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Abstract. During the last few years, several knowledge graph embed-
ding models have been devised in order to handle machine learning prob-
lems for knowledge graphs. Some of the models which were proven to be
capable of inferring relational patterns, such as symmetry or transitiv-
ity, show lower performance in practice than those not allowing to infer
those patterns. It is often unknown what factors contribute to such per-
formance differences among KGE models in the inference of particular
patterns. We develop the concept of a solution space as a factor that has
a direct influence on the practical performance of knowledge graph em-
bedding models as well as their capability to infer relational patterns. We
showcase the effect of solution space on a newly proposed model dubbed
SpacEss. We describe the theoretical considerations behind the solution
space and evaluate our model against state-of-the-art models on a set of
standard benchmarks namely WordNet and FreeBase.

Keywords: Link prediction · Knowledge Graph Embedding · Relation
Pattern · Solution Space · Knowledge Completion.

1 Introduction

Knowledge Graphs (KGs) have recently become a crucial part of different AI ap-
plications. In its simplest definition, a KG is a set of triples of the form (h, r, t),
where h and t refer to entities and r refers to the relation between these enti-
ties. Following this structure, a lot of KGs have been published in recent years,
such as Freebase [2], WordNet [14], WikiData [23], and DBpedia [11]. Although
quantitatively KGs often consist of several thousand entities and relations and
millions of triples, this is nowhere near enough to cover the knowledge that exists
in the real world – even when restricted to a particular domain. Therefore, KGs
often suffer from incompleteness.

One of the common approaches for knowledge graph completion is the Knowl-
edge Graph embeddings (KGEs). KGEs assign a latent feature vector to each en-
tity and relation in a KG. Furthermore, a scoring function is used to define the
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degree to which a relation between two entities is plausible. Relations between
entities of a graph often follow particular relational patterns, e.g. symmetric,
transitive, inverse patterns. Such patterns are generally given by logical formu-
las [8, 18] and the ability to infer them is broadly considered as expressiveness
of a KGE model [25]. However, not every KGE model is designed to infer all
kinds of patterns, meaning that characteristics of the patterns are not taken
into consideration by the model in the inference of implicit knowledge. Given a
logical formula of the form premise =⇒ conclusion, a constraint is enforced
for the plausibility of the grounding atoms involved in the conclusion when the
grounding of atoms in the premise holds. For example, given a symmetric rule,
(el, r, er) ↔ (er, r, el), if a grounding (h, r, t) of (el, r, er) is true, then (t, r, h) is
constrained to be true as well. Such a constraint should be followed by KGE
models in the associated vector space measuring the correctness of triples.

Already existing models have been majorly designed and evaluated with-
out specifically considering relational patterns. This can lead to two problems:
the models are either 1.) not capable of encoding any pattern or 2.) they are
only partially capable of encoding patterns, both of which can lead to wrong
inferences. For example, when the relation vector is non-zero, one of the base-
line KGEs dubbed TransE [3] is not able to infer symmetric relational patterns
((h, r, t) =⇒ (t, r, h)). Instead, it only infers the explicit triple (h, r, t) from
such a relation and not its symmetrical triple (t, r, h) [13, 26]. Yet, “the success
of such a task heavily relies on the ability of modeling and inferring the patterns
of (or between) the relations” [19]. The ability of encoding relational patterns
and expressiveness of KGE models is a property of their solution space (SS), i.e.,
the set of all possible vectors that can be assigned to the entities and relations in-
volved in a particular pattern. This heavily depends on multiple aspects such as
data complexity, model formulation, and embedding dimension. Data complexity
in KGs denotes the extent to which the relations between entities are intercon-
nected. A combination of relational patterns results in more constraints which
causes higher data complexity. This also enforces constraints in the associated
vector space for the KGE model. For example, a cycle (sequence of nodes of
a graph connected in a closed path) containing symmetric and anti-symmetric
relations causes wrong inference in the RotatE model [19] (see Section 3).

The model formulation defines the way entity and relation vectors are opti-
mized in the vector space to measure triple correctness. Constraints caused by
patterns in the vector space are dependent on model-formulation and directly
limit the solution space of any model. Given a triple (h, r, t) and its embedding
vectors (h, r, t) where r is symmetric, TransE induces the correctness of the
triple as (h + r ≈ t) and its symmetrical counterpart as (t + r ≈ h). Therefore,
for symmetric relation r, the solution space for the relation is one i.e. r = 0.

Generally, using a higher embedding dimension (values of 1,000 [19] or even
10,000 [6] have been used) is considered as one way of increasing the solution
space of a KGE model by increasing the number of possible embeddings satis-
fying the relational patterns. However, using a very big dimension is not always
practical in large scale KGs due to the prohibitive memory requirements. In ad-
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dition, there are also cases in which increasing the embedding dimension does
not necessarily improve the solution space. For example, in the TransE the solu-
tion space for encoding symmetric patterns [19] is always only one independent
of the embedding dimension.

In this paper, we show a novel approach towards overcoming the problems of
KGE models to encode relational patterns. Our goal is to show how the model
formulation can extend the solution space and improve the ability for encoding
relational patterns. To do so, we introduce a new knowledge graph embedding
model SpacEss5 and show that it is capable of expressing each pattern reflexive,
symmetric, and inverse patterns individually. SpacEss covers both translation
and rotation transformations which enables it to inherit the expressive power
of TransE, RotatE, and TransComplEx for encoding composition, transitivity,
equivalence, and implication [3, 16, 19]. Compared to RotatE and TransCom-
plEx, SpacEss provides a bigger solution space when encoding different relation
patterns. Finally, we evaluate our model experimentally on several popular KGs
to demonstrate our model’s performance in practice.

2 Related Work

The aim of a KGE model is to optimize a loss function (denoted by L) in order
to embed entities and relations of a KG K into a d-dimensional vector space.
Each model also defines a score function f(h, r, t), or frh,t, that measures the
probability of correctness of a triple (h, r, t). There are several types of KGE
models [24] namely distance-based (TransE, RotatE, TransComplEx), semantic-
matching (HolE [17], Distmult [28], complEx [21] and TuckER [22]) and neural
network-based (ConvE [4]) models. This section provides a review of popular
and prominent score functions used by different embedding models that are
distace-based, as they are the main focus of this work.

TransE [3] is one of the early KGE models. The core idea here is to optimize
the embedding vectors in real space such that h + r ≈ t holds for every valid
triple (h, r, t). Intuitively, this means that a relation vector is a translation from
head to tail. This restrictive assumption enables TransE to properly infer some,
but not all of the relation patterns. For example, the relation vector becomes
a zero vector when the model encodes a reflexive relation (as for any h, we
have h + r ≈ h). Thus, if a relation is reflexive, it is enforced by the model to
be symmetric as well [10]. TransE is a starting point for a family of different
embedding models such as TransR [12], TransH [27] and TransD [9, 29]. These
works attempted to improve expressiveness of TransE by modifying its score
function, which is frh,t = ‖h+r−t‖. However, neither of these models succeeded
in solving the aforementioned problem [10].

TransComplEx [16] is an extension of TransE from real space to complex
space (i.e. h, r, t ∈ Cd). Such a space consists of complex numbers shown as
x = Re(x) + i Im(x). Re(x) and Im(x) refer to the real and imaginary parts of

5 https://github.com/mojtabanayyeri/KGE-Models/tree/master/SpacESS
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x respectively. TransComplEx represents relation vector r as a translation from
head h to the complex conjugate of the tail t̄. The score function then becomes
frh,t = ‖h + r − t̄‖, where ‖.‖ is the L2 norm of the vector whose elements are
the modulus of each complex element of the vector (h + r− t̄). TransComplEx
encodes reflexive and symmetric relational patterns as well as the ones neither
reflexive nor irreflexive. However, later we show the role of the limited space
considered by the model and its influences on the performance.

RotatE [19] is a very recent new model that has already garnered a lot of
attention as one of the state-of-the-art KGE models. RotatE takes advantage of
the Euler formula eiθ = cos(θ)+ i sin(θ) and requires that for every correct triple
(h, r, t) hjrj = tj holds ∀j ∈ {0, . . . , d} where |rj | =

√
Re(rj)2 + Im(rj)2 =

1. Setting |rj | to 1, combined with the Euler formula, means that the model
performs a rotation of the j-th element hj of the head vector h by the j-th

element rj = eiθrj of a relation vector r to get the j-th element tj of the tail
vector t, where θrj is the phase of the relation r. The score function of RotatE is
then defined as frh,t = ‖h◦r−t‖, where ◦ is the Hadamard (element-wise) product
of two vectors. RotatE encodes symmetric, inverse, and composition relation
patterns. However, the constraints enforced by several patterns restrict the vector
space of the embeddings. This restriction indeed causes wrong inferences when
the model embeds entities and relations into a vector space (this is discussed
with a motivating example in Section 3).

To understand the core of the issue, the RotatE model takes a triple (h, r, t)
in the KG and returns three vectors (h, r, t) and arrange them based on its score
function. For symmetric relations, it was shown in [19, Lemma 1] that rj = ei0

or eiπ, which corresponds to rotation of 0 or π for the j-th element of the relation
vector. In this case, the solution space of RotatE has two values of 0 or π per
each considered dimension. Therefore, each element of a symmetric relation is
either 1 or -1 (e.g. r = [1,−1, . . . ,−1]). Given a vector h, there are only two
possible options for each element of the tail vector tj : either tj = hj or it is
the “mirror image” of hj (i.e. rotated by π). Later, we raise the attention on
an important factor behind this problem explaining the solution space in more
details. In the next section, we present this problem in an example.

3 Motivating Example

Consider a knowledge graph containing companies with four different relation
types between them: two symmetric relations in a business (br) relationship
and in joint projects (jp) relationship and two anti-symmetric relationships is
customer of (c) or is owner of (o) of another company. The triples of our concern
in the KG are as follow:

eBay ◦ rbr = Amazon,

Amazon ◦ rjp = Microsoft ,

eBay ◦ rc = Microsoft .

{
Google ◦ rjp = Looker ,

Google ◦ ro = Looker ,
(1)
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Fig. 1: Motivating Example. The RotatE embedding model infers wrong links
(in red) for subgraphs with symmetric and anti-symmetric patterns.

In RotatE model, the symmetric relations rjp, rbr obtain embedding vectors
with elements of either −1 (rotation 0) or 1 (rotation π). The anti-symmetric
relations vectors c and o get arbitrary values (except 1 and -1) [19]. Considering
the left side of equation 1, we substitute Amazon by eBay ◦ rbr in the second
row. The right side of the equation remains the same. Therefore, we have:{

eBay ◦ rbr ◦ rjp = Microsoft ,

eBay ◦ rc = Microsoft .

{
Google ◦ rjp = Looker ,

Google ◦ ro = Looker .
(2)

These lead to creation of extra constraints rbr◦rjp = rc and rjp = ro. We already
know rjp, rbr are symmetric and are represented in vectors with elements of -1
and 1. From the extra constraints created above, rc is enforced to be symmetric
(with elements of -1 and 1). Moreover, ro will be equivalent with rjp. Thus a
set of wrong inferences (shown in Figure 1 in red) are made by the model, such
as Amazon ◦ ro = Microsoft , Microsoft ◦ ro = Amazon, Microsoft ◦ rc = eBay ,
and Looker ◦ ro = Google. This is especially problematic in large scale KGs,
where there are many different symmetric relations and millions of entities. In
our example, consider just adding the roughly 100 million ownership relations in
the EU between companies. As the overwhelming majority are non-symmetric,
over 90 million wrong inferences occur.

4 Our Approach

The inference of relational patterns by KGE models heavily depends on the
model formulation and causes contradictions between (theoretically proven) ex-
pressive power and (practical) performance by the models. When comparing dif-
ferent models, it is often unclear which factors are responsible for this difference
and the expressiveness power of such models. Most work focuses on determining
whether a model is capable of expressing a relational pattern or not, the most
course-grained criterion possible. This course-grained analysis is a good start,
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Fig. 2: Solution Space of RotatE for Symmetric. The possible vectors as
solutions in SS are shown for symmetric relation of joint project (jp) in RotatE.

but hides a lot of theoretical and practical limitations of models. A more fine-
grained understanding of the capability of models is missing so far. Our focused
study led us to discover a hidden factor as a cause of this issue namely solution
space. In this section, we first describe the meaning and formulation of SS and
introduce our novel KGE model namely SpacEss empowered by the SS concept.

4.1 Solution Space - A Cause of Expressiveness in KGEs

Initially, using formulation of RotatE model without enforcing any constraints
(patterns) in the KG, the possible solutions for representing embedding vectors
of each relation r is an ∞ space. However, by enforcing relational patterns for
example symmetric constraint, the SS of r reduces to 2 (i.e., {−1, 1}) per each
dimension (or 2d for all dimension). This reduction in solution space causes is-
sues (e.g. wrong inference) when additional constraints are added as shown in
Equation 1 and Figure 2. Generally, such constraints enforced by the definition
of the corresponding relation pattern over the score function formula of a KGE
builds the solution space (SS) of the model. Conceptually, SS is the coverage of
all the possible variations for the embeddings of the elements of a triple (h,r,t)
in the corresponding geometric space e.g. vector space. Here, we provide the for-
mulation of SS and its variations for the considered distance-based KGE models
(TransE, RotatE, and TransComplEx) and the considered relational patterns.

The solution space of an entity in tail position t is the set S of all possible
vectors for embedding of tail t having a fixed relation vector r and a fixed head
embedding vector h, such that (h, r, t) is a triple in the KG, i.e. St|r,h = {t |
(h, r, t) ∈ KG,ϕm, ϕmp,h ∈ E, r ∈ R} where E,R, are embedding matrices of
entities and relations in the model m. ϕm is the enforced constraint by the model
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formulation to show a triple (h, r, t) is correct e.g. ϕRotatE : h ◦ r = t. ϕmp is
the constraint formulation obtained by the model m with regard to pattern p.
For example, for rotate model and the given reflexive relation r, the formula is
ϕRotatEReflexive : h ◦ r = h, t ◦ r = t. The SS for the head of a triple given fixed
relation and tail Sh|r,t and the SS of a relation Sr|h,t are defined analogously. We
similarly define the relation-tail SS: Sr,t|h = {(r, t) | (h, r, t) ∈ KG,ϕm, ϕmp,h ∈
E}. Moreover, ϕ is a formulation representing the relation solution space Sr|t,h
in a vector space V if Sr|t,h = {r | (h, r, t) ∈ KG,ϕm, ϕmp,h, t ∈ E}.
This definition holds analogously for all other solution spaces of a model for dif-
ferent patterns. In our company example, the SS of an element in example triple
for Amazon being in joint project relationship with Microsoft is |Sjp|Microsoft,Amazon|
= 2 considering all possible cases by RotatE model. In section 4.2, we introduce
SpacEss with considerably larger SS, and show how this improves its ability to
represent various relational patterns.

4.2 SpacEss - A Novel KGE Model Empowered by SS

With a systematic study of SS on already existing models, claimed capable of
encoding relational patterns (RotatE, TransComplEx), we concluded that none
of the existing models have a proper SS for encoding of relational patterns. The
results led us to propose a new embedding model SpacEss considering an ex-
tended solution space (SS) compared to existing models. We show the impact
of SS encoding different types of relation patterns by our model with its high
expressiveness, both theoretically and empirically. The improvement in expres-
siveness of SpacEss is due the larger space for solutions than RotatE, TransE
and TransComplEx.

Given a triple (h, r, t), SpacEss first rotates the head entity counterclockwise
and the tail entity clockwise to produce embedding vectors hθrL (left rotation)
and tθrR (right rotation) respectively. It then applies a translation corresponding
to the relation vector r from the relation-specific rotated-head (left rotation) to
the relation-specific rotated-tail (right rotation), such that

ϕSpacESS : hθrL + r = tθrR , (3)

where hθrL and tθrR are computed as rotations of hθrL = h eiθ
r
L , tθrR = t e−iθ

r
R ,

and, θrL and θrR are the phase vectors for head and tail rotations corresponding
to the relation r. The score function that computes the degree of correctness for
a triple (h, r, t) is defined as:

frh,t = ‖hθrL + r− tθrR‖. (4)

Let hi and ti be the i-th elements (i = 1, . . . , d) of head and tail embedding
vectors, and θrLi

and θrRi
be the left and right rotation vectors respectively. The

rotation is performed element-wise hθrLi
= hie

iθrLi , and tθrRi
= tie

−iθrRi . Our

model is sufficiently expressive to encode different relation patterns including
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SpacEss (ϕmp) RotatE (ϕmp) TransComplEx (ϕmp)

Ref. ‖hi(eiθ
r
Ri + e−iθ

r
Ri) - ri‖ = λ ‖hieiθ

r
i −hi‖ = λ ‖ − 2hi − r‖ = λ

Sym. (eiθ
r
Li − e−iθ

r
Ri) = 0 r2i = 1 Re(ri) = 0 Re(hi) = Re(ti)

Im(h) + Im(r) = Im(t)

Inv. h(eiθ
r1
Li +e−iθ

r2
Ri)+r1i−r2i =

(eiθ
r1
Ri − e−iθ

r2
Li)

r1ir2i = 1 2(Im(hi) + Im(ti)) + Im(r1i) +
Im(r2i) = 0 Re(r)1 +Re(r)2 = 0

Table 1: A Fine-grained (Formulation) of KGE Models Encoding Rela-
tional Patterns. Each column corresponds to a specific model which is capable
of encoding a specific relational pattern presented in each row, under a possible
triple correctness condition (Cond.) and capability (Formulation).

reflexive, symmetric, transitive, inverse, implication, equivalence and composi-
tion. Note that SpacEss only uses simple operators of addition, subtraction, and
multiplication over embeddings of dimension d. Therefore, the computational
complexity of the model is O(d) which is similar to RotatE and TransComplEx.

4.3 Formulation of SS for Distance-based KGE Models

The capability of a model to encode a specific relational pattern can be proven
through a series of steps namely: 1) the formal definition of the considered rela-
tional pattern, 2) the formulation of the score function of the considered KGE
model, and 3) the triple correctness condition. The latter is used for the scoring
function and requires separate calculations which will be introduced in this part.
Conditions of Triple Correctness. The correctness of triples involved in a
relational pattern defines whether the pattern holds. Among the wide range of
scores assigned by a KGE model to the triples, a concrete threshold γ is required
for deciding the correctness of each triple in a KG. In practice, this threshold
is set as a hyper-parameter of the underlying KGE model. In this work, we use
simplified thresholds [16] for investigating the capability of models to encode
relational patterns, for correct triples: (a) if score = 0 then any triple with non-
zero score is false , and (b) if score ≤ γ then any triple with score > γ is false.
Condition (a) is the most restrictive one and follows the original formulation of
translation-based models and applies on the symmetric and inverse relations of
all the models in Table 1. In case, the condition (a) does not apply (for example
when the SS becomes zero), condition (b) could be considered with a specific γ,
and applies on reflexive patterns of all the models in Table 1.

Formulation of Solution Space (SS). Table 1 illustrates the capability of
three distance-based KGE models namely SpacEss, RotatE and TransComplEx
in encoding relation patterns namely reflexive, symmetric and inverse. The col-
umn Patterns specifies each of the investigated relation patterns. The column
Cond. shows whether threshold condition (a) or (b) is used for the considered
pattern. The Table 1 indicates whether the model is capable of encoding the
specified pattern under the specified condition or not. The column Formulation
in Table 1 lists the formula under which the models encode the corresponding
relation patterns, thus giving our desired fine-grained analysis of the capability.
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For space reasons, we describe only one cell of Table 1 to show SpacEss is capable
of encoding the relation pattern symmetric under the condition (a). A relation
is symmetric if ∀h, t, (h, r, t)↔ (t, r, h) holds. In other words, if a triple (h, r, t)
is positive, (t, r, h) must also be positive. According to equation (3):{

hθrLi
+ ri = tθrRi

tθrLi
+ ri = hθrRi

, (5)

after a set of derivations, the resulting condition turns to be eiθ
r
Li + e−iθ

r
Ri = 0

(see Table 1 for symmetric in SpacEss). It follows that a relation r is a symmetric
relation if the following equations hold for it:

cos(θrLi
) = − cos(θrRi

) = cos(π − θrRi
),

sin(θrLi
) = sin(θrRi

) = sin(π − θrRi
) .

(6)

Therefore, in order to encode symmetric relation patterns by SpacEss, the sum-
mation of the rotations on the left and right sides (θrLi + θrRi) should be equal
to π. There are infinitely many solutions for (6) (e.g. {θrLi

= 0, θrRi
= π}, {θrLi

=
π/3, θrRi

= 2π/3}, . . .). We use the same reasoning to obtain results for each of
the models with regard to an underlying relation pattern.

Company Example for Symmetry in SpacEss. Extending SS in SpacEss

enables it to correctly encode all the patterns existed in our company example.
Due to a bigger SS, triples are properly encoded in a vector space. This enables
SpacEss to return correct inferences opposite to RotatE. Figure 3 shows how
SpacEss encodes the example from Figure 1. A left and a right rotation is as-
signed for each relation, e.g. one out of infinite solutions could be θLbr

= 45 and
θRbr

= −135 degrees. In sub-figure a and b, the encoding of the positive triples
from the symmetric relations are shown, and sub-figure c represents the correct
encoding of non-symmetric relations. In sub-figure d, we show that SpacEss does
not infer any expected incorrect triple (wrong inferences) from non-symmetric
relations rc, ro. More precisely, the rc relation in sub-figure d is forced by the
model formulation to have a different direction than the relation rc in sub-figure
c. The same applies for ro. As it contradicts with the actual triple in sub-figure
c, the model concludes that the two triples in sub-figure d do not hold in the
vector space as correct inferences.

The correct embeddings of rc, ro are shown in sub-figure c. Using these vec-
tors, we conclude that Microsoft + rc 6= eBay and Looker + ro 6= Google.
Sub-figure d shows that the embeddings of rc, ro relations are different from
their actual embeddings shown in sub-figure c. Therefore, the model refuses the
wrong inference of these symmetric relations which was not the case in RotatE.

Medium-grained Analysis. So far, we have discussed a very coarse-grained
capability, namely “yes”/“no”, and a very fine-grained capability, namely the
defining formula of the SS (see Table 1). It remains to show a medium-grained
analysis that would allow us to easily compare different models. In Table 2, dif-
ferent variations of feasible solution space for three KGE models are shown which
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Fig. 3: Company Example in SpacEss. Encoding of the positive triples as
correct inferences (blue vectors for entities and black for relations) and failure
in returning wrong inferences (red vectors).

exactly gives us this medium-grained understanding. In Table 4 we visualize how
theoretic FSS assumption hold in practice.

SpacEss Rotate TransComplEx

Ref. Sr|h Sh|r Sr|h Sh|r Sr|h Sh|r

Inf. Inf. 2 Inf. Inf. 4

Sym. Sr|h,t Sh|r,t Sh,r|t Sr|h,t Sh|r,t Sh,r|t Sr|h,t Sh|r,t Sh,r|t

Inf. 1 Inf. 2 1 2 1 1 Inf.

Inv. Sr1,r2|h,t Sh|r1,r2,t Sh,r1|r2,t Sr1,r2|h,t Sh|r1,r2,t Sh,r1|r2,t Sr1,r2|h,t Sh|r1,r2,t Sh,r1|r2,t

Inf 1 Inf 4 1 1 1 1 1

Table 2: Comparison of Solution SpacEss for Different KGE Models.
An element-wise comparison of different values for SS are shown.

Note that solution space allows multiple dimensions, e.g. fixing head and
having freedom in relation and tail, or any of the other combinations. For each
relational pattern, the solution of each possible combination of vectors is pro-
vided. For example, a combination of three possible solutions Sr|h,t, Sh|r,t and
Sh,r|t is considered for symmetric relations. Thus, in case Sr|h,t = Inf if for
SpacEss; the solution space for RotatE, however is 2 i.e., Sr|h,t = 2. In the
same way, SpacEss provides a bigger solution space for other relation patterns
compared to TransComplEx and RotatE.

5 Experiments

The proposed model is evaluated on the link prediction problem using the filtered
setting [3]. The task here is to predict whether a relation is likely to hold between
two given entities. Here, we first generate a set of candidate triples by corrupting
once the head h and once the tail entity t for each positive test triple (h, r, t).
We remove any candidate triples constructed in this way if they appear in either
validation, training, or the test set. Finally, we rank the remaining candidate
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Fig. 4: Solution Space. The possible solutions for symmetric relation of “Similar
To” in WN18 by RotatE (2) and SpacEss (Inf.) – compatible results in Table 2.

triples against the original test triple (h, r, t). We use the standard evaluation
methods: mean rank (MR), mean reciprocal rank (MRR) and hits at top N
(Hits@N) for N = 1, 3, and 10 [24]. MR is the average rank of all the correct test
triples; MRR is the average reciprocal rank of the correct triples and is defined
as:

∑nt

j=1
1
rj

, where rj is the rank of the j-th (positive) test triple and nt - the

number of triples in the test set; and Hits@N is the percentage of the triples
whose rank is equal or smaller than N .

FB15k WN18

MR MMR Hits@1 Hits@3 Hits@10 MR MMR Hits@1 Hits@3 Hits@10

TransE? - .463 .297 .578 .749 - .495 .113 .888 .943
DistMult? 42 .798 - - .893 655 .797 - - .946
HolE? - .524 .402 .613 .739 - .938 .930 .945 .949
ComplEx? - .692 .599 .759 .840 - .941 .936 .945 .947
ConvE? 51 .657 .588 .723 .831 374 .943 .935 .946 .956
RotatE? 40 .797 .746 .830 .884 309 .949 .944 .952 .959
TuckER - .795 .741 .833 .892 - .953 .949 .955 .958
TransComplEx 38 .682 - - .875 284 .922 - - .955

SpacEss 34.5 .760 .667 .836 .895 197 .946 .936 .953 .962
SpacEss-small 41 .732 .630 .815 .884 228 .946 .936 .953 .962
SpacEss+Inverse 35.3 .774 .686 .845 .898 141 .939 .921 .953 .962
SpacEss+Implication 35 .765 .673 .839 .896 - - - -
SpacEss+Symmetry 36 .768 .680 .838 .894 - - - - -
SpacEss+Equality 36 .773 .687 .845 .896 - - - - -
SpacEss+All 33.7 .789 .713 .851 .898 - - - - -

Table 3: Evaluation 1. Results of models evaluated on FB15k and WN18.
SpacEss+Pat is SpacEss model with pattern Pat explicitly injected. SpacEss-
small is SpacEss model with 10 negative samples per one positive and dimension
of 200. Results for models marked by ? are reported from [19]; results for TuckER
are from [1]; and results from TransComplEx are quoted from [16].

Datasets. We evaluate our model on set of four widely used knowledge graphs:
FB15k [3] FB15k-237 [20], WN18 [3], and WN18RR [4]. The relation patterns
(rules) for FB15k and WN18 are adapted from [8] and [7] respectively. We only
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FB15k-237 WN18RR

MR MMR HIT@1 HIT@3 HIT@10 MR MMR HIT@1 HIT@3 HIT@10

TransE? 357 .294 - - .465 3384 .226 - - .501
DistMult? 254 .241 .155 .263 .419 5110 .43 .39 .44 .49
ComplEx? 339 .247 .158 .275 .428 5261 .44 41 .46 .51
ConvE? 244 .325 .237 .356 .501 4187 .43 .40 .44 .52
RotatE? 177 .338 .241 .375 .533 3340 .476 .428 .492 .571
TuckER - .358 .266 .394 .544 - .470 .443 .482 .526
TransComplEx 223 .317 - - .493 4081 .389 - - .498

SpacEss 167 .337 .238 .376 .539 2959 .457 .392 .488 .583
SpacEss-small 171 .333 .236 .369 .530 2986 .469 .412 .493 .577
SpacEss+Inverse 167 .340 .243 .375 .537 - - - - -
SpacEss+Implication 168 .338 .240 .374 .540 - - - - -
SpacEss+Equality 167 .337 .240 .376 .538 - - - - -
SpacEss+All 163 .335 .237 .372 .533 - - - - -

Table 4: Evaluation 2. Results of models evaluated on FB15k-237 and
WN18RR. SpacEss+Pat is SpacEss model with pattern Pat explicitly injected.
SpacEss-small is SpacEss model with 10 negative samples per one positive and
dimension of 200. Results for models marked by ? are reported from [19]; results
for TuckER are from [1]; and results from TransComplEx are quoted from [16].

FB15k WN18

MR MMR Hits@1 Hits@3 Hits@10 MR MMR Hits@1 Hits@3 Hits@10

TransE? 3350 .023 .009 .022 .048 1355 .128 .066 .138 .246
DistMult? 3459 .021 .010 .019 .041 753 .403 .247 .475 .742
ComplEx? 876 .122 .069 .134 .220 709 .453 .304 .524 .769
RotatE? 748.7 .050 .018 .045 .105 891 .522 .403 .591 .748
TransComplEx 511 .115 .053 .132 .239 1700 .117 .065 .123 .221

SpacEss 393 .130 .069 .136 .246 805 .569 .451 .647 .785

FB15k-237 WN18RR

MR MMR Hits@1 Hits@3 Hits@10 MR MMR Hits@1 Hits@3 Hits@10

TransE? 431 .159 .092 .170 .292 6207 .093 .009 .141 .249
DistMult? 432 .159 .089 .170 .302 8749 .100 .001 .180 .352
ComplEx? 388 .165 .094 .173 .314 8977 .203 .118 .266 .358
RotatE? 489 .132 .067 .139 .266 6358 .323 .245 .391 .430
TransComplEx 453 .154 .088 .163 .292 6645 .177 .119 .202 .291

SpacEss 390 .183 .109 .197 .334 6115 .393 .368 .406 .437

Table 5: Evaluation 3. Results with low Dimension equal to 10.

considered rules with confidence level of 0.8 or higher. The number of triples in-
volved in symmetric, implication and inverse patterns both in FB15k and FB15k-
237 are above 35k in each pattern category. The number of triples with inverse
patterns in FB15k is above 390k. The above statistics are based on triple count-
ing, however, we follow [8] when constructing valid groundings: a grounding of
a rule is considered valid if the triples appearing in its antecedent are present in
the knowledge graph, while the triples in the consequent are not. Given an ex-
ample pattern p⇒ q (e.g. inverse is ∀X,Y : r(X,Y ) =⇒ r′(Y,X)), we refer to
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Fig. 5: Evaluation 4. Evolution of losses for relation patterns during optimiza-
tion phase with/without injection: 5a shows the convergence of losses for main
relation patterns in FB15K without injection. In 5b, the equality patterns are
shown with/without injection.; 5c shows the same for symmetric patterns and 5d
shows the convergence of losses for all patterns on FB15k-237 without injection.

p as the antecedent and q as the consequent of the rule. Most of the groundings
in both FB15k and WN18 are for inverse rule.

Experimental Setup. We train our model by using the RotatE loss [19]. We use
Adagrad [5] as the optimizer of SpacEss. The hyper parameters were fine-tuned
on the validation set, using grid search over the following ranges: batch size ∈
{200, 512, 1024}, embedding dimension dim ∈{200, 500}, number of negative
samples #neg ∈ { 10, 20, 50 }, adversarial sampling temperature α ∈ {0.5, 1.0},
γ ∈{3, 9, 12, 18, 24 }, learning rate lr ∈ {0.001, 0.01, 0.1 }. γ is the hyper-
parameter of the losses. Embedding dimension 500 and 20 negative samples are
used as best hyper-parameters for our model.

Results and Discussion. A comparison of SpacEss to TransE, DistMult, HolE,
CompEx, ConvE, and RotatE is provided in Tables 3 and 4. We follow the
steps introduced in [15, 7] for explicit pattern injecting such that: first, the loss
function for the relational patterns is computed and then the results are added
to the main loss function as a regularization term. For example, in order to inject
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Fig. 6: Symmetric and Inverse Patterns. Practical investigation on the the-
ories of Table 1 in low dimension 10 for FB15K-237 and 15 for WN18.

a symmetric pattern, we add the regularization term ‖fr(h, t)−fr(t, h)‖. We use
following definitions to compute regularization terms for the other rules: we say
that A ⇐⇒ B holds iff A = B and A =⇒ B iff A ≤ B; (soft) truth value (or
the score) of A ∧ B is computed as A × B, A ∨ B as A + B − A × B, and ¬A
as 1 − A. The loss terms for A ≤ B and A = B are computed as Relu(A − B)
and ‖A−B‖, respectively. We test our model both with and without explicitly
injected relational patterns. We use SpacEss+Pat (“Pat” for a specific pattern
that is injected) to denote that the model uses pattern regularization (one type
of rule is injected at a time). For instance, SpacEss+Inverse refers to SpacEss

with inverse relations injected explicitly via regularization terms. SpacEss+All
refers to the results of injecting multiple (all) patterns.

According to [19], FB15K and WN18 datasets contain a significant amount
of relational patterns (inverse and symmetric). Table 2 (which is derived from
1) shows the design and development of the SpacEss model have been done with
the purpose of having a bigger solution space than RotatE and TransComplEx.
Therefore, in two evaluation settings (with bigger and smaller dimension), the
SpacEss model achieves: a) a better performance than the other distance-based
models encoding relational patterns (with same dimension), b) same accuracy
(in smaller dimension) due to expanded solution space for encoding pattern
e.g. inverse relations in our experiments on FB15K and WN18.

As shown in Table 3, SpacEss obtains 89.8 Hits@10 while RotatE and Trans-
ComplEx get 88.4 and 87.5 respectively. These results confirm our theoretical
discussions when SpacEss outperforms RotatE and TransComplEx on FB15K.
We additionally show that even with a smaller dimension (200), the performance
of SpacEss closely compete with the results of the RotatE model on FB15K and
WN18 datasets. This is an additional confirmation for our expectation that
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by having a bigger solution space, the model (SpacEss) is enabled to: a) en-
code relational patterns, b) have correct inferences, c) stay in high (and obtain
better) performance even with a smaller dimension. Comparing SpacEss with
SpacEss+Pat, (SpacEss with injected patterns), we conclude that our model is
capable of inferring the relational patterns even without explicit injection. How-
ever, we also denote that pattern injection did not have a high impact on the
results of the model in this setting. This is additionally justified by tracing the
convergence of loss for relation patterns shown in Figure 5. The losses of patterns
(except equality loss) converge properly by learning on data (sub-figure 5a). Al-
though FB15k and WN18 have testing leakage, it is still worth using these two
datasets while investigating capacity of models. These datasets contain many
inverse and symmetric patterns, therefore if the solution space of a model is lim-
ited, then the model cannot express those patterns and the accuracy is expected
to be dropped substantially even with testing leakage.

As shown in sub-figure 5b, injection enables the quality loss to converge.
Using symmetry relation (sub-figure 5c), we show even without injection, the
model properly infers the pattern. Although with these two datasets (FB15K
and WN18), our focus has been on showcasing relation patterns of type in-
verse and symmetric, encoding of relational patterns by SpacEss is not lim-
ited to these. This is proven by running SpacEss on FB15K-237 and WN18-RR
datasets within which the inverse relational patterns have mostly been removed
originally. The results are shown in Table 4 and Table 3 where our performance
is closely competing with RotatE and TransComplEx. However, in comparison
to TransComplEx with performance of 49.3, our model achieves a better per-
formance of 53.9 in Hits@10. Tucker gets the state-of-the-art performance on
FB15K-237. However, Tucker obtains these results by using much more parame-
ters due to the design of its scoring function. Moreover, this performance is also
due to the used boosting techniques such as data augmentation (adding reverse
triples), and using 1-n scoring which is not applicable in large scale KGs. Using
WN18RR, SpacEss outperforms all models considering Hits@10 and MR, even
with a smaller dimension. Table 5 includes the results for dimension 10.

As said, the solution space of a model is heavily depending on the model for-
mulation. However, one can increase it with the cost of getting high in the size
of the embedding dimension. Since the evaluation in the state-of-the-art models
have been done on relatively small standard KGs with big dimensions e.g. 500,
1000, the difference between models is not visible. Normally there would be two
ways of highlighting the effect of solution space: 1) compare the embedding mod-
els with regard to their solution space in a very large scale of KGs e.g. millions
of entities and billions of triples, 2) prototype it with toy KGs e.g. FB15k-237 in
a very low dimension e.g. 5 or 10. Since the first approach is not feasible techni-
cally, we provided the results following the second way. Our extended evaluations
using very low dimensions show that for FB15k-237, RotatE has 26.6 Hits@10,
however SpacEss gets 33.4 with dimension 10. With dimension 5, the difference
in performance is even more visible up to 15% (RotatE shows 3% and SpacEss

19% in Hits@10) of differences (complete results have been omitted from this
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paper for lack of space). Figure 6 shows the results for low dimensional of 15 over
WN18 and 10 over FB15K-237. For symmetric patterns of WN18 in Hits@1, we
gain 13% difference over RotatE (SpacEss = 61.01, RotatE = 48.3).

6 Conclusion and Future Work

In this paper, we introduced the concept of solution space as an approach to-
wards overcoming the expressiveness problem of embedding models. It provides a
fine-grained analysis on the capability of the models to express certain patterns.
We introduced the SpacEss model that is designed based on the concept of solu-
tion space. We specifically provided a theoretical demonstration of the solution
space for SpacEss, RotatE and TransComplEx models on reflexive, symmetric
and inversion patterns. An experimental evaluation is provided that shows the
performance of SpacEss in comparison to the state-of-the-art models which are
able to encode a relational pattern. The experiments are done both in high and
low dimensions in order to simulate their utilization over large-scale KGs. The re-
sults of the comparisons on high dimension show the performance improvements
of SpacEss influenced by the concept of solution space. This is further visible
in low dimensional embedding where the experiments show a surprising drop in
the performance of all the considered models including SpacEss, even on FB15K
which has leakage on patterns. However, the difference of performance demon-
strated by SpacEss is yet another approval on the importance of solution space.
In this work, we only investigated a few of the well-known embedding models.
Our future work contains analysing more models in terms of their solution space
and broaden our scope to find more factors that influence the expressiveness
of models. We showcased the effect of solution space considering some of the
relational patterns. We plan to extensively include other pattern types.
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