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Abstract

To improve the coherence and knowledge re-
trieval capabilities of non-task-oriented dia-
logue systems, recent Transformer-based mod-
els aim to integrate fixed background context.
This often comes in the form of knowledge
graphs, and the integration is done by cre-
ating pseudo utterances through paraphrasing
knowledge triples, added into the accumulated
dialogue context. However, the context length
is fixed in these architectures, which restricts
how much background or dialogue context can
be kept. In this work, we propose a more con-
cise encoding for background context struc-
tured in the form of knowledge graphs, by ex-
pressing the graph connections through restric-
tions on the attention weights. The results of
our human evaluation show that this encod-
ing reduces space requirements without nega-
tive effects on the precision of reproduction of
knowledge and perceived consistency. Further,
models trained with our proposed context en-
coding generate dialogues that are judged to
be more comprehensive and interesting.

1 Introduction

Building on the idea of attention-based seq2seq
models (Vaswani et al., 2017), recent language
models such as BERT (Devlin et al., 2019) and
GPT-2 (Radford et al., 2019) enable neural conver-
sational models to generate responses that appear
human-like and engaging (Yu et al., 2019). A closer
look, however, reveals that the lack of long-term
memory to represent consistent (world) knowledge
and personality over multiple speaker turns can
lead to incoherent content being generated (Li et al.,
2016; Serban et al., 2017). Initiated by the Con-
versational Intelligence Challenge (Burtsev et al.,
2018; Dinan et al., 2020), the research focus there-
fore shifted towards knowledge-grounded dialogue
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generation, resulting in first promising approaches
using Transformer-based architectures (Dinan et al.,
2019; Ghazvininejad et al., 2018; Galetzka et al.,
2020).

The basic idea of these approaches is to provide
the required background knowledge together with
the current dialogue context when decoding the
next system utterance. As the underlying language
model’s input sequence length is limited – for in-
stance, to 1024 tokens in the case of GTP-2 – the
presentation of the background knowledge to the
model highly impacts the amount of context infor-
mation that can be fed into a Transformer network.
In these earlier attempts, the knowledge was para-
phrased into pseudo-utterances, on a par with the
utterances from the dialogue history. In this paper,
we show that a structured knowledge representa-
tion offers advantages over unstructured text: facts
and complex relationships between different enti-
ties can be encoded concisely without performance
drop in key indicators, such as knowledge correct-
ness, consistency, and interestingness. Chaudhuri
et al. (2019) showed the general feasibility of in-
tegrating knowledge graphs into domain-specific
dialogues. With this work, we integrate arbitrary
knowledge graphs into open-domain knowledge-
grounded dialogues, preserving the information
encoded in their structure.

Space Efficient Context Encoding For our pro-
posed encoding, we generate dialogue-specific lo-
cal knowledge graphs (subgraphs of a background
knowledge graph) that capture the information rel-
evant to the dialogue (similar to (Chaudhuri et al.,
2021)). We transform these subgraphs into a con-
cise representation that fits the input sequence en-
coding for the underlying language model (GPT-2):
Labels of the distinct nodes and edges (entities and
corresponding relations) are concatenated with the
dialogue history. To preserve the graph structure,



we fit the attention mask to force the self-attention
layers for each node to attend to only connected
nodes in the original graph (if there is a connection,
attention weight is set to 1, otherwise to 0). This
resembles the message-passing approach of graph
neural networks (Gilmer et al., 2017).

Naive concatenation of graph triples has a space
complexity of O(n · k), with n being the number
of triples and k the number of word tokens per
verbalized triple. Paraphrasing these triples into
pseudo-utterances results in even larger space com-
plexity. Our proposed encoding has a space com-
plexity of O(l), with l being the number of distinct
node and edge labels (entities and relations). This
reduces the required context space compared to
triple concatenation or paraphrasing if entities are
repeated in the triples (and hence l < n · k), which
can be assumed to be the case in knowledge graphs
(see discussion below). The space savings grow
with the size and average degree (connectedness)
of the graph. Empirical results with two different
knowledge-grounded dialogue datasets confirm our
theoretical considerations and show that we can
reduce the required space by a factor of up to 3.6.
These results imply that we can feed more context
information into the model, which should result in
higher accuracy. We discuss these results in detail
in Section 4.3.

Contributions We propose an approach to in-
tegrate a concise encoding of knowledge graphs
into a Transformer-based decoder architecture for
knowledge-grounded dialogue generation. Trans-
formers for natural language generation can be
viewed as graph neural networks which use self-
attention (Veličković et al., 2018) for neighborhood
aggregation on fully-connected word graphs (Xu
et al., 2019). We utilize this relationship and restrict
the self-attention weights to match the underlying
graph structure. Our comprehensive human evalu-
ation with models trained with the publicly avail-
able datasets KOMODIS (Galetzka et al., 2020) and
OPENDIALKG (Moon et al., 2019), both provid-
ing dialogues enriched with structured knowledge,
shows that we can reduce the space requirement for
context without negative effects on the precision
of reproduction of knowledge and perceived con-
sistency. Moreover, our models generate dialogues
that are judged to be more detailed and interesting.
For reproducibility, we publish all necessary source
code and data (https://github.com/fabiangal/
space-efficient-context-encoding-acl21).

2 Knowledge-Augmented Neural
Conversational Models

Neural conversational models can be categorized
into retrieval-based approaches (Lowe et al., 2015;
Wu et al., 2017) that choose a next utterance from
a set of suitable candidates, and generative ap-
proaches (Serban et al., 2016; Wolf et al., 2019;
Chaudhuri et al., 2019; Roller et al., 2021) which
decode the next utterance token by token out of a
fixed vocabulary. The architectures are based on
recurrent neural networks such as LSTM (Hochre-
iter and Schmidhuber, 1997) or GRU (Cho et al.,
2014) cells or self-attention layers (Vaswani et al.,
2017) in sequence-to-sequence structures. To inte-
grate knowledge in addition to the dialogue history
these models can be augmented by additional re-
current cells to encode the knowledge into a fixed-
sized vector representation (Young et al., 2018;
Parthasarathi and Pineau, 2020; Ghazvininejad
et al., 2018). This can be traced back to first end-
to-end approaches reading documents for question-
answering (Miller et al., 2016) or more general
sequential data (Sukhbaatar et al., 2015). He et al.
(2017) embedded knowledge graphs (stored as
triples) with LSTM cells and message-passing, and
then used a decoder LSTM to generate a suitable
answer. Long et al. (2017) used a CNN architecture
to encode external knowledge instead.

The recent success of unsupervised pre-trained
language generation models such as GPT-2 yielded
a variety of conversational models using self-
attention based on the idea of fine-tuning the
models with specific knowledge-grounded dia-
logue datasets (which we will discuss in Sec-
tion 3). These models concatenate the additional
context information as plain text to the input se-
quence (Zhang et al., 2018; Dinan et al., 2019;
Galetzka et al., 2020). To differentiate context
from dialogue, additional tokens are learned during
fine-tuning and added to the word tokens. For big-
ger knowledge graphs, the limitation of the input
sequence length of these models makes an informa-
tion retrieval system necessary to estimate a small
subset of relevant information that can be fed into
the model.

3 Knowledge-Grounded Dialogue
Datasets

The increasing availability of conversational con-
tent on social media platforms such as Twitter
or Reddit led to the construction of many dia-
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Figure 1: Illustration of the underlying subgraph data model for the external knowledge of a KOMODIS dialogue
for different graphs depths: Nodes (green) with their fact-based attributes (blue) and opinions (orange). Subgraphs
for depth 1 and depth 2 are incomplete.

logue datasets, with Open-Subtitles (Vinyals and
Le, 2015) and Twitter-Corpus (Sordoni et al., 2015)
being some popular examples (see also (Ritter et al.,
2010; Duplessis et al., 2016)).

Some recently published datasets emphasize
knowledgeable dialogues by integrating external
information sources. The objective is to create mod-
els that generate consistent dialogues with a high
knowledge retrieval accuracy (utilizing informa-
tion from user profiles or knowledge graphs). Di-
nan et al. (2019) released the Wizard of Wikipedia
dataset with over 22k open-domain dialogues. In
each dialogue, one participant is playing the “wiz-
ard”, i.e. an expert who is presented with poten-
tially interesting and relevant Wikipedia article ex-
cerpts, while the chat partner is the curious appren-
tice. The textual knowledge passages that were
shown to the wizard are part of the dataset. The
PERSONA-CHAT dataset (Zhang et al., 2018) con-
tains over 10k dialogues that are conditioned on
profile information (personas), which ranges from
hobbies or favorite food to family background. The
information is shown to the participants as a set
of sentences and they are tasked to integrate them
into the dialogues. In addition, the dataset contains
revised personas, which are rephrased, generalized,
or specialized versions of the original personas.

3.1 Dialogue Datasets with Knowledge
Graphs

We use two publicly available human/human multi-
turn dialogue datasets that use structured back-
ground knowledge.

KOMODIS (Galetzka et al., 2020) is a closed-
domain dataset with dialogues between human par-
ticipants that were tasked to chit-chat about one
given movie and use provided information about it.
This information includes facts about the film, such
as release year or shot location (“Movie was shot in
Canada.” or “The release year is 1995.”), free text
containing plot or trivia related to the film crew and
cast, and opinions towards the facts and entities
(“I agree with the age restriction.” or “I don’t like
Bruce Willis.”). The dataset contains over 7,500
conversations with an average of 13.8 utterances
per dialogue.

OpenDialKG (Moon et al., 2019) is an open-
domain dataset containing 15K dialogues, which
were collected in a Wizard-of-Oz setup, by connect-
ing two human participants that were tasked to have
an engaging dialogue about a given topic. Each di-
alogue is paired with its corresponding “KG paths”
from Freebase (Bollacker et al., 2007) (connecting
entities and relations mentioned in the dialogue).

3.2 Subgraph Generation

For our experiments with different encoding strate-
gies, we restructure the context information pro-
vided by both datasets into dialogue-specific sub-
graphs. Figure 1 illustrates an example of an (in-
complete) subgraph that belongs to a dialogue
from KOMODIS. The inner subgraph containing
the two green entity nodes ’Pulp Fiction’ and
’Bruce Willis’, and corresponding attribute nodes
(blue), marked as depth 0, represents the informa-
tion on which one particular dialogue was based.
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Figure 3: Model architecture: A knowledge estima-
tor creates a subgraph based on the previous conversa-
tion. Processed subgraph and input sequence are con-
catenated and fed into the GPT-2 decoder. We experi-
ment with different ways of encoding and adding in the
knowledge.

To test the limits of the capacity for represent-
ing knowledge, we also experiment with expanded
subgraphs—depths 1 and depths 2 in the figure—
by including information from external knowledge
sources (IMDb for KOMODIS, and Freebase for
OPENDIALKG). For instance, Pulp Fiction also
has Samuel L. Jackson as an actor (depth 1) who
also stars in Goodfellas (depth 2). This way, the
subgraph depth directly reflects the hop distance
from the entities in the core subgraph.

For subgraphs of depth 2, we restrict some at-
tributes and entities to prevent the subgraphs to
explode in size, thus unlikely to fit in GPT-2. For
example, we don’t add trivia information that isn’t
already in the dialogues or limit additional actors
per movie to three. In contrast to OPENDIALKG,
the dialogues in KOMODIS are about one main en-
tity (here, the movie) each. To better compare the
experiments across datasets, we create two versions
of depth 1 for KOMODIS, where depth 1b includes
a second movie that is related to the first movie
(e.g. by an actor). This version is then used to
create the subgraph of depth 2.

4 Graph Attention Transformer

4.1 Model Overview

For all experiments, we use the GPT-2 model pro-
posed by Radford et al. (2019), which is com-
monly used in Transformer-based dialogue gen-
eration for English. The authors published four dif-
ferent sized variations. We use the model with 117
million parameters, 12 self-attention layers, and
768-dimensional word embeddings. The model has
12 heads per attention layer and 3072 nodes in all
feed-forward layers. Our architecture is visualized
in Figure 3. A knowledge estimator creates a sub-
graph from the available knowledge graphs for both
datasets based on the dialogue history and converts
it using our encoding. Then, the dialogue history
and encoded context sequences are concatenated
and fed into the GPT-2 model. For training, we op-
timize model weights from GPT-2 by minimizing
the negative log-likelihood for next-token predic-
tion. Training details are listed in Appendix B.

4.2 Concise Graph Encoding

Figure 2 shows the general encoding strategy
that we propose. Similar to our previous ap-
proach (Galetzka et al., 2020) and Wolf et al.
(2019), we use three layers of input embeddings
for words, segments and positions. But instead
of concatenating paraphrased triples (e.g. 〈‘Pulp
Fiction’, ‘is a’, ‘movie’〉, 〈‘Pulp Fiction’, ‘release
year’, ‘1994’〉), we convert the graph into unique
entity-relation pairs (e.g. 〈‘Pulp Fiction’, ‘movie’〉,
〈‘1994’, ‘release year’〉 in the leftmost part of the
figure) and concatenate them with the dialogue his-
tory (middle part in figure). In previous work, the
segments layer distinguished context and different
speakers. We experiment with two different encod-
ing strategies, utilizing the segments layer in other
ways. Figure 4 illustrates both encoding strategies.
In the series encoding (upper half of the figure),
relation and entity tokens are sequenced in a se-
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ries and added to the words layer. Two new tokens
(〈entity〉 and 〈relation〉) differentiate between re-
lations and entities in the segments layer. In the
parallel encoding, entity tokens are added to the
words layer and according relations to the segments
layer—thus in parallel. Padding tokens are used to
align the length between the two layers.
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Figure 5: Simplified and shortened illustration of the
attention mask for the example graph from Figure 1.
The node ‘Bruce Willis’ (highlighted in blue) is con-
nected (ones) with the movie ‘Pulp Fiction’ and the
trivia ‘Worked on the ...’. Other nodes (‘I like’, ‘1994’)
are masked out (zeros), since they only belong to the
movie.

This encoding via a segments layer reduces the
space requirements compared to paraphrasing, as
repeating tokens occur only once, but on its own
loses information encoded in the graph structure
(node-edge connections). To preserve this struc-
ture information, we create and add a per-graph
attention mask to all hidden layers. Given an input
sequence S, the hidden state hli of the i’th token at
layer l in the GPT-2 model can be computed by:

hli =
∑
j∈S

wij(V
l−1hl−1j ), (1)

where

wij = softmaxj(mj +Ql−1hl−1i ·K l−1hl−1j ),
(2)

with learnable weights K, Q, and V . Equation 1
is similar to message-passing algorithms (Duve-
naud et al., 2015; Li et al., 2016; Gilmer et al.,
2017), where a new hidden state for a graph node
is computed by an arbitrary function of all previous
hidden states of connected nodes. Our attention
masks mj are added as shown in Equation 2 so that
entity and relation tokens can only attend to tokens
from their neighboring nodes. This attention mask-
ing was originally used for mask out future tokens
(setting mi,j for all j > i to the masking value).

Figure 5 illustrates the concept with an attention
mask of the graph example from Figure 1. Here, the
node ‘Bruce Willis’ (blue) is not connected with the
release year ‘1994’. Thus, the attention weights are
masked out with zeros. But, it is connected with
the trivia information ‘Worked on the movie for
only 18 days’ and these attentions are not masked
(ones).

Although entities and relations from the knowl-
edge graph are position invariant within S, the
word order still matters. Therefore, we keep the
positional encoding of the model but shuffle the
knowledge graph nodes and relations for each train-
ing sample to facilitate order invariance of the
graph encoding.

4.3 Context Length Requirement
Figure 6 shows the growth of the number of re-
quired context tokens when the graph size is in-
creased (and hence, more knowledge is provided
to the model), for different encoding types. The
baselines are paraphrased-based encodings, where
base-triples are the concatenated triples (“Pulp Fic-
tion release year 1994”) and base-paraphrased the
verbalized paraphrase (“The movie Pulp Fiction
was released in 1994”). For OPENDIALKG, no
paraphrased version is available. For both datasets,
the average number of tokens increases with the
graph depth and the average number of nodes and
relations for all encodings, as expected. However,
it grows much slower in the case of our proposed
encodings.

The increase of required tokens for OPENDI-
ALKG is steeper than for KOMODIS, due to the
different structure of the dialogue context and
the underlying knowledge graphs. The context
graph for OPENDIALKG is initially rather small



Figure 6: Average number of context tokens in the input sequence for different encodings and knowledge graph
depths (KOMODIS from left: d0, d1a, d1b, d2; OPENDIALKG from left: d0, d1, d2). Data extracted from the
whole train subset.

and increases very fast with more hops. Further,
the KOMODIS context graph contains information
about plot and trivia, which are normally longer
strings that belong to one entity, thus the benefit of
series-encoding (series-enc) and parallel-encoding
(parallel-enc) regarding this information is rather
small compared to the baselines. Concluding, the
sequence length reduction correlates with the av-
erage number of edges per node. The series-enc
is between 14% and 30% longer than the parallel-
enc, due to representing relation labels within the
segments instead of word embeddings (as shown
in Figure 4).

5 Automated Evaluation, And Its Limits

We trained 25 models with both datasets with
series-encoding, parallel-encoding, base-triples
and base-paraphrased (only KOMODIS) and with
graph depths d0, d1 and d2. As we were also in-
terested to investigate the effect of different de-
coding strategies, we used beam-search and top-
k-sampling when generating the dialogues. These
were created by four colleagues (who were not in-
volved in the creation of the models and did not
know what the innovation was) interacting with the
models. In sum, we created 500 dialogues.

At training time, we use perplexity on the valida-
tion subset as the stopping criterion. Table 3 lists
the results for all models estimated on the test set.
Base-triples (baselines) models reach the lowest
perplexity and an increasing graph depth increases
perplexity, which is reasonable since the format of
the baseline encodings resembles the pre-training

data of the GPT-2 model the most. This corre-
lation is stronger for OPENDIALKG models. In
our experiments, perplexity does not correlate with
naturalness (estimated by the human evaluators),
indicating that this metric is insufficient to evaluate
the overall dialogue quality, in particular across
models trained on different datasets.

In information retrieval, precision/recall and F1
score are typically chosen as automated metrics
to evaluate the retrieval capabilities of a system.
In our case, we are interested in the ability of re-
producing entities and relations from the knowl-
edge graph. Commonly used word-overlap met-
rics, such as ROUGE-N/ROUGE-L (Lin, 2004),
or BLEU (Papineni et al., 2001), aren’t capable of
measuring these. Evaluating precision and recall
requires precise co-reference resolution, parse tree
annotation and question labelling (e.g. entities, rela-
tions, intent). Assume following background facts
and generated utterance:

• 〈‘Pulp Fiction’, ‘has genre’, ‘crime’〉

• 〈‘comedy’, ‘bot opinion’, ‘I like’〉

• “It is a crime movie, but I am more interested
in comedy films.”

Without knowing the intent (asking for the genre
of ’Pulp Fiction’ vs. asking for the preferred genre)
of the previous utterance, we cannot determine if
the occurrences of crime and comedy are true or
false positives concerning the underlying knowl-
edge graph. Moreover, in a conversation knowl-
edge is not only used when answering a question



dialogue context inference

model “have you seen ghost, the musical with brad pitt?” genre: drama neutral

human “no, but is the genre really a musical?”

model “yes, it’s a crime and drama movie.” genre: drama entailment

human “nice. what is the age certificate?”

model
“the age restriction is 12. i think that’s a age certificate: 12 entailment
good age to watch it .” age certificate: agree entailment

human “and do you know the budget?”

model
“yes, it was $24,000,000. i think that’s a lot budget: 22$ million contradiction
of money for a movie that came out in 1990.” year: 1990 entailment

Table 1: Example of a dialogue from the series-enc-d1 model trained on KOMODIS. Relevant utterance-context
pairs are shown together with annotations from our human evaluators. Line one is labeled with “neutral”, as
a “drama” might be a “musical”, the utterance in line three entails with the context regarding the genre and is
therefore labeled with “entailment”. Line seven is labeled with “contradiction” as the value of the budget is wrong,
but also as “entailment”, as the proactive use of the release year is correct.

but also proactively (“Did you know that Bruce
Willis worked on the movie only for 18 days?”).
However, the resources that we use offer no such
annotations and to the best of our knowledge, no
published dataset does. Without it, automated met-
rics don’t work well. To tackle these challenges,
we put our effort into a comprehensive human eval-
uation and annotation, which is described in the
next section.

6 Human Evaluation

6.1 Method
Participants The evaluation study was managed
by researchers not involved in setting up the models
and experiments. They recruited 20 participants
not familiar with our research and the goals of the
study. Demographic data is given in Appendix A.
Participants were paid for their effort.

Materials To keep the number of assessed dia-
logues manageable, we limited the number of ex-
periments and did not test all possible variations
of the factors described in Section 5. We prepared
three series of experiments, aimed at evaluating the
influence of decoding algorithms, encoding strate-
gies and graph depths. Early samples indicated
that beam-search generates more precise dialogues
regarding context. We, therefore, decided to evalu-
ate the decoding algorithm series beforehand. As
shown in Section 6.2 our hypothesis proved to be
correct, so that the other two series of experiments
were done with beam-search only.

Procedure All participants were instructed be-
fore and supervised during the study by a super-
visor to ensure their understanding of the metrics.
They were given a participant-specific question-
naire with the human/chatbot dialogues and had
to perform three tasks. First, mark utterances that
either entail (correct use) or contradict (wrong use)
the dialogue context. Based on these annotations
we measure the model’s knowledge retrieval ability
as the ratio between entailing utterances and the
sum of entailing and contradicting utterances (pre-
cision). Second, rate the dialogues with the follow-
ing statements for agreement on a 7-point Likert
scale: (1) Person B sounds natural. (2) Person B
sounds consistent. (3) Person B sounds interesting.
Person B is always a model, Person A a human.
Last, choose between two dialogues, by answering:
“To which Person B would you prefer to talk?”.
Additionally, the participants could briefly reason
their decision. An example questionnaire can be
found in Appendix A.

6.2 Results and Discussion

Decoding Table 2 shows the results for beam-
search and top-k-sampling decoding. Knowledge
precision is better with beam-search for all mod-
els, while dialogues generated with top-k-sampling
are considered more natural, less self-contradicting,
and less repetitive. N-gram filtering reduces repeti-
tion through beam-search, but could not be avoided
completely. Decoding with top-k-sampling in-
cludes more often wrong entity nouns when es-



experiment knowledge precision naturalness
base-triples series-enc-d1 base-triples series-enc-d1

KOMODIS beam-search 0.69 0.74 5.0 (1.5) 4.8 (1.6)
KOMODIS top-k-sampling 0.52 0.56 5.9 (1.2) 5.9 (1.3)

OPENDIALKG beam-search 0.73 0.70 4.0 (1.6) 3.4 (1.5)
OPENDIALKG top-k-sampling 0.54 0.45 5.3 (1.4) 5.4 (1.3)

Table 2: Human evaluation results for beam-search and top-k-sampling, with respect to the correct reproduction
of dialogue context. Precision as the ratio between entailing utterances and the sum of entailing and contradicting
utterances. Naturalness on a 7-point Likert scale. Higher is better. Standard deviation in brackets.

experiment ppl win
ratio (%)

precision agreements
knowledge opinions natural consistent interesting

KOMODIS

base-paraphrased 10.3 12.5 0.74 0.50 4.7 (1.7) 4.1 (1.7) 4.2 (1.2)
base-triples 9.73 43.8 0.69 0.71 5.0 (1.5) 4.0 (2.0) 4.6 (1.1)

series-enc-d1 10.01 66.7 0.74 0.36 4.8 (1.7) 4.5 (1.9) 4.9 (1.1)
series-enc-d2 10.28 62.5 0.73 0.43 4.8 (1.7) 4.2 (1.6) 4.4 (1.2)
parallel-enc-d1 10.07 56.3 0.70 0.33 4.5 (1.7) 4.5 (1.2) 4.5 (1.1)
parallel-enc-d2 10.36 60.0 0.72 0.57 4.8 (1.5) 4.6 (1.5) 4.5 (1.2)

OpenDialKG

base-triples 8.40 65.0 0.73 — 4.0 (1.6) 3.9 (1.6) 3.6 (1.6)

series-enc-d1 9.93 66.7 0.62 — 3.9 (1.9) 4.1 (1.9) 3.5 (1.9)
series-enc-d2 10.53 51.3 0.46 — 3.7 (1.7) 4.0 (2.0) 3.8 (1.6)
parallel-enc-d1 9.88 38.5 0.70 — 3.4 (1.6) 3.2 (1.8) 3.0 (1.3)
parallel-enc-d2 10.44 32.5 0.62 — 3.4 (1.9) 3.6 (1.9) 3.3 (1.6)

Table 3: Perplexity on the test set (lower is better) and human evaluation results for models trained on both datasets.
Metrics explained in Section 6.1. Agreements are on a 7-point Likert scale (higher is better). Standard deviation
in brackets. “base-*” are the baseline models; “series/parallel-enc-*” denotes the way the knowledge is encoded
and “-*d1/d2” is the depth of the graphs.

timating the best next tokens, which are then se-
lected by the algorithm. In this work, we emphasize
the model’s ability to integrate additional dialogue
context correctly. Here, models with beam-search
perform significantly better. Thus, our further eval-
uation focuses on beam-search.

Graph Encoding The results with series and par-
allel graph encodings are shown in Table 3 and com-
pared against the baselines. Within each dataset,
all models perform similar regarding knowledge
precision. Due to the high standard deviation on
the agreements, the difference between the mod-
els is statistically insignificant. Our graph encod-
ing approach reduces the required input sequence
length by a factor of up to 3.6 and still achieves the
same quality of knowledge reproduction, consis-
tency, and naturalness as the baselines. Further, the
direct dialogue comparison (win ratio) indicates
more comprehensive and interesting utterances for
KOMODIS. Dialogue preference correlates high-
est with interestingness and non-existence of con-

tradicting statements. The most common reasons
from participants in no specific order are “longer
and more comprehensive utterances”, “more inter-
esting”, “asks counter questions” and “more pleas-
ant”. The OPENDIALKG models perform worse
in general but show similar results between the dif-
ferent encodings. Both datasets have similar sizes
but OPENDIALKG is not limited to the movie do-
main, which makes it harder to train compared to
KOMODIS.

Series vs. Parallel Encoding A quick summary:
the segments layer encodes the typing of the word
tokens (from the words layer). The intuition be-
hind it is that the model learns the meaning of the
words instead of the word distribution alone. For
the series encoding, we encode the types generi-
cally as either entity or relation. For the parallel
encoding, we use the actual typing from the under-
lying knowledge graph, such as movie, actor, or
release year (Section 4.2). We had two objectives.
First, reducing the required context space even fur-



ther (which we achieved, see Figure 6). Second,
analyzing if this improves the accuracy. The re-
sults show, that parallel encoding performs slightly
worse compared to series encoding. We assume
that this is the case due to the lack of training data,
which is, in particular, evident for OPENDIALKG
that has much more entity and relation types than
KOMODIS, i.e. fewer samples per type.

Graph Depth Results for training with different
context lengths with KOMODIS are shown in Ta-
ble 4. All metrics (one outlier for opinion precision
with d = 1) correlate with increasing graph depth.
Results for d = 2, however, are statistically not
significantly higher than for d = 1. A bigger sub-
graph leads to more difficult training data, as the
model has more options to choose from. The same
results couldn’t be reproduced for OPENDIALKG.
This dataset was created for graph generation based
on dialogues. However, the dialogue structure is
different due to the recommendation task of the
data collection. Most entities in these dialogues
(e.g. persons, books, movies) are exchangeable
(“Can you recommend me a crime book similar
to X?”, “Can you recommend me a crime movie
similar to Y?”) and therefore not mandatory for a
correct and consistent dialogue. Adding more of
these entities did not help to determine a correct
next entity, as all entities of the same type could be
used correctly by the model.

Effectiveness of Graph Attention Masking
Graph masking encodes the relationships between
the entities. We hypothesize that dropping these
relationships will lead to an information gap, par-
ticularly for bigger subgraphs due to more entities
that are not represented (well) in the training data.
Table 5 shows the results from an early evalua-
tion phase for KOMODIS and OPENDIALKG with
graph depth 1 and 2 without graph masking. The
dialogues are significantly worse, in particular in
terms of reproducing entities correctly for graph
depth 2 – which validates our hypothesis. As our
resources were limited, we had to reduce the num-
ber of models for a thorough human evaluation
and thus decided to not pursue this approach any
longer.

7 Conclusion

We proposed a new and concise encoding for
knowledge triples from a knowledge graph, which
can be integrated into a Transformer architecture

metric d0 d1 d2

knowledge precision 0.56 0.70 0.721

opinion precision 0.42 0.33 0.57
naturalness 4.5 4.5 4.81

win-ratio (%) 28.6 56.3 60.01

Table 4: Influence of graph depth on various metrics
from the human evaluation for the parallel-enc model
trained on KOMODIS. 1Statistically not significant com-
pared to d1.

experiment knowledge opinions naturalness

KOMODIS d2 0.44 0.25 4.4
KOMODIS d1 0.61 0.46 4.1

OPENDIALKG d2 0.37 — 3.8
OPENDIALKG d1 0.54 — 3.9

Table 5: Results from a pre-evaluation for models with-
out graph attention masking. There are no opinions in
the case of OPENDIALKG. Knowledge and opinions
as precision (ratio between entailing utterances and the
sum of entailing and contradicting utterances). Natural-
ness on a 7-point Likert scale. Higher is better. Stan-
dard deviation in brackets.

for consistent non-goal-driven dialogue generation.
In our encoding, we reduce the context length by
avoiding repetition by concatenating the whole
triples with the dialogue history. By manipulat-
ing self-attention layers to reflect connections be-
tween nodes in the graphs, we preserve the graph
structure. The evaluation results prove that our
encoding reduces space requirements without neg-
ative effects on the precision of reproduction of
knowledge and perceived consistency. For repro-
ducibility, we publish the source code and data.
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A Human Evaluation

Demographic data 45% of the 20 participants
are women. 75% of the participants stated that
they already have experience with various forms of
chatbots. Due to data privacy reasons, age infor-
mation is classified into three different categories.
65% of the participants are 18–35 years old, 20%
36–50 years, and three participants are older than
50 years.

Questionnaire The questionnaire contains a sur-
vey guide and a set of dialogue pairs to evaluate.
An example dialogue pair is shown in Figure 7. La-
bels were added by the authors. The survey guide
consists of four pages with examples and explana-
tions for the participants. The following excerpts
are from the guide.

General instructions: Following, you are pre-
sented with two dialogues between Person A and
Person B with according background information.
The dialogues are completely independent of each
other. You must read both dialogues carefully.
Please take time for this task.

Instructions for evaluating the knowledge and
opinion precision: Please remember that the evalu-
ation is for Person B only! Please add ‘entailment’
to the fields, when the utterance entails a specific
fact or opinion. Please add ‘contradiction’ if an
utterance contradicts a specific fact or opinion.
Please leave all other fields empty.

Instructions for rating the dialogues on the 7-
point Likert scale: Please rate the three statements
for each dialogue on a scale from 1 to 7, where 1
means that you strongly disagree with it and 7 that
you strongly agree with it. Please rate all state-
ments independently from the given facts and opin-
ions. For instance, if a dialogue contains wrong
facts, it still can sound very natural.

Instructions for deciding between two dialogues:
Please rate intuitively with which Person B you
would prefer to talk. Please reason your decision
briefly.

All instructions are provided with examples.

B Training Details

For fine-tuning GPT-2, we reused most training pa-
rameters from the generative pre-training (Radford
et al., 2019). The learning rate linearly decreases
to zero with an initial value of lr = 6.25e−6 with
max-norm gradient clipping. The language mod-
eling loss is multiplied by 2 before summed up

with the next sentence classifier loss. Each mini-
batch consists of 32 sequences of up to 256 tokens
(padded to maximum length). If dialogue history
exceeds maximum sequence length, the first ut-
terances are cut off. For each sample, only the
tokens from the last utterance are considered for
the language modeling loss. Encoded nodes and
edges are shuffled randomly for each sample, not
for each dialogue. We used a cluster of 4 GeForce
RTX 2080 Titan to train our models with batch dis-
tribution and gradient accumulation to handle the
mini-batch size. Based on graph depth an epoch
took up to 4 hours. We trained the models for 7 to
10 epochs. Our graph encoding approaches took
longer to converge, compared to the baselines.

C Dialogue Examples

We show three additional typical dialogue exam-
ples for both models in Tables 6, 7 and 8. They
contain entailing and contradicting statements re-
garding the context. The inconsistent opinion in
Table 8 (correct in line 4, but incorrect in line 6)
was observed more often. For both datasets, we
sometimes observe slight misspellings of entities
(see Table 8, line 6, ‘Charlie Chaplin’ and ‘Charles
Chaplin’). We left the decision, whether this is a
contradiction (a wrong entity) or not (a misspelling)
to the participants. Another issue that occurred mul-
tiple times, is the wrong use of repeated entities
(see Figure 7 with ‘Julia Roberts’ in line 6). Mod-
els trained with OPENDIALKG also sometimes use
entities that are not in the knowledge graph (see
Table 7, line 4 ‘The Player’).



D
ia

lo
gu

e
Sa

rf
ar

os
h 

is 
of

 g
en

re
 A

ct
io

n.

Sm
ita

 Ja
yk

ar
 h

as
 tr

iv
ia

: 
O

ft
en

 p
la

ys
 th

e 
ro

le
 o

f 
th

e 
m

ot
he

r i
n 

Bo
lly

w
oo

d 
m

ov
ie

s.
So

na
li 

Be
nd

re
 is

 a
n 

ac
to

r i
n 

Sa
rf

ar
os

h.
Sa

rf
ar

os
h 

w
as

 re
le

as
ed

 in
 

19
99

.
Ac

tio
n 

is 
no

t a
 

go
od

 g
en

re
.

So
na

li 
Be

nd
re

 is
 

ve
ry

 g
oo

d.
I l

ik
e 

Sa
rf

ar
os

h 
ve

ry
 m

uc
h.

W
ith

 w
hi

ch
 P

er
so

n 
B 

w
ou

ld
 y

ou
 p

re
fe

r 
to

 ta
lk

?
W

hy
?

Pe
rs

on
 B

 
so

un
ds

 n
at

ur
al

Pe
rs

on
 B

 
so

un
ds

 
co

ns
is

te
nt

Pe
rs

on
 B

 
so

un
ds

 
in

te
re

st
in

g

1

A
he

y,
 h

ow
 a

re
 y

ou
? 

I w
at

ch
ed

 S
ar

fa
ro

sh
ye

st
er

da
y.

co
nt

ra
di

ct
io

n

2
It 

w
ou

ld
 b

e 
m

or
e 

in
te

re
st

in
g 

to
 

ta
lk

 to
 th

e 
se

co
nd

 P
er

so
n.

5
3

4

B
i'm

go
od

 th
an

ks
...

 y
ou

rs
el

f?
. i

do
n'

t k
no

w
 th

at
 m

ov
ie

 a
ct

ua
lly

...
 w

ha
t's

 it
 a

bo
ut

? 

A
I a

m
 g

oo
d!

 It
's 

an
 a

ct
io

n 
m

ov
ie

 w
ith

 so
na

li
be

nd
re

.
en

ta
ilm

en
t

en
ta

ilm
en

t

B
oh

 o
ka

y 
co

ol
...

 so
un

ds
 li

ke
 it

 m
ig

ht
 b

e 
a 

go
od

 o
ne

 to
 w

at
ch

 w
ith

 y
ou

r k
id

s.
  

A
w

hy
 d

o 
yo

u 
th

in
k 

so
? 

en
ta

ilm
en

t
en

ta
ilm

en
t

co
nt

ra
di

ct
io

n

B
id

on
't 

re
al

ly
 c

ar
e 

fo
r a

ct
io

n 
m

ov
ie

s.
.. 

so
 m

ay
be

 th
at

's 
w

hy
 i

di
dn

't 
ca

re
 fo

r t
hi

s o
ne

.  
A

w
ha

t d
o 

yo
u 

lik
e?

en
ta

ilm
en

t

B
ij

us
t d

on
't 

th
in

k 
it'

s a
 g

oo
d 

ge
nr

e 
to

 b
e 

a 
pa

rt
 o

f..
. i

do
n'

t l
ik

e 
ac

tio
n 

m
ov

ie
s e

ith
er

.  

Bi
ll 

Ra
ym

on
d 

is 
an

 a
ct

or
 in

 
Tw

el
ve

 M
on

ke
ys

.
Tw

el
ve

 M
on

ke
ys

 is
 o

f 
ge

nr
e 

Sc
i-F

i.
Tw

el
ve

 M
on

ke
ys

 w
as

 re
le

as
ed

 
in

 1
99

5.
Tw

el
ve

 M
on

ke
ys

 is
 o

f g
en

re
 

M
ys

te
ry

.
Ag

e 
re

st
ric

tio
n:

 I 
ag

re
e.

I l
ik

e 
Bi

ll 
Ra

ym
on

d 
ve

ry
 m

uc
h.

'T
w

el
ve

 M
on

ke
ys

' 
is 

go
od

.

2

A
he

y,
 h

ow
 a

re
 y

ou
?

6
4

6

B
i'm

go
od

. i
ju

st
 w

at
ch

ed
 a

 m
ov

ie
 c

al
le

d 
"t

w
el

ve
 m

on
ke

ys
".

 h
av

e 
yo

u 
se

en
 it

? 
A

ye
s,

 b
ut

 I 
di

dn
't 

lik
e 

it.
en

ta
ilm

en
t

B
re

al
ly

? 
it

ho
ug

ht
 it

 w
as

 p
re

tt
y 

go
od

. 
A

Bi
ll 

Ra
ym

on
d 

is 
su

ch
 a

 g
oo

d 
ac

to
r!

en
ta

ilm
en

t
co

nt
ra

di
ct

io
n

B
id

on
't 

re
al

ly
 li

ke
 b

ill
 ra

ym
on

d,
 b

ut
 h

e 
di

d 
a 

go
od

 jo
b 

in
 th

is 
m

ov
ie

.  
A

Do
 y

ou
 k

no
w

 th
e 

re
le

as
e 

ye
ar

?
en

ta
ilm

en
t

B
ib

el
ie

ve
 it

 w
as

 1
99

5.
 d

o 
yo

u 
kn

ow
 w

ha
t t

he
 b

ud
ge

t w
as

 fo
r t

hi
s m

ov
ie

 b
y 

an
y 

ch
an

ce
? 

Fi
gu

re
7:

E
xa

m
pl

e
of

on
e

di
al

og
ue

pa
ir

fr
om

th
e

qu
es

tio
nn

ai
re

.



dialogue context inference

human “I am a fan of FC Bayern Munich!”

model
“they are a good team. they are in the allianz arena right now building: allianz arena neutral
and they are playing in the bundesliga, do you like them?” team: fc bayern munich entailment

human “Yes I do, what is the Allianz arena?”

model
“it is a building of the fc bayern munich and was built by building: allianz arena entailment
mark van bommel.” player: mark van bommel contradiction

human “Did they participate in the UEFA champions league?”

model
“yes, they did. it is the team that won the 2012-13 champions league 2012-13

entailment
champions league.” champion: fc bayern munich

Table 6: Example of a dialogue from the series-enc-d1 model trained on OPENDIALKG. Relevant utterance-
context pairs are shown with gathered labels from our human evaluation.

dialogue context inference

human “Do you recommend Pretty Woman?”

model
“pretty woman is starring hank azaria.

has actor: hank azaria entailment
do you like him?”

human “Yes, who else plays in the movie?”

model
“julia roberts is also in pretty woman. she is married to has actor: julia roberts entailment
daniel moder, who also starred in the player and a few others.” j. roberts spouse: daniel moder entailment

human “do they have children?”

model “yes, they have a daughter named julia roberts.” j. roberts has child: henry contradiction

Table 7: Example of a dialogue from the series-enc-d1 model trained on OPENDIALKG. Relevant utterance-
context pairs are shown with gathered labels from our human evaluation.

dialogue context inference

human “Hey, what’s up?”

model
“not much. i just watched a movie called
city lights, have you seen it?”

human “No, what genre is it?”

model
“it is a drama and family movie. i really like genre: drama entailment
drama movies, but this one didn’t do it for me.” City Lights: don’t like entailment

human “So you wouldn’t recommend it?”

model
“i think charlie chaplin is a bad director, but he did a good director: Charles Chaplin entailment
job with this movie.” Charles Chaplin: don’t like entailment

City Lights: don’t like contradiction

human “What else do you know about him?”

model
“i don’t know much about him, but he cofounded Charles Chaplin has trivia:

entailment
the distribution company united artists in 1919.” Co-founded the ... in 1919.

Table 8: Example of a dialogue from the series-enc-d1 model trained on KOMODIS. Relevant utterance-context
pairs are shown with gathered labels from our human evaluation.


