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Abstract. Recent work based on Deep Learning presents state-of-the-
art (SOTA) performance in the named entity recognition (NER) task.
However, such models still have the performance drastically reduced in
noisy data (e.g., social media, search engines), when compared to
the formal domain (e.g., newswire). Thus, designing and exploring new
methods and architectures is highly necessary to overcome current chal-
lenges. In this paper, we shift the focus of existing solutions to an entirely
different perspective. We investigate the potential of embedding word-
level features extracted from images and news. We performed a very
comprehensive study in order to validate the hypothesis that images and
news (obtained from an external source) may boost the task on noisy
data, revealing very interesting findings. When our proposed architec-
ture is used: (1) We beat SOTA in precision with simple CRFs models
(2) The overall performance of decision trees-based models can be dras-
tically improved. (3) Our approach overcomes off-the-shelf models for
this task. (4) Images and text consistently increased recall over different
datasets for SOTA, but at cost of precision. All experiment configura-
tions, data and models are publicly available to the research community
at horus-ner.org

Keywords: Named Entity Recognition · WNUT · Noisy Text · Infor-
mation Retrieval · Images · Text · Multi-modal

1 Introduction

In this paper, we address the problem of recognizing named-entity (NE) types
in noisy data. While NER on formal domain (e.g. CoNLL) has been shown to
be reasonably accurate – achieving average F1 measure up to 90% [34] – most
of the approaches for noisy data designed in the past years still heavily rely
on carefully constructed orthographic features and language-specific resources,
such as gazetteers. To bridge this gap, more recent work have proposed architec-
tures based on LSTM networks. Although this not necessarily introduces SOTA
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performance [16,19], the trained networks achieved very similar performance
on a popular newswire corpora (respectively 88.83% and 90.94% on CoNLL-
2003 test set). Besides supporting different languages with low effort, the great
advantage of such (end-to-end) approaches lies in the fact that specific knowl-
edge resources are not required (excepting for specific embeddings, which are -
usually - language dependent), alleviating the dependency on manually anno-
tated data and encoded rules. However, unlike newswire, microblogs often deal
with more informal languages, which do not have such implicit linguistic for-
malism [29,22,14]. With respect to that – not surprisingly – the performance
of SOTA degrades significantly in the noisy data domain, evidencing the sensi-
bility of the proposed models when dealing with noisy and out-of-domain text.
In recent work [5,21,29,20], F1 ranging from 0.19 to 0.52 have been reported
in the noisy domain. Hence, devising models to deal with linguistically com-
plex scenarios such as twitter remains an open and very challenging problem to
tackle, regardless of the architecture’s design. In this paper, we extend previous
work [12] to face this challenge through a novel perspective: we develop a frame-
work that learns latent features from images and textual information to detect
named entities, without requiring further engineering effort. This is obtained by
extracting related information from an external source, given an input query
string (e.g., a token). In this work we use the Web and DBPedia as external
sources. We argue that images and text associated to a given token may contain
missing information required to improve performance of NER on noisy data. Our
main contribution is a framework that implements an enhanced methodology to
extract, pre-process and generate feature vectors based on images and text - as-
sociated to each single token of a sentence. These vectors are then concatenated
and used throughout several different NER architectures. Furthermore, a great
advantage of our proposed model is that challenging (pre-processing) tasks, such
as text normalization [1], is bypassed. To the best of our knowledge, this is the
first comprehensive study in an attempt to derive and explore features based on
images and news to improve NER on noisy data. The proposed methodology
does not rely on gazetteers, lookups and normalization and also does not imple-
ment any encoded rules. Due to the nature of the generated feature vectors, we
argue the outcomes of this work are of high relevance not only for NER on social
media, but also to related (e.g., entity linking [27]) and also other downstream
tasks [13]. Our experiments show that this has a direct positive impact in CRF
and Decision Trees-based models, and the potential to improve overall B-LSTMs
performance when more training data is available. As a contribution to the com-
munity we also released all metadata. The result is a word-level feature database
for based on image and text. This database contains approx. 3 millions data fea-
tures for more than 72.000 distinct English tokens and has been explored over
5.904 experiments in several different configurations. As consequence, we built
an open-source framework dubbed HORUS, which we detail in the following
sections. The data, metadata and code is released open-source and available at
the project website: horus-ner.org.
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2 Methodology and Features

First, one needs to note, that for each category of interest (i.e., a named entity
class) one can identify a certain set of representative contents or objects, which
have a high chance of being present in images belonging to nouns of this category.
For instance, a name of a person has a high correlation to images containing
faces whereas a name of a country has a high correlation to images containing
maps or landscapes. Thus, named entities can be classified as belonging to a
certain category by detecting these representative objects in the related images.
Therefore, for each token t ∈ a sentence S we extract a set of image and text
feature vectors F = (F1, . . . ,Fn) that serve as input features to a NER classifier.
Following the foundations of our previous work [12], we use the Web to obtain
(top 10) images and websites associated to a given token t. In this paper, we have
extended and explored this methodology in a variety of ways: (1) We explored
other clustering-based features (Brown Clusters); (2) We proposed and extended
new visual features; (3) we performed several new experiments, obtaining further
(valuable) insights; (4) we extended and included SOTA neural mechanisms in
the underlying framework: (4.1) Topic Modeling + Convolution Neural Networks
(CNN) for text classification [37] (4.2) CNN for object detection [32] (4.3) Topic
Modeling over Word2vec [26] top v tokens (4.4) Cross-similarity measure over
top v tokens and (4.5) Basic NN prediction statistics (5) We benchmark different
NER classifiers in different gold-standard datasets.

Baseline Methodology: In our previous work [12] we perform the follow-
ing steps: for each defined named entity category c ∈ C a set of text-based or
image-based classifiers ξcm,m = 1, . . . ,M and Φc

l , l = 1, . . . , L, respectively, are
applied. Given an element from d ∈ Dt (or i ∈ It) each binary classifier out-
puts a prediction if the text (or image) belongs to a certain category c or not,
i.e. Φc

l (i), ξ
c
m(d) ∈ {−1, 1}. The text-based and image-based models produce the

following feature sets: T X and CV, respectively. These scores (feature vectors)
Rc

Dt
and Rc

It
for all c ∈ C can now be used to construct the features F (t) for the

final classifier.
Improved Methodology: In the following we detail each additional fea-

ture implemented in our Framework. 1. Brown Clusters (B): Brown hierar-
chical word clustering algorithm uses distributional information to group similar
words [4]. It takes a corpus and outputs K clusters of word types in a hard-
fashion, i.e., each token only appears in one cluster k. Essentially, it derives a
tree graph with two kinds of information – the cluster of a word and the hier-
archy between classes. Since the default number of clusters K = 1000 may not
often yield optimal results (although widely considered as default value) [8], we
performed some exploratory experiments to obtain the better hyper-parameter
based on Derczynski et al. findings. The features are extracted by truncat-
ing the patches at [1:bits−2], e.g., the cluster path 1100101 yields features
{1,11,110,1100,11001}. 2. Standard Features (S): Besides lexicon-based such
as Part-of-speech (POS) and stop words, character-based features, such as: “is
numeric?”, “initial capital?”, “special character?” are also part of the classi-
cal features we study. For example the token “P@rty” would lead to vector
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similar to [0, 1, 1, . . . ] 3. Topic Modeling + CNNs (T Xnn): Originally de-
signed for computer vision, Convolutional Neural Networks (CNNs) have sub-
sequently been shown to be effective for NLP, achieving excellent results in
diverse tasks, including sentence classification [17]. We trained a convolution
neural networks with Topic Modeling [35] for text-classification due to its state
of the art performance, which presents excellent results even with low hyper-
parameter tuning [18]. The main idea is to classify each document (website)
linked to a given token into a pre-defined number of “topics” (in this case,
the labels PER, LOC and ORG), similarly to the T X module. Likewise, we
used DBPedia to collect data for training the model. In practice, for each re-
turned website wi, we return a confidence score for wi being labelled as one of
the pre-defined classes. As result, we have a vector similar to: [(0, 0.40170625),
(1, 0.06669136), (2, 0.39819494), (3, 0.06670282), (4, 0.066704586)] where each
key represents a certain topic (PER, LOC, ORG and OTHERS). 4. Seeds x
Word2Vec (T X emb) This model extracts the correlation between a pre-defined
number of tokens (seeds) related to a certain class and nearest tokens to a given
token t. We compute the distance in the intersection of the top 5 most similar
words (Wt

top = st1 . . . s
t
5) to a given t with a set of seeds E defined by common-

sense: T X c
emb =Wt

top∩Ec. For instance, if - hypothetically - the token t = Berlin
has the following (5) nearest words W5 = [Munich, Hamburg, Frankfurt, Ger-
many, Dusseldorf ]. For each, we compute the average distance from each e ∈ E .
For e.g. LOC, we set the following vector = [“city”, “country”, “place”, “beach”,
“mountain”, “forest”, “location”]. 5. Keyword Extraction (T X stats) Similar
to Section 2, this model outputs the likelihood of a certain token t belonging to
a certain class c based on word distance. We extract the most frequent tokens
from the set of documents D (websites) and cross-compute the distance from
terms in E . 6. Convolutional Neural Nets (CVnn) As mentioned, CNNs is a
state of the art technique for image recognition (e.g., detecting people or objects
in a given image). For instance, the Inception model [33] achieves state of the art
position, reaching 5.6% top-5 error rate on the ILSVR [30] classification chal-
lenge. Also, Places365 [38] performs state of the art in several datasets for place
recognition. Another major advantage is that CNNs require little pre-processing
when compared to standard approaches, such as SIFT [24] and SURF [2]. We
re-trained this architecture to detect a list of pre-defined objects associated to
each class c (as proposed in our previous work [12]). The classifier φ returns the
probability distribution of a given image contain one of the desired classes.

3 Experimental setup

We benchmark our approach in four different gold-standard datasets (DS) for
NER in social media. The Ritter dataset and three datasets from the most
famous Workshop on Noisy User-generated Text: WNUT-15, WNUT-16 and
WNUT-17. Figure 1 depicts the pipeline that 1) performs the mapping of 3-
MUC entities for all datasets. 2) enhances each of them with POS annotations.
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3) Finally we get images and news associated with each of potential entity can-
didate.

Ritter

WNUT-15

WNUT-16

WNUT-17
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Fig. 1: Pre-processing step for the benchmark setup: adding POS tagger and
filtering NNs. In the sequence, searching the Web to obtain images and websites
for each filtered noun candidate and its compounds.

4) As a last step, we run the feature extraction modules (Section 2 - Improved
Methodology) to generate the feature vectors associated to each token t. Then we
have training data for our NER task. Following this last step, we implemented
different weak and strong NER baselines, as follows:

(1) Off-the-shelf NER As a sanity check for defining baselines, we also briefly
reported the performance of some off the shelf frameworks that claim state-
of-the-art performance on NER: NLTK, Spacy, MITIE 5, OSU Twitter NLP,
Stanford CoreNLP.

(2) Weak NER Baselines Two standard algorithms were used as weak base-
line. A classical solution for sequence-to-sequence problems (CRF) and a Deci-
sion Tree-based method.

(3) Strong NER Baselines LSTMs represent cutting-edge architectures for
NER both in formal domains [19,16] but also in noisy data [10] (despite per-
formance drop when compared to formal domains). We implemented different
SOTA LSTM-based models (B-LSTM+CRF [16], B-LSTM+CNN+CRF [25],
Char+B-LSTM+CRF [19]).

In order to fully assess the impact of the proposed features and have a fair
and proper comparison study, we performed a comprehensive benchmark on
several local and global features. The full set of input features that we feed in
our final classifier is given by the concatenation of two or more possible feature

5 https://github.com/mit-nlp/MITIE

https://github.com/mit-nlp/MITIE
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sets F = ( T X ∪CV ∪T X cnn ∪CVcnn ∪T X emb ∪T X stats ∪B∪S) . We grouped
these features into several experiment configurations (cfg01 to cfg41) (Table 1).

4 Results and Discussion

We first evaluate the performance of off the shelf tools on the selected datasets.
As expected, results indicate that these solutions underperform when confronted
with noisy data (AVG F1 from 0.2961 to 0.4878). This also confirms findings by
Derczynski et al. [9].Therefore, as the average F1-measures are below current
SOTA for the task on noisy data [12] and corroborating with past studies, we
do not move on experiments for these frameworks6.

In order to have a comprehensive and fair environment to benchmark different
weak and SOTA NER algorithms, we split different feature configurations. The
complete benchmark configuration has the following dimensions: cfg×(DStrain+
(DStrain × DStest)) × A; where cfg is the total of feature sets (i.e., distinct
configurations), Dtrain is the total of training sets, Dtest is the total of test sets
and finally A is the total number of algorithms. This leads to the following
number of experiments: 41 × (4 + (4 × 3)) × 9 = 5.9047. Table 1 summarizes
the groups of experiments performed, i.e., different experiment dimensions. It
helps to understand the the impact of images and textual features. It is worth
mentioning that experiment configurations from 30 to 41 include the best Brown
cluster in theirs respective pairs (e.g., cfg30 represents cfg18 including the best
brown cluster). Therefore, they are let out of this table to improve readability.

Figure 2 shows the performance of CRF in different datasets/feature sets.
The x-axis represents the different feature sets, while y-axis average of F1-
measure8. To highlight the impact of the different groups of features, we cat-
egorize F1‘s in four ascending scales, from worse to the best: red, yellow, gray
and green. Some patterns w.r.t. the addition of images and text as input features
are clearly observable. First, standard textual features (T X ) have often a much
worse performance when compared to standard image features (CV) as well as in
the combination of both, as observed in the following sets cfg02×cfg03×cfg04,
cfg06×cfg07×cfg08 and cfg15×cfg16×cfg17. This is at some extend ex-
pected since the adopted committee strategy [12] to classify news data is not
a straightforward task. In this sense, a better solution might be taking into
account probabilities instead of binary values. Moreover, we notice our improve-
ment in the T X component (cfg19, cfg20 and cfg21) outperform the similar
features proposed by [12]. Among those, it is worth noting that the text correla-
tion (T X stats, Section 2) has a greater impact than any other textual feature.
This is due to the higher level of abstraction when computing word embedding

6 For the sake of fair comparison, 3-MUC is also the base for experiments.
7 41 experiment configurations, 4 training sets (Ritter, WNUT-15, WNUT-16 and
WNUT-17), 3 test sets (WNUT-15, WNUT-16 and WNUT-17) and 9 NER architectures
(DT, RF, CRF, CRF-PA, LSTM, B-LSTM+CRF, Char+B-LSTM+CRF and B-
LSTM+CNN+CRF)

8 3-fold cross-validation.
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Description Configurations Note

1 Standard cfg01, cfg05, cfg09-14 usual features

2 Brown Clusters cfg09-14 usual features + Brown

3 Images cfg03, cfg07, cfg15 computer vision
cfg18, cfg26 (only)

4 Text cfg02, cfg06, cfg16 text mining
cfg19-23 (only)

5 Images cfg03, cfg07, cfg15 inspired by [12]

6 Text cfg02, cfg06, cfg16 inspired by [12]

7 Images and Text cfg04, cfg08, cfg17 inspired by [12]

8 Images cfg18 this paper (Section 2)

9 Text cfg19-23 this paper (Section 2)

10 Images and Text cfg24, cfg08, cfg17 this paper (Section 2)

Table 1: The impact of images and textual features grouped by different exper-
iment configurations. More detailed information for each configuration omitted
due to page limit, but available on the project website horus-ner.org.

distances across seeds in a distance supervision fashion. Regarding the image
detection component, introducing state-of-the-art computer vision algorithms
(CVcnn) has also been beneficial to beat previous strategy (CV), although with-
out bringing major improvements as in the T X . This is due to the common-sense
rules proposed by [12] in this layer. Finally, the inclusion of tuned Brown clus-
ters9 along with proposed features shows to be beneficial to the performance.
Overall, the best results were obtained from the concatenation of the previous
and proposed features in conjunction with Brown clusters (cfg41).

Table 2 presents detailed results for each NER model. To recap, for each
model, the first column (cfg10) in Table 2 represents the classic NER features
(e.g. lexical); The configuration cfg04 representing standard image and text fea-
tures (proposed in [12]); Finally, in cfg41 we see results for the image and text
features proposed in this work. As expected, CRFs and SOTA NNs architectures
performed best and overall images and news (cfg04 and cfg41) have a great
impact in CRFs, helping to overcome SOTA (LSTMs) w.r.t. precision. The com-
parison shed light on the impact of our proposed features (best configuration,
cfg41) when compared to the broadly implemented (standard) NER features
(cfg10) and the features proposed in our previous work [12] (cfg04). We can
see that overall the additional features introduced in this work clearly improves
the performance of the majority of the NER models - both weak and strong
baselines - (DT, RF, CRF, B-LSTM+CRF) in all data sets. CRF-PA slighly
overperformed the standard CRF, confirming findings presented by Derczynski
et al [7]. However, it is worth noticing the ability of NNs to improve recall, the
major challenging in noisy-data [1].

The results confirm that the proposed features consistently boost the per-
formance of the models in the majority of the experiments. It is worth noting

9 Bbest, cfg30-41

horus-ner.org
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Fig. 2: The CRF performance (cfgXX × F1) over different feature sets. Each
sub-graph representing one dataset. Performances of configurations using our
methodology are positively impacted.

the substantial impact in the CRF-based model. Our proposed features (cfg41)
improves Lexical + Brown Cluster and [12] in more than 90% of the cases (and
at least similar in 100% of the cases). Moreover, we notice that a basic CRF
architecture with the best feature configuration (cfg41) outperforms a state-of-
the-art B-LSTM architecture w.r.t. precision. The same feature set also posi-
tively impacted recall of B-LSTM in all experiments. Finally, we trained a B-
LSTM+CRF architecture with an expanded set created merging all data sets. We
removed duplication from the union of the respective training, dev and test sets,
i.e., occurrences of overlap sentences. The SOTA B-LSTM+CRF F1-measure
has achieved 0.5217. Integrating our methodology has increased the results to
↑0.5352 (cfg04) and ↑0.5352 (cfg41). Despite modest results, this benchmark
indicates that images and news are definitely a great asset to improve both
precision and overall performance of NER architectures in noisy contexts.

5 Related work

Named Entity Recognition is a sub task of information extraction which seeks
to identify entities in textual content. Over the past few years, the problem of
recognizing named entities in noisy data has been addressed by different ap-
proaches that have emerged specifically designed to better perform on short and
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NER Benchmark on Noisy Data

Weak Baselines Strong Baselines

Dataset Decision Trees Random Forest CRF B-LSTM [16] B-LSTM [19] B-LSTM [25]
CRF C+CRF C+CRF+CNN

cfg −→ 10 04 41 10 04 41 10 04 41 10 04 41 10 04 41 10 04 41

P 0.48 +2% +4% 0.51 +1% +24% 0.73 +5% +7% 0.77 +1% −3% 0.81 −5% −1% 0.81 −5% −5%
Ritter R 0.49 +1% +3% 0.48 −1% −2% 0.58 −8% −2% 0.63 +5% +5% 0.59 +5% +4% 0.62 +3% +5%

F 0.49 +1% +3% 0.49 +4% +7% 0.58 +2% +7% 0.68 +1% +1% 0.67 +1% +1% 0.69 −1% +1%

P 0.49 +2% +5% 0.52 +7% +25% 0.72 +7% +9% 0.72 −4% −2% 0.77 −3% −4% 0.78 −4% −5%
WNUT-15 R 0.50 +0% +5% 0.49 +0% +1% 0.48 −1% +6% 0.69 +1% +1% 0.65 +2% +2% 0.66 +2% +2%

F 0.50 +0% +5% 0.50 +5% +9% 0.56 +2% +8% 0.68 +0% +0% 0.69 +0% −1% 0.71 −1% −2%

P 0.49 +1% +6% 0.52 +14% +23% 0.72 +7% +9% 0.72 −4% −2% 0.77 −3% −3% 0.78 −4% −6%
WNUT-16 R 0.50 +1% +6% 0.48 +0% +2% 0.48 −1% +6% 0.69 +0% +1% 0.65 +2% +2% 0.66 +2% +2%

F 0.49 +1% +6% 0.50 +5% +10% 0.56 +2% +8% 0.69 −1% +0% 0.69 +0% +0% 0.71 −1% −2%

P 0.44 +3% +7% 0.47 +13% +24% 0.76 +2% +1% 0.76 −2% −2% 0.76 +0% −2% 0.77 −3% −3%
WNUT-17 R 0.45 +4% +6% 0.44 +3% +4% 0.50 +0% +5% 0.63 +1% +1% 0.64 +0% +1% 0.62 +1% +1%

F 0.44 +4% +6% 0.45 +6% +12% 0.60 +0% +4% 0.67 +0% +0% 0.69 +0% −1% 0.67 +0% −1%

Table 2: The performance measure‘s improvements (green) and decreases (red) in
different datasets, feature sets (cfg) and NER models. Results are represented
in a color gradient of 5 points interval. 0% represents a tiny improvement i
(0.1% ≤ i ≤ 0.99%), which is not representative, although technically not zero.
The percentage variation both in 04 and 41 columns are according to the baseline
performance for each NER architecture (column 10).

noisy texts, such as T-NER [29] and TwiterIE [3]. The first performs tokeniza-
tion, POS tagging and noun-phrase chunking before using topic models to find
named entities whereas the second – an extension of GATE ANNIE [6] – imple-
ments an NLP pipeline customized to microblog texts at every stage (including
Twitter-specific data import and metadata handling). Liu et al. [22] propose
a gradient-descent graph-based method for text normalization and recognition.
Likewise, these approaches are highly dependent on hand-crafted rules. Most
recently, approaches followed Lample et al. [19] architecture based on BiLSTMs.
Limsopatham and Collier [20] proposed a neural architecture for NER on mi-
croblogs, which combines a bidirectional LSTM with an CRF achieving a F1

measure of 52.41 for English text. Models supporting other languages were pro-
posed, however, similar performances (min-max F1 measure) have also been ob-
served across different languages other than English, such as French, Portuguese
and Chinese, for instance ([23] - 21.28 − 58.59, [28] - 24.40 − 52.78 and [15] -
44.29−54.50, respectively). Esteves et al. [12] proposed a methodology to encode
image and news features into NER architectures, showing promising preliminary
results. [36] followed the same idea to detect entities in Twitter, but just ana-
lyzing existing images associated to a given tweet, which drastically restricts
the approach. In the three years the NER in social media benchmarking work-
shop W-NUT ran, in social media10, modest results have been reported by a
vast number of different NER architectures: 16.47 − 56.41, 19.26 − 52.41 and

10 http://noisy-text.github.io

http://noisy-text.github.io
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39.98− 41.86 (min-max F1 in WNUT 2015, 2016, 2017, respectively) [1,31,11].
Therefore, although neural architectures pose a good choice to outperform stan-
dard architectures (e.g. CRFs), the task is still far from being solved in noisy
contexts.

6 Conclusion

In this paper, we benchmark and extend a novel multilevel NER approach in
different ways. We integrate features which rely on state-of-the-art computer
vision and text mining techniques. We show that its major advantage is the fact
that it does not rely on hand-crafted features and domain-specific knowledge. In
order to support this claim, we conducted a massive number of experiments in the
same computational environment with different feature sets and over different
gold-standard data. In traditional NER architectures (e.g. CRF), the proposed
features have proved feasible to notably improve its overall model performance
(i.e. F1) and, when compared to SOTA, beat in precision. SOTA had improved
in recall, but at expense of precision. However, when benchmarking the models
across different training-test sets (which is often not tested in most research
publications) the images and news also proved to be beneficial for the task.
We also confirmed that this solution performs better than existing off-the-shelf
frameworks on the noisy context, as expected. The main issue w.r.t. SOTA neural
networks for this domain seems to be the size of the available training data sets
(WNUT). As future work we plan to explore the combination of the models given
their probability distributions, extending also the analysis to more named entity
classes. Also, since it shows to be language-agnostic, we would like to explore
new languages other than English. Finally, we plan to integrate this architecture
into Named Entity Disambiguation and Linking frameworks.
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