKGE also
presented an alternative version that injects probabilistic soft
logic (PSL) rules for deriving weights between 0 and 1 for
unobserved triples, we also considered other two alternative
versions of UKGE that make use of PSL (UKGE_rect_psl
and UKGE_logi_psl). However, these models could only be
used for the three datasets released with the original paper
about UKGE (PP15k, CN15k, NL27k) [9], since the article
does not give enough details to reproduce these models on a
new dataset.

On AIDA35k, we further tested two versions of WGE
(WGE_rect_rules and WGE_logi_rules) and two versions
of UKGE (UKGE_rect_rules and UKGE_logi_rules) that
use the Weighted Rules Loss as defined in Section IV-B.
In order to extract the rules from AIDA35k we used
AMIE+ [13]. This results in initial set of about 40 rules from
which we filtered strong rules only (18) and categorized them
to produce the corresponding groundings (around 126k).
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TABLE 6. Performance when considering only the relations hasGridType and hasCountry in AIDA35k. In bold the best results.

When we run AMIE+ on the other three datasets, it produced
an unfeasible number of rules (more than 10k rules) to be
integrated in the model. Therefore, we limited the evaluation
of the Weighted Rules Loss to the AIDA35k dataset.

A. EXPERIMENTAL SETUP
1) ENVIRONMENT
We implemented our model WGE using Python 3.7 and
PyTorch (version 1.7.1) library. We used the Sklearn library
(version 0.22) for implementing the evaluation metrics. Fur-
thermore we adopted Adam as optimizer for training our
model. We employed AMIE+ [13]15 to automatically extract
logical rules from the KG and ran the code on Google Colab
servers using a Tesla K80 GPU and 13 GB of RAM.

The code of our approach can be freely accessed at
https://github.com/gokcemuge/WeightedGraphEmbedding,
while the data used for training and evaluation are publicly
available at http://aida.kmi.open.ac.uk/aida35k/.

2) RULE EXTRACTION
We set a probability threshold of 0.4 for the extracted AMIE
rules. When binding rule variables to entities, those rules
generate grounded triples. We used a threshold of 0.1 for
filtering those grounding triples. Overall, this process gen-
erated 18 rules and 126,031 grounded triples. Among these,
20,450 grounding triples belong to hasGridType relation.

3) METRICS AND HYPERPARAMETERS
We adopted the Mean Square Error (MSE), the Mean Abso-
lute Error (MAE), the Area Under Curve (AUC) [45] and the
F1 measure as evaluation metrics. We also evaluated the time
complexity of our approach with the granularity of seconds
per epochs. Since the space is limited and they are standard
metrics used by most works in this field [15], they will not be
described in this paper.

The setup of the experiments includes the sets of
hyperparameters with batch sizes {256, 512, 1024}, and
learning rate of {0.1, 0.01, 0.001, 0.0001}. The embedding
dimension is {64, 128, 256, 512} with 10 negative sam-
pling. The regularization scale for the rectified versions is

15https://www.mpi-inf.mpg.de/departments/databases-and-information-
systems/research/yago-naga/amie/

{0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. The rule coefficient in
rule loss is trained for {0.1, 0.5, 1.0}.

B. RESULTS
Table 3 reports the performance of the approaches on
the PPI5k, CN15k, and NL27. On the NL27k dataset,
the rectifier version of WGE (WGE_rect) outperforms the
other approaches in MSE and MAE, while the logistic
version (WGE_logi) achieves the best results in F1, AUC
and accuracy. On PPI5k, WGE obtains competitive results,
outperforming TransE, Distmult, and Complex in all the
metrics and UKGE in MAE. However, UKGE performs
better in F1 and MSE and yields comparable accuracy.
This is due to the limited size of PPI5k which includes
only 5K entities and 7 relations. On CN15k the rectified
WGE (WGE_rect) obtains the highest performance in all the
metrics.

Table 4 reports the performance and running time on the
AIDA35k dataset. WGE_rect_rules obtains the best results
in terms of AUC (0.864) , F1 (0.847) and accuracy (0.871),
while WGE_logi_rules yields the best MAE and WGE_logi
the best MSE. While our model outperforms the other com-
petitors, the running time (reported in seconds per epochs) of
our model is close to that of other models.

Table 6 zooms on two specific relations from AIDA35k:
hasGridType and hasCountry. For hasGridType, WGE_rect
achieves the best results for MAE, F1, and accuracy.
For hasCountry, the rectified version of WGE with rules
(WGE_rect_rules) outperforms all the other models in
MSE, F1, and accuracy. This suggest that incorporating the
Weighted Rule Loss can enhance significantly the perfor-
mance, especially for types of certain relations.

Overall, WGE, our solution based on WTL, outperformed
UKGE onAIDA35k, CN15k, and NL27k and obtainsed com-
petitive results on PP15k. This seems to be due to the ability
of WTL of tolerating better incorrect weights. WGE also out-
performed by a large margin the other models based on loss
functions that do not handle weighted triples. In particular,
the difference in terms of F1 score and accuracy between the
standard DistMult model and the DistMult interaction model
with the best variant of our proposed loss function is higher
than 10% on average across all datasets. This empirically
confirms our hypothesis that there is a substantial benefit
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in using triple weight information, if available, in the loss
function.

VI. CONCLUSION AND FUTURE WORK
In this paper we proposed the Weighted Triple Loss (WTL),
a new loss function for KGE models that can effectively
handle weighted triples and is tolerant to incorrect or approx-
imated weights. We also introduced the Weighted Rule Loss,
a loss function that extends the Rule Loss in order to work
with weighted triples.

In order to test these solutions, we developed theWeighted
Graph Embedding (WGE), a new KGEmodel which uses the
interaction model of DistMult with the two loss functions.

The evaluation showed that this approach outperforms all
the baselines (UKGE, TransE, Distmult, and ComplEx) and
achieves higher result than baseline on AIDA35k (metadata
of research articles), NL27k (data from web pages), and
CN15k (concepts from ConceptNet). It also obtains compet-
itive results on PPI5k (proteins from STRING).

WGEwas originally designed to address the real world sce-
nario of completing the AIDA Knowledge Graph, in order to
enable more comprehensive quantitative analysis of science
about geopolitical factors [27] and the flow of knowledge
between different types of organizations [2] (e.g., university,
industry, non-profit). However, the loss functions presented
in this paper are general solutions that can be used in many
different domain in order to take into account the weighted
triples. They can also can support different interaction mod-
els, such as DistMult [63], TransE [4], ComplEx [54].

The approach presented in this paper opens up several
interesting directions of work. First, we aim to apply WGE
on other KGs in this space for improving their coverage of
the research landscape. Specifically, we plan to run it on
recent KGs describing scientific concepts (e.g., tasks, meth-
ods, materials) and their relationships, such as AI-KG [11]
andORKG [18], where the numerical weights could represent
the consensus of the research community on the relevant
statements.We also plan to applymodel selections techniques
in order to investigate the best set of parameters and eval-
uation methods in this space. Finally, we would also like
to apply our approach to a range of KGs in other domains
for investigating how the results and performances might be
affected by the underlying domain.
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