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ABSTRACT Knowledge Graph Embeddings (KGE) are used for representation learning in Knowledge
Graphs (KGs) bymeasuring the likelihood of a relation between nodes. Rotation-based approaches, specially
axis-angle representations, were shown to improve the performance of many Machine Learning (ML)-based
models in different tasks including link prediction. There is a perceived disconnect between the topics of KGE
models and axis-angle rotation-based approaches. This is particuarly visible when considering the ability
of KGEs to learn relational patterns such as symmetry, inversion, implication, equivalence, composition,
and reflexivity considering axis-angle rotation-based approaches. In this article, we propose RodE, a new
KGE model which employs an axis-angle representation for rotations based on Rodrigues’ formula. RodE
inherits the main advantages of 3-dimensional rotation from angle, orientation and distance preservation in
the embedding space. Thus, the model efficiently captures the similarity between the nodes in a graph in the
vector space. Our experiments show that RodE outperforms state-of-the-art models on standard datasets.

INDEX TERMS Link prediction, knowledge graph embedding, 3D rotation, learning and reasoning
Rodrigues formula.

I. INTRODUCTION
N-dimensional rotations have been used for several AI-based
applications such as motion detection in computer vision and
kinematics descriptions in robotics. More specifically, such
rotations have been recently employed in the development
of ML models resulting in powerful learners for neural net-
works [7], spectral clustering [15], regression [33], ensem-
ble learning [25], and representation learning in knowledge
graphs (KGs) [27]. Among N-dimensional rotations, the 3D
case is particularly important due to the compatibility of its
coordinate system with real world. Therefore, the study of
rotations with three degrees of freedom has reached a state
of maturity including quantum mechanics [3]. Different rep-
resentations [1], [21] for three-dimensional rotations can be
selected per application such as Euler angles [5], axis-angle
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representation (Rodrigues formula) [8], exponential coordi-
nates [11], and matrices [24]. Each of these rotation-based
approaches have specific characteristics in preserving dis-
tance, angle and orientation of the rotated objects. particularly
the axis-angle representation has some general advantages
over the other representations [12]: 1) in comparison to the
rotation matrices which contain 9 (= 3 × 3) parameters,
the Rodrigues formula represents rotation with four param-
eters (three parameters for axis, one parameter for angle),
2) the Rodrigues representation avoids the problem of parallel
configuration of axes known as Gimbal lock [14] (reduction
in degrees of freedom) caused by using Euler angles in 3D
space, 3) Rodrigues has less computational cost compared to
the Euler angles which uses three matrices of rotation.

One of the recent domains in which using rotations led
to achieving state-of-the-art results is learning and reasoning
over Knowledge Graphs (KGs) using embeddings (KGEs).
Generally, KGEs are designed for graph completion by
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predicting missing links on knowledge graphs. A Knowledge
Graph is a multi-relational directed graph with nodes and
edges represented in the form of triples (head,relation,tail),
such that head and tail represent nodes and the relation is
the edge between two nodes. For a given KG, a KGE model
creates head, relation, and tail vectors as (head,relation,tail)
for which we use the notation (h, r, t) in this article. Recent
studies in the KGEs have shown that nodes and edges of
KGs often form relational patterns [27]. The advantages
of Rotations was particularly notable for learning relational
patterns for which the previous KGE models encountered
problems. The success of the link prediction task using a
KGE model depends on its ability of learning and infer-
ring different aspects of the KGs such as relational pat-
terns. Formally, patterns are represented in the form of
Premise H⇒ Conclusion where Premise is conjunction of
several atoms (triples) and conclusion is an atom. For exam-
ple, affiliatedIn(X ,Y )∧ locatedIn(Y ,Z ) H⇒ livesIn(X ,Z ))
is a composition pattern with two atoms in the body and one
atom in the head. A KGE model is supposed to infer that X
lives in Z when it learns affiliatedIn(X ,Y )∧ locatedIn(Y ,Z ).
Rotation based KGEs have shown to be more effective than
non-rotation based KGEs due to the algebraic advantages of
rotation in learning graph patterns [27]. However, the story
does not end with adding a rotation capability to the model.
The representation – in which the rotation is performed –
affects the accuracy of the underlying model. Using axes-
angle enables the aforementioned advantages and provides
in addition a more flexible and representative rotation which
consequently accelerates the capability of the models in
learning awide range of patterns including composition, sym-
metry, reflexivity, implication and equivalence. Moreover,
a powerful axes-angle representation of rotation facilitates
the preservation of the rotation angle, its orientation and the
distance of rotated objects in an accurate way. This happens
in a geometric space which subsequently provides a powerful
node-clustering in the embedding space after mapping nodes
of a graph to vector. Despite the positive effects of axis-angle
representations and its advantages, it was so far unexplored
by the already existing rotation-based KGEs (RotatE and
QuatE).

In this work, the mentioned advantages of the Rodrigues
rotations are exploited for learning and reasoning over
Knowledge Graphs (KGs) with the objective of link predic-
tion for graph completion. We focus on Knowledge Graph
Embedding (KGE)models as one of themost used techniques
for this problem. We aim at modelling relations as Rodrigues
rotation to map the head to the tail vector for positive triples
to determine that the triple is plausible in the vector space.
Our model is called RodE, a 3D dimensional embedding
model which is based on learning low-dimensional represen-
tations of the entities and relations of the underlying KG.
We represent relations in a KG by axis-angle rotation to
map the nodes or the underlying graph, in a vector space.
The performance on link prediction tasks improves with our
contributions, since RodE inherits the general characterises

of rotations. The aforementioned advantages of Rodrigues
rotations can be mapped to Knowledge graphs as:

• By preserving distance, angle and orientation of vectors
simultaneously, RodE enables capturing similarity of
nodes in the embedding space, comprehensively.

• As the problem of parallel configuration of axes (Gimbal
lock) is avoided by RodE, the vectors corresponding
to head entities are mapped to the tail vectors without
errors in the mappings of the vectors caused by reduced
dimensions.

• Memory consumption and computational costs are
optimized due to the reduced number of parameters
considered for modelling rotations.

The evaluation was performed on four standard bench-
marks namely WN18, FB15k, WN18RR, and FB15k-237.
The experimental results demonstrate that our method outper-
forms the state-of-the-art models with the same embedding
dimensions. The evaluation results indicate that this is still
the case even if we reduce the embedding dimension.

II. RELATED WORK
The promising results of embedding models in solving link
prediction tasks has resulted in the development of sev-
eral models during the last couple of years. Generally, such
embedding models can be grouped into three categories [32]:
Semantic-matching models, Distance-based models, and
Neural Network-based (NN) models. The remaining part
of this section provides a general overview of KGEs and
includes a detailed description about the models that are
relevant to this work.

A. SEMANTIC-MATCHING EMBEDDING
This category includes models that measure the plausibility
of a triple comparing the similarity of the latent features of
the entities and relations. Therefore, the scoring functions
of such KGE models are designed based on relation-specific
semantic similarities between nodes. Among the semantic-
matching models, QuatE [37], TuckEr [2], RESCAL [23],
ComplEx [31], DisMult [35] and HolE [22] measure plausi-
bility of edges by matching latent semantics. We look into
the details of a base model and a state-of-the-art of this
category later in this section. QuatE [37] extends embed-
dings from complex space into quaternion space. Similar
to RotatE, QuatE represents relations as rotations. However,
a rotation in quaternion space is more expressive than rotation
in a complex space. A product of two quaternions q1 ⊗ q2
(⊗ is Hamilton product between two quaternion vectors) is
equivalent to first scaling q1 by magnitude |q2| and then
rotating it in four dimensions. QuatE represents entities and
relations as quaternion vectors h = h1 + h2i + h3j + h4k,
h1,h2,h3,h4 ∈ Rd (i, j,k are fundamental quaternion units).
The scoring function of QuatE is then

f (h, r, t) = h′ · t=〈h′1, t1〉+〈h′2, t2〉+〈h′3, t3〉+〈h′4, t4〉

(1)
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where 〈·, · 〉 is an inner product of real vectors and . is a
quaternion vectors product.

h′ is computed by first, normalizing relation embedding
r = r1 + r2i+ r3j+ r4k to a unit quaternion:

r(n) =
r
|r|
=

r1 + r2i+ r3j+ r4k√
r21 + r22 + r23 + r24

(2)

and then computing Hamiltonian product between r(n) and
h= h1+h2i+h3j+h4k. However, the Hamiltonian product
for modelling rotations is in 4D dimensional space. While the
model subsumes 2D rotation, it cannot express the 3D rota-
tion (with axis-angle representation) due to its formulation.

TuckER [2] encodes KG as binary tensors W ∈

R(de×dr×de ), where de is embedding dimension for entities
and dr - embedding dimension of relations. The ijk-th ele-
ments of W is determined to be 1, if triple (hi, rj, tk ) holds,
otherwise its value is -1. The scoring function is defined as:

f (h, r, t) =W ×1 h×2 r ×3 t (3)

where ×n represents the mode-n product [2]. The logistic
sigmoid function is then applied to the score to compute
probability of the triple being true. Claimed by the authors,
TuckER obtains state-of-the-art performance with a relatively
smaller embedding dimension for h, r, t. However, the total
number of adjustable parameters hugely increases due to
using the core tensor (W) which is problematic in large-scale
KGs. Among themodels under this category, only QuatE uses
rotations but not considering axis-angle.

B. DISTANCE-BASED EMBEDDING MODELS
This category includes those models in which the plausi-
bility of a triple is computed based on a distance function,
which generally, is either translation-based or rotation-based.
A family of translation-based models have been proposed
under the category of distance-based such as TransE [6],
TransD [16], TransH [34], TransR [18]. Recently, rotation-
based models such as RotatE [27] are also proposed under
this category. Here, we address two of the highly-performed
models, one from the fundamental aspects (TransE) and one
recently developed rotational model (RotatE). TransE [6] is
one of the early embedding models which stayed with its
surprisingly high performance for modelling multi-relational
data despite simplicity. In this model, relations are interpreted
as translations between entities to find embeddings of a triple
(h, r, t) as h+ r ≈ t. The scoring function is defined as:

f (h, r, t) = −‖h+ r− t‖ (4)

The minus sign in front of norm corresponds to high num-
bers showing plausibility. The simplicity of TransE and its
functionality in real space makes it highly scalable. However,
as can be deduced from its scoring function, TransE has
difficulties representing 1-MANY, MANY-1, and MANY-
MANY relations [34].

RotatE [27] embeds entities and relations into complex
vector space and uses the following scoring function:

f (h, r, t) = −||h ◦ r− t|| (5)

where h, r, t ∈ Cd (C is complex space) , r = [r1, . . . , rd ]
is a unit vector, i.e. |ri| = 1, i = 1, . . . , d , and ◦ is
Hadamard (element-wise) product. Relation r is then inter-
preted as a rotation from h to t. Unlike other KGEs, RotatE is
capable of encoding relational patterns such as composition
and symmetry of relations. RotatE uses complex vectors to
model rotation in 2D dimensional space. Using distance in the
score function, the model becomes limited to 1 to n scoring
in learning (covered by TuckER [2]). In [29], a high-level
analysis is represented as a non-abelian group in a general-
ized framework which addressed rotations in 3D. Although
it uses several KGEs as examples of the addressed groups,
the comparison with the recent state-of-the-art of rotation-
based embedding models, namely QuatE is not covered and
the reported results are sensibly lower than the performance
of the QuatE model in its original report [36].

C. NEURAL NETWORK-BASED EMBEDDING MODELS
This category considers the models in which the plausibility
of a triple is computed based on amulti-layer Neural Network
(NN). ConvE [9] is an example model in this category that
uses a global 2D convolution operation for head and relation
embedding. Then, these vectors are reshaped into matrices
and concatenated. Furthermore, a linear layer and an inner
product is taken with all vectors of tail entities to generate a
score for each triple. Another NN-based model is NTN [26].
Since these models are not in the scope of this work and in
addition, their performance are not among the state-of-the-
art, we skip further details.Most of themodels in this class are
using ReLU activation function which results in same score
for most of the triples during the evaluation. This causes an
unrealistic jump in the performances of the models which is
not an advantage caused by proper formulation, but it is a
disadvantage caused by getting a same scoring for most of
the triples – regardless of being positive or negative [28].

III. RODRIGUES FORMULA
In mathematics, the Special Orthogonal group (SO(q)) is
the group of all rotations around the origin of Rq, i.e. q
dimensional Euclidean space, by composition of operators for
rotations [13]. Considering rotations, the following reminders
are noted here from which the characteristics of RodE will be
driven:

• a rotation preserves origin, angle, distance and
orientation,

• a non-trivial rotation is a rotation over axis r by θr
degrees,

• composition of two rotations is another rotation,
• a rotation has a unique inverse rotation,
• identity map (the output is same as input) satisfies the
definition of rotation.
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FIGURE 1. Rodrigues rotation of embedding vectors. Using a relation-specific Rodrigues rotation in 3-dimensional space (x, y, z),
an element-wise mapping of head (h) to tail (t) is performed in each embedding dimension [1, 2, . . . , d]. Each of the 3D spheres refers to
one element of (h, r, t). The relation is represented as axis and the angle is its corresponding rotation around the axis (no semantics in the
size of the sphere).

We specifically consider the prominent rotation of the
SO(3) group, namely Rodrigues’ formula [10] as a rotation
in R3 (3D rotation). Rodrigues rotates a 3D vector e ∈ R3

around the axis r ∈ R3 (r is a unit vector) by θ degrees
according to the right hand rule. We denote the rotation by
adding the index ‘‘rot’’, therefore, erot is the rotated vector
of e. The Rodrigues’ formula enables the rotation as follows

erot = e cos(θ)+ (r× e) sin(θ )+ r〈r, e〉(1− cos(θ )), (6)

where × is the cross product.
Rotation can be also represented through matrix-vector

multiplication as follows

erot = Re, (7)

where R is an orthogonal matrix, i.e., RRT
= I where I is

the identity matrix. The Rodrigues’ rotation matrix is defined
as follows:

R = Icos(θ)+ sin(θ )K+ (1− cos(θ)K2),

K =

 0 −r3 r2
r3 0 −r1
−r2 r1 0

 . (8)

K is a skew-symmetric matrix and ri with i = 1, . . . , 3
denotes the i-th element of the axis r.

IV. RodE EMBEDDING MODEL
The formulation of RodE uses Rodrigues’ rotation which
enables the mapping of nodes in a graph through edges into
a vector space. This facilitates RodE to cover different cate-
gories of embedding models. In order to inherit the character-
istics of different embedding categories, RodE is formulated
for:

• Semantic-matching (with 1-n scoring) models: applied
on KGs with a low number of entities, in particular
relative to the number of triples.

• Distance-based models: best practice in large scale KGs
with relatively high number of entities.

In the following sections, we first present these two for-
mulations of RodE. Then, we show the advantages of uti-
lizing the Rodrigues’ rotation and the core formulation of
the RodE score for learning the main relational patterns
(e.g., symmetric, inverse) of the graph. We furthermore
describe its connection to the current closest state-of-the-art
model (QautE). For the implementation of the RodE model,
we use the Pytorch framework.

A. RodE FOR SEMANTIC-MATCHING BASED KGEs
Given a triple (h, r, t) in a KG, we aim at mapping the
embedding of head h to the embedding of tail t via a relation-
specific algebraic operation. Here, we model the relation r as
an element-wise 3D rotation induced by Rodrigues’ formula,
shown in Figure 1. In element-wise rotation, each element of
the head vector (hi, i = 1, . . . , d) is rotated by θri degree
around the relation axis ri. This is performed to map the
head element hi to the tail element ti in R3 for each fact
(h, r, t) (with the purpose of approving plausibility based on
the underlying model formulation). In other words, if the
triple (h, r, t) is positive, the following equality approxi-
mately holds in the vector space

hTi Rri ≈ tTi , i = 1, . . . , d . (9)

Therefore, the scoring function is defined as

f (h, r, t) = 〈hT ∗ Rr , t〉, (10)
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where hT is transpose of h, ∗ is a block-matrix product. h is a
d dimensional head embedding in which each of the elements
hi is a three dimensional vector. The same holds for the tail
embedding. Rr is block-diagonal matrix

Rr = diag(Rr1, . . . ,Rrd ) =


Rr1 0 . . . 0
0 Rr2 . . . 0
...

. . .
. . .

...

0 . . . 0 Rrd

 ,

h =


h1
h2
...

hd

 , t =


t1
t2
...

td

 , hi, ti ∈ R3,Rri ∈ R3×3,

i = 1, . . . , d .

and Rri is the Rodrigues’ rotation matrix corresponding to
the ith element of the embedding.

B. RodE FOR DISTANCE-BASED KGEs
Generally, distance-based models map triples of a KG into
vector space by minimizing the distance of algebraically
transformed head vector and the tail vector. Using RodE,
in order to encode a positive sample (h, r, t) into the vector
space, we first rotate each element of the head vector (hi) by
θri degrees. This rotation turns around the relation axis ri to
obtain a new vector hθri . In the next step, we translate hθri by
another relation vector pr to meet each element of the tail
vector ti as shown here:

hTi Rri + pTi ≈ tTi , i = 1, . . . , d . (11)

This equation represents constraints in the vector space
for each positive triples (h, r, t). Based on the constraints,
we introduce the score function as:

fr (h, t) = −||hT ∗ Rr + pTr − tT ||, (12)

where pr =


pr1
pr2
...

prd

 , pi ∈ R3, i = 1, . . . , d .

C. MODELLING RELATIONAL PATTERNS
Due to the main characteristics inherited from the Rodrigues
rotation, RodE is capable of modelling the main patterns
in graphs such as composition (e.g. affliatedIn(X ,Y ) ∧
locatedIn(Y ,Z ) H⇒ livesIn(X ,Z )), and inverse
(supervisedBy(Y ,Z ) H⇒ studentOf (Z ,Y )) studied in the
literature. Here, we discuss pattern encoding in RodE on a set
of relational patterns namely Composition, Inverse, Symmet-
ric, Reflexive, Implication, and Equivalence. Furthermore,
the encoding of these relational patterns by RodE is discussed
for each pattern individually:
• Composition: As mentioned in Section III, the result
of the composition for two rotations represents another
rotation. Therefore, any rotation-based model inher-
its these characteristics which enables the encoding

of composition. Using axis-angle, RodE additionally
employs an element-wise rotation in 3-dimension space
to express the composition patterns. To show this math-
ematically, let r1, r2 represent the two relations that their
composition gives another relation r3.
The following equation shows composition in RodE:

hTi Rr1i ≈ tTi , i = 1, . . . , d,

tTi Rr2i ≈ t′Ti , i = 1, . . . , d, (13)

from these constraints, we conclude that

hTi Rr3i ≈ t′Ti , i = 1, . . . , d . (14)

The above equations hold if

Rr1iRr2i = Rr3i, i = 1, . . . , d . (15)

Since naturally the composition of two rotations always
results in another rotation, this equation holds in
rotation-based approaches.

• Inverse: Every rotation has a unique inverse rotation.
In RodE, each of these inverse rotations can be expressed
as an element-wise rotation. Therefore, following this
characteristic, RodE is capable of encoding inverse pat-
terns. To show this characteristic mathematically, let us
assume r1, r2 as two relations in a KG which are in
inverse relation to each other. RodE enforces

hTi Rr1i ≈ tTi , i = 1, . . . , d .

tTi Rr2i ≈ hTi , i = 1, . . . , d . (16)

By substituting the above equations and considering
the inverse relation between the two relations, we can
conclude that

Rr1i = R−1r2i, i = 1, . . . , d . (17)

This shows that RodEmodel is fully capable of encoding
the inverse patterns.

• Symmetric: In rotation-based models, for a symmet-
ric relation r , if the angle becomes 0 or π , then
Rri = I or − I. The symmetricity of relation r forces the
following constraints in the vector space:

hTi ≈ tTi (or − t
T
i ), i = 1, . . . , d

tTi ≈ hTi (or − h
T
i ), i = 1, . . . , d . (18)

Therefore, for each positive triple (h, r, t), RodE can
express its symmetric (t, r, h) if each element of head
and tail becomes either equal to the original vector or its
mirror image. This enables the model to embed 2d enti-
ties in the vector space with distinct embedding vectors.

• Reflexive: Considering a reflexive relation r , then
h = t = e. Therefore, given a reflexive relation, RodE
enforces the following constraints in the vector space for
every entity the underlying KG:

Rriei ≈ ei, i = 1 . . . , d . (19)
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We can rewrite the approximate equality of the previous
equation as an exact equality such that

Rriei = αiei, αi ∈ [0, ε], i = 1 . . . , d, (20)

where ε is an arbitrary small value. The result is a 3× 3
matrix Rri with three eigenvalues(vectors). Therefore,
there are three options (equal to number of eigenvectors)
for the ith element of the embedding in an entity. Since in
reflexive patterns, the aim is to assign different vectors
for each entity, the number of possible eigenvalues in
each vector provides 3d diffident vectors. This shows
that RodE has a high capacity for representation of
entities when reflexivity constraint is enforced.

• Implication: The implication pattern holds between two
relations r1 and r2 when r1 implies r2. We show that if a
model represents (h, r1, t) as a positive triple, then it can
also also be positively represented as the plausibility of
(h, r2, t) triple. The representation of this fact in RodE
is the following equation:

〈Rr1ihi, ti〉 ≤ 〈Rr2ihi, ti〉, i = 1, . . . , d (21)

The resultant output is:

〈(Rr1i − Rr2i)hi, ti〉 ≤ 0, i = 1, . . . , d . (22)

If we assume that R12 = Rr1i − Rr2i, then considering
only equality for the equation (i.e., = 0), we have

〈R12hi, ti〉 = 0, i = 1, . . . , d . (23)

For a (ti) as a three dimensional vector, there exist at least
two other vectors ti1, ti2 with which they are mutually
orthogonal. Let us focus on ti1, therefore we have

R12hi = ti1, i = 1, . . . , d . (24)

If R12 is invertible, then a unique solution for hi exists.
Due to having two options ti1, ti2, there will be at least
2d possible options for assigning entity embeddingwhen
implication constraint is enforced. This also proves the
broad ability of RodE in encoding of the implication
relational patterns.

• Equivalence: In order to encode equivalence, same pro-
cedure as implication pattern can be followed. Assuming
that R12 is invertible, there will be exactly 2d possible
options for entity embedding assignment in order to
represent entities uniquely.

D. CONNECTION TO QuatE
QuatE considers relations as a 4D rotation. The model also
covers 2D rotation due to having more degrees of freedom.
However, it cannot express 3D rotation even with more
degrees of freedom due to limitation of its scoring func-
tion. In order to model 3D rotation using Quaternion num-
bers, the following equation is proposed as an equivalent
equation to (9):

(cos(θri)+risin(θri))⊗hi ⊗ (cos(θri)−risin(θri)) ≈ ti, (25)

where ⊗ is Hamiltonian product. (cos(θri) + risin(θri))
is quaternion representation of relation and

(cos(θri)+risin(θri))⊗hi⊗(cos(θri)−risin(θri)) is equicalent
to the Rodrigues rotation of hi with θri degree around the
axis ri.

E. OPTIMAL ROTATION BY USING RodE
Let Hr = {hj}

nh
j=1 and Tr = {tj}ntj=1 be the set of all head

and tail entities which are connected with the relation r in the
graph. The mapping from Hr to Tr is performed by relation
specific rotation as follows

maxRri

n∑
j=1

〈hji
T
Rri , t

j
j〉, i = 1, . . . , d . (26)

We rewrite the term 〈hji
T
Rri , t

j
j〉 in the quaternion form

qri ⊗ hi ⊗ q∗ri.ti. (27)

where qri = cos(θri)+ risin(θri), ‘‘.′′ and 〈., .〉 are quaternion
and vector inner products. We have the following equality

qri ⊗ hi ⊗ q∗ri.ti = (qri ⊗ hi).(ti ⊗ qri). (28)

The Hamilton product can be rewritten as a matrix-vector
multiplication. Therefore we have

qri ⊗ hi ⊗ q∗ri.ti = 〈(Hiqri), (Tiqri)〉, (29)

where Hi=

 0 −hi3 hi2
hi3 0 −hi1
−hi2 hi1 0

 and Ti=

 0 −ti3 ti2
ti3 0 −ti1
−ti2 ti1 0

.

Considering Equation (26), we have

maxRri

n∑
j=1

〈hji
T
Rri , t

j
j〉

= maxqri

n∑
j=1

〈(Hj
iqri), (T

j
iqri)〉

= maxqri

n∑
j=1

(qTriH
j
i
T
)(Tj

iqri)

= maxqriq
T
ri

n∑
j=1

(Hj
i
T
Tj
i)qri, i = 1, . . . , d . (30)

W =
∑n

j=1H
j
i
T
Tj
i is a 4 × 4 symmetric matrix.

Let λ1, λ2, λ3, λ4 be the eigenvalues of the matrix and
u1,u2,u3,u4 be the corresponding eigenvectors which are
mutually orthogonal. qri is linear combination (with coeffi-
cient β1, . . . β4) of the eigenvectors as

qri = β1u1 + β2u2 + β3u3 + β4u4. (31)

Therefore,

qTriWqri = (β1u1 + β2u2 + β3u3 + β4u4)TW
(β1u1 + β2u2 + β3u3 + β4u4)

= (β1u1 + β2u2 + β3u3 + β4u4)
(λ1β1u1 + λ2β2u2 + λ3β3u3 + λ4β4u4)T

= λ1β
2
1 + λ2β

2
2 + λ3β

2
3 + λ4β

2
4 (32)
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TABLE 1. Statistical information of the datasets. Number of entity and Number of relation present in the datasets are represented based on division
between training, test triple, and validation sets.

TABLE 2. Entity, relation and information of rules.

The maximum of qTriWqri is obtained with β1 = 1, β2 =
β3 = β4 = 0. Therefore, the optimal relation embedding
(angle and rotation axis) will be the eigenvector correspond-
ing to the largest eigenvalue ofW.

V. EXPERIMENTS
In this section, we present the results of our experiments
evaluating the performance of RodE model in comparison to
other models.

A. UNDERLYING KNOWLEDGE GRAPHS
For the training and evaluation of RodE model, the exper-
iments are done over four standard datasets. Each of these
underlying KGs for the experiments is originally divided by
its provider into three sub-datasets: train, test and validation.
This is a necessity for the evaluation of the learning part for
KGEs. The statistics are shown in Table 1.
The list of used datasets are:

• FB15k is a dataset extracted from the larger Free-
Base dataset [4] in the form of a standard KG to be
used for such experiments. FB15k includes general
knowledge in different domains such as movies,
actors, and sports [9].

• FB15k-237 is a refined subset of FB15k [30]. In this
version of FB15k, most of the relational patterns in
the form of inverse patterns are removed from the
training set.

• WN18 is a subset of WordNet dataset [20]. It
contains mostly hyponym and hypernym types of
relation and the data is in a strict structural hierar-
chy [9].

• WN18RR is another refined version of WN18 [9].
Similar to FB15k-237, most of the inverse patterns
are removed in the WN18RR dataset.

Since the core of this research is about relational patterns,
the datasets have been initially analysed in order to secure the
existence of the possible studied patterns encoded by RodE.
Table 2 shows the statistics about the relational patterns. For
the test set, we first count the number of triples that their
corresponding relations are involved in the patterns of the
training set.

Additionally, we note that there might be triples in the test
set whose corresponding relation have been already involved
in several patterns in the training set.

Therefore, most of the triples are involved in the considered
patterns for the evaluation of inference capabilities of our
model. Considering fairness aspects for evaluations, here we
note that the same datasets have been in-use in the original
evaluation of the models considered for comparisons in our
work.

B. BASELINE MODELS FOR COMPARISONS
A set of selected state-of-the-art models are used for exper-
iments from all the three categories of KGEs explained in
Section II. This list contains TransE [6] and RotatE [27]
fromDistance-basedmodel;TuckEr [2],ComplEx [31], and
QuatE [37] from the Semantic-matching category, and the
ConvE [9] model from NN-based models.

Considering completeness aspects of experiments, we
employed two different loss functions for the optimization of
different KGE categories. For Distance-based models, we use
RotatE Loss function [27]. RotatE Loss is a variant of Margin
Ranking Loss (MRL) in which the plausibility of triples are
measured by putting a margin between positive and negative
samples.

The multi-class logarithmic loss [17] with Nuclear 3-Norm
Regularization is employed as loss function of Semantic-
matching category.
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TABLE 3. Results of empirical evaluations of RodE for FB15k and FB15k-237 in comparison to the result of other KGE models taken from TransE [37],
ComplEx [37], QuatE [37], and SimplE [37]. For RotatE, the original evaluation is done in [27] setting which is hardly possible to provide. The result of
TuckEr is obtained from [2]. Therefore, we provided the evaluations with the same setting of our model.

TABLE 4. Results of empirical evaluations of RodE for WN18 and WN18RR in comparison to the result of other KGE models taken from TransE [37],
ComplEx [37], QuatE [37], and SimplE [37]. For RotatE, the original evaluation is done in [27] setting which is hardly possible to provide. The result of
TuckEr is obtained from [2]. Therefore, we provided the evaluations with the same setting of our model.

C. HYPERPARAMETER SETTINGS
Considering validity aspects of experiments, KGE models
need to be trained with multiple hyperparameter settings.
The optimal hyperparameter setting used for RodE depends
on the KGE category. Considering fairness aspects of the
experiments, we also provide the hyperparameters used by
the authors of other models, which have been provided in the
section VI.

1) SETTING OF RodE fOR SEMANTIC-MATCHING
The results of evaluating RodE model against a list of state-
of-the-art models are shown in Table 3, and 4. For both FB15k
and FB15k-237, the learning rate α is 0.005 and 0.05 accord-
ingly. The batch size β is 1000. The N3 regularization param-
eter is 0.0025 (FB15k) and 0.05 (FB15k237) [17]. In addition,
FB15k has an embedding dimension d ∈ 2000, whereas, for
FB15k-237 it is 4000.

For WN18 and WN18RR, the embedding dimension d ,
250 and 400 have been used. For WN18, the learning rate α
is kept at 0.5 and the batch size β is 1024. WN18RR uses
a learning rate of 0.1 and a batch size of 100. In both of
the cases, N3 regularizer has been used with regularization
parameter θ with value 0.01 (WN18) and 0.1(WN18RR). For
all the datasets, Adaptive Gradient Descent (Adagrad) has
been used for optimization purpose.

Table 7 shows the result of RodE in Semantic-
matching category with a fixed dimension d equal to 100.

This evaluation is in order to concretely show the perfor-
mance of RodE in low dimensions. For FB15k, the learning
rate α is 0.1, batch size β is 1000 and regularization parameter
θ is 0.01. For FB15k-237, the batch size β is 100, learning
rate α is 0.05 and the regularization parameter θ is 0.05. For
WN18, the learning rate is 0.5, the regularization parameter is
0.1, and the batch size is 1024. ForWN18RR, the batch size β
is 100, learning rate α is 0.1 and the regularization parameter
θ is 0.09.

2) SETTING OF RodE FOR DISTANCE-BASED
Similar to the result of RodE in Semantic-matching, Table 3
and 4, also provide the comparison of Distance-based RodE
to othermodels. For FB15k, a range of embedding dimension,
d ∈ {200, 250} has been used. The learning rate is in the grid
settings of α ∈ {0.01, 0.05, 0.1}. The batch size β is set to
1024. Number of negative samples N is set to 50, the RotatE
Loss parameter γ is 24.

For FB15k-237, the embedding dimension is in the range
of d ∈ {200, 250}. The batch size and learning rate have been
set to the same range as FB15k, and the number of negative
samples is set to N ∈ {10, 50}. The optimal gamma is 10.
For WN18, the embedding dimension is kept at d ∈ {50}

and γ is fixed to 6.0. We kept the batch size β to 512 and
learning rate α is 0.01. The number of negative sam-
ple N is 50.
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TABLE 5. Comparison of distance-based models. Evaluation on the
symmetric, inverse, and implication patterns on FB15k.

TABLE 6. Comparison of semantic-based models. Evaluation on the
symmetric, inverse, and implication patterns on FB15k-237.

For WN18RR, the embedding dimension, d ∈ {300},
number of negative sample N is 50, batch size β is 512,
γ is 6.0, learning rate α is 0.1.

3) SETTING FOR OTHER MODELS
In Table 3 and Table 4, we provide comparisons of other
models with RodE (colored cells in all of the tables point
to the best performing models. In both tables, we compare
the results to report the performances obtained by TransE
from [37], and QuatE from [37]. The result of RotatE is
obtained by running it with the optimal hyper parameters
used in RotatE [27], but with reduced embedding dimension
(in this case 250). The results of TuckEr, shown in Table 4,
have been reported from [2]. QuatE fixes the embedding
dimension d to 1000 and uses multi-class log-loss with N-3
norm regularization. InTuckEr for FB15k, entity embedding
is 200 and relation dimension is 30. ForWN18 andWN18RR
both entity and relation embeddings have an embedding
dimension d ∈ {200}.

D. SETTINGS FOR CLUSTERING TYPES
As an additional evaluation, we consider reporting the sim-
ilarities of type entities, (in Section VI-B). The plots use
T-SNE [19] for clustering of entity types, both is Semantic-
matching, and distance based matching. We have selected
6 different types to be considered for the visualization of
the clustering mechanism of RodE inherited from strength

of 3d rotation. The list of these types and their corresponding
number of entities are:
• /film/film (1947 entities fall into this type)
• /tv/tv_program (277 entities fall into this type).
• /music/instrument (99 entities fall into this type).
• /location/statistical_region (1947 entities fall into this
type).

• /music/group_member (1118 entities fall into this type).
• /organization/endowed_organization (450 entities fall
into this type).

In order to select these clusters, we considered semantics of
types. In our strategy, the initial step was to avoid selection of
distinct types. For example, the type /business/employer is in
meaning the same or very similar to /organization/endowed-
organization Secondly, we analysed the clusters after plotting
them, in order to derive reasoning behind RodE for clustering
output.

T-SNE is used to reduce high dimensional entity embed-
ding to 2-dimension embeddings. We set the perplex-
ity hyperparameter to 50 and the number of iteration to
1000 while initialization of T-SNE.

E. EVALUATION METRICS
Standard link prediction measurements namely Mean
Rank (MR), Mean Reciprocal Rank (MRR), and Hits at
(1, 3 and 10) are the metrics used in our evaluations. The link
prediction results are obtained in filtered settings as it is done
in [27], where ranking has been performed for the test triples
against all the other corrupted triples (by either corrupting the
head or tail of the triplet). These candidates of the corrupted
triples do not reside in training, test or, validation set.

VI. RESULTS AND DISCUSSION
In this section, we present the results of the evaluation of
RodE. Themethods employed in our evaluation gives a differ-
ent perspective about RodE’s performance in link prediction
tasks:
• Empirical Evaluation in High Dimension
• Empirical Evaluation in Low Dimension
• Comparison of Performance w.r.t. Changes in
Dimension

• Similarity Evaluation of Types forming Clusters
The remainder of this section includes the detailed results
corresponding to each of these aspects.

A. EMPIRICAL EVALUATION
The results of running experiments on FB15k and FB15k-237
considering RodE both for Distance-based and Semantic-
Matching categories are represented in Table 3. Similarly,
Table 4 contains the results forWN18 andWN18RR datasets.

RodE outperforms the recent Distance-based model
RotatE in all of the comparison metrics on the FB15k
and FB15k-237 datasets. For this evaluation, we reproduced
RotatE and used the same dimension for comparisons. For
example on FB15k-237, RodE obtains 0.338 in MRR while
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FIGURE 2. Incremental changes of dimensions and their influence on the performance of RodE and ComplEx models is depicted. A general visualization
is provided for dimensions ranging from 1 to 1000 (left column). Zoomed version of performance changes are shown in middle column. High
dimensions ranging from 100 to 1000 are in the third column visualizations (first column in the right side). Each row shows one of the metrics of MRR,
Hits@1, Hits@3, and Hits@10.– stronger ones are marked darker).

TABLE 7. Evaluation Results for 100 Dimensions. RodE is analysed with a focus on low dimension considering MRR, Hit@1, Hit@3, and Hit@10 as
comparison metrics.

RotatE obtains 0.327. On WN18 and WN18RR, RodE out-
performs RotatE in all comparison metrics.

In the Semantic-matching category, RodE outperforms
recent state-of-the-art models namely TuckEr and QuatE
on FB15k and FB15k-237 datasets. The Hits@3 of RodE
on FB15k-237 is 0.405 while QuatE achieves 0.401.
Similar to these results are observed in FB15k such that
the MRR for RodE is 0.856 while QuatE is 0.833. For the
same category (semantic-matchingmodels) but onWN18RR,
the Hits@10 of RodE, 0.579, significantly outperforms
TuckEr (0.526). However, RodE only slightly performs bet-
ter than QuatE in this setting. On WN18, TuckEr performs
slightly better than RodE in all the metrics except Hits@10.
In addition, we provide an evaluation for the performance of
RodE also in low dimensional embeddings in Table 7. For
this purpose, we compare RodE with ComplEx model which
is chosen because it outperforms other models that could be
considered for this evaluation. ComplEx is trained with N-3
norm regularization. The results show that RodE outperforms
ComplEx in most of the metrics. In Hits@10 on FB15k,
we obtain 90% while ComplEx obtains 89%. In WN18RR,

RodE shows a performance of 48%, 44%, 57% respectively
in MRR, Hits@1 and Hits@10; whereas, in ComplEx, these
results are 47%, 43%, 56% accordingly.

In order to further investigate on how our model performs
in a wide range of dimensions, we provide results for compar-
ison of RodE’s performance w.r.t. dimension changes shown
in Figure 2. This evaluation includes a set of dimensions
ranging from 1 to 1000. The sub-figures in the first column
are gathered based on dimension withing range of 1 to 1000.
In both models of RodE and ComplEx, the performance
improves incrementally by increasing the dimension. The
changes are more visible when the dimension is still under
500, and slowly converge after this threshold. Sub-figures
collected in second column, are a zoomed version of the eval-
uation below dimension 50. This additionally confirms that
RodE outperforms ComplEx in low dimensions. Third col-
umn is a collective visualization of performances in dimen-
sions between 100 to 1000. These results show that in high
dimensions, the performance of other models get closer to
RodE while their differences are more significant in low
dimensions. In mapping and measuring of embeddings for
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FIGURE 3. Initial distribution of entities against clustered types by Distance-based RodE.

FIGURE 4. Initial distribution of entities against clustered types by Semantic-matching RodE.

large-scale KGs, high performance in low dimensions has
advantages for memory usage for scalability issues.

B. NODES DISTRIBUTIONS BASED ON TYPES
With a focus on nodes in a KG, we provide an evaluation and
visualization for distribution of types. Our motivation is to
assess the strength of themain advantages of 3D rotation from
angle, orientation and distance preservation in the embedding
space. With this advantage, the model is expected to effi-
ciently capture the similarity between the nodes of a graph in
the vector space. In order to do so, we selected a list of types
(Section V-D) which appear in FB15k and filtered the nodes
of these types. Furthermore, we retrieved the embedding
vectors of these nodes, before and after training with RodE.
The visualizations in the left hand side of the Figure 3 and
Figure 4 are the raw distribution of untrained vectors, for both
KGE categories of RodE. This shows that the corresponding
vectors of such types are mixed in the initial learning phase.
This is particularly important since prior knowledge (about
type of entities) is not used neither in the initialization phase
nor in the training phase. However, our model is able to
properly distinguish the types. This state is a real world
problems because not every KG has the information about
types available for a learning algorithm.

The figures in the right side of 3 and 4 show the harmonious
clustering of the embedding vectors based on their inner-type
similarities after they are trained by RodE. For the 6 chosen
types, RodE is capable of clearly splitting nodes belonging
to each of these types into exactly 6 clusters. Our insights
are that Distance-based version of RodE has a slightly better
clustering function than the semantic based version because
of inclusive design for translation and rotation at the same
time.

C. PATTERN-BASED PERFORMANCE ANALYSIS
In Table 5, we focus on evaluating distance-based mod-
els on symmetric, inverse, and implication patterns. For
this evaluation, the test set is designed to include the
top frequent relations with highest number of triples
in the considered pattern per dataset (statistics are
in Table 2). For example, in symmetric patterns of FB15k,
the relation ‘‘/award/award_nominee. . . /award_nominee’’
with 12958 triples has the majority of involvement in this pat-
tern, the second relation is ’’/award/award. . . _honor/award_
winner’’ with 6866 triples, and the third relation is
’’/music/performance_role/. . . /track_contribution/role’’ with
3068 number of triples. The distance-based RodE signif-
icantly outperforms other models of the same category.
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For example, considering symmetric pattern in FB15K
dataset, it achieves a performance of 0.527 in Hits@1 while
TransE shows a 0.000 performance and RotatE reaches on
0.022 percentage.

In Table 6, we report the results of semantic-based RodE
in comparison to ComplEx and QuatE on FB15k-237 for the
same patterns. RodE and QuatE show a close performance in
learning of symmetric patterns. However, for the Hits@10 of
RodE in learning the implication patterns significantly out-
performs the other two models. RodE in also shows a bitter
performance in comparison to ComplEx both in implication
and inverse.

VII. CONCLUSION
In this work, we showed how to use the advantages of
3-dimensional rotations with axis-angle representation. The
methodology of this work is based on Rodrigues For-
mula used in Knowledge Graph Embedding models for
link prediction tasks. Overall, our results show that using
Rodrigues rotation both in semantic-matching and distance-
based embeddings improved the results. In terms of accu-
racy in link prediction, the semantic-matching version of
RodE outperforms the distance-based version on RodE.
Experiments on the entity clustering based on entity type over
the FB15K dataset show that RodE inherits the advantages of
Rodrigues Rotation namely distance, angle and orientation
preservation. Both versions of RodE perform accurate entity
type clustering even without any prior knowledge about the
entity type that could be injected in the model. However,
the distance-based version on RodE provided a more accurate
results in clustering types in comparison to its semantic-
based version. In future work, we will further investigate
the NN-based category of KGEs with a focus on Rodrigues
rotation. Furthermore, we target applications of RodE for
large-scale KGs. Given that RodE performs well even with
low embedding dimensions, it may be particularly suitable
for large-scale applications. Therefore, we plan to use it for
large-scale KGs.
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