
Let’s build Bridges, not Walls – SPARQL Querying
of TinkerPop Graph Databases with

sparql-gremlin

Harsh Thakkar
and Jens Lehmann

University of Bonn, Germany
{thakkar,jens.lehmann}@cs.uni-bonn.de

Renzo Angles
University of Talca, Chile
rangles@utalca.cl

Marko Rodriguez
and Stephen Mallette

Apache TinkerPop, USA
{okram,spmallette}@apache.org

Abstract—This article presents sparql-gremlin, a tool to
translate SPARQL queries to Gremlin pattern matching traver-
sals. Currently, sparql-gremlin is a plugin of the Apache
TinkerPop graph computing framework, thus the users can run
queries expressed in the W3C SPARQL query language over a
wide variety of graph data management systems, including both
OLTP graph databases and OLAP graph processing frameworks.
With sparql-gremlin, we perform the first step to bridge
the query interoperability gap between the Semantic Web and
Graph database communities. The plugin has received adoption
from both academia and industry research in its short timespan.

I. INTRODUCTION

Knowledge graphs have become increasingly popular over
the past years. The two most popular data models for rep-
resenting knowledge graphs are Property Graphs (PG) and
Linked Data graphs adhering to the W3C Resource Descrip-
tion Framework (RDF). Both approaches have distinct and
complementary characteristics: RDF is suited for distributed
data integration with built-in world-wide unique identifiers
and vocabularies; PGs on the other hand support horizontally
scalable storage and querying, and are widely used for modern
data analytics applications.

The standard query language for RDF databases is
SPARQL [1], whereas for PG databases there are several lan-
guages, including the popular Gremlin traversal language [2].
Currently, SPARQL and Gremlin lack interoperability, i.e.
there is no standard and formal methods to translate queries
between these languages [3]. The query interoperability prob-
lem mentioned above is addressed in this paper by present-
ing sparql-gremlin, a tool that allows the execution of
SPARQL queries over graph databases by translating them to
Gremlin traversals. We chose Gremlin as a favorable option
to support query interoperability, due to its popularity in the
graph database community. Gremlin allows querying using
both declarative and imperative constructs, as well provides
coverage to a plethora of popular graph databases (OLTP)
and graph processing frameworks (OLAP), including AWS
Neptune, Azure Cosmos DB, Neo4J, JanusGraph, OrientDB,

Apache Hadoop & Spark, among others1.

Related Work. To the best of our knowledge, there is no
formally published work or openly available software that
addresses the query interoperability issue between SPARQL
and any Property graph query language on a broader scale [4].
On the other hand, Commercial graph databases, such as AWS
Neptune, BlazeGraph, and Stardog are also not comparable to
our approach as they provide support for querying using Grem-
lin traversals directly, without translating it from SPARQL. A
similar argument holds for other TinkerPop-enabled databases.
Therefore, the proposed sparql-gremlin approach is the
first effort2 that has been implemented [5] and successfully
integrated in the industry as a plugin of the Apache TinkerPop
open-source project.

A research topic related to our work is the query interop-
erability between SPARQL and SQL, which was investigated
in e.g. [6], [7], [8], [9]. However, we do not elaborate on
these as they are orthogonal to the current context of our
work. In contrast to SPARQL-SQL translation, we have to
overcome the challenge of mediating between two very dif-
ferent execution paradigms. More specifically, those efforts
applied query rewriting techniques between languages, which
are rooted in relational algebra operations, whereas we had
to bridge more disparate query paradigms. While this poses
a significant challenge, it is also the reason why substantial
performance differences can be observed depending on the
use case and query characteristics (feature composition).

Contributions. Overall, we make the following contributions:
• We present a novel method to execute SPARQL queries

over Property graph databases by translating them to
Gremlin pattern matching traversals.

• A mature implementation of this approach –
sparql-gremlin which is openly available as
a plugin of the popular Apache TinkerPop graph

1TinkerPop-enabled providers (http://tinkerpop.apache.org/providers.html)
2Note: The presented sparql-gremlin resource in this paper is the final

and only maintained version of the early proof-of-concept by Daniel Kuppitz
– (https://github.com/dkuppitz/sparql-gremlin). To avoid confusion, this has
been clearly stated by Kuppitz in the documentation of the repository.

http://tinkerpop.apache.org/providers.html
https://github.com/dkuppitz/sparql-gremlin

computing framework (version 3.4.0-onwards).3

• We also deliver sparql-gremlin as an open and in-
dependent implementation of the transformation method.
It can be used for native integration within custom use
cases.4

The remainder of the article is organized as follows: Sec-
tion (II) describes the query transformation method used
by sparql-gremlin and its implementation; Section (III)
presents the evaluation methodology, results and the current
limitations of sparql-gremlin; Section (IV) discusses
the impact of sparql-gremlin and presents a few use
cases that reuse it; Section (V) presents information on the
reusability, technical quality and design, and the availability
of our resource; Finally, Section (VI) concludes the paper and
discusses future work.

II. SPARQL TO GREMLIN TRANSLATION

This section describes the data models (RDF and prop-
erty graphs), the query languages (SPARQL and Grem-
lin) and outlines the transformation method pursued by
sparql-gremlin. Due to space restrictions, we do not
present detailed description. However, we present the mini-
mum concepts to make the paper self-contained.

A. RDF and SPARQL.

RDF [10], acronym of Resource Description Framework, is
a W3C standard that defines a graph data model for describing
resources in the Semantic Web. An RDF graph is a set of RDF
triples (s, p, o) where s is called the subject, p is the predicate
and o is the object, each of which can be an IRI, subjects and
objects can alternatively be blank nodes and objects can also
represent literal data values.

Figure 1 shows an RDF graph describing information about
people related to the TinkerPop Project5. Each node in the
graph is labeled with either an IRI (e.g. b:2), a blank node
(e.g. _:x1) or a literal ("marko"), and each edge is labeled
with an IRI (e.g. a:name). It is important to note that the IRIs
are presented using their simplified representation, i.e. p:n,
where p is the prefix and n is the name of the resource. For
instance, the extended version of b:2 can thus be expanded to
the IRI http://tinkerpop.apache.org/people/2. We
will use abbreviated IRIs in order to make the examples
legible.

SPARQL is the standard query language for RDF recom-
mended by the W3C consortium. SPARQL is a declarative
query language which is based on graph pattern matching.
SPARQL 1.0 [1] defines basic types of graph patterns, filter
conditions (e.g. equalities), solution modifiers (e.g. order by)
and query forms (e.g. select). SPARQL 1.1 [11] extends the
first version with operators for aggregation, subqueries and
path queries.

In general terms, a SPARQL query is a collection of triple
patterns grouped according to different clauses and operators.

3https://github.com/apache/tinkerpop/tree/master/sparql-gremlin
4https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin
5http://tinkerpop.apache.org/docs/3.3.2/reference/#intro

a:Created
b:1

b:2

b:4

b:3
a:Created

a:K
now

s

a:C
reated

a:Created
b:5b:6

a:Knows

a:age

a:
na
m
e

type:label

"27"

"vadas" "java"

a:lang

type:label

"lop"

a:nam
e

rdf:subject rdf
:ob
jec
t

"0.4"

a:w
eig
ht

a:name

"peter"
a:age

"36"

ty
pe
:la
be
l

a:name
"ripple"

a:lang

"java"

ty
pe
:la
be
l

a:ag
e

"30" ty
pe
:la
be
l

a:nam
e

"marko"

a:a
ge

"33"

ty
pe
:la
be
l

a:na
me

"josh"

a:Software

a:Software

a:Person

a:Persona:Person

a:Person

_:x1

a:Created

rd
f:p
re
di
ca
te

_:x4

_:x3

_:x2

rdf
:ob
jec
t

rdf:subject

rd
f:s
ub
je
ct

a:Created

a:w
eig
ht

"1.0"

rd
f:p
re
di
ca
te

rdf
:su
bje
ctrdf:object

rdf:predicate

rdf:subject

rdf:
obje

ct

a:Created

a:Created

a:
we

ig
ht

a:w
eigh

t "0.4"

"0.2"

Figure 1. Example of RDF graph describing information about people and
the software they created from the TinkerPop project.

The result of evaluating a triple pattern is a set of bindings
(i.e. a variable → value assignment), which is called a binding
table. The evaluation of a SPARQL query is defined by
operations over binding tables.

For example, consider the SPARQL query shown in Listing
1. The expression { ?p1 a:name ?n1 } is a triple pattern
and ?n1 = “marko” is a filter constraint. The operators
SELECT, FILTER, AND and OPTIONAL allow to execute
the operations of projection, selection, join and left-outer join
over binding tables. The result of evaluating the sample query
over the RDF graph shown in Figure 1 is a binding table with
two solutions: { ?n2 → “josh” , ?cn → “ripple” } and { ?n2
→ “vadas” }. Note that the query looks for people (?p2) that
“marko” (?p1) knows, and returns the name (?n2) of such
people, and the name (?cn) of the resources (?c) created by
such people.

1 SELECT ? n2 , ? cn WHERE {
2 { { {? p1 a : name ? n1} FILTER (? n1 = ” marko ”) } AND
3 { {? p1 a : knows ? p2} AND {? p2 a : name ? n2} } }
4 OPTIONAL { {? p2 a : C r e a t e d ? c} AND {? c a : name ? cn

} } }

Listing 1. Example of SPARQL query

B. Property Graphs and Gremlin

A Property Graph is a directed, labeled, multigraph, whose
main characteristic is that nodes (or vertices) and edges can
contain a (possibly empty) set of key-value pairs. Figure 2
shows a property graph that describes the same information
described by the RDF graph shown in Figure 1. Note that
each node contains a label which identifies its type (Person
and Software), and one or more properties (name, age, lang).
On the other hand, each edge contains a label which defines its

2

https://github.com/apache/tinkerpop/tree/master/sparql-gremlin
https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin
http://tinkerpop.apache.org/docs/3.3.2/reference/#intro

name: vadas
age: 27

name: peter
age: 36

name: ripple
lang: java

name: josh
age: 33

name: lop
lang: java

name: marko
age: 30

Created
1

Software

2
Person

4
Person

3
SoftwareCreated

Knows

C
reated

Crea
ted

5
Person

6
Person

Knows
weight: 0.5

weight: 0.4

weight: 1
.0

weight: 1.0

weig
ht:

 0.
2

w
eight: 0.4

7

8

9

10

11

12

Figure 2. An example of a Property graph.

type (Knows and Created), and also include a single property
(weight).

Gremlin is a system-agnostic query language that allows
both pattern matching (declarative) and graph traversal (imper-
ative) style of querying over property graphs. Gremlin is part
of the Apache TinkerPop graph computing framework6. Grem-
lin is based on computing graph traversals over a property
graph, i.e. the act of visiting nodes and edges in an alternating
manner (in some algorithmic fashion) [12]. In this sense, a
graph pattern matching query in Gremlin can be perceived as
a path traversal [13].

Consider the property graph shown in Figure 2. The fol-
lowing Gremlin expression returns “things created by marko”:
g.V().as(’x’).has(’name’,’marko’).out(’Created’).as(’y’)

A path traversal (denoted by Ψ) is composed of an ordered
list of steps called the single-step traversals. A single-step
traversal (SST, denoted by ψs) is an atomic operation over
the elements in the target graph (i.e. nodes and edges). In
the above example, the underlying SSTs are .has(...),
.out(...) and .as(...).

The expression g.V() returns the set of all nodes (or
vertices) in the graph and defines the starting point of the
traversal. The as() operator allows to define variables that can
be used in any part of the Gremlin expression; in this case it is
used to denote the start (’x’) and the end (’y’) of the traver-
sal. The has operator allows to filter vertices and edges based
on their properties; in this case, the nodes whose property
’name’ has the value ‘‘marko’’. The .out(’created’)

step retrieves all nodes that can be reached from the current
node by following an edge labeled ’created’.

Gremlin includes a large list of traversal operators whose
syntax and use is described in the TinkerPop3 documentation7.
Next, we describe the operators that have been used to
implement the translation from SPARQL to Gremlin:
• match allows expressing pattern matching in a declar-

ative form. It contains a collection of traversal patterns
that must hold true.

• union allows the merging of the results of an arbitrary
number of traversals.

6https://tinkerpop.apache.org/
7http://tinkerpop.apache.org/docs/current/reference/

• optional allows to return the result of the specified
traversal if it yields a result, else it returns the calling
element.

• where allows filtering the current object based on either
the object itself or the path history of the object. It can
include operators like eq and neq to evaluate equalities
or inequalities. The operators and, or and not can be
used to introduce boolean conditions.

• group.by allows organizing (or group) the objects ac-
cording to some function of the object (e.g. a property).

• order.by allows sorting the objects.
• range(begin,end) allows restricting the number of

objects obtained by a traversal.
• limit is analogous to range(), save that the lower end

range is set to 0.
• select allows specifying the object returned by the

traversal.
• dedup allows removing duplicated objects for the traver-

sal stream.

C. From SPARQL Queries to Gremlin Traversals

We have seen that SPARQL and Gremlin are two ways
to express pattern matching over graphs. SPARQL follows a
full declarative approach, whereas Gremlin uses path traver-
sals. Now, we describe the query transformation used by
sparql-gremlin.

Consider the function γ(P) which takes a SPARQL graph
pattern P as input and returns a Gremlin expression. In order
to show the idea of the transformation function, we will use
the example shown in Figure 3.

Triple patterns. Given a triple pattern (v1, v2, v3), the
transformation function generates a different Gremlin expres-
sion depending if v2 refers to a property, or it refers to a
relationship. In both cases the result is a simple traversal
expression. In our sample transformation, the triple pattern
?person v:label "person" is translated to the Gremlin
expression as(’person’).hasLabel(’person’).

AND graph patterns. A graph pattern {P1 . P2} implies
a natural join between the binding tables obtained from P1

and P2. This behavior is simulated in Gremlin by using the
operator match, as it allows the join of a set of traversal.
It is important to mention that a match can occur inside
another match, in any level of nesting, so recursive matching
is supported.

FILTER graph patterns. The FILTER operator is used to
restrict the results obtained after evaluating a graph pattern.
Several types of filter conditions are supported, including
equalities, inequalities and boolean conditions (in our exam-
ple, FILTER (?age < 30)). Filter conditions are expressed
in Gremlin using the operator .where(C), where C is a
constraint. Gremlin provides several operators to implement
simple, complex filter conditions.

SELECT. This clause allows projecting the variables in the
binding table obtained by the graph pattern matching step. This
feature is implemented in Gremlin by using the .select()

operator (in our example, SELECT ?age).

3

https://tinkerpop.apache.org/
http://tinkerpop.apache.org/docs/current/reference/

g.V().match(

 as(‘person’).hasLabel(‘person’),

 as(‘person’).out(‘created’).as(‘project’),

as(‘person’).values(‘age’).as(‘age’).where('age',lt(30)))

.select(‘age’).group().by().range(0,2)

SELECT ?age WHERE {

 ?person v:label "person" .

 ?person e:created ?project .

 ?person v:age ?age .

 FILTER (?age < 30) }

 GROUP BY (?age) LIMIT 2

Gremlin Traversal [𝛾(Q) = 𝛹]SPARQL Query (Q)

BGPs SSTs
(𝜓

s
)

query modifier

aggregation

𝛾

𝛾

𝛾

𝛾

𝛾

Figure 3. Illustration of a transformation from a SPARQL query (Q) to its Gremlin counterpart (Ψ).

Aggregates. Aggregates apply expressions over groups of
solutions that enable a user to group the solutions in specific
groups as specified by the calculated aggregate values for a
solution. Gremlin also provides several types aggregates like
in SPARQL, (in our example, GROUP BY(?age)).

Solution modifiers. The solution set returned by the eval-
uation of a graph pattern is not de-duplicated or ordered
by default, as both languages operate on bag semantics.
Therefore, solution modifiers are used to sort, filter or limit
objects in the solution (in our example LIMIT 2 maps to
range(0,2)). Each SPARQL query modifier considered
in this paper has a corresponding operator in Gremlin. For
instance, the DISTINCT operator of SPARQL is implemented
with the dedup operator of the Gremlin.

Table I presents an itemization of the equivalences between
SPARQL operators and Gremlin expressions. We point the
interested reader to [14], [15], [16], where we discuss the
translation process using denotational semantics.

D. Implementation
We now discuss the implementation of the

sparql-gremlin resource.
Encoding SPARQL Prefixes. We encode the prefixes of

SPARQL queries within sparql-gremlin implementation,
in order to aid the translation process. We define the custom
namespace–http://tinkerpop.apache.org/traversal/$element$
for the graph elements (i.e. vertex, edge, and properties).
For instance, an edge will be represented using the URI–
http://tinkerpop.apache.org/traversal/edge. We also define
custom prefixes for the IRIs keeping mind the corresponding
Gremlin SSTs. For instance, the label prefix (which is a
predicate in a SPARQL query - “rdfs:label”) is encoded as
e:label or v:label (where e = edge and v = vertex).
Similarly, a property-access operation on a vertex or an edge is
encoded as v:property_name and e:property_name
respectively.

Query Translation Pipeline. We discuss the query transla-
tion pipeline employed by the proposed sparql-gremlin
resource. A SPARQL query passes through a series of steps as
shown in Figure 4, which comprise of the translation pipeline,
to obtain the resultant Gremlin traversal.

Step 1 The input SPARQL query is first parsed using the
Jena SPARQL processing module (ARQ). This allows: (i)

bytecode

Figure 4. The sparql-gremlin query translation pipeline.

validating the query, i.e. checking whether the input query is
a valid SPARQL query, and (ii) generating an abstract syntax
tree (AST) representation.

Step 2 After the AST of the parsed SPARQL query is
obtained, the opWalker then visits each triple pattern of
the SPARQL query and maps or re-writes them to the corre-
sponding Gremlin SSTs, i.e. via the Rewriter module (cf.
Figure 4).

Step 3 Thereafter, depending on the operator precedence
obtained from the AST of the parsed SPARQL query, each
of the corresponding SPARQL operators are mapped to their
corresponding instruction steps from the Gremlin instruction
library. A final conjunctive traversal (Ψ) is then generated by
the Translation Writer module, by appending the SSTs
and instruction steps.

Step 4 Finally, this final conjunctive traversal (Ψ) is used
to generate Gremlin Bytecode8 which can be executed on any
TinkerPop-enabled graph database.

III. EXPERIMENTAL EVALUATION

A. Evaluation Methodology

We empirically evaluate sparql-gremlin by answering
the following questions:
Q1) Query preservation: Do the sparql-gremlin gen-

erated Gremlin traversals return the same results as their
SPARQL counterparts? i.e. is the proposed approach
preserving the meaning of the input queries?

8Bytecode is a list of primitive-valued, nested arrays of the form:
bytecode = [op,arg*]* where an arg can be another chunk of
bytecode.

4

Table I
A CONSOLIDATED LIST OF SPARQL CONSTRUCTS AND THE CORRESPONDING GREMLIN INSTRUCTION STEPS.

Operation SPARQL k/w Gremlin k/w SPARQL construct Gremlin construct

Matching WHERE { ... } MatchStep(AND,[]) WHERE { BGP1 . BGP2 BGPn} [MatchStep(AND,[[ψ1],[ψ2], ..., [ψn]]
Restriction FILTER(C) IsStep(C) FILTER (?v1 <30) IsStep(lt(30))
Join JOIN AndStep() BGP1 * BGP2 * ... * BGPn AndStep([[ψ1], [ψ2], ..., [ψ2]])
Projection SELECT SelectStep() SELECT ?v1 ?v2 ... ?vn SelectStep([a, b, ... , n])
Combination UNION UnionStep() {BGP1} UNION {BGP2} UnionStep(ψ1,ψ2)
Left Join OPTIONAL CoalesceStep() {BGP1} OPTIONAL { BGP2} ψ1,CoalesceStep(ψ2)
Deduplication DISTINCT DedupStep() DISTINCT ?v1 DedupStep([v1])
Restriction LIMIT(M) RangeStep(0,M) LIMIT 2 RangeStep(0,2)
Restriction OFFSET(N) RangeStep(N,M+N) OFFSET 10 RangeStep(10,12)
Sorting ORDER BY() OrderStep() ORDER BY DESC(?a) OrderStep([[value(a), desc]])
Grouping GROUP BY() GroupStep() GROUP BY(?a) GroupStep(value(a))

Q2) Performance analysis: What observations and insights
can we obtain upon executing the SPARQL queries and
their Gremlin counterparts over three top-of-the-line RDF
and Graph databases respectively?

B. Experimental Setup

We describe the setup implemented to conduct experiments
next.

Datasets. We used the (i) Northwind9 dataset, which con-
sists of synthetic data describing an e-commerce scenario be-
tween a fictional company ”Northwind Traders”, its customers
and suppliers. and the, (ii) Berlin SPARQL Benchmark [17]
(BSBM) dataset, which consists of synthetic data describing
an e-commerce use case, involving a set of products, their
vendors, and consumers who review the products. We gener-
ated one million triples for the experiment. The respective PG
versions of the RDF datasets were created using a trivial RDF
graph pattern to PG pattern mapping rules. The python scripts
for PG data generation (with the mappings), are accessible
from: https://doi.org/10.6084/m9.figshare.8187110.v3.

Queries. We created a total of 60 SPARQL queries, 30
per dataset, which cover 10 different query features (i.e. three
queries per feature with a mix of query modifiers), which
were selected after a systematic study of SPARQL query
semantics [18], [19]. Table II, summarizes their query design
and the feature distribution. The queries cover BSBM [17]
explore use cases10.

System Setup. We used the following database sys-
tems: RDF triplestores: Openlink Virtuoso [v7.2.4], JenaTDB
[v3.2.0], 4Store [v1.1.5]; Graph databases: TinkerGraph
[v3.2.3], Neo4J [v1.9.6], Sparksee [v5.1]. All experiments
were performed on the following machine configuration: CPU:
Intel R© Xeon R© CPU E5-2660 v3 (2.60GHz), RAM: 128 GB
DDR3, HDD: 512 GB SSD, OS: Linux 4.2-generic. To ensure
the reproducibility of our results, we provide the scripts,
data and queries here11, and also provide a persistent URL12

9Northwind database (https://northwinddatabase.codeplex.com/)
10BSBM Explore Use Cases (https://goo.gl/y1ObNN)
11Experimental Setup (https://github.com/harsh9t/

Gremlinator-Experiments)
12All sparql-gremlin resources (https://doi.org/10.6084/m9.figshare.

8187110.v3)

Table II
A LIST OF QUERY FEATURE COMPOSITIONS.

Query Feature FILTER COUNT LIMIT DISTINCT # TPs. # Proj. vars.

C1 CGP X X 2 2
C2 CGP X 1 1
C3 CGP X 1 1
F1 CONDITION X(1) 3 3
F2 CONDITION X(2) 3 3
F3 CONDITION X(1) X 2 1
L1 RESTRICTION X(1) X X 4 2
L2 RESTRICTION X 2 2
L3 RESTRICTION X 2 2
G1 GROUP BY X X 2 2
G2 GROUP BY X(1) 6 2
G3 GROUP BY X 1 2
Gc1 GROUP BY + COUNT X X 3 2
Gc2 GROUP + COUNT X 2 2
Gc3 GROUP + COUNT X X 1 2
O1 ORDER BY X 1 1
O2 ORDER BY X(1) 4 3
O3 ORDER BY X X 1 1
U1 UNION X(2) X 8 1
U2 UNION X(2) 6 2
U3 UNION X(2) X 4 1
Op1 OPTIONAL X(1) 3 3
Op2 OPTIONAL X X 6 2
Op3 OPTIONAL X(2) 8 3
M1 MIXED X X 3 2
M2 MIXED X X X 2 2
M3 MIXED X X 4 2
S1 STAR X(1) X 12 11
S2 STAR X(1) X 5 4
S3 STAR X(1) 10 9
TOTAL 30 Q. - - - - - -

referring to all the resources used in this paper. All queries
were executed in both cold and warm cache settings.

C. Results and Discussion

We present the results with respect to the evaluation method-
ology described earlier. We executed the SPARQL queries
against the three RDF triplestores on both the datasets and
retrieved their results. Similarly, we executed the translated
Gremlin traversals against the three graph databases on both
datasets and retrieved their results. We compared the results
returned by the SPARQL queries to those of their Gremlin
counterparts. The query execution time (in ms) is reported for
an average of 10 runs per query (both SPARQL and translated
Gremlin traversals).

Due to lack of space, we report all the queries,
their translations, results, and plots at the following
online Google spreadsheet: (https://docs.google.
com/spreadsheets/d/183aOScNR6y7GVv8NVOl16
TELS1oZA4R9HKSZVWo3jw). Here we only present a
summary of the observations from the conducted experimental
evaluation. The average time for translating a SPARQL query
to the corresponding Gremlin traversal is 14 ms for BSBM

5

https://doi.org/10.6084/m9.figshare.8187110.v3
https://northwinddatabase.codeplex.com/
https://goo.gl/y1ObNN
https://github.com/harsh9t/Gremlinator-Experiments
https://github.com/harsh9t/Gremlinator-Experiments
https://doi.org/10.6084/m9.figshare.8187110.v3
https://doi.org/10.6084/m9.figshare.8187110.v3
https://docs.google.com/spreadsheets/d/183aOScNR6y7GVv8NVOl16_TELS1oZA4R9HKSZVWo3jw
https://docs.google.com/spreadsheets/d/183aOScNR6y7GVv8NVOl16_TELS1oZA4R9HKSZVWo3jw
https://docs.google.com/spreadsheets/d/183aOScNR6y7GVv8NVOl16_TELS1oZA4R9HKSZVWo3jw

and 12.5 ms for Northwind queries respectively.
Q1 - Query preservation: We observe that the results

returned by the SPARQL queries and their corresponding
Gremlin traversals were same/equal (i.e. they have the same
number of results and same values for each corresponding
variable in the result set) with the exception of their represen-
tation formats. The SPARQL queries returned the results in a
tabular format, whereas the Gremlin traversals returned results
in a list (or a set of lists) format, e.g. consider the following:

Q. SPARQL Query SPARQL Result Gremlin
Result

C1 SELECT (COUNT (DISTINCT
(?product)) as ?total) WHERE { ?a
v:type ”review” . ?a e:edge ?prod-
uct . }

2787 2787

F3 SELECT DISTINCT ?pid
WHERE { ?a v:productID ?pid
. ?a v:ProductPropertyNumeric 1
?property1 . FIL-
TER(?property1=1) }

bsbm:inst/Product1636
bsbm:inst/Product2295

{pid=1636}
{pid=2295}

M1 SELECT ?reviewer (COUNT
(?product) as ?total) WHERE
{ ?reviewer v:type ”reviewer”.
?reviewer e:edge ?review. ?review
e:edge ?product . } GROUP BY
(?reviewer) ORDER BY DESC
(?total) LIMIT 10

bsbm:inst/Reviewer1294
42
bsbm:inst/Reviewer501
41
bsbm:inst/Reviewer424
39
bsbm:inst/Reviewer281
38
bsbm:inst/Reviewer1263
38

[1294:42,
501:41,
424:39,
281:38,
1263:38]

Thus, based on this empirical evidence we can say that the
proposed translation approach is query preserving.

Q2 - Performance analysis: Due to a lack of space,
we only report the results of the BSBM dataset. The query
execution time in both cold and warm cache settings is
shown in Figure 5. It can be observed the Gremlin traversals
are competitive in most cases compared to their SPARQL
counterparts. Similar performance was also reported in an
independent study, which uses our approach, by [20] for query-
ing Openlink Virtuoso vs JanusGraph. However, in queries
with star shaped execution plan and neighborhood queries
(path queries), Gremlin traversals outperform SPARQL queries
by an order of two magnitudes. We suspect this is observed
because the RDF triplestores spend a large amount of time in
executing joins and forming an execution plan. Whereas, the
graph databases take advantage of the micro-indices and graph
neighborhood. SPARQL queries with mostly only basic graph
patterns and with features such as union report 1.1x to 1.4x
faster execution time on average as compared to their Gremlin
counterparts. The full results are available at the document
pointed out earlier. Finally, this also demonstrates that the
proposed sparql-gremlin plugin is successful in trans-
lating and executing SPARQL queries (that cover SPARQL
1.0 specification) over the selected TinkerPop-enabled graph
databases.

D. SPARQL Coverage and Limitations
The current version of the sparql-gremlin plugin

supports the translation of SPARQL SELECT queries. It covers
the SPARQL 1.0 specification, including aggregates from
SPARQL 1.1 (cf. Table I), with the following exceptions:

L1) SPARQL queries which cannot be parsed by Apache Jena
cannot be translated, i.e., if a SPARQL query cannot be
parsed in Jena it will not yield a Gremlin traversal (e.g.
queries with Non-group key variable in SELECT, etc).

L2) SPARQL queries with regular expressions (regex) are
currently not supported. This will be resolved in Tin-
kerPop4 as it will provide native support for regex in
Gremlin traversals.

IV. IMPACT

In this section we report the general impact and community-
wide adoption that the sparql-gremlin resource has
amassed so far.

A. General Impact

In a general sense, the sparql-gremlin resource renders
several benefits:
• It enables the users familiar with W3C SPARQL to query

a variety of TinkerPop-enabled graph databases, avoiding
the need to learn a new graph query language;

• Applications based on Semantic Web standards, like
SPARQL and RDF, can use Property graph databases in
a non-intrusive fashion;

• The query translation lays the foundation for hybrid use
of RDF triple stores and Property graph databases (e.g.
as a layer on top of AWS Neptune) wherein a particular
query can be dispatched to the database capable to answer
the query more efficiently [21]. In particular, property
graph databases have been shown to work very well for a
wide range of queries, which benefit from the locality in a
graph [22], [23]. Rather than performing expensive joins,
property graph databases use micro indices to perform
traversals;

• It facilitates efforts for bridging the data and query in-
teroperability gap between the Semantic Web and Graph
database communities [4].

B. Community Adoption

The sparql-gremlin resource is gaining attention and
adoption by both the academic and industry communities. We
report a few such use cases:

IBM Research AI use case. In the recent research
study [20] published by the IBM Research AI team,
sparql-gremlin has been extended and reused in order to
support scalable reasoning over large scale Knowledge Graphs.
The translation is embedded in the query layer to execute
SPARQL queries over the property graph data stored in
JanusGraph. They report better performance of the translated
Gremlin traversals as compared to SPARQL counterparts in
most cases in the case of Openlink Virtuoso vs JanusGraph.

Contextualised Knowledge Graphs This use case [24],
in collaboration with the National Library of Medicine -
National Institutes of Health, is about adding a semantic web
abstraction layer on top of Graph databases by employing

6

Figure 5. Run time comparison of SPARQL queries vs. Gremlin traversals for BSBM dataset over RDF and Graph systems in cold & warm cache. Missing
bars = <1ms.

sparql-gremlin for querying a Contextualised Knowl-
edge Graph (CKG) model. This project aims to simulate PG-
style characteristics (e.g. node and edge properties) to RDF
KGs via extending the singleton property semantics [25].

SANSA Stack use case. The Scalable Semantic Analyt-
ics (SANSA) Stack [26] exercises distributed computing via
Apache Spark and Flink in order to enable scalable machine
learning, inference and querying capabilities for large knowl-
edge graphs. The proposed sparql-gremlin translation is
employed in the query layer of the SANSA version 0.313 as
an experimental feature. The sparql-gremlin translation
executes SPARQL queries in a distributed manner over the
Apache Spark and Flink via Gremlin traversals.

Open Research Knowledge Graph use case. In the project,
ScienceGRAPH funded by the European Research Council
(ERC) an Open Research Knowledge Graph [27] is developed
based on an integration of sparql-gremlin translation
in order to execute SPARQL queries over a large scholarly
communication Knowledge Graph.

This demonstrates that there is a visible engagement of both
the research and industry communities. We can expect further
adoption of our sparql-gremlin resource over the coming

13release (https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/
2017-12), changelog (http://sansa-stack.net/sansa-0-3/)

months, due to the popularity of the TinkerPop framework and
the involvement of key players such as IBM Research.

V. REUSABILITY, DESIGN AND AVAILABILITY

A. Reusability

To promote reusability of sparql-gremlin, we provide
an illustrative documentation in the following manner:
• Apache TinkerPop reference documentation14 – explains

the working of the sparql-gremlin plugin and other
technical details about it’s installation, use, etc. in the
TinkerPop framework;

• Independent implementation documentation15 – which
is the independent source code of the proposed
sparql-gremlin translation, which enables easy
adoption and extension of our work, for custom use-cases.
For instance, the re-use of our work by IBM Research
AI [20] (cf. Section IV-B).

B. Technical Quality and Design

Since sparql-gremlin plugin is a part of the Apache
TinkerPop project, community software development best

14http://tinkerpop.apache.org/docs/current/reference/#sparql-gremlin
15https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin/blob/

master/README.md

7

https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/2017-12
https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/2017-12
http://sansa-stack.net/sansa-0-3/
http://tinkerpop.apache.org/docs/current/reference/#sparql-gremlin
https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin/blob/master/README.md
https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin/blob/master/README.md

practices were followed such as: (i) Apache Maven was used
as the project management framework. (ii) Extensive Unit
Tests covering a wide variety of test cases were implemented;
(iii) Travis CI API16 was deployed for continuous automated
integration, and (iv) All reference documentation was created
using Javadocs

C. Availability and Maintenance

All the artifacts used in this study are permanently made
available from https://doi.org/10.6084/m9.figshare.8187110.
v3. In collaboration with the Apache TinkerPop’s large com-
munity of contributors17, we will continue working on future
releases. The Gremlin-users google group18 is an active public
mailing list for the reporting questions and receiving sup-
port for the proposed TinkerPop sparql-gremlin plugin.
Furthermore, source code related issues can be raised at the
respective Github repository and Apache JIRA19.

VI. FINAL REMARKS AND FUTURE WORK

In this article, we presented the sparql-gremlin re-
source, a plugin of the Apache TinkerPop framework, which
allows executing SPARQL queries over property graphs using
Gremlin pattern matching traversals. The sparql-gremlin
resource is also freely available for reuse and extension for
custom use cases. With sparql-gremlin, we aim to take
the first steps for supporting query interoperability between the
two popular Semantic Web and Graph database communities.
Our resource is gained attention from both academia and
industry research fraternities so far, and we look forward to
improving its visibility in the future.

REFERENCES

[1] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF (W3C Recommendation).” https://www.w3.org/TR/rdf-sparql-
query/, January 15 2008.

[2] M. A. Rodriguez, “The gremlin graph traversal machine and language
(invited talk),” in Proceedings of the 15th Symposium on Database
Programming Languages, Pittsburgh, PA, USA, 2015, 2015.

[3] R. Angles, H. Thakkar, and D. Tomaszuk, “RDF and property graphs
interoperability: Status and issues,” in Proceedings of the 13th Alberto
Mendelzon International Workshop on Foundations of Data Manage-
ment, Asunción, Paraguay, June 3-7, 2019., 2019.

[4] M. N. Mami, D. Graux, H. Thakkar, S. Scerri, S. Auer, and J. Lehmann,
“The query translation landscape: a survey,” CoRR, vol. abs/1910.03118,
2019.

[5] H. Thakkar, D. Punjani, J. Lehmann, and S. Auer, “Two for one:
querying property graph databases using sparql via g remlinator,” in
Proceedings of the 1st ACM SIGMOD Joint International Workshop
on Graph Data Management Experiences & Systems (GRADES) and
Network Data Analytics (NDA), 2018.

[6] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti,
M. Rezk, M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering sparql
queries over relational databases,” Semantic Web, vol. 8, no. 3, 2017.

[7] A. Chebotko, S. Lu, and F. Fotouhi, “Semantics preserving sparql-to-sql
translation,” Data & Knowledge Engineering, vol. 68, no. 10, 2009.

[8] B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z. M. Ozsoyoglu, “A
complete translation from sparql into efficient sql,” in Proceedings of the
2009 International Database Engineering & Applications Symposium,
2009.

16Travis CI API (https://docs.travis-ci.com/api/)
17(https://github.com/apache/tinkerpop/graphs/contributors)
18Gremlin-users (https://groups.google.com/forum/#!forum/gremlin-users)
19TinkerPop JIRA (https://issues.apache.org/jira/projects/TINKERPOP/)

[9] M. Rodriguez-Muro and M. Rezk, “Efficient sparql-to-sql with r2rml
mappings,” Web Semantics: Science, Services and Agents on the World
Wide Web, vol. 33, 2015.

[10] W. W. W. Consortium et al., “Rdf 1.1 concepts and abstract syntax,”
WC3 Archive, 2014.

[11] S. Harris, A. Seaborne, and E. Prud’hommeaux, “Sparql 1.1 query
language,” W3C recommendation, vol. 21, no. 10, 2013.

[12] M. A. Rodriguez and P. Neubauer, “The graph traversal pattern,” in
Graph Data Management: Techniques and Applications., IGI Global,
2011.

[13] M. A. Rodriguez and P. Neubauer, “A path algebra for multi-relational
graphs,” in Proceedings of the 27th International Conference on Data
Engineering, 2011.

[14] H. Thakkar, D. Punjani, et al., “A stitch in time saves nine –
sparql querying of property graphs using gremlin traversals,” CoRR,
vol. abs/1801.02911, 2018.

[15] H. Thakkar, D. Punjani, et al., “Towards an integrated graph algebra
for graph pattern matching with gremlin,” in Proceedings of the 28th
International Conference, DEXA 2017, Lyon, France, August 28-31,
2017, Proceedings, Part I, 2017.

[16] H. Thakkar, D. Punjani, S. Auer, and M.-E. Vidal, “Towards an inte-
grated graph algebra for graph pattern matching with gremlin (extended
version),” arXiv preprint arXiv:1908.06265, 2019.

[17] C. Bizer and A. Schultz, “The berlin sparql benchmark,” 2009.
[18] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of

sparql,” in International semantic web conference, 2006.
[19] M. Schmidt, M. Meier, et al., “Foundations of sparql query optimiza-

tion,” in Proceedings of the 13th International Conference on Database
Theory, 2010.

[20] H. P. Karanam, S. Neelam, et al., “Scalable reasoning infrastructure for
large scale knowledge bases,” in Proceedings of the ISWC 2018 Posters
& Demonstrations, Industry and Blue Sky Ideas Tracks co-located with
17th International Semantic Web Conference (ISWC 2018), Monterey,
USA., 2018.

[21] S. Das, J. Srinivasan, et al., “A tale of two graphs: Property graphs as
rdf in oracle.,” in EDBT, 2014.

[22] H. Thakkar, Y. Keswani, et al., “Trying not to die benchmarking:
Orchestrating RDF and graph data management solution benchmarks
using LITMUS,” in Proceedings of the 13th International Conference
on Semantic Systems, SEMANTICS, Amsterdam, The Netherlands, 2017.

[23] H. Thakkar, “Towards an open extensible framework for empirical
benchmarking of data management solutions: LITMUS,” in The Seman-
tic Web - 14th International Conference, ESWC 2017, Portorož, Slovenia,
Proceedings, Part II, 2017.

[24] V. Nguyen, H. Y. Yip, H. Thakkar, Q. Li, E. Bolton, and O. Bodenreider,
“Singleton property graph: Adding a semantic web abstraction layer to
graph databases,” in Proceedings of the 2nd International Semantic Web
Conference (ISWC) Workshop on Contextualised Knowledge Graphs
(CKG), 2019.

[25] V. Nguyen, O. Bodenreider, and A. Sheth, “Don’t like RDF Reification?:
Making Statements about Statements using Singleton Property,” in Proc.
of the International Conference on World Wide Web (WWW), ACM,
2014.

[26] J. Lehmann, G. Sejdiu, et al., “Distributed semantic analytics using the
sansa stack,” in International Semantic Web Conference, 2017.

[27] M. Y. Jaradeh, S. Auer, et al., “Open research knowledge graph: To-
wards machine actionability in scholarly communication,” arXiv preprint
arXiv:1901.10816v1, 2019.

8

https://doi.org/10.6084/m9.figshare.8187110.v3
https://doi.org/10.6084/m9.figshare.8187110.v3
https://docs.travis-ci.com/api/
https://github.com/apache/tinkerpop/graphs/contributors
https://groups.google.com/forum/#!forum/gremlin-users
https://issues.apache.org/jira/projects/TINKERPOP/

	Introduction
	SPARQL to Gremlin Translation
	RDF and SPARQL.
	Property Graphs and Gremlin
	From SPARQL Queries to Gremlin Traversals
	Implementation

	Experimental Evaluation
	Evaluation Methodology
	Experimental Setup
	Results and Discussion
	SPARQL Coverage and Limitations

	Impact
	General Impact
	Community Adoption

	Reusability, Design and Availability
	Reusability
	Technical Quality and Design
	Availability and Maintenance

	Final Remarks and Future Work
	References

