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Abstract

In recent years, there have been significant
developments in Question Answering over
Knowledge Graphs (KGQA). Despite all the
notable advancements, current KGQA systems
only focus on answer generation techniques
and not on answer verbalization. However,
in real-world scenarios (e.g., voice assistants
such as Alexa, Siri, etc.), users prefer verbal-
ized answers instead of a generated response.
This paper addresses the task of answer verbal-
ization for (complex) question answering over
knowledge graphs. In this context, we pro-
pose a multi-task-based answer verbalization
framework: VOGUE (Verbalization thrOuGh
mUlti-task lEarning). The VOGUE frame-
work attempts to generate a verbalized an-
swer using a hybrid approach through a multi-
task learning paradigm. Our framework can
generate results based on using questions and
queries as inputs concurrently. VOGUE com-
prises four modules that are trained simulta-
neously through multi-task learning. We eval-
uate our framework on all existing datasets
for answer verbalization, and it outperforms
all current baselines on both BLEU and ME-
TEOR scores as evaluation metric.

1 Introduction

In recent years, publicly available knowledge
graphs (KG) (e.g., DBpedia (Lehmann et al.,
2015), Wikidata (Vrandečić and Krötzsch, 2014))
have been broadly adopted as a source of knowl-
edge in several tasks such as entity linking, re-
lation extraction, and question answering (Kacu-
paj et al., 2021b). Question answering (QA) over
knowledge graphs, in particular, is an essential
task that maps a user’s utterance to a query over
a KG to retrieve the correct answer (Singh et al.,
2018). The initial knowledge graph question an-
swering systems (KGQA) were mostly template-
or rule-based systems with limited learnable mod-

Figure 1: A QA pipeline with integrated answer verbal-
ization module. Our focus is the answer verbalization
task as we assume logical form is generated by a QA
system using the input question.

ules (Unger et al., 2012). With the increasing
popularity of intelligent personal assistants (e.g.,
Alexa, Siri), the research focus has been shifted
to conversational question answering over KGs
(ConvQA) that involve single-turn/multi-turn di-
alogues (Kacupaj et al., 2021a).

Existing open-source KGQA systems are re-
stricted to only generating or producing answers
without verbalizing them in natural language (Fu
et al., 2020). The lack of verbalization makes the
interaction with the user not natural in contrast
to voice assistants such as Siri and Alexa. Fig-
ure 1 depicts an ideal integration of a QA pipeline
with answer verbalization. For instance, assuming
that the answer to the exemplary question, “How
many shows does HBO have?” is not known by
the user. Suppose the QA system only responds
with a number (e.g., 38) as an answer (similar to
open-source KGQA systems), with no further ex-
planation. In that case, the user might need to refer
to an external data source to verify the answer. In
an attempt to enable the users to verify the answer
provided by a QA system, researchers employed
techniques such as (i) revealing the generated for-
mal query (Ferré, 2017), (ii) graphical visualiza-
tions of the formal query (Zheng et al., 2017) and
(iii) verbalizing the formal query (Ell et al., 2014).
Understanding the necessity of verbalized answers
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in the KGQA domain, recently, several datasets
have been proposed (Kacupaj et al., 2020; Biswas
et al., 2021). For the answer verbalization task, the
system has to verbalize the answer to convey not
only the information requested by the user but also
additional characteristics that indicate how the an-
swer was determined. In our exemplary question
(from Kacupaj et al. (2021a) dataset), a verbalized
response would look like, “HBO owns 38 televi-
sion shows.” or “There are 38 TV shows whose
owner is HBO.”. Both answers allow the user to
verify that the system retrieved the total number
of TV shows owned by HBO. In the literature,
there exist empirical results showing that answer
verbalization quantitatively and qualitatively im-
proves the ability to understand the answer (Kacu-
paj et al., 2021a). However, it remains an open
question – How can we verbalize an answer, given
a logical form and an input question. With our
work we address precisely this open and highly
relevant research question.

In this paper, we propose VOGUE, the first ap-
proach dedicated to verbalize answers for KGQA.
Our idea is to employ the question (user utter-
ance) and the QA system-generated query as in-
puts. We refer to this strategy as “hybrid”, since
the final verbalized answer is produced using
both the question and query concurrently. This
work argues that leveraging content from both
sources allows the model for better convergence
and provides new, improved results. Furthermore,
we complement our hypothesis with multi-task
learning paradigms, since multi-task learning has
been quite efficient for different system architec-
tures (Cipolla et al., 2018), including question an-
swering systems (Plepi et al., 2021; Kacupaj et al.,
2021b). Our framework can receive two (e.g.,
question & query) or even one (e.g., question) in-
put. It consists of four modules that are trained
simultaneously to generate the verbalized answer.
The first module employs a dual transformer-
based encoder architecture for encoding the in-
puts. The second module determines whether the
encoded inputs are relevant and decides if both
will be used for verbalization. The third module
consists of a cross-attention network that performs
question and query matching by jointly modeling
the relationships of question words and query ac-
tions. The final module employs a transformer de-
coder that is used to generate the final verbaliza-
tion. Our work makes the following contributions:

• We introduce the first multi-task-based hy-
brid answer verbalization framework consist-
ing of simultaneously trained four modules.

• We propose a similarity threshold and cross
attention modules to determine the relevance
between the inputs and fuse information to
employ a hybrid strategy.

• We provide an extensive evaluation and ab-
lation study of the proposed framework on
three QA datasets with answer verbalization.
Our evaluation results establish a new base-
line for answer verbalization task, which we
believe will drive future research in a newly
studied problem.

To facilitate reproducibility and reuse, our frame-
work implementation is publicly available1. The
structure of the paper is as follows: Section 2 sum-
marizes the related work. Section 3 provides the
task definition. Section 4 presents the proposed
framework. Section 5 describes the experiments,
results, ablation study and error analysis. We con-
clude in Section 6.

2 Related Work

As part of the related work we describe previous
efforts and refer to different approaches from re-
search fields, including task-oriented dialog sys-
tems, WebNLG, and KGQA systems.

A task-oriented dialogue system aims to help
the user complete certain tasks in a specific do-
main (e.g. restaurant booking, weather query,
or flight booking), making it valuable for real-
world business. Typically, task-oriented dialogue
systems are built on top of a structured ontol-
ogy, which defines the tasks’ domain knowledge.
Work in (Bordes et al., 2017) formalized the task-
oriented dialogue as a reading comprehension task
regarding the dialogue history as context, user ut-
terance as the question, and system response as the
answer. In their work, authors utilized end-to-end
memory networks for multi-turn inference. In (Lei
et al., 2018), authors proposed a two-step seq2seq
generation model, which bypassed the structured
dialogue act representation and only retain the dia-
logue state representation. Kassawat et al. (2019)
proposed RNN-based end-to-end encoder-decoder
architecture, which employs joint embeddings of
the knowledge graph and the corpus as input.

1https://github.com/endrikacupaj/VOGUE

https://github.com/endrikacupaj/VOGUE


The WebNLG is a challenge that consists of
mapping structured data to a textual representa-
tion. The dataset (Gardent et al., 2017) contains
data/text pairs where the data is a set of triples ex-
tracted from DBpedia, and the text is the verbal-
ization of these triples. The dataset has been pro-
moted for the development of 1) RDF verbalizers
and 2) microplanners to handle a wide range of
linguistic constructions. In our case, we only fo-
cus on related work pertaining to RDF verbalizers.
Zhao et al. (2020) propose DualEnc, a dual en-
coding model that can incorporate the graph struc-
ture and cater to the linear structure of the out-
put text. Song et al. (2020) proposes a graph-to-
text approach that leverages richer training signals
to guide the model for preserving input informa-
tion. They introduce two types of autoencoding
losses, each individually focusing on different as-
pects of input graphs. The losses are then back-
propagated to calibrate the model via multi-task
training. Work in Liu et al. (2020) propose an
attention-based model, which mainly contains an
entity extraction module and a relation detection
module. The model devises a supervised multi-
head self-attention mechanism as the relation de-
tection module to learn the token-level correlation
for each relation type separately.

The task-oriented dialogue systems and
WebNLG contain various approaches for gen-
erating text; nevertheless, none of them can be
applied directly to solve answer verbalization for
KGQA systems. Most task-oriented dialogue
systems are designed and implemented to fit their
corresponding task, and therefore they would not
be suitable for open-domain knowledge graphs
(e.g. Wikidata, DBpedia). Regarding WebNLG,
the task only considers triples or graph structure
data as input. In answer verbalization, the model
input can be the question and/or the query. While
the query can be translated into a graph structure,
there is no support for textual information such as
the question.

3 Task Definition

In this work, we target the problem of answer ver-
balization for KGQA. A semantic parsing-based
QA system maps the question into executable log-
ical forms and then executes it on a KG to pro-
duce the answer. For our task, given the question,
the generated logical form, and the extracted an-
swer, we aim to generate a natural language sen-

tence, with the requirements that it is grammati-
cally sound and correctly represents all the infor-
mation in the question, logical form, and answer.
Formally, let X,Y denote the source-target pair.
X contains the set of questions, logical forms, an-
swers, and Y corresponds to y1, y2, ..., ym, which
is the verbalized answer of X . The goal of
the answer verbalization is to learn a distribution
p(Y |X) to generate natural language text describ-
ing the answer automatically.

4 Approach

In question answering, the input data consists of
question u and its answer a, extracted from the
knowledge graph. The QA system will map the
question to a logical form z depending on the con-
text. For answer verbalization, VOGUE maps the
question, logical form, and answer to natural lan-
guage sentence s. Figure 2 shows the architecture
of VOGUE.

4.1 Dual Encoder

To encode both the question and logical form, we
employ a dual encoder architecture. Our dual en-
coder consists of two instances of the transformer
encoder (Vaswani et al., 2017).

First, as a preprocessing, we use a previous
competitive pre-trained named entity recognition
model (Yamada et al., 2020) to identify and re-
place all entities in the question with a more gen-
eral entity token [ENT ]. In this way, we allow
our model to focus on the sentence structure and
relations between words. Furthermore, our model
learns the positions of entities in the question. It
also allows VOGUE to predict the respective en-
tity positions in the verbalized answer. The same
preprocessing step applies to the logical form. At
the end of each input, we append a context token
[CTX], which is used later as a semantic repre-
sentation.

Next, given the question utterance q contain-
ing n words {w1, . . . , wn} and the logical form
l containing m actions {a1, . . . , am}, we tok-
enize the contexts and use the pre-trained model
GloVe (Pennington et al., 2014) to embed the
words into a vector representation space of dimen-
sion d 2. Our word embedding model provides
us with the sequences x(q) = {x(q)1 , . . . , x

(q)
n },

x(lf) = {x(lf)1 , . . . , x
(lf)
m } where x(q)i , x(lf)i are

2We employ the same dimension d for all the representations, un-
less it is explicitly mentioned.



Figure 2: VOGUE’s architecture. It consists of four modules: 1) A dual encoder that is responsible to encode both
inputs (question, logical form). 2) A similarity threshold module that determines whether the encoded inputs are
relevant and determines if both will be used for verbalization. 3) A cross-attention module that performs question
and query matching by jointly modeling the relationships of question words and query actions. 4) A hybrid decoder
that generates the verbalized answer using the information of both question and logical form representations from
the cross-attention module.

given by,

x
(q)
i = GloV e(wi),

x
(lf)
i = GloV e(ai),

(1)

and x(q)i , x
(lf)
i ∈ Rd. Afterwards, both sequences

are forwarded through the transformer encoders.
The two encoders here output the contextual em-
beddings h(q) = {h(q)1 , . . . , h

(q)
n } and h(lf) =

{h(lf)1 , . . . , h
(lf)
m }, where h(q)i , h

(lf)
i ∈ Rd. We de-

fine this as:
h(q) = encoderq(xq; θ

(encq)),

h(lf) = encoderlf (xlf ; θ
(enclf )),

(2)

where θ(encq), θ(enclf ) are the encoders trainable
parameters.

4.2 Similarity Threshold

Given the encoded question utterance and logical
form, VOGUE’s second module is responsible for
learning the relevance between the inputs and de-

termining whether we will employ both for verbal-
ization. This module is necessary when we want
to utilize our framework alongside a question an-
swering system. If we assume that the QA sys-
tem is perfect and always produces correct logical
forms, this module can be skipped. However, in a
real-world scenario, QA systems are far from per-
fect. Therefore, we employ this module, which
intends to identify the threshold for determining if
two inputs are similar or not. The input here is the
concatenation of the hidden states of the encoded
question utterance h(q) and logical form h(lf). The
module will perform binary classification on the
vocabulary V (st) = {0, 1}, where 0 indicates that
there is no high relevance between the inputs, and
only the question will be used for verbalization.
While 1 allows us to use both and continue with
the next module. Overall, our similarity threshold
module is implemented using two linear layers, a
Leaky ReLU activation function and a softmax for



the predictions. Formally we define the module as:

h(st) = LeakyReLU(W (st1)[h(q);h(lf)]),

p(st) = softmax(W (st2)h(st)),
(3)

where W (st1) ∈ Rd×2d are the weights of the
first linear layer and h(st) is the hidden state of
the module. W (st2) ∈ R|V (st)|×d are the weights
of the second linear layer, |V (st)| is the size of the
vocabulary and p(st) denotes the probability distri-
bution over the vocabulary indices.

4.3 Cross Attention

Inspired by recent computer vision research (Wei
et al., 2020; Mohla et al., 2020), we employ
a cross-attention module that exploits relation-
ships between the inputs and fuses information.
The module here performs question and logi-
cal form matching by jointly modeling the re-
lationships of question words and logical form
actions. Our cross-attention approach is a vari-
ation of the self-attention mechanism (Vaswani
et al., 2017). In the self-attention mechanism
the output is determined by a query and a set
of key-value pairs. Given the stacked encoded
question and logical form, h(qlf) =

(
h(q)

h(lf)

)
=

{h(q)1 , . . . , h
(q)
n ;h

(lf)
1 , . . . , h

(lf)
m }, where h(qlf) ∈

R2×d we calculate the query and key-value pairs
using three linear projections:

Q(qlf) = W (Q)h(qlf) =

(
W (Q)h(q)

W (Q)h(lf)

)
=

(
Q(q)

Q(lf)

)
,

K(qlf) = W (K)h(qlf) =

(
W (K)h(q)

W (K)h(lf)

)
=

(
K(q)

K(lf)

)
,

V (qlf) = W (V )h(qlf) =

(
W (V )h(q)

W (V )h(lf)

)
=

(
V (q)

V (lf)

)
,

(4)

where W (Q),W (K),W (V ) ∈ Rd×d

are the weights of the linear layers and
Q(qlf),K(qlf),V (qlf) are the query, key and
value of the stacked question and logical form.
Next, for calculating the cross-attention we sim-
plify the “Scaled Dot-Product Attention” (Vaswani
et al., 2017) step by removing the scaling factor
and softmax. We end-up calculating the attention

of our input as described below:

Attention(Q(qlf),K(qlf),V (qlf))

= Q(qlf)K(qlf)T · V (qlf)

=

(
Q(q)

Q(lf)

)
(K(q)TK(lf)T ) ·

(
V (q)

V (lf)

)

=

(
Q(q)K(q)T Q(q)K(lf)T

Q(lf)K(q)T Q(lf)K(lf)T

)
·

(
V (q)

V (lf)

)

=

(
Q(q)K(q)TV (q) + Q(q)K(lf)TV (lf)

Q(lf)K(lf)TV (lf) + Q(lf)K(q)TV (q)

)
.

(5)

While calculating the cross-attention for the ques-
tion, we also use the key-value pair from the log-
ical form (K(lf),V (lf)), the same applies when
calculating the cross-attention for the logical form.
After calculating the cross-attentions, we use the
same steps as in the transformer to produce the
new representations for our inputs. Finally, con-
sidering h(qca), h(lfca) the output representations
of the cross-attention module for the question and
logical form respectively, we concatenate them
and forward them to the hybrid decoder module.

4.4 Hybrid Decoder

To translate the input question and logical
form into a sequence of words (verbalized an-
swer), we utilize a transformer decoder architec-
ture (Vaswani et al., 2017), which employs the
multi-head attention mechanism. The decoder will
generate the final natural language answer. The
output here is dependent on the cross-attention
embedding h(ca). Here we define the decoder vo-
cabulary as

V (dec) = V (vt) ∪ { [START ], [END],

[ENT ], [ANS] },
(6)

where V (vt) is the vocabulary with all the distinct
tokens from our verbalizations. As we can see,
the decoder vocabulary contains four additional
helper tokes, where two of them ([START ],
[END]) indicate when the decoding process starts
and ends, while the other two ([ENT ], [ANS])
are used to specify the position of the entities
and the answer on the final verbalized sequence.
On top of the decoder stack, we employ a linear
layer alongside a softmax to calculate each token’s
probability scores in the vocabulary. We define the



decoder stack output as follows:

h(dec) = decoder(h(ca); θ(dec)),

p
(dec)
t = softmax(W (dec)h

(dec)
t ),

(7)

where h
(dec)
t is the hidden state in time step

t, θ(dec) are the decoder trainable parameters,
W (dec) ∈ R|V (dec)|×2d are the linear layer
weights, and p(dec)t ∈ R|V (dec)| is the probability
distribution over the decoder vocabulary in time
step t. The |V (dec)| denotes the vocabulary size of
the decoder module in VOGUE.

4.5 Learning
The framework consists of four trainable mod-
ules. However, we apply a loss function only on
two of them (similarity threshold and hybrid de-
coder). The dual encoder and cross-attention mod-
ules are trained based on the similarity threshold
and hybrid decoder’s signal. To account for multi-
tasking, we perform a weighted average of all the
single losses:

L = λ1L
st + λ2L

dec, (8)

where λ1, λ2 are the relative weights learned dur-
ing training considering the difference in mag-
nitude between losses by consolidating the log
standard deviation (Armitage et al., 2020; Cipolla
et al., 2018). Lst and Ldec are the respective neg-
ative log-likelihood losses of the similarity thresh-
old and hybrid decoder modules. These losses are
defined as:

Lst = −
2d∑
j=1

logp(y
(st)
j |x),

Ldec = −
m∑
k=1

logp(y
(dec)
k |x),

(9)

where m is the length of the gold logical form.
y
(st)
j ∈ V (st) are the gold labels for the similar-

ity threshold and y(dec)k ∈ V (dec) are the gold la-
bels for the decoder. The model benefits from each
module’s supervision signals, which improves the
performance in the given task.

5 Experiments

5.1 Experimental Setup
Datasets We perform experiments on three an-
swer verbalization datasets (cf., Table 1). Below
we provide a brief description of these:

Dataset Train Test Ques len. Ans len. Vocab.

VQuAnDa 4000 1000 12.27 16.95 10431
ParaQA 12637 3177 12.27 17.06 12755
VANiLLa 85729 21433 8.96 8.98 50505

Table 1: Dataset statistics, including the (average)
number of tokens per question sentence, the (average)
number of tokens per answer sentence and the vocabu-
lary list size.

• VQuAnDa (Kacupaj et al., 2020) is the first
QA dataset, which provides the verbaliza-
tion of the answer in natural language. It
contains 5000 “complex” questions with their
SPARQL queries and answers verbalization.
The dataset consists of 5042 entities and 615
relations.

• ParaQA (Kacupaj et al., 2021a) is a QA
dataset with multiple paraphrased responses.
The dataset was created using a semi-
automated framework for generating diverse
paraphrasing of the answers using techniques
such as back-translation. It contains 5000
“complex” question-answer pairs with a min-
imum of two and a maximum of eight unique
paraphrased responses for each question.

• VANiLLa (Biswas et al., 2021) is a QA
dataset that offers answers in natural lan-
guage sentences. The answer sentences in
this dataset are syntactically and semantically
closer to the question than the triple fact. The
dataset consists of over 100k “simple” ques-
tions.

Model Configuration For simplicity, to represent
the logical forms, we employ the same grammar
as in (Kacupaj et al., 2021b). Our approach can
be used with any other grammar or even directly
with SPARQL queries. However, we believe it is
better to employ semantic grammar from a state-
of-the-art QA model. To properly train the simi-
larity threshold module, we had to introduce neg-
ative logical forms for each question. We did that
by corrupting the gold logical forms, either by re-
placing a random action or finding another “sim-
ilar” logical form from the dataset based on the
Levenshtein distance. For all the modules in our
framework, we employ an embedding dimension
of 300. A transformer encoder and decoder having
two layers and six heads for the multi-head atten-
tion model is used. We apply dropout (Srivastava
et al., 2014) with a probability 0.1. For the op-
timization, we use the Noam optimizer proposed



BLEU METEOR

Models VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa

RNN (Luong et al., 2015) (Q) 15.43 22.45 16.66 53.15 58.41 58.67
RNN (Luong et al., 2015) (LF) 20.19 26.36 16.45 57.06 61.87 55.34
Convolutional (Gehring et al., 2017) (Q) 21.32 25.94 15.42 57.54 60.82 61.14
Convolutional (Gehring et al., 2017) (LF) 26.02 31.89 16.89 64.30 65.85 58.72
Transformer (Vaswani et al., 2017) (Q) 18.37 23.61 30.80 56.83 59.63 62.16
Transformer (Vaswani et al., 2017) (LF) 23.18 28.01 28.12 60.17 63.75 59.01
BERT (Devlin et al., 2019) (Q) 22.78 26.12 31.32 59.28 62.59 62.96
BERT (Devlin et al., 2019) (LF) 26.48 30.31 30.11 65.92 65.92 59.27

VOGUE (Ours) (H) 28.76 32.05 35.46 67.21 68.85 65.04

Table 2: Results on answer verbalization. VOGUE outperforms all existing baselines and achieves the new state
of the art for both the BLEU and METEOR scores. The baseline experiment results are reported with two inputs:
Question (Q) and gold Logical Form (LF), while VOGUE employs a Hybrid (H) approach.

by (Vaswani et al., 2017), where authors use an
Adam optimizer (Kingma and Ba, 2015) with sev-
eral warmup steps for the learning rate.
Model for Comparison We compare our frame-
work with the four baselines that have been evalu-
ated on the considered datasets. All baselines con-
sist of sequence to sequence architectures, a fam-
ily of machine learning approaches used for lan-
guage processing and often used for natural lan-
guage generation tasks. The first model consists
of an RNN (Luong et al., 2015) based architecture,
the second uses a convolutional network (Gehring
et al., 2017), the third employs a transformer net-
work (Vaswani et al., 2017), while the last one
uses pre-trained BERT (Devlin et al., 2019) model.
For a fair comparison with our framework, we re-
port the baselines’ results using the question and
the logical form as separate inputs considering
that baselines are limited to accept both inputs to-
gether.
Evaluation Metrics We use the same metrics
as employed by the authors of the three exist-
ing datasets (Kacupaj et al., 2020, 2021a; Biswas
et al., 2021) on the previously mentioned base-
lines. The BLEU score, as defined by (Papineni
et al., 2002), analyzes the co-occurrences of n-
grams in the reference and the proposed responses.
It computes the n-gram precision for the whole
dataset, which is then multiplied by a brevity
penalty to penalize short translations. We report
results for BLEU-4. The METEOR score intro-
duced by (Banerjee and Lavie, 2005) is based on
the harmonic mean of uni-gram precision and re-
call, with recall weighted higher than precision.

5.2 Results

Table 2 summarizes the results comparing the
VOGUE framework to the previous baselines for
answer verbalization. VOGUE significantly out-
performs the earlier baselines for both the BLEU
and METEOR scores. While for the other base-
lines, we perform experiments with two different
inputs (Question, gold Logical Form), VOGUE is
the only one that directly uses both inputs (Hy-
brid). As we can see, for both datasets VQuAnDa
and ParaQA, all baselines perform slightly worse
when receiving the question as input compared
to the gold logical form. This is due to the
constant input pattern templates that the logical
forms have. However, this does not apply to the
VANiLLa dataset since it only contains simple
questions. VOGUE achieves a BLEU score of
28.76 on VQuAnDa, which is 2 points higher than
the second-best BERT (LF). The same applies to
the METEOR score. Regarding ParaQA, VOGUE
performs slightly better than the second Convolu-
tional (LF) on BLEU score, while on METEOR
score, the margin increases to 3 points. Finally,
for the VANiLLa dataset, VOGUE performs con-
siderably better compared to other baselines.

5.3 Ablation Study

Integration with Semantic Parsing based QA
system
The logical forms used for the results in Table 2
are the gold ones, and therefore the performance of
all baselines, including our framework, is boosted.
In our first ablation study, we want to perform
experiments in an end-to-end manner with a se-
mantic parsing QA system, alongside the mod-



BLEU METEOR

Models VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa

RNN 15.43 22.45 16.66 53.15 58.41 58.67
Convolutional 21.32 25.94 15.42 57.54 60.82 61.14
Transformer 18.37 23.61 30.80 56.83 59.63 62.16
BERT 22.78 26.12 31.32 59.28 62.59 62.96

VOGUE (Ours) 25.76 28.42 33.14 64.61 67.52 63.69

Table 3: Results of the answer verbalization with a semantic parsing QA system. VOGUE still outperforms all
baselines. For the baselines we employ only the question as input, while our framework employs the similarity
threshold module to determine whether a hybrid verbalization can be performed.

BLEU METEOR

Ablation VQuAnDa ParaQA VANiLLa VQuAnDa ParaQA VANiLLa

Ours 28.76 32.05 35.46 67.21 68.85 65.04
w/o Cross Attention 26.24 30.59 30.94 64.93 66.16 62.12
w/o Multi-Task Learning 25.74 28.15 29.07 62.31 63.84 61.49

Table 4: Ablation study results that indicate the effectiveness of cross attention and multi-task learning. The first
row contains the results of the VOGUE framework when training all four modules with multi-task learning. The
second and third rows selectively remove the cross attention and the multi-task learning from VOGUE. Best values
in bold.

F1-Score

Module VQuAnDa ParaQA VANiLLa

Similarity Threshold 64.73 58.55 98.76

Table 5: Similarity threshold results for each dataset.

els, to understand our framework’s superior per-
formance. In this experiment, we train a sim-
ple, sequence-to-sequence-based semantic parser
system to generate the logical forms by using
the questions. As expected, the generated logi-
cal forms are not all correct, and therefore this
affects the verbalization results. However, in Ta-
ble 3, we can see that VOGUE still outperforms
all baselines in this setting. An important role
here plays the similarity threshold module, en-
abling a hybrid approach even in a real-world sce-
nario. We can only use the question as input for
the baselines since we do not have the gold logical
forms. Here, it is also interesting that in two of
the datasets, our framework outperforms the base-
lines with a more significant margin than before
(c.f. Table 3, METEOR-VQuAnDa, METEOR-
ParaQA). Finally, Figure 3 illustrates the perplex-
ity results, which show how well a probability dis-
tribution predicts a sample. A low perplexity in-
dicates the probability distribution is good at pre-
dicting the sample. As we can see, our framework

achieves the lowest perplexity values on all three
datasets compared to other the baselines.

Impact of Cross Attention and Multi-Task
Learning
Our second ablation experiment demonstrates the
vitality of the cross-attention module and multi-
task learning strategy. We first remove the cross-
attention module from our framework. Instead, we
only concatenate the question and logical form to
generate the verbalization. As observed in Table 4,
we obtain worse results compared to the origi-
nal configuration of VOGUE. A simple concatena-
tion does not interchange any information between
the question and the logical form, and therefore
the results are expected to be lower. The cross-
attention module is intentionally built to determine
relevance between inputs by jointly modeling the
relationship between the question words and log-
ical form actions. Next, we train all modules in-
dependently and join them on inference to under-
stand multi-task learning efficacy. As observed,
our results have a negative impact when a multi-
task learning strategy is not employed.

Similarity Threshold Task Analysis
Table 5 illustrates the performance of similarity
threshold module. We observe that the module
performs fairly well on VQuAnDa and ParaQA



Figure 3: Perplexity curves for all three answer verbalization datasets.

with f1 scores of 64.73 and 58.55, respectively.
Both datasets contain complex questions. Hence,
predicting the similarity between the question and
the logical form is not easy. However, as long
as the module’s score is beyond 50, we are con-
fident that using the similarity threshold module
can improve our frameworks’ answer verbaliza-
tion results. For the VANiLLa dataset, the per-
formance is incredibly high, with a score of 98.76.
This is because the dataset contains only simple
questions. Consequently, a single template pattern
is employed for this dataset, and the module here
has to predict if the logical form contains the cor-
rect triple relation. The task is much easier to per-
form compared to complex questions. Overall, the
module results are pretty accurate and encourage
us to apply them in our task.

5.4 Error Analysis

For the error analysis, we randomly sampled 100
incorrect predictions for human evaluation. We
detail the reasons for two types of errors observed
in the analysis:

Words Mischoose A common error of VOGUE
is mischoosing a word in the answer verbalization
sentence. For instance, for the question “Give me
a count of everything owned by the network whose
sister name is The CW?” our framework generated
the answer “There are 156 television shows whose
network’s sister station is The CW.”. However, the
gold reference here is “There are 156 things whose
network’s sister name is The CW.” As we can see,
our framework misselected words in two parts of
the sentence. The first one is the word “things”,
where it predicted “television shows”. The sec-
ond one is the word “name”, where our model pre-
dicted “station”. Both model predictions (“televi-

sion shows”, “station”) are correlated, since they
belong to the same context. Such errors do not
heavily penalize the overall performance. For the
example mentioned above, the BLEU and ME-
TEOR score is positive, with values 35.74 and
81.52, respectively.

Factual Errors Another type of error of
VOGUE is when it misses the semantic meaning
and produces irrelevant results. It contributes to
a major chunk of overall errors. There are two
cases that can cause observed errors. The first one
is the lack of reasoning for similar context data.
When facing examples with the limited context in
the dataset, the model would most definitely fail
to reproduce the same context in the answer sen-
tence. One can solve the issue by enriching the
training data with other examples containing simi-
lar contexts. The second reason for having factual
errors is when similarity threshold module fails to
determine the inputs’ relevance. As illustrated be-
fore, using the similarity threshold allows to suc-
cessfully adopt a hybrid approach in a real-world
scenario (QA + Answer Verbalization) and exceed
any previous baseline performance. Further, in the
appendix, we describe the grammar used in this
work, a case study, detailed experiment settings,
and extended error analysis results.

6 Conclusions

The considered hypothesis in the paper was to
study the impact of jointly utilizing the ques-
tion and logical form on the answer verbalization
task. We empirically observed that the proposed
“hybrid” approach implemented in the VOGUE
framework provides a flexibility to be deployed
in a real world scenario where a QA system not
always will produce the correct logical form. We



systematically studied the impact of our choices in
the proposed architecture. For instance, the abla-
tion study demonstrates the effectiveness of multi-
task learning and cross-attention module. Albeit
effective, VOGUE is the first step towards a more
extensive research agenda. Based on our obser-
vations, we submit the following open research
questions in this domain: 1) KGs have been re-
cently used as a source of external knowledge in
the tasks such as entity and relation linking, which
are also prominent for question answering (Bas-
tos et al., 2021; Mulang et al., 2020). It is yet
to be studied if external knowledge from KGs or
other sources may positively impact the answer
verbalization. 2) There are empirical evaluations
that for AI systems, the explanations regarding the
retrieved answers improve trustworthiness, espe-
cially in wrong prediction (Kouki et al., 2017).
Hence, how an answer verbalization can be ex-
plained remains an important open research direc-
tion. 3) In our work, we focused on English as an
underlying language, and a multi-lingual approach
is the next viable step.
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A Appendix

Due to page limit, we could not put several em-
pirical results in the main paper. This section de-
scribes the remaining empirical studies.

B Grammar

For the logical forms, we employ a grammar that
can be used to capture the entire context of the
question with the minimum number of actions.
We prefer not to reinvent the wheel, and there-
fore we adopted the grammar from existing state-
of-the-art question answering systems (Kacupaj
et al., 2021b; Plepi et al., 2021). However, we
do not employ all the actions from these works;
Table 7 illustrates the complete grammar with
all the defined actions that we used for all three
answer verbalization datasets. As we can see,
for a couple of actions, we also have their re-
verse occurrence (e.g. find, find reverse). This
is done to match the knowledge graph triple di-
rection (subject-predicate-object). In some ques-
tions, we might have the subject or the object
entity. Having both normal and reverse actions
helps us identify the correct answer directly based
on the model’s predicted action. In Table 6, we
illustrate how the actions can be used to anno-
tate questions from all three datasets. For in-
stance, for the VQuAnDa question “Which sports



Dataset Question Logical Form

VQuAnDa

In which team did Dave Bing and
Ron Reed started their basketball career?

union(find(Dave Bing, draftteam),
find(Ron Reed, draftteam))

Does the white river flow into
the connecticut river?

is in(find(Connecticut River, rightTributary),
White River (Vermont))

Which sports are played in schools affiliated
with the Harvest Christian Center?

find(filter type(find reverse(Harvest Christian Center,
religiousAffiliation), School), sport)

ParaQA

How many people have been part of
Chicago Bulls team?

count(find reverse(Chicago Bulls, team))

Name the office holder whose alma mater
is Harvard-Westlake School and resting place
is Alta Mesa Memorial Park?

intersection(filter type(find reverse(
Harvard-Westlake School, almamater), officeholder),
find reverse(Alta Mesa Memorial Park, restingplace))

Name all the broadcast area of the TV stations
which has Rodrigues as one of the broadcast area?

find(filter type(find reverse(Rodrigues, broadcastArea),
TelevisionStation), broadcastArea)

VANiLLa

What is the nonprofit organization
where Bruce Bochy was educated?

filter type(find(Q586449, P69), Q163740)

Which language can Paolo Brera
understand?

find(Q2423068, P1412)

Which administrative territory is Shaun
Cunnington an inhabitant of ?

filter type(find(Q7490823, P27))

Table 6: Dataset examples annotated with gold logical forms.

are played in schools affiliated with the Harvest
Christian Center?” the gold logical form does in-
clude three different actions from our grammar
(find, filter type and find reverse). Where the
“find reverse” is used to identify all the subject
entities of the triple (?subject, religiousAffiliation,
Harvest Christian Center). Another interesting
example is the ParaQA question “Name the of-
fice holder whose alma mater is Harvard-Westlake
School and resting place is Alta Mesa Memorial
Park?” where the gold logical form contains the
action “intersection” which allows us to identify
the intersection between two sets of entities. Sim-
ilarly, we also use the “union” action. Next, for
the quantitative questions, we employ the action
“count” which returns the length of the entity set.
Finally, for verification questions, we have the
“is in” action, which checks whether an entity ex-
ists in a set.

C Case Study

We further manually inspect our framework
VOGUE outputs for conducting a case study to
understand the performance better. As shown in
Table 9, we find that in the first example, VOGUE
can produce the exact verbalization with the ref-
erence. Here the logical form contains three ac-
tions (count and two find reverse), and is not a
simple question. Such results indicate the superb

Action Description

set→ find(e, p)
set of objects part of the triples
with subject e and predicate p

set→ find reverse(e, p)
set of subjects part of the triples
with object e and predicate p

set→ filter type(set, tp)
filter the given set of entities
based on the given type

boolean→ is in(entity, set) check if the entity is in the set
number→ count(set) number of elements in the set
set→ union(set1, set2) union of set1 and set2
set→ intersection(set1, set2) intersection of set1 and set2

Table 7: Predefined grammar with respective actions to
generate logical forms.

performance of our framework. Next, we can see
the question “Who is the scientist whose academic
advisor was Karl Ewald Hasse?” here, VOGUE
manages to generate almost the exact verbaliza-
tion. In particular, it only mischoses a single word,
which is still relevant to the context, and the gen-
erated result could be easily considered correct.
Our framework here generated the answer “The
scientist whose doctoral advisor is Karl Ewald
Hasse is Robert Koch.” and the word it missed was
“academic” where it replaced it with “doctoral”.
The following example illustrates the robustness
of our framework. Here the question is “What are
the movies with Daniel Waters as screenwriter?”
and our model produces a flawless verbalization
and it only complicates the words “screenwriter”
and “director”. It also replaces the word “films”
with “movies” which can be considered synonyms



and make no significant difference in verbaliza-
tion. The generated response here is grammati-
cally sound and adequately represent all the infor-
mation in the question and logical form. Finally,
in the last example, we can see that VOGUE has
generalized in the answer verbalization compared
to the reference. More precisely, the question here
refers to cars designed by a company, and the ref-
erence also mentions it. However, our model pro-
duces a more general but at the same time flu-
ent verbalization that refers to “things” instead of
“cars”, which again can be considered a valid re-
sponse for the given input.

D Hyperparameters and Module
Configurations

Table 8 summarizes the hyperparameters used
across the VOGUE framework. Starting with
training parameters, we employ a batch size of
256, a learning rate of 0.001 and we train for 100
epochs. For the optimization, we use the Noam
optimizer proposed by (Vaswani et al., 2017),
where authors use an Adam optimizer (Kingma
and Ba, 2015) with several warmup steps for the
learning rate. In our case, the number of warmup
steps is 4000. During optimization, we clip the
gradients with a max norm of 5. We apply a
dropout with a probability 0.1 athwart our frame-
work and use an embedding dimension of d =
300. All our modules operate under the same em-
bedding dimension. We apply the GloVe word em-
bedding model to our input tokens with a word
embedding dimension of 300. For the transformer
encoder and decoder, we use the configurations
from (Vaswani et al., 2017). Our model dimen-
sion is d = 300, with a total number of H = 6
heads and L = 2 layers. The inner feed-forward
linear layers have dimension dff = 600, (2 *
300). Following the base transformer parameters,
we apply residual dropout (Srivastava et al., 2014)
to the summation of the embeddings and the po-
sitional encodings in both encoder and decoder
stacks with a rate of 0.1. The similarity threshold
module receives an input of dimension 600 where
here a linear layer is responsible for reducing it to
300, which is the framework dimension. Next, a
LeakyReLU, dropout, and a linear layer are used
for the final prediction. Finally, for the cross at-
tention module, we apply hyperparameters similar
to the transformer model. Our dimension remains
of size d = 300 and again the number of heads is

Hyperparameters Value

epochs 100
batch size 256

learning rate 0.001
dropout ratio 0.1

optimizer Adam
warmup steps 4000
clip max norm 5

β1 0.9
β2 0.999
ε 1e-09

model dim 300
word embedding model GloVe
word embedding dim 300

transformer layers 2
transformer heads 6

similarity threshold
non-linear activation LeakyRelu

Table 8: Hyperparameters for VOGUE framework.

H = 6. However, we do not apply multiple lay-
ers here. Likewise, dropout is applied with proba-
bility 0.1. The number of training parameters for
VQuAnDa, ParaQA, and VANiLLa datasets are
12.9M, 14.9M, and 46.8M respectively.

E Detailed Experiments

We provide detailed experiment results for met-
rics such as perplexity, BLEU-1, BLEU-2, BLEU-
3, BLEU-4 and METEOR in the following Ta-
bles 10, 11, 12.



Question
How many other home stadium are there of the soccer club
whose home stadium is Luzhniki Stadium?

Logical Form
count(find reverse(find reverse(Luzhniki Stadium, homeStadium),
homeStadium))

Reference
There are 9 home stadiums of the soccer club
whose home stadium is Luzhniki Stadium.

VOGUE
There are 9 home stadiums of the soccer club
whose home stadium is Luzhniki Stadium.

Question Who is the scientist whose academic advisor was Karl Ewald Hasse?

Logical Form
filter type(find reverse(Karl Ewald Hasse, academicAdvisor),
Scientist)

Reference
The scientist whose academic advisor is Karl Ewald Hasse
is Robert Koch.

VOGUE
The scientist whose doctoral advisor is Karl Ewald Hasse
is Robert Koch.

Question What are the movies with Daniel Waters as screenwriter?
Logical Form filter type(find reverse(Daniel Waters, screenplay), Film)

Reference
The films with the screenplay written by Daniel Waters are Batman Returns,
Demolition Man (film), Hudson Hawk, The Adventures of Ford Fairlane.

VOGUE
The movies whose director is Daniel Waters are Batman Returns,
Demolition Man (film), Hudson Hawk, The Adventures of Ford Fairlane.

Question
Which person designed the cars which has been designed by
ASC Creative Services?

Logical Form
find(filter type(find reverse(ASC Creative Services, designCompany),
Automobile), designer)

Reference
The designers of the cars whose designer company is ASC Creative
Services are Warren, Michigan, Michigan, ASC Creative Services.

VOGUE
The things which have been designed by ASC Creative Services are
Warren, Michigan, Michigan, ASC Creative Services.

Table 9: Sample output of our framework.



VQuAnDa

Models Perplexity BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

RNN (Q) 1.8132 50.71 35.11 21.65 15.43 53.15
RNN (LF) 1.7297 54.38 40.17 23.12 20.19 57.06
Convolutional (Q) 1.6696 58.49 42.86 27.87 21.32 57.54
Convolutional (LF) 1.6170 62.58 44.79 30.43 26.02 64.30
Transformer (Q) 1.6953 57.27 40.22 26.92 18.37 56.83
Transformer (LF) 1.6434 60.34 44.38 31.45 23.18 60.17
BERT (Q) 1.6474 59.78 43.64 28.25 20.78 59.28
BERT (LF) 1.5575 62.20 45.27 32.83 24.96 65.92

VOGUE (ours) (H) 1.4791 65.97 49.20 36.71 28.76 67.21

Table 10: Detailed results on VQuAnDa dataset.

ParaQA

Models Perplexity BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

RNN (Q) 1.8816 58.56 40.64 28.74 22.45 58.41
RNN (LF) 1.7768 61.87 44.48 31.86 26.36 61.87
Convolutional (Q) 1.7879 60.15 43.29 30.15 25.94 60.82
Convolutional (LF) 1.7056 65.93 49.95 37.98 31.89 65.85
Transformer (Q) 1.7701 59.68 42.22 30.33 23.61 59.63
Transformer (LF) 1.6731 64.04 47.73 36.62 28.01 63.75
BERT (Q) 1.7217 61.21 45.69 32.29 24.12 62.59
BERT (LF) 1.6459 66.47 50.91 37.61 29.31 65.92

VOGUE (ours) (H) 1.6043 67.60 51.94 39.94 32.05 68.85

Table 11: Detailed results on ParaQA dataset.

VANiLLa

Models Perplexity BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR

RNN (Q) 1.5629 41.29 30.85 22.76 16.66 58.67
RNN (LF) 1.4708 42.33 29.71 23.16 16.45 55.34
Convolutional (Q) 1.4715 40.45 28.39 23.38 15.42 61.14
Convolutional (LF) 1.4043 42.10 29.53 22.34 16.89 58.72
Transformer (Q) 1.4683 55.09 40.77 35.62 30.80 62.16
Transformer (LF) 1.3817 53.37 39.28 34.98 28.12 59.01
BERT (Q) 1.4193 57.23 43.83 37.47 31.32 62.96
BERT (LF) 1.3557 56.03 42.59 36.22 30.11 59.27

VOGUE (ours) (H) 1.3261 62.72 48.77 40.80 35.14 65.04

Table 12: Detailed results on VANiLLa dataset.


