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Abstract—Embedding models based on translation and rota-
tion have gained significant attention in link prediction tasks for
knowledge graphs. Most of the earlier works have modified the
score function of Knowledge Graph Embedding models in order
to improve the performance of link prediction tasks. However,
as proven theoretically and experimentally, the performance of
such Embedding models strongly depends on the loss function.
One of the prominent approaches in defining loss functions is to
set a margin between positive and negative samples during the
learning process. This task is particularly important because it
directly affects the learning and ranking of triples and ultimately
defines the final output. Approaches for setting a margin have
the following challenges: a) the length of the margin has to
be fixed manually, b) without a fixed point for center of the
margin, the scores of positive triples are not necessarily enforced
to be sufficiently small to fulfill the translation/rotation from
head to tail by using the relation vector. In this paper, we
propose a family of loss functions dubbed SlidE± to address the
aforementioned challenges. The formulation of the proposed loss
functions enables an automated technique to adjust the length
of the margin adaptive to a defined center. In our experiments
on a set of standard benchmark datasets including Freebase
and WordNet, the effectiveness of our approach is confirmed
for training Knowledge Graph Embedding models, specifically
TransE and RotatE as a case study, on link prediction tasks.

Index Terms—Graph Embedding, Loss Function, Margin
Ranking Loss, Statistical Relational Learning

I. INTRODUCTION

Knowledge graphs are one of the most important technolo-
gies for the next wave of artificial intelligence and knowl-
edge management solutions across industrial applications [1],
[3], [24]. This is evident by a broad range of use cases
of KGs ranging from question answering [5], [12], [13],
recommendation systems [31], semantic modeling [25] to data
analysis [19], and knowledge management systems [11], [27].
To support such intelligent applications, various large-scale
knowledge graphs have been made available. Some of the
most used knowledge graphs are WordNet [21], Freebase [4],

NELL [10], Yago [23] and DBpedia [17] and Wikidata [29].
These datasets include knowledge in multi-relational directed
graphs composed of nodes E (usually called entities) and edges
R (usually called links or relations). More precisely, a KG
includes a set of triples in the form of (head, relation, tail)
denoted as (h, r, t) where h, t refer to the subject (also called
head) and object (also called tail) respectively and r refers to a
relation e.g., (Paris, isCapitalOf, France). This representation
of information empowers navigation across information and
provides an effective utilization of encoded knowledge. Since
it is difficult to capture all the existing knowledge from the
real world, knowledge graphs are usually incomplete. This
limits the inference of knowledge and influences performance
of the systems utilizing such KGs. An elegant solution to
solve the incompleteness of KGs are “Knowledge Graph Em-
beddings (KGE)”. Those embeddings assign a latent feature
vector to each node and relation in a KG, which can then
be used in downstream machine learning tasks such as link
prediction. Among the proposed KGE methods, translation-
based models are considered as a key family of methods
for graph completion tasks. Recently a new generation of
KGEs have been proposed using rotation-based techniques.
Our approach is designed to cover both types of translation
and rotation-based models. Translation-based models encode
entities as vectors and relationships between entities as trans-
lation vectors. TransE [7] is one of the primary models that
seeks for a latent feature vector representation of a given
triple (h, r, t) in which the vector representing t is same as
the sum of the vectors representing h and r. Initially, the
corresponding vectors (h, r, t) of each individual triple (h, r, t)
are randomly distributed over the vector space. An embedding
model employs a scoring function and a loss function in
order to (approximately) satisfy h + r ' t for positive triples
(h, r, t), and h′ + r 6= t′ for negative samples of (h′, r, t′).
The correctness of a (h, r, t) triple is calculated via a scoring
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Fig. 1: Loss Functions of KGEs. Each sub-figure represents the strategy of sliding margin for positive and negative samples
in a loss function of a KGE model. In a, we show the strategy of MRL in distinguishing positive and negative samples with a
fixed margin of (γ) between two triples (lower hatched part and upper hatched part). For Limited-based Scoring loss in b, it is
shown how the loss function bounds the positive triples by (γ1). In c, we show the strategy of Soft Margin loss for separating
positive and negative samples with two fixed γ1 and γ2. The slack variable ξi allows uncertain negative samples to slide inside
the margin.

function in the embedding space such as fr(h, t) = ‖h+r−t‖.
Since the vectors for positive and negative (corrupted) triples
are randomly distributed, the results of the scoring function
also evaluates their correctness randomly as well. Therefore,
a loss function (e.g. the Margin Ranking Loss) is needed to
optimize the embedding vectors of entities and relations.

Margin Ranking Losses (MRLs) are widely accepted
and used in embedding models and their effectiveness is
proven [7], [28]. The margin-based ranking loss function
forces the score of positive triples to be lower (towards 0)
and assigns a higher score to negative triples by a margin
of at least γ. Therefore, positive triples are separated from
negative samples. However, using MRL includes the existence
of cases where the score of a correct triple (h, r, t) is not
sufficiently small to hold h + r ' t. A combination of limit-
based scoring loss functions for a set of translation-based
embedding models [32] have been proposed in order to avoid
such cases. By adding a limit of fr(h, r) ≤ γ1, the score of
correct triples is bounded within a determined range. However,
the setting of γ (length of margin) and γ1 (upper-bound of
positive triples) in alignment with the score of the positive
and negative triples is done with a “trial and error” method in
a very big search space. Due to the lack of a unique answer for
γ and γ1 and the large search space, this task can be multiplied
for any possible variation in ranking. In this work, we propose
SlidE± as a family of loss function addressing both translation

and rotation-based embedding models1. Two subsequent loss
functions have been derived based on an expansion (+) and
contraction (-) techniques. In order to show the effectiveness
of our proposed loss function, through a systematic analysis,
we selected TransE model as a baseline and the RotatE model
as the recently proposed KGE model. Our method reduces the
search of two hyperparameters (γ1, γ) to one variable (γ). γ
is the center of the margin that should be searched within a
set of finite numbers. The margin is adjusted automatically
during the learning phase by formulating a slack variable in
the optimization problem.

The remaining part of this paper proceeds as follow. Sec-
tion II represents the related work and previous proposals
developed for loss functions of Translation-based embeddings.
Section III provides a detailed description of the adaptive
model. An evaluation of the newly developed loss function
is shown in Section IV. In Section V, we lay out the insights
and provide conjunction of this research work.

II. RELATED WORK

The loss function has a significant impact on the per-
formance of translation-based embedding models [2], [32].
Defining a margin to separate positive and negative triples is
one of the promising solutions in keeping a high performance
for loss functions. Therefore, approaches focusing on a proper
adjustment for such a margin in the loss function became

1The codes are made available in: https://github.com/mojtabanayyeri/
KGE-SlidE-Loss



important in translation-based KGEs. Here, we introduce three
of the main proposed margin-based ranking loss functions. An
illustration of each loss function is shown in Figure 1. A 2-
dimensional illustration is used in order to visualize how the
underlying loss function optimizes the distribution of negative
and positive triples. The X axis represents the scores of triples
and the Y axis is added for visual reasons without which all
the triples should have been shown on the X axis.

A. Margin Ranking Loss

Margin Ranking Loss (MRL) is one of the primary ap-
proaches that was proposed to set a margin of γ between
positive and negative samples. It is defined as follows:

L =
∑

(h,r,t)∈S+

∑
(h′,r,t′)∈S−

[fr(h, t) + γ − fr(h′, t′)]+ (1)

where [x]+ = max(0, x) (S+ for positive samples and S−

for negative samples). S− includes training samples with two
patterns of triples: 1) a corrupted head replaced by a random
entity for a fixed tail , 2) for a fixed head, a corrupted
tail is replaced by a random entity. The score of any such
corrupted triple fr(h′, t′) in negative samples is forced to be
higher than the positive triples fr(h, t) with a margin of γ.
The loss function assigns scores to the triples in a way that
fr(h

′, t′) − fr(h, t) ≥ γ holds. However, this loss function
does not guarantee that the scores assigned to the positive
samples are low enough to present the correct translation (i.e.
h+r ' t). For example, for an initial γ = 1, the model forcing
to hold this condition possibly assigns scores for the following
positive and negative samples:

(fr(h
′, t′) = 1)− (fr(h, r) = 0) ≥ (γ = 1)

(fr(h
′, t′) = 11)− (fr(h, r) = 10) ≥ (γ = 1)

(fr(h
′, t′) = 101)− (fr(h, r) = 100) ≥ (γ = 1)

(fr(h
′, t′) = 1001)− (fr(h, r) = 1000) ≥ (γ = 1)

(2)

Although the calculated loss is the same number for each of
these examples, the score scale of the latter sample is higher
than the first one. This makes the positive training triples
with high scores hardly meeting the conditions of h + r ' t,
illustrated as Margin Ranking Loss in Figure 1. Thus, with
such a loss function, it is possible that the model produces
ineffective results.

B. Limited-based Scoring Loss

In order to fulfill the gap of MRL in assigning high scores
to positive samples, a limited-based scoring function has
been proposed [32]. This method limits the score of positive
samples by adding an upper-bound (γ1). It is represented as
limited-based scoring loss illustrated in Figure 1. In this way,
the scores of positive samples are forced to stay before the
upper bound which significantly improves the performance
of translation-based KGE models [2], [22], [32]. In [32], the

MRL is revised by adding a term ([fr(h, t) − γ1]+) to limit
maximum value of positive score:

LRS =
∑∑

[fr(h, t) + γ − fr(h′, t′)]+ + λ[fr(h, t)− γ1]+
(3)

The possible combination of variables for γ and γ1 is wide
with a complexity of n2 where n is possible number of values
in the search space. Considering that, the setting of (γ, γ1) is
yet a manual task in experiments. The model and the results
suffer from the difficulty of finding an optimum setting by
trying all the possible combinations of (γ, γ1).

C. Soft Margin

A modified version of the two previous loss functions is
introduced in our previous work [22]. This approach fixes
the upper-bound of positive samples (γ1) and uses a sliding
mechanism to move false negative samples towards positive
samples, shown as Soft Margin in Figure 1. θ refers to
embedding parameters of all entities and relations in KG as
(h, r, t). A slack variable is used per each triple (i.e. ξi, where
i refers to the i-th triple) to enable false negative samples to
move inside the margin.

min
ξrh,t,θ

∑
(h,r,t)∈S+

λ ξrh,t
2 + λ+[fr(h, t)− γ1]+ +

λ− [γ2 − fr(h′, t′)− ξrh,t]+
(4)

In order to properly adjust margin, two variables (γ1, γ2)
should be obtained. Experiments show that the performance
of KGE models improves significantly by using different
values for (γ1, γ2). Assuming γ1 in the range of 10 possible
variables {0, 0.5, 1, . . . , 4.5} and γ2 in another range of 10
possibilities such as {0.5, 1, 1.5, . . . , 5} result in 102 variations
for combination of (γ1, γ2). The setting of (γ1, γ2) is yet a
manual task in experiments, the model and the results suffer
from the difficulty of finding an optimum setting by trying all
possible combinations. The results are promising with a focus
on handling uncertainty in negative sampling (false negative
samples). However, a correct setting of γ2 in alignment with γ1
still remains challenging in the performance and effectiveness
of the model.

III. THE FAMILY OF SLIDE± LOSS FUNCTIONS

With the family of SlidE± Loss functions, we aim at
reducing the search space to set the margin between positive
and negative triples. We use a variable (γ) denoting the center
of the margin. As a result, instead of searching for two
parameters (γ1, γ2) in limited-based scoring loss, we search
for one parameter (γ) illustrated in Figure 2. We propose two
separate loss functions to obtain the margin automatically. One
of the loss functions is using expansion approach (denoted by
LSlidE+ ) and the other uses contraction (denoted by LSlidE− ).
The expansion method gradually increases the margin from
zero to a bigger value. In the other method, for contraction,
the margin shrinks from bigger values to smaller ones. These
two methods are independent and are for solitary usage.
The performance of each method depends on the application



area and the general status of the KG and the underlying
model. The authors leave the decision of using contraction
or expansion methods on users based on the best performance
of each loss in the defined embedding problem.

A slack variable (ξ ≥ 0) is employed to gradually expand
(or contract) the margin i.e. γ1 = γ−ξ, γ2 = γ+ξ. Therefore,
the following inequalities should hold for positive and negative
scores: {

fr(h, t) ≤ γ − ξ,
fr(h

′
, t
′
) ≥ γ + ξ.

(5)

Instead of using one slack variable per triples (as it was in
Soft margin), we propose to use one slack variable to adapt
the margin by expansion or contraction. In order to enforce the
model to satisfy Equation 5, the following penalty terms are
derived to be included in the proposed optimization problem.
Therefore, the loss functions of positive (Loss+) and negative
(Loss−) samples are derived as follows:


Loss+ = [fr(h, t)− γ + ξ]+ = Relu(fr(h, t)− γ + ξ)

Loss− = [−fr(h
′
, t
′
) + γ + ξ]+ = Relu(−fr(h

′
, t
′
)

+γ + ξ).
(6)

The optimization problem is defined as following from
which the two losses of expansion and contraction are derived:

L = λ+ Loss
+ + λ− Loss

− (7)

where λ+ and λ− are hyperparameters, making a trade-off
between positive and negative losses. In our experiments, we
set these parameters to 1 for simplicity.

The role of ξ is to derive the margin. It is initialized in the
beginning of the algorithm, ξ = m for expansion (ξ =M for
contraction). The initial value of the margin is introduced in
Equation 8:

γ2 − γ1 = γ + ξ − γ + ξ = 2ξ = 0 (2M). (8)

In the following sections, we introduce the expansion and
contraction approaches in details.

A. Slide+: The Loss with Expansion

In the expansion approach, the margin is initialized with
a very small value (e.g. zero). Then during the optimization
process, margin is expanded automatically by sliding the edges
of the margin. We employ correntropy objective function to
enable the margin to be expanded. This step is done by
increasing the value of ξ. The correntropy objective function
is defined as C(ξ) = E(K(ξ)) [20] where E(.) is the
expectation in probability theory, K(.) is a kernel function
and ξ ∈ Rd is a d−dimensional random variable. Typically,
Gaussian kernels are used in the correntropy function. A
Gaussian kernel is defined as K(ξ) = e−σ‖ξ‖

2

.
Assuming ξ ∈ R, which is a number rather than a vector,

the following part is added to the loss L (Equation 7):

Lξ = e−σξ
2

. (9)

In the original Equation 5 on which the expansion will be
formulated, ξ should be a positive value. In order to ensure
this, we use ξ2 instead of ξ in the final formulation of the loss
function:

minθ,ξ e
−σξ2

subject to fr(h, t) ≤ γ − ξ2,
fr(h

′
, t
′
) ≥ γ + ξ2 .

(10)

Using penalty method and considering Equation 7, Equa-
tion 9, instead of solving Equation 10, the following loss
function is minimized:

LSlidE+ = λe−σξ
2

+ λ+ [fr(h, t)− γ + ξ]++

λ− [−fr(h
′
, t
′
) + γ + ξ]+.

(11)

By initializing ξ to 0, the amount of loss in Equation 9
becomes 1 (it is maximized). The minimization of the main
loss (Equation 11) is realized when ξ is enforced to be
increased. In theory this happens when e−ξ

2 −→ 0 which holds
when ξ2 −→ ∞. In practice, we solved the optimization using
stochastic gradient descent where ξ is enforced to reach a
big value (M). Therefore, as indicated in 8, the margin is
expanded from 0 to 2M.

B. Slide−: The Loss with Contraction

In the contraction approach, the loss is formulated in such
a way that the margin starts with a big value and gradually
shrinks. In order to formulate the loss function with contracted
margin, the following formula is employed to be added to L
(Equation 7):

Lξ = ξ2. (12)

Therefore, considering Equation 12 and Equation 5, the
following optimization is proposed:

min
θ,ξ

ξ2

subject to fr(h, t) ≤ γ − ξ2,
fr(h

′
, t
′
) ≥ γ + ξ2 .

(13)

As explained previously, the variable θ denotes embedding
parameters.

Adding a penalty parameter multiplied by a measure of
violation of constrains is a solution to solve such constrained
problems [9]. Using penalty method (by adding [fr(h, t) −
γ + ξ]+ + λ− and [−fr(h

′
, t
′
) + γ + ξ]+) and considering

Equation 7 and Equation 12, instead of solving Equation 13,
the following loss function is minimized:

LSlidE− = λξ2 + λ+ [fr(h, t)− γ + ξ]+ + λ−

[−fr(h
′
, t
′
) + γ + ξ]+

(14)

We emphasize on substitute usage of the expansion and
contraction methods per use case. Although in our results,
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Fig. 2: Illustration of loss function based on SlidE±. Our model uses a fixed center of margin and slides the edges on
the side of positive and negative triples (the X axis represents rankings and the Y axis is for better illustration of the triple
distribution). This is illustrated in three incremental epochs (left to right).

TABLE I: Dataset Statistics. Split of datasets.

Dataset #training #validation #test

FB15k 483,142 50,000 59,071
WN18 141,442 5,000 5,000
FB15k-237 272,115 17,535 20,466
WN18RR 6,084 3,034 3,134

the contraction approach is outperformed by expansion in
all aspects, our expectation is that the performance of each
method can differ in various applications also based on the
structure of the KG. We introduced the contraction for com-
prehensive proposal of our approach and report the results for
transparency.

IV. EXPERIMENTS

An evaluation of our proposed family of loss functions is
addressed in this section. We mainly focused on training the
TransE [7] and RotatE [26] models with the state-of-the-art
loss functions and provided comparisons with SlidE±. The
main evaluation metrics for link prediction tasks are Mean
Rank (MR) and Hits@K. To compute MR, two sets are
generated (SL = {(h, r, ?)}, SR = {(?, r, t)}) for each test
triples (h, r, t) where all entities in the KGs are replaced by ?.
Scores of all triples in SL, SR are computed and sorted. The
rank of the original triple (i.e. (h, r, t)) is computed in both
sets SL, SR which are respectively denoted by rL, rR. In any
considered triple, rL is the notation for the left ranks and rR
for the right ranks. The rank of the example triple of (h, r, t) is
computed as r = rL+rR

2 . In this way, MR is obtained by taking
overall average rank of testing triples. Finally, the computation

of Hits@10 is performed by counting the number of testing
triples which are ranked less than 10 (i.e. ri ≤ 10).

A. Experimental Setup and Benchmarks

The TransE and RotatE models as well as our proposed
loss functions can be trained with different settings on hy-
perparameters. For TransE and RotatE, embedding dimension
(d) and a number of generated negative samples (n) per each
positive are selected as the two hyperparameters. SlidE± has
γ, λ+, λ− and σ as hyperparameters. TransE trained by
margin ranking loss, Limited-Score Loss, soft margin loss,
RotatE loss and SlidE± are denoted by TransE, TransE-RS,
TransE-SM, TransE-RL, TransE-SlidE+ and TransE-SlidE−

respectively. We additionally train the recent state-of-the-art
model (i.e., RotatE) with our loss to show the effectiveness of
the proposed loss functions. Same naming is used for RotatE.
We also compare the results with the ComplEx [28] model.
The implementations of TransE and RotatE with SlidE± have
been done in Pytorch using Adagrad as optimizers. The model
stops training when the accuracy of Hits@10 reaches a pick
value and starts to grade down.

Four benchmark datasets have been considered for the
evaluations. Table I lists the number of triples in training, test,
and validation sets in each KG used in our experiments.

Less Sensitive Margins Batch sizes of 512 and 1024
are tested for each dataset. In order to investigate the core
effectiveness of the proposed loss function and have a fair
comparison, embedding dimension is set to 100 (Table II).
Moreover, only one negative sample is generated per each
positive sample. To reduce the number of parameters for
searching, we set λ+, λ−, λ and σ to 1, and only γ is
tuned in the set {0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30}. We used the



TABLE II: Link prediction results. Comparison of models implemented with loss function of MRL, Limited-base loss, and
SlidE± (expansion and contraction) considering Mean Rank, Hits@10 on WN18 and FB15k.

Dataset WN18 FB15k

Mean Rank Hits@10(%) Mean Rank Hits@10(%)

raw filter raw filter raw filter raw filter

Unstructured [6] 315 304 36 38 1074 979 5 6
RESCAL [23] 1180 1163 37 53 828 683 28 44
SE [8] 1011 985 69 81 273 162 29 40
SME (linear) [6] 545 533 65 74 274 154 31 41
SME (bilinear) [6] 526 509 55 61 284 158 31 41
LMF [14] 469 456 71 82 283 164 26 33
TransE [7] 263 251 75 89 243 125 35 47
TransH (unif) [30] 318 303 75 87 211 84 43 59
TransH (bern) [30] 401 388 73 82 212 87 46 64
TransR (unif) [18] 232 219 78 92 226 78 44 66
TransR (bern) [18] 238 225 80 92 198 77 48 69
TransD (unif) [15] 242 229 79 93 211 67 49 74
TransD (bern) [15] 224 212 80 92 194 91 53 77
TransE-RS(unif) [32] 362 348 80 94 161 62 53 72
TransE-RS(bern) [32] 385 371 80 94 161 63 53 72
TransH-RS(unif) [32] 401 389 81 95 163 64 53 73
TransH-RS(bern) [32] 371 357 80 95 178 77 54 75
RotatE(dim=50) [26] 324 312 83 95 170 57 54 75
ComplEx(dim=50) [26] 596 584 79 88 168 68 48 64

RotatE-SlidE+(dim=50) 186 178 86 96 141 53 55 78
TransE-SlidE+ 226 217 84 95 177 55 55 81
TransE-SlidE− 380 488 80 90 169 68 50 71

(a) Hits@10 rate. γ is searched between 0 and 30 (b) Hits@10 rate by testing different σ. (c) Hits@10 rate by testing different λ.

(d) Mean Rank. γ is searched between 0 and 30 (e) Mean Rank by testing different σ. (f) Mean Rank by testing different λ.

Fig. 3: Evaluation of TransE-SlidE+ by testing different values of one of the hyper parameters γ, σ, λ.



TABLE III: Link prediction results. Comparison of models implemented with loss function of soft margin loss and SlidE±

(expansion and contraction) considering Mean Rank, Hits@10 on WN18RR and FB15k-237.

Dataset WN18RR FB15k-237

Mean Rank Hits@10(%) Mean Rank Hits@10(%)

raw filter raw filter raw filter raw filter

ComplEx(dim=50) 5974 5963 43 45 367 243 30 39
TransE-SM 3941 3927 46 49 365 210 32 46

RotatE(dim=50) 4551 4538 49 53 371 235 32 43
RotatE-SlidE+ (dim=50) 3855 3766 50 54 396 243 32 43

TransE-SlidE+ 3392 3377 46 49 366 203 32 46
TransEAMLCont 4298 4285 39 41 469 264 26 38

TABLE IV: Optimal Setting. Representation of different setting considering hyperparameters for TransE-SlidE+ and TransE-
SlidE− (the rest of the models have been trained with their best settings in their own original resources).

Dataset Expansion Approach Contraction Approach

FB15k FB15k-237 WN18 WN18RR FB15k FB15k-237 WN18 WN18RR

ξ initialization 0.1 0.1 0.1 0.1 10 10 10 10
γ 30 20 15 15 30 30 25 15
Learning rate 0.1 0.005 0.1 0.5 0.1 0.005 0.1 0.5

same hyper-parameter search for the RotatE loss. The slack
variable ξ for expansion and contraction are initialized by
0.1 and 10. The optimal hyperparameters of TransE-SlidE+

and TransE-SlidE− obtained for each dataset are reported in
the Table IV. The parameters are obtained using validation
set. The experimental datasets of evaluation includes FB15k,
FB15k-237, WN18 and WN18RR.

Runtime Comparison Evaluation of our model with com-
petitors depends on the number of computational operations.
Our loss has a simple addition and subtraction. Due to better
performance in accuracy, we consider the expansion loss for
runtime evaluation. Our runtime is fairly close to other losses
e.g., on WN18, training RotatE with its original loss function
takes 26 minutes and 6 seconds whereas the training time of
RotatE with SlidE+ is 26 minutes and 46 seconds. On this
dataset, RotatE-SlidE+ improves the results of RotatE by 42%
on filtered mean rank, 3% on raw Hits@10 and 1 on filtered
Hits@10.

Boosting Technique Most of the KGE models present a
proper formulations (in loss and score functions) with an ob-
jective of outperforming the results of state-of-the-art models.
However, there are also some additional model-independent
techniques which can influence and improve the results of
KGE models regardless of the corresponding formulations.
We denote these side-techniques as boosting techniques. Here
we list some of these side-techniques used in performance
boosting of KGE on the example of RotatE and Canonical
Tensor Decomposition (CP) [16]: 1) increasing embedding di-
mension (EmbDim) (up to 1000 EmbDim in a complex area in
RotatE), 2) increasing number of negative samples (NegSam)

(1000 negatives per each positive in RotatE), 3) using different
NegSam techniques (bern/ or adversarial NegSam in RotatE
and CP), 4) pre-processing and enrichment of the datasets (e.g.
adding reverse-triples to dataset in RotatE and CP).

In order to properly evaluate the efficiency of our proposed
loss functions and justify the advantage of the proposed core
formulation, we initially avoided considering such boosting
techniques in the evaluation of our model in previous part
(Table II Table III). That demonstrates the novelty and con-
tribution of our work and proves that our performance gain is
due to a more proper formulation. Moreover, such boosting-
techniques require a powerful computational infrastructure,
adversely limit their applicability. However, in order to further
clarify the effect of boosting technique in the performance, we
apply some of them in our model to have a comprehensive
evaluation. We have increased the embedding dimension as
well as the number of negative samples up to 300 and used
adversarial negative sampling. The Table V shows the reported
results using boosting techniques (with .BT suffix).

B. Results and Discussion

The results represented in Table II show comparisons of
TransE-SlidE+ and TransE-SlidE− with TransE-RS, TransH-
RS, TransE, TransH, RotatE and ComplEx as well as RotatE-
SlidE+. Additionally, we compare our model to LMF, SME,
SE, RESCAL and UNSTRUCTURED. As stated in [32], we
are also using dimension d = 100 to provide an identical
setting for our evaluation. Let us note that, some of the
models are defined in complex vector space such as RotatE
and ComplEx. Therefore, by setting the dimension to d = 50,



TABLE V: Boosting techniques (BT). The experiments are
shown for the two datasets of WN18RR and FB15K-237 using
boosting techniques.

Datasets WN18RR FB15K-237

Metrics MR Hits@10 MR Hits@10

RotatE.BT 3341 57 180 52
RotatE-SlidE+.BT 3093 58 180 52

TransERT.BT 3640 53 176 52
TransE-SlidE+.BT 3395 54 176 53

100 parameters will be used for each entity (complex vector
space multiplies it by 2).

Following the same principles, only one negative sample
is generated per each positive triple. In order to create such
negative samples, we use probabilistic corruption techniques
over positive samples. Uniform negative sampling (unif in
Table II) sets the probability of corruption for head (?, r, t) and
tail (h, r, ?) equally. The Bernoulli (bern) negative sampling
[30] considers different probabilities for head (?, r, t) and
tail (h, r, ?) corruptions to reduce number of false negative
samples. Results reported in Table II for other models are taken
from their original publication of research works. According
to the results, TransE which is trained by MRL gets 89%
and 47 on WN18 and FB15k respectively. TransE-RS which
is trained by the limited-based score loss improves the results
on both of the datasets. It gets 94% on WN18 and 72% FB15k.
The results confirm that adding the term [fr(h, t) − γ1]+ to
the MRL significantly improves the performance of TransE
model. TransE-SlidE+ obtains accuracy of 95% on WN18
and 81% on FB15k which outperforms RotatE in terms of all
metrics except Hits@10 in WN18. Therefore, the proposed
loss function with expansion approach improves the accuracy
of TransE. TransE trained by contraction approach gets better
results comparing to the margin ranking loss.

According to Table III, TransE-SlidE+ slightly outper-
formed TransE-SM on WN18RR and FB15k-237 considering
Mean Rank and Hits@10. TransE-SM is very sensitive to
γ1 and γ2, thus, the results changes dramatically with slight
changes in γ1 and γ2. Therefore, the search space is very
huge for TransE-SM whereas TransE-SlidE+ only needs to
search for γ. Moreover, for TransE-SlidE+ we fixed the hyper-
parameters including σ (except γ) to a value. We additionally
show the proposed loss function is less sensitive to the
hyperparameter σ (Figure 3b, Figure 3e and Table IV). On
FB15k and FB15k-237, Hits@10 of RotatE gets only 75%
and 43% respectively. However, TransE-SlidE+ gets 81%
and 46% on the same KGs. We additionally, investigate the
effectiveness of SlidE+ by training RotatE with its original
loss and our proposed loss using expansion technique (RotatE-
SlidE+). The results show that RotatE-SlidE+ outperforms
the RotatE model. Illustrated in Figure 3, the performance
of our model is affected by the hyperparameters (γ, σ and
λ). Initially, the value of σ and λ are fixed to 1.0, then

different values for γ are tested. From Figure 3a Figure 3d,
we can see when γ increases from 0 to 5, the Hits@10
rate increases by 20%–50%. The performance of TransE-
SlidE+ stays unchanged when γ is between 15 to 20 for
most of the datasets (WN18, WN18RR and FB15k-237). For
FB15k, the best performance (in terms of Hits@10) is obtained
around γ=30. In Figure 3b, Figure 3e, Figure 3c, Figure 3f,
we set the optimal configuration of our model with fixed
value of γ separately, and observe the performance where
σ ∈ {0.1, 1, 2, ..., 10} and λ ∈ {0, 0.5, 1, 2, ..., 10}. According
to Figure 3b, Figure 3e, in most cases, the best performance
for our model is obtained when σ is between 0 and 1. Mostly,
with σ = 1 our model obtains satisfactory performance. These
results approve the advantage of our with less sensitivity to
hyper-parameter σ. It can also be confirmed by Table IV where
in the most cases, the best performance is obtained with σ = 1,
same applies to λ (see Figure 3c, Figure 3f). As a conclusion,
once a proper value of γ is adjusted, the best setting for σ and
λ can be obtained easily.

bin1

bin2

bin1
bin3

bin2

bin3 bin3

bin2

bin1
bin1

bin2

bin3

Center of margin Center of margin
Our Loss RotatE Loss

Fig. 4: Histogram of the scores. a) the RotatE model is trained
using the SlidE+, b) the RotatE model is trained using the
RotatE loss. The models are trained on WN18RR. BT stands
for experiments using boosting techniques.

Figure 4 illustrates the scores of positive and negative
samples obtained by training the RotatE model using SlidE±

and the RotatE loss. For each of the positive and negative
samples, the scores are distributed into three bins. The center
of the margin is set to six (in the X axis). Using the RotatE
loss, the third bin of the positive samples and the first bin of
the negative samples (which are closer to the margin) contain
more samples than the corresponding bins of SlidE+ . These
results approve that SlidE+ relatively performs better in setting
the margin between negative and positive samples.

V. CONCLUSION

We propose the SlidE± family of loss functions to improve
the performance of embedding models in capturing knowl-
edge from large knowledge graphs. SlidE± is designed and
developed to tackle the problem of automatically obtaining
a margin during the training process. In contrast to other
approaches which are using manual settings for the upper



and lower bound of positive and negative samples (to set
the margin) within a large search space, SlidE± adapts the
center of the margin. TransE and RotatE models are trained
by SlidE± and evaluated considering Mean Rank and Hits@10
of the other loss functions. The results represent a significant
improvement in accuracy with our proposed loss function.
We additionally observed that RotatE-SlidE+ (RotatE model
trained by SlidE loss function using expansion technique)
outperforms the RotatE model trained by its original loss
function. TransE-SlidE+ (TransE model trained by SlidE loss
function using expansion technique) performs 95% on filter
of WN18 whereas TransE trained by Margin Ranking Loss
is reported to be 89% in Hits@10 and Limited-based Scoring
Loss result is stated to have 94% of accuracy. On FB15k, the
difference is high as TransE-SlidE+ reaches 81% while TransE
on MRL is 47% and 72% is the reported accuracy for Limited-
based Scoring. Furthermore, we used boosting techniques in
order to transparently compare our results with setting of other
models.
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