
QaldGen: Towards Microbenchmarking of
Question Answering Systems over Knowledge

Graphs

Kuldeep Singh1∗, Muhammad Saleem2∗, Abhishek Nadgeri3, Felix Conrads2,
Jeff Z. Pan5,6, Axel-Cyrille Ngonga Ngomo4, and Jens Lehmann7

1 Nuance Communications Deutschland GmbH, Germany,
{kuldeep.singh1}@nuance.com

2 University of Leipzig, Germany, saleem@informatik.uni-leipzig.de
3 Service Lee technologies, India abhishek.n@servify.in
4 University of Paderborn, Germany, axel.ngonga@upb.de

5 Edinburgh Research Centre, Huawei, UK
6 University of Aberdeen, UK jeff.z.pan@abdn.ac.uk

7 Fraunhofer IAIS, Germany, {jens.lehmann}@iais.fraunhofer.de

Resource Type: Evaluation benchmarks or Methods
Repository: https: // github. com/ dice-group/ qald-generator
License: GNU General Public License v3.0

Abstract. Over the last years, a number of Knowledge Graph (KG)
based Question Answering (QA) systems have been developed. Conse-
quently, the series of Question Answering Over Linked Data (QALD1–
QALD9) challenges and other datasets have been proposed to evaluate
these systems. However, the QA datasets contain a fixed number of nat-
ural language questions and do not allow users to select micro bench-
marking samples of the questions tailored towards specific use-cases.
We propose QaldGen, a framework for microbenchmarking of QA sys-
tems over KGs which is able to select customised question samples from
existing QA datasets. The framework is flexible enough to select ques-
tion samples of varying sizes and according to the user-defined criteria
on the most important features to be considered for QA benchmark-
ing. This is achieved using different clustering algorithms. We compare
state-of-the-art QA systems over knowledge graphs by using different
QA benchmarking samples. The observed results show that specialised
micro-benchmarking is important to pinpoint the limitations of the var-
ious QA systems and its components.

1 Introduction

Question answering (QA) systems provide users with an interactive way to ex-
tract useful information from various sources such as documents, knowledge
graphs, relational tables, etc. by posing questions in natural language or as voice

∗These two authors contributed equally as first author

https://github.com/dice-group/qald-generator

input. Since the initial stages of TREC challenge for QA over Web data in
the year 1999 [33], researchers have developed several novel approaches that in-
clude question answering over structured and unstructured data sources [10,11].
Publicly available Knowledge Graphs (KGs) provide a rich source of structured
information. Since 2010 more than 62 QA systems have been developed over
KGs including DBpedia [1], Freebase [3] and Wikidata [34] as underlying knowl-
edge source [9]. The question answering approaches over KGs can be broadly
categorised into three categories based on their implementation [24]: the first
category is semantic parsing based QA systems that heavily use linguistic prin-
ciples such as POS tagging, dependency parsing, and entity recognition for ex-
tracting answers of the input question. It is often the case that there is no (or
little) training data. The second category is end-to-end machine learning based
QA systems that require large amounts of training data (e.g., [10]). Lastly, a
recently introduced collaborative QA systems development focuses on building
QA systems by reusing several existing QA systems and components (e.g. OK-
BQA [4]). Several independent components (e.g. EARL [7], Falcon [18], SQG
[36]) perform tasks such as named entity disambiguation, relation linking, and
SPARQL query generator for building QA systems in collaborative efforts have
also been released by the semantic web research community.
Research Gap: Irrespective of the approaches opted for by researchers for the
implementation, QA systems and components over knowledge graphs have been
evaluated using several standard datasets such as LC-QuAD [28], QALD[29], and
WebQuestion [2]. Nearly all report the results using the global metrics of pre-
cision, recall, and F-score as performance indicators [33]. Benchmarking Frame-
works such as Gerbil [32] or leader boards8 also follow the same principle and
outline the final results based on the global performance metric. The results are
calculated as average over all the (test) questions of the dataset and
indicates the overall gain/loss in the performance w.r.t state of the art. How-
ever, it does not shed any light on the strength or weakness of a particular QA
system and component. This allows the same issue to persist over time causing
performance limitation of the QA system. For example, Muldoven et al. [16]
pointed out in the year 2003 that answer type (boolean, count, list) and Wh-
type questions (what, who, etc.) have an impact on the performance of the open
domain QA systems. Saleem et al. [20] recently raised similar issues pertaining
to QA systems over DBpedia. For instance, the overall winner of the 6th edition
of the Question Answering over Linked Data Challenge (QALD6) was CANALI,
which suffered limitations when the question started with "Give me". CANALI
is outperformed by another QA systems UTQA for such type of questions [20].
Similarly, the capitalisation of entity labels (surface forms) in a sentence is an
issue reported by Derczynski et al. [5] by performing an in-depth analysis of
entity linking tools. Sakor et al. [18] and Singh et al. [27,26] again reported this
issue in state of the art entity linking tools evaluated over standard QA datasets.
Therefore, it is evident that the common practice of reporting results average
over all the questions of the dataset (often referred as macro evaluation) does

8http://qa.mpi-inf.mpg.de/comqa/

2

http://qa.mpi-inf.mpg.de/comqa/

not always reveal details on state-of-the-art pitfalls, limitations, strengths, and
potentials for further QA research.
Motivation and Contributions There are concrete pieces of evidence in the
literature that question features such as ”headword”, ”answer type”, number
of triples in SPARQL queries, explicit (exact string match between the entity
candidate and KG mention) and implicit (no exact match i.e. mapping NYC to
dbr:New York City9) nature of entities, etc. have an impact on the performance
of the QA systems and the QA components [9,18,20,26,27]. Furthermore, ques-
tion classification has been a long-standing field of research where researchers
have focused on identifying several such features [12]. This motivates our work
and in this article, we provide a reusable resource QaldGen for the community
to select personalised question samples for microbenchmarking QA systems over
the DBpedia knowledge graph. QaldGen uses state-of-the-art clustering algo-
rithms to cluster most prominent questions by using distance metrics. QaldGen
further allows researchers to select personalised question samples based on spe-
cific question features that evidently impact the performance of a QA system or
component. We not only provide QaldGen for the QA system but also to evalu-
ate several QA components that can be reused in collaborative QA frameworks
for tasks such as named entity disambiguation (NED), relation linking (RL)
(for mapping natural language relations to KG), and SPARQL query generator
(Query Builder). Our contributions are two-fold:

R 1 QaldGenData- An RDF Dataset for Personalised Microbenchmark-
ing: We automatically annotated a total 5408 questions from QALD9 and
LC-QuAD datasets with 51 features and converted it into RDF format. This
dataset can be reused in training machine learning approaches related to
question answering.

R 2 QaldGen-A Personalised Question Sample Generator: We collected
51 question features from existing literature that impact the performance of
the QA systems and components. A user can choose one or multiple question
features to be included in the customised question sample for microbench-
marking. QaldGen selects personalised question samples of variable sizes us-
ing clustering algorithms from two standard datasets over DBpedia: QALD9
[17], containing 408 questions consolidating previous QALD editions and LC-
QuAD [28], having 5000 questions. A user can customise questions (in terms
of the number of question and the number of diverse features) using QaldGen

to evaluate their QA system or the component either independently or using
benchmarking frameworks such as Gerbil [32] or the Frankenstein platform
[25].

The rest of this paper is organised as follows: the next section describes our
two resources and approach to build QaldGen. Section 4 presents the importance
and impact of this work for the research community. Section 5 presents our plan
for availability and sustainability of resources. Section 6 reviews the state of the
art and we close with the conclusion and future work in Section 7.

9Prefix dbr is bound to http://dbpedia.org/resource/

3

2 QaldGen Question Sample Generator

In this section, we present the question sampling process in the QaldGen. We first
discuss the R 1 dataset that we use as input for the QaldGen question sample
generation framework. We then discuss the question sampling process along with
the personalised micro benchmark generation.

2.1 QaldGen Dataset

Our framework takes a set of natural language questions as input and selects
the required sample of questions according to the user-defined criteria. We use
our R 1 dataset as input to QaldGen where customised question samples will be
selected from. As mentioned before, this RDF dataset of QA is selected from
QALD9 and LC-QuAD which contains a total of 5408 questions. A QA bench-
mark should be comprising of questions/tests of varying question features. To
this end, we have attached a total of 51 important QA related features sum-
marised in Figure 1. We divide these features according to the question and the
corresponding answer. The features attached to the question are related to the
entities, relations and classes used in the SPARQL query, along with the nat-
ural language features such as headword, POS tags, etc. In addition, we store
the number of words in the question and the origin (QALD9 or LC-QuAD) of
the question. Each question has a SPARQL query to be executed to get the
correct answers. We store SPARQL related features such as the number of pro-
jection variables, number of triple patterns, number of BGPs, filters, regex etc.
A sample RDF representation of a QaldGen question is available in the listing
1.1. We re-used the Linked SPARQL Queries (LSQ) [19] vocabulary to represent
the SPARQL query related features. In addition, we re-used properties from the
QALD JSON datasets.

QaldGen

L(Q)

Answer

Entities,
Relations,

Classes

Question

Total:
Entities,

Relations,
Classes

Entity1,
Relation1,

Class1

L(Entity1,2,3),
L(Relation1,2,3),

L (Class1,2,3)

Avg. words:
Entities,

Relations,
Classes

POS
tags

IN,JJ,JJR,JJS,NN,
NNS,NNP,NNPS
,PRP,RB,RBR,RB
S,VB,VBD,VBG,V
BN,VBP,VBZ,WD

T,WP,SYM

Origin
QALD9 or
LC-QuAD typeBoolean? Number? SPARQL

Text

Total
TPs

Total
BGPs

SPARQL
features

Ans
wers

Result
size

Proj.
Vars

Text

Fig. 1. A tree of features attached to QaldGen dataset questions. L(X) stands for num-
ber of words in X.TPs = number of triple patterns, Proj. Vars = number of projection
variables

4

The benefit of this dataset is that it can be directly queried using SPARQL
and easily can be used in wide range of Linked Data and Semantic Web appli-
cations. In addition, each question has more features attached as compared to
the original QALD9 and LC-QuAD datasets.

2.2 Question Sample Generation for Microbenchmarking

First, we define our question sampling generation problem and then explain the
generation process. Our Question Sampling problem is defined as follows:

Definition 1 (Question Sampling Problem). Let L represent the set of in-
put natural language questions. Our goal is to select the N questions that best
represent L as well as being more diverse in features, with N << |L|.

Figure 2 shows the the general steps involved in the QaldGen question sample
generation process. The user provides the input R 1 RDF dataset, the required
number N of questions and the selection criteria (as SPARQL query) to be con-
sidered in the question sampling for microbenchmarking. Then, the sampling is
carried out in the following four main steps: (1) Select all the questions along with
the required features from the input QaldGenData RDF dataset. (2) Generate
feature vectors and their normalisation for the selected questions. (3) Generate
N number of clusters from the questions. (4) Select single most representative
questions from each cluster to be included in the final question sample requested
by the user.

QaldGenQaldGenData

Questions
Selection

Vectors
Representation

Clusters
Formation

Final
Questions
Selection

QaldGen
RDF

Benchmark

Fig. 2. QaldGen Sampling process.

Selection of questions We can select questions along with the required fea-
tures by simply using SPARQL queries over QaldGenData RDF dataset. The
QaldGen sampling framework retrieves the set of questions along with the re-
quired important features (can be any of the 51 features attached to each ques-
tion) by using a single SPARQL query. For example, the SPARQL query given
in Listing 1.2 retrieves all the questions from QaldGen RDF dataset along with
the features: the total number of words, entities, relations, classes along with
average words per entity in the question. In addition, it considers the number of

5

@prefix lsq: <http: //lsq.aksw.org/vocab#> .
@prefix qaldgen: <http: //qald -gen.aksw.org/vocab#> .
@prefix qaldgen -res: <http://qald -gen.aksw.org/> .

#Question related
qaldgen -res:question #0 qaldgen:text "What is the time zone of Salt Lake City?

" ;
qaldgen:length "9"^^ xsd:int ;

Entities
qaldgen:totalEntities "1"^^ xsd:int ; qaldgen:entity1 "Salt_Lake_City , " ;
qaldgen:totalWordsEntity1 "1"^^ xsd:int ; qaldgen:entity2 "" ;
qaldgen:totalWordsEntity2 "0"^^ xsd:int ; qaldgen:entity3 "" ;
qaldgen:totalWordsEntity3 "0"^^ xsd:int ; qaldgen:avgEntitiesWords "1.0"^^

xsd:double ;

Relations
qaldgen:totalRelations "1"^^ xsd:int ;
qaldgen:relation1 "timeZone" ;
qaldgen:totalWordsRelation1 "1"^^ xsd:int ;
qaldgen:relation2 "" ;
qaldgen:totalWordsRelation2 "0"^^ xsd:int ;
qaldgen:relation3 "" ;
qaldgen:totalWordsRelation3 "0"^^ xsd:int ;
qaldgen:avgRelationsWords "1.0"^^ xsd:double ;

Classes
qaldgen:totalClasses "0"^^ xsd:int ;
qaldgen:class1 "" ;
qaldgen:totalWordsClass1 "0"^^ xsd:int ;
qaldgen:class2 "" ;
qaldgen:totalWordsClass2 "0"^^ xsd:int ;
qaldgen:class3 "" ;
qaldgen:totalWordsClass3 "0"^^ xsd:int ;
qaldgen:avgClassesWords "0.0"^^ xsd:double ;
qaldgen:answerType "resource" ;
qaldgen:isNumberAnswer "0" ;
qaldgen:isBooleanAnswer "0" ;

POS tags
qaldgen:IN "true"^^ xsd:boolean ; qaldgen:JJ "false"^^ xsd:boolean ;
qaldgen:JJR "false"^^ xsd:boolean ; qaldgen:JJS "false"^^ xsd:boolean ;
qaldgen:NN "true"^^ xsd:boolean ; qaldgen:NNS "false"^^ xsd:boolean ;
qaldgen:NNP "true"^^ xsd:boolean ; qaldgen:NNPS "false"^^ xsd:boolean ;
qaldgen:PRP "false"^^ xsd:boolean ; qaldgen:RB "false"^^ xsd:boolean ;
qaldgen:RBR "false"^^ xsd:boolean ; qaldgen:RBS "false"^^ xsd:boolean ;
qaldgen:VB "false"^^ xsd:boolean ; qaldgen:VBD "false"^^ xsd:boolean ;
qaldgen:VBG "false"^^ xsd:boolean ; qaldgen:VBN "false"^^ xsd:boolean ;
qaldgen:VBP "false"^^ xsd:boolean ; qaldgen:VBZ "true"^^ xsd:boolean ;
qaldgen:WDT "false"^^ xsd:boolean ; qaldgen:WP "true"^^ xsd:boolean ;
qaldgen:SYM "false"^^ xsd:boolean ; qaldgen:questionOrigin "qald9" ;

Answer related
lsq:text """SELECT DISTINCT ?uri WHERE { <http: // dbpedia.org/resource/

Salt_Lake_City > <http:// dbpedia.org/ontology/timeZone ?uri }""" ;
lsq:tps "1"^^ xsd:int ;
lsq:bgps "1"^^ xsd:int ;
lsq:usesFeature lsq:Select , lsq:Distinct ;
lsq:projectVars "1"^^ xsd:int ;
lsq:answers "(?uri = <http: // dbpedia.org/resource/Mountain_Time_Zone), " ;
lsq:resultSize "1"^^ xsd:int .

Listing 1.1. An example QaldGenData RDF representation of a question

6

1 P r e f i x qaldGen : <http :// qald−gen . aksw . org /vocab#>
2 P r e f i x l s q : <http :// l s q . aksw . org /vocab#>
3 SELECT DISTINCT ? qId ? totalWords ? t o t a l E n t i t i e s ?

t o t a l R e l a t i o n s ? t o t a l C l a s s e s ? avgEntit iesWords ? tps ? r s ?
bgps ? pvars

4 {
5 ? qId qaldGen : l ength ? totalWords .
6 ? qId qaldGen : t o t a l E n t i t i e s ? t o t a l E n t i t i e s .
7 ? qId qaldGen : t o t a l R e l a t i o n s ? t o t a l R e l a t i o n s .
8 ? qId qaldGen : t o t a l C l a s s e s ? t o t a l C l a s s e s .
9 ? qId qaldGen : avgEntit iesWords ? avgEntit iesWords .

10 ? qId l s q : tps ? tps .
11 ? qId l s q : r e s u l t S i z e ? r s .
12 ? qId l s q : bgps ? bgps .
13 ? qId l s q : pro j ec tVars ? pvars .
14 }

Listing 1.2. Natural language questions selection along with required features from
QaldGenData RDF dataset

triple patterns, the number of answers, the number of BGPs, and the number of
projection variables. In other words, the user can select any number of features
that are considered important for microbenchmarking. The result of this query
execution is stored in a map that is used in the subsequent sampling steps. In
Section 2.3, we show how this query can be modified to select customised samples
for microbenchmarking.

Normalised Feature Vectors The cluster generation algorithms (explained
in the next section) require distances between questions to be computed. Each
question (that was retrieved in the previous step) from the input QaldGenData

dataset is mapped to a vector of length equal to the number of retrieved features.
The vector stores the corresponding question features that were retrieved along
with the input questions. To ensure that dimensions with high values do not bias
the selection of questions for benchmarking, we normalise the question feature
vectors with values between 0 and 1. This is to ensure that all questions are
located in a unit hypercube. At this point, each of the individual values in every
feature vector is divided by the overall maximal value (across all the vectors) for
that question feature.

Generation of Clusters As a next step, we generate N clusters from the
given input QaldGen question represented as normalised feature vectors. For this
step we used 5 existing well-known algorithms – FEASIBLE [21], FEASIBLE-
Exemplars [21], KMeans++, DBSCAN+KMeans++, Random selection – which
allow the generation of the required fixed number of clusters. Note DBSCAN+KMeans++
means that we applied DBSCAN first to remove the outlier queries and then ap-

7

plied KMeans++ to generate the required number of clusters. Please also con-
sider that we need an additional normalisation of the remaining vectors after
outliers are removed. Moreover, our framework is flexible enough to integrate
any other clustering algorithm and allows the generation of a fixed number of
clusters.

Selection of Most Representative Questions Finally, we perform the selec-
tion of a single prototypical question from each cluster. This step is exactly the
same as performed in FEASIBLE [21]: For each cluster S, compute the centroid
c which is the average of the feature vectors of all the queries in S. Following
this, compute the distance of each query in S with c and select the query of
minimum distance to include in the resulting benchmark.The final output of the
QaldGen sampling generator is an RDF file containing the finally selected nat-
ural language questions along with the complete list of attached features. Thus
the RDF output can be directly queried using SPARQL. Current QA benchmark
execution frameworks such as GERBIL [32] require the benchmark to be repre-
sented in JSON format. Thus, QaldGen is also able to select GERBIL compatible
QA benchmarks.

Our framework also allows the generation of question samples using random
selection. In addition, it allows the generation of samples using Agglomerative
clustering [21]. However, Agglomerative clustering does not allow the creation
of fixed size samples. The QaldGen website contains the CLI options for the
generation of benchmarks.

2.3 Question Sample Personalisation

As mentioned before, our framework allows customised question sample genera-
tion according to the criteria specified by the user. This can be done by simply
specialising the query given in Listing 1.2. For example, imagine the user wants
to select customised samples with the following features: The question sample
should only be selected from QALD9 and hence skipping LC-QuAD questions.
The personalised sample should only contain “what”-type questions, and the
number of triple patterns should be greater than 1 and there should be at least
one answer of this question. The query for the selection of such a personalised
benchmark is given in Listing 1.3. Users can use such personalised question sam-
ples to micro benchmark the QA system.

2.4 Diversity of Question Samples

The selected sample should not be mostly comprised of a similar type of natural
language question. To ensure the overall quality of the selected sample, sufficient
diversity in the micro benchmarking questions is important, which QaldGen is
able to select using different clustering algorithms. We define their diversity as
follows:

8

1 P r e f i x qaldGen : <http :// qald−gen . aksw . org /vocab#>
2 P r e f i x l s q : <http :// l s q . aksw . org /vocab#>
3 SELECT DISTINCT ? qId ? totalWords ? t o t a l E n t i t i e s ?

t o t a l R e l a t i o n s ? t o t a l C l a s s e s ? avgEntit iesWords ? tps ? r s ?
bgps ? pvars

4 {
5 ? qId qaldGen : l ength ? totalWords .
6 ? qId qaldGen : t o t a l E n t i t i e s ? t o t a l E n t i t i e s .
7 ? qId qaldGen : t o t a l R e l a t i o n s ? t o t a l R e l a t i o n s .
8 ? qId qaldGen : t o t a l C l a s s e s ? t o t a l C l a s s e s .
9 ? qId qaldGen : avgEntit iesWords ? avgEntit iesWords .

10 ? qId l s q : tps ? tps .
11 ? qId l s q : r e s u l t S i z e ? r s .
12 ? qId l s q : bgps ? bgps .
13 ? qId l s q : pro j ec tVars ? pvars .
14

15 # Options f o r P e r s o n a l i s a t i o n
16 ? qId qaldGen : que s t i onOr ig in ” qald9 ” .
17 ? qId qaldGen : questionType ?qType .
18 F i l t e r Regex (? qType , ”What”)
19 F i l t e r (? tps > 1 && ? rs >0)
20 }

Listing 1.3. Benchmark Personalisation

Definition 2 (Question Sample Diversity). Let µi mean and σi the stan-
dard deviation of a given distribution w.r.t. the ith feature of the said distribution.
Let B be a question sample extracted from a set of queries L.The diversity score
D is the average standard deviation of the query features k included in the sample
B:

D = 1
k

k∑
i=1

(σi(B).

The command line tool provided on the project website will report the diversity
score after the generation of the desired QA benchmark.

3 Evaluation and Results

In this section, we describe our evaluation setup and the results.

3.1 Experiment Setup

Micro Benchmarking: We used three personalised question samples in our eval-
uation at a micro level: (1) a 200 question sample was used to compare the
QA systems. We used the FEASIBLE-Exemplars clustering method because it
had the highest diversity score. We used the query given in Listing 1.2 to select

9

the input questions for QaldGen. (2) a 100 question sample was selected using
FEASIBLE-Exemplars to test the named entity disambiguation (NED) tools.
In this benchmark we only consider features related to the named entities like
the number of entities, the number of words in entities etc. (3) a 100 question
sample was generated using FEASIBLE-Exemplars to test the relation linking
(RL) tools. In this sample, we only considered features related to the relations
used in the questions like number relations, number of words in relations, etc.

QA Systems: We compared all the systems which took part in the QALD9
challenge [17] and which are currently part of Gerbil framework. However, only
ganswer2 and QUEPY were online and returned answers. We used QaldGen

extension integrated in Gerbil to calculate the results. This also illustrates the
adaptability and compatibility of R 2 into a generic benchmarking framework.
The results can be also found at persistent URI provided by Gerbil10.

NED and RL Tools: We also extended our evaluation study at component level.
We evaluated the top-2 components over LC-QuAD11 performing NED (DB-
pedia Spotlight [15] and TagMe [8]) and RL tasks (RNLIWOD12 and EARL
[7]), respectively. For this study, we utilised the Frankenstein framework be-
cause these tools are already part of the framework13. The customised questions
selected by QaldGen are uploaded in Frankenstein to calculate the final results.

3.2 Experiment Results

Table 1 summarises our evaluation results and we employ the performance met-
ric of Precision (P), Recall (R), and F-Score (F) for reporting the results14. It is
clearly observable in the table that the performance of QA systems and compo-
nents fluctuate when customised question samples were selected using QaldGen.
For instance, ganswer2 is the overall winner of QALD9, however, for a diverse
set of 200 questions selected by QaldGen, QUEPY is the winner. This clearly
show that performance of QA systems vary with the diversity of questions used
in the evaluation. It is highly possible that a QA system is tuned for a particular
type of question and may not perform well when exposed to question samples
of varying diversity while performing microbenchmarking. In addition, a QA
system designed for a particular use-case should only be tested with a use-case
specific micro benchmark. Such systems will likely not perform well when tested
with general QA benchmarks. For NED tools, TagMe remains the overall winner
for macro and micro evaluation but its F-score drops sharply over customised
sampling questions. When we consider specific question features (total number

10http://gerbil-qa.aksw.org/gerbil/experiment?id=201903190000
11as reported by [27] and [7]
12https://github.com/dice-group/NLIWOD
13http://frankenstein.qanary-qa.com
14https://github.com/dice-group/gerbil/wiki/Precision,

-Recall-and-F1-measure

10

http://gerbil-qa.aksw.org/gerbil/experiment?id=201903190000
https://github.com/dice-group/NLIWOD
http://frankenstein.qanary-qa.com
https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure
https://github.com/dice-group/gerbil/wiki/Precision,-Recall-and-F1-measure

Table 1. Performance of QA systems and components. We can observe fluctuation of
P,R,F values when customised question samples have been selected using R 2 . For in-
stance, QUEPY is the new baseline outperforming ganswer2(overall baseline of QALD9
dataset) on the customised benchmark selected by QaldGen. Similar performance vari-
ation has been observed in the tools performing NED and RL tasks.

Systems Dataset P R F

baseline QA System(ganswer2) [17] QALD9 0.29 0.33 0.30
ganswer2 QaldGen 0.24 0.24 0.24
QUEPY QaldGen 0.27 0.27 0.27

baseline NED(TagMe) [27] LCQuAD 0.69 0.67 0.68
TagMe QaldGen 0.44 0.40 0.41
DBpedia Spotlight QaldGen 0.37 0.38 0.36

baseline RL (RNLIWOD) [27] LCQuAD 0.25 0.22 0.23
RNLIWOD QaldGen 0.23 0.19 0.20
EARL QaldGen 0.38 0.39 0.37

of entities as two and more than two words in the entity label) for generating a
personalised question sample, the performance of TagMe is limited. In the case
of RL tools, EARL outperforms RNLIWOD when we selected a personalised
question sample with particular question features (explicit relations, number of
relations=1). It provides a clear indication of the strength of the EARL tool for
a particular type of questions. Please note that in the scope of this paper, we are
not analysing the architecture of the QA systems and components to understand
the performance variation for specific question features. Our aim is to illustrate
with empirical results that the term “baseline or state of the art” solely depends
on the type of questions and considered features. Therefore, using our reusable
resources, developers can better understand the strength or weaknesses of their
tools by evaluating their tools at micro level.

4 Impact

38 QA systems from over 40 research groups in the semantic web community
have participated in nine editions of QALD [17]. The LC-QuAD dataset has
also gained recognition and is already cited 25 times since its release in October
2018 [28]. However the same issues of question ambiguity, capitalisation of entity
labels, complex questions, implicit/explicit nature of entity and relation label,
etc. are reported repeatedly in the evaluation studies [26,20,9].

In this article, we provide the semantic web community with two reusable
resources for micro benchmarking of QA components and systems. Please note
that we are not proposing any new benchmarking dataset or a benchmarking
framework such as Frankenstein [25] or Gerbil [31]. We reuse the existing QA
datasets (QALD9 and LC-QuAD) over DBpedia and in addition have developed
R 2 that can be reused by QA developers to select personalised question samples

11

for micro benchmarking their systems and components. This is the first step
towards a more fine grained evaluation of QA systems and we expect the QA
community to utilise R 2 to dig deeper into the strength and weaknesses of
their systems. Similar effort has also been started towards micro-benchmarking
entity linking tools [35], however micro benchmarking of QA components and
systems is a major research gap. Our second resource R 1 can be reused by
developers as a rich source of questions represented in RDF format with its
features. Furthermore, we hope fine grained benchmarking of QA systems will
trigger discussion within the community to release datasets with diverse question
features.

5 Adoption and Reusability

The resources R 2 and R 1 are licensed under the GNU General Public License
v3.0 and publicly available for reuse. Detailed instructions are provided for the
easy adaptability of the resources. Developers can either use the proposed re-
sources independently or can select personalised benchmarking questions using
R 2 and adapt it for benchmarking frameworks. For community adaptation,
both resources are made compatible with Gerbil [31] and Frankenstein frame-
work [25]. Furthermore, Gerbil supports an easy extension of its core architecture
and it is a widely used platform for calculating global performance metrics of
QA systems and entity linking components. The maven version of R 2 has al-
ready been integrated with Gerbil. Therefore, researchers can choose customised
benchmarking questions based on their needs, and use Gerbil to calculate the
global performance metric for a sub-set of customised questions selected by R 2 .
The extension of Gerbil with QaldGen is already completed and it is available
for public reuse in official Github repository of Gerbil15.

6 Related Work

QA Systems and Macro Benchmarking: TREC QA series [33] for evalu-
ating open domain question answering was one of the earlier attempts in the
direction of providing researchers with standard datasets and a performance
metric for benchmarking QA systems. Question answering over KG gained mo-
mentum in the last decade after the inception of publicly available KGs such as
DBpedia and Freebase. Datasets such as SimpleQuestions16 and WebQuestions
[2] are commonly used for evaluating QA systems that employ Freebase as the
underlying KG. For benchmarking QA systems over DBpedia, the QALD series
was launched in 201117 and is currently running its 9th edition. In the last 8
years, over 38 QA systems using DBpedia as the underlying KG have been eval-
uated using QALD [9]. However, the maximum number of questions in QALD

15https://github.com/dice-group/gerbil/wiki/QALD-Generation
16https://research.fb.com/downloads/babi/
17http://qald.aksw.org/index.php?x=home&q=1

12

https://github.com/dice-group/gerbil/wiki/QALD-Generation
https://research.fb.com/downloads/babi/
http://qald.aksw.org/index.php?x=home&q=1

is 408 which hinders the development of machine learning based approaches. In
contrast with QALD, LC-QuAD dataset provides a rich and diverse set of 5000
complex questions for DBpedia [28]. Recently developed QA systems and frame-
works also report results on LC-QuAD [6,13,27]. However, the reported results
across these datasets are on macro level i.e. an average on all questions of the
dataset.
Question Classification and Micro Benchmarking: Question classification
techniques aim to classify questions based on several features that may impact
the overall performance of the QA system [12]. In the semantic web community,
Usbeck et al. [30] first attempted to use question classification and question fea-
tures such as headword, answer type, entity type, etc were extracted to provide
a labelled representation of each question. Classifiers were trained using these
features to choose a QA system among six that can potentially answer an input
question. This approach resulted in an increase in the overall performance of
the proposed hybrid QA system. Saleem et al. [20] used question classification
to micro benchmark (i.e. reporting results based on the type of the questions
containing specific features) QA systems to understand the strengths and the
weaknesses. The authors conclude that a QA system which is the overall winner
for all questions of the QALD-6 dataset is not always the winner for the ques-
tions with particular features. This empirical study also revealed that macro
F-score (average on all questions) varies a lot based on the type of questions.
For example, the highest reported F-score for all questions is 0.89 (CANALI QA
system [14]). However, for a specific type of questions starting with “Give me”
(e.g. Give me all cosmonauts.), F-score sharply drops to 0.34 and the UTQA
QA system outperforms CANALI. Singh et al [26,27] extended the concept of
micro-benchmarking to QA component level where exhaustive evaluations of 28
QA components including 20 named entity disambiguation, five relation linking,
two class linking, and two SPARQL query generator have been performed using
over 3000 questions from LC-QuAD. The authors observe significant fluctuation
of the F-score even at the component level published in the extended study of
Frankenstein framework [26]. For example, SINA [23] generates SPARQL queries
which requires DBpedia URIs of entities and predicates present in the question
as input. SINA is the baseline (F-Score 0.80) for the subset of 729 questions
from LC-QuAD having SPARQL queries with two triples compared to the over-
all winner (F-score 0.48 reported by NLIWOD component) on all the questions of
LC-QuAD dataset considered by authors. However, when the number of triples
in SPARQL queries is four, SINA reports F-score 0.0 for a subset of 1256 ques-
tions. The above-mentioned micro-benchmarking studies provide a foundation
to our work. We reuse all the question features reported by [20,27] in QaldGen

for micro benchmarking.
The work by Waitelonis et al. [35] proposes fine-grained benchmarking of entity
linking tools using the Gerbil framework [32] based on the features of entity type
(person, organisation, place). This work is most closely related to our approach.
Unlike QaldGen, the above-mentioned work is limited to the entity linking tools
whereas the novelty of QaldGen is to provide a reusable resource for the fine-

13

grained micro-benchmarking study of the QA systems and reusable components
for QA frameworks performing various tasks(e.g. NED, RL, Query Builder).

Finally, there are benchmark generators available for SPARQL queries [21]
to test the runtime performances of triplestores, and SPARQL query contain-
ments [22] to test the query containments solvers. However, to the best of our
knowledge, there was no QA over Linked Data benchmark generator available
to generator customised benchmarks.

7 Conclusion and Future Work

In this paper, we present two reusable resources for generating personalised ques-
tion samples for micro benchmarking question answering systems over knowledge
graphs, more specifically DBpedia. Our first offered resource R 2 is QaldGen.
QaldGen uses state of the art clustering algorithms to cluster the most diverse
or similar questions based on the features that impact the overall performance
of QA systems. QaldGen is compatible with Gerbil and Frankenstein framework.
Hence developers can directly use these frameworks to compare their system
with state of the art on specific questions selected by QaldGen for personalised
micro benchmarking.

The second resource R 1 is a collection of 5408 questions from two standard
datasets with a diverse representation of 51 features in each question. In the
previous works [27,30,21], QA developers extracted such features multiple times
for different research studies. Using R 1 researchers can now select question
features they would like to consider for training machine learning algorithms
rather than extracting the features again from scratch. We believe that using
our resources, researchers can now evaluate their systems on their specific needs.
We also hope that our work will trigger discussion in the QA community to come
up with a dataset containing more diverse question features and start reporting
performance at the micro level. We plan to extend this work in three directions
1) extend questions to other knowledge graphs such as Wikidata 2) include more
datasets in the R 1 and 3) develop a similar micro-benchmarking approach for
open domain question answering datasets such as reading comprehension.

Acknowledgments

This work has been supported by the project LIMBO (Grant no. 19F2029I),
OPAL (no. 19F2028A), KnowGraphs (no. 860801), and SOLIDE (no. 13N14456)

References

1. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. DBpe-
dia: A Nucleus for a Web of Open Data. In ISWC, pages 722–735, 2007.

2. J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic Parsing on Freebase from
Question-Answer Pairs. In Proceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2013, pages 1533–1544. ACL, 2013.

14

3. K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In ACM
SIGMOD, pages 1247–1250, 2008.

4. K.-S. Choi, T. Mitamura, P. Vossen, J.-D. Kim, and A.-C. N. Ngomo. SIGIR 2017
Workshop on Open Knowledge Base and Question Answering (OKBQA2017). In
Proceedings of the ACM SIGIR, pages 1433–1434, 2017.

5. L. Derczynski, D. Maynard, G. Rizzo, M. van Erp, G. Gorrell, R. Troncy, J. Petrak,
and K. Bontcheva. Analysis of named entity recognition and linking for tweets.
Inf. Process. Manage., 51(2):32–49, 2015.

6. D. Diefenbach, A. Both, K. Singh, and P. Maret. Towards a Question Answering
System over the Semantic Web. arXiv preprint arXiv:1803.00832, 2018.

7. M. Dubey, D. Banerjee, D. Chaudhuri, and J. Lehmann. EARL: joint entity and
relation linking for question answering over knowledge graphs. In The Semantic
Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA,
USA, October 8-12, 2018, Proceedings, Part I, pages 108–126, 2018.

8. P. Ferragina and U. Scaiella. TAGME: on-the-fly annotation of short text fragments
(by wikipedia entities). In Proceedings of the 19th ACM Conference on Information
and Knowledge Management, CIKM 2010, Toronto, Ontario, Canada, October 26-
30, 2010, pages 1625–1628. ACM, 2010.

9. K. Höffner, S. Walter, E. Marx, R. Usbeck, J. Lehmann, and A. N. Ngomo. Sur-
vey on challenges of Question Answering in the Semantic Web. Semantic Web,
8(6):895–920, 2017.

10. X. Huang, J. Zhang, D. Li, and P. Li. Knowledge graph embedding based question
answering. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, pages 105–113. ACM, 2019.

11. F. Li and H. V. Jagadish. Constructing an Interactive Natural Language Interface
for Relational Databases. PVLDB, 8(1):73–84, 2014.

12. B. Loni. A survey of state-of-the-art methods on question classification. 2011.
13. G. Maheshwari, P. Trivedi, D. Lukovnikov, N. Chakraborty, A. Fischer, and

J. Lehmann. Learning to rank query graphs for complex question answering over
knowledge graphs. arXiv preprint arXiv:1811.01118, 2018.

14. G. M. Mazzeo and C. Zaniolo. Answering controlled natural language questions
on rdf knowledge bases. In EDBT, pages 608–611, 2016.

15. P. N. Mendes, M. Jakob, A. Garćıa-Silva, and C. Bizer. DBpedia spotlight: shed-
ding light on the web of documents. In Proceedings the 7th International Conference
on Semantic Systems, I-SEMANTICS 2011, Graz, Austria, September 7-9, 2011,
pages 1–8. ACM, 2011.

16. D. Moldovan, M. Paşca, S. Harabagiu, and M. Surdeanu. Performance issues and
error analysis in an open-domain question answering system. ACM Transactions
on Information Systems (TOIS), 21(2):133–154, 2003.

17. N. Ngomo. 9th challenge on question answering over linked data (qald-9). language,
7:1.

18. A. Sakor, O. I. Mulang, K. Singh, S. Shekarpour, M. E. Vidal, J. Lehmann, and
S. Auer. Conference paper: Old is gold: Linguistic driven approach for entity and
relation linking of short text. In NAACL 2019 (to appear). ACL, 2019.

19. M. Saleem, M. I. Ali, A. Hogan, Q. Mehmood, and A.-C. N. Ngomo. Lsq: the
linked sparql queries dataset. In ISWC, pages 261–269, 2015.

20. M. Saleem, S. N. Dastjerdi, R. Usbeck, and A. N. Ngomo. Question Answering
Over Linked Data: What is Difficult to Answer? What Affects the F scores? In
Joint Proceedings of BLINK2017: co-located with (ISWC 2017), Austria, 2017.

15

21. M. Saleem, Q. Mehmood, and A.-C. N. Ngomo. Feasible: A feature-based sparql
benchmark generation framework. In International Semantic Web Conference,
pages 52–69. Springer, 2015.

22. M. Saleem, C. Stadler, Q. Mehmood, J. Lehmann, and A.-C. N. Ngomo. Sqcframe-
work: Sparql query containment benchmark generation framework. In Proceedings
of the Knowledge Capture Conference, page 28. ACM, 2017.

23. S. Shekarpour, E. Marx, A. N. Ngomo, and S. Auer. SINA: Semantic interpretation
of user queries for question answering on interlinked data. J. Web Sem., 30:39–51,
2015.

24. K. Singh. Towards Dynamic Composition of Question Answering Pipelines. PhD
thesis, University of Bonn, Germany, 2019.

25. K. Singh, A. Both, A. S. Radhakrishna, and S. Shekarpour. Frankenstein: A Plat-
form Enabling Reuse of Question Answering Components. In The Semantic Web
- 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June 3-7,
2018, Proceedings, pages 624–638. Springer, 2018.

26. K. Singh, I. Lytra, A. S. Radhakrishna, S. Shekarpour, M.-E. Vidal, and
J. Lehmann. No one is perfect: Analysing the performance of question answer-
ing components over the dbpedia knowledge graph. arXiv:1809.10044, 2018.

27. K. Singh, A. S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck,
A. Vyas, A. Khikmatullaev, D. Punjani, C. Lange, M. Vidal, J. Lehmann, and
S. Auer. Why Reinvent the Wheel: Let’s Build Question Answering Systems To-
gether. In Web Conference, pages 1247–1256, 2018.

28. P. Trivedi, G. Maheshwari, M. Dubey, and J. Lehmann. LC-QuAD: A Corpus for
Complex Question Answering over Knowledge Graphs. In ISWC, pages 210–218,
2017.

29. C. Unger, C. Forascu, V. López, A. N. Ngomo, E. Cabrio, P. Cimiano, and S. Wal-
ter. Question Answering over Linked Data (QALD-5). In Working Notes of CLEF
2015 - Conference and Labs of the Evaluation forum, Toulouse, France, September
8-11, 2015. CEUR-WS.org, 2015.

30. R. Usbeck, M. Hoffmann, M. Röder, J. Lehmann, and A. N. Ngomo. Using Multi-
Label Classification for Improved Question Answering. CoRR, 2017.

31. R. Usbeck, M. Röder, M. Hoffmann, F. Conrads, J. Huthmann, A.-C. N. Ngomo,
C. Demmler, and C. Unger. Benchmarking Question Answering Systems. Semantic
Web Journal, 2017.

32. R. Usbeck, M. Röder, A. N. Ngomo, C. Baron, A. Both, M. Brümmer, D. Cec-
carelli, M. Cornolti, D. Cherix, B. Eickmann, P. Ferragina, C. Lemke, A. Moro,
R. Navigli, F. Piccinno, G. Rizzo, H. Sack, R. Speck, R. Troncy, J. Waitelonis, and
L. Wesemann. GERBIL: General Entity Annotator Benchmarking Framework. In
WWW 2015, pages 1133–1143, 2015.

33. E. M. Voorhees and D. K. Harman, editors. Proceedings of The Eighth Text RE-
trieval Conference, TREC 1999, Gaithersburg, Maryland, USA, November 17-19,
1999, volume Special Publication 500-246. National Institute of Standards and
Technology (NIST), 1999.

34. D. Vrandecic. Wikidata: a new platform for collaborative data collection. In
Proceedings of the 21st World Wide Web Conference, WWW 2012, Lyon, France,
April 16-20, 2012 (Companion Volume), pages 1063–1064. ACM, 2012.

35. J. Waitelonis, H. Jürges, and H. Sack. Remixing entity linking evaluation datasets
for focused benchmarking. Semantic Web, 10(2):385–412, 2019.

36. H. Zafar, G. Napolitano, and J. Lehmann. Formal query generation for question
answering over knowledge bases. In European Semantic Web Conference, pages
714–728. Springer, 2018.

16

	QaldGen: Towards Microbenchmarking of Question Answering Systems over Knowledge Graphs

