
Two for One –Querying Property Graph Databases using

SPARQL via Gremlinator

Harsh Thakkar
University of Bonn
Bonn, Germany

thakkar@cs.uni-bonn.de

Dharmen Punjani
National and Kapodistrian University of Athens

Athens, Greece
dpunjani@di.uoa.gr

Jens Lehmann
University of Bonn & Fraunhofer IAIS

Bonn, Germany
jens.lehmann@cs.uni-bonn.de

Sören Auer
TIB & Leibniz University of Hannover

Hannover, Germany
soeren.auer@tib.eu

ABSTRACT

In the past decade Knowledge graphs have become very popular
and frequently rely on the Resource Description Framework (RDF)
or Property Graphs (PG) as their data models. However, the query
languages for these two data models – SPARQL for RDF and the
PG traversal language Gremlin – are lacking basic interoperability.
In this demonstration paper, we present Gremlinator, the first
translator from SPARQL – the W3C standardized language for
RDF – to Gremlin – a popular property graph traversal language.
Gremlinator translates SPARQL queries to Gremlin path traversals
for executing graph pattern matching queries over graph databases.
This allows a user, who is well versed in SPARQL, to access and
query a wide variety of Graph databases avoiding the steep learning
curve for adapting to a new Graph Query Language (GQL). Gremlin
is a graph computing system-agnostic traversal language (covering
both OLTP graph databases and OLAP graph processors), making
it a desirable choice for supporting interoperability for querying
Graph databases. Gremlinator is planned to be released as an
Apache TinkerPop plugin in the upcoming releases.

KEYWORDS

Property Graph, SPARQL, Gremlin, Graph Traversal, Gremlinator
ACM Reference format:

Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sören Auer. 2018.
Two for One –Querying Property GraphDatabases using SPARQL via Grem-
linator. In Proceedings of 1st Joint International Workshop on Graph Data
Management Experiences & Systems (GRADES) and Network Data Analytics
(NDA), Houston, TX, USA, June 10–15, 2018 (GRADES-NDA’18), 5 pages.
https://doi.org/10.1145/3210259.3210271

1 INTRODUCTION

Knowledge graphs model the real world in terms of entities and
relations between them. They became popular as they are an intu-
itive and simple data model, which allows to execute many types

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GRADES-NDA’18 , June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5695-4/18/06.
https://doi.org/10.1145/3210259.3210271

of queries efficiently and can serve as a foundation for a range of
Artificial Intelligence applications. The Resource Description Frame-
work (RDF) and Property Graphs (PGs) are popular languages for
knowledge graphs. For RDF, the SPARQL query language was stan-
dardized byW3C, whereas for PGs several languages are frequently
used, including Gremlin [10].

PGs and RDF have evolved from different origins and still have
largely disjoint user communities. RDF is part of the Semantic
Web initiative with a focus on expressive data modeling as well
as data publication and linking. PGs originate from the database
community with a focus on efficient execution of graph traversals.

With Gremlinator, we build a bridge between both communi-
ties and research the interoperability of RDF and PG query lan-
guages [15]. Moreover, we allow combining the best of both worlds:
Powerful modeling capabilities as well as data publication and inter-
linking methods combined with efficient graph traversal execution.
In particular, Gremlinator has the following advantages: (1) Exist-
ing SPARQL-based applications can switch to Property graphs in a
non-intrusive way. (2) It provides the foundation for a hybrid use of
RDF triple stores and Property graph store – a system could detect
which one is more efficient for answering a particular query [5]
and redirect the query accordingly. In particular, property graph
databases have been shown to work very well for a wide range
of queries which benefit from the locality in a graph. Rather than
performing expensive joins, property graph databases use micro
indices to perform traversals. (3) Users familiar with the W3C stan-
dardized SPARQL query language do not need to learn another
query language.

Contributions. Overall, we make the following contributions:
• A novel approach for mapping SPARQL queries to Gremlin
pattern matching traversals, Gremlinator, which is the first
work bridging the RDF-PG query interoperability gap at a
broader scale, to the best of our knowledge.

• An openly available implementation for executing SPARQL
queries over a plethora of Property graph stores such as
Neo4J, Sparksee, OrientDB, etc. using the Apache TinkerPop
framework.

Organization. The remainder of the article is organized as fol-
lows: Section (2) summarizes the related work. Section (3) sheds
light on the importance of Gremlin, briefly discusses the Gremlina-
tor approach and its limitations. Section (4) presents the demonstra-
tion details, experimental observations and the value Gremlinator

https://doi.org/10.1145/3210259.3210271
https://doi.org/10.1145/3210259.3210271

will cater to its users. Finally, Section (5) concludes the article and
describes the future work.

2 RELATEDWORK

We now present a brief summary of related work with regard to
approaches that support the translation and execution of formal
query languages, aiming the interoperability issue.

SPARQL → SQL: A substantial amount of work has been done
for translating queries from SPARQL to SQL, such as – Ontop [3],
R2RML [11], Elliot et al. [6], Chebotko et al. [4], Zemke et al. [17],
Priyanka et al. [8]. Ontop [3], one of the most popular system,
exposes relational databases as virtual RDF graphs by linking the
terms (classes and properties) in the ontology to the data sources
through mappings, which can then be queried using SPARQL.

SQL → SPARQL: RETRO [9] presents a formal semantics pre-
serving the translation from SQL to SPARQL. It follows a schema
and query mapping approach rather than to transform the data
physically. The schema mapping derives a domain-specific rela-
tional schema from RDF data. Query mapping transforms an SQL
query over the schema into an equivalent SPARQL query, which in
turn is executed against the RDF store.

SQL → CYPHER: CYPHER1 is the de facto graph query lan-
guage of the Neo4j2 graph database. There has been no work yet to
use SQL on top of CYPHER. However, there are some examples3
that show the equivalent CYPHER queries for certain SQL queries.

3 GREMLINATOR APPROACH

Next, we discuss why we choose Gremlin as a Property graph
query language, briefly describe the Gremlinator approach and
its limitations.

3.1 Why Gremlin Traversal Language?

Gremlin is a system-agnostic query language developed by Apache
TinkerPop4. It supports both – pattern matching (declarative) and
graph traversal (imperative) style of querying over Property graphs.

Figure 1: The Gremlin Traversal Language and Machine
4
.

Gremlin is more general than, e.g. CYPHER, as it provides in
addition to a query language a common execution platform for
supporting any graph computing system (including both OLTP and

1CYPHER Query Language (https://neo4j.com/developer/cypher-query-language/)
2Neo4j (https://neo4j.com/)
3SQL to CYPHER (https://neo4j.com/developer/guide-sql-to-cypher/)
4Gremlin: Apache TinkerPop’s graph traversal language and machine (https://
tinkerpop.apache.org/)

OLAP graph processors), for addressing the querying interoperabil-
ity issue (cf. Figure 1 (a)). Together, Apache TinkerPop framework
and Gremlin, are a language and a virtual machine, which make it
possible to design another traversal language that compiles to the
Gremlin traversal machine (analogous to how Scala compiles to the
JVM), cf. Figure 1 (b). Gremlin provides the declarative (SPARQL
style) pattern matching querying construct via the .match()-step.

For brevity, we abstain from dwelling on the formal definitions
and semantics of Gremlin and SPARQL, rather point the interested
reader to the literature [7, 10, 12, 16]. Furthermore, one may also
refer to [15], where the complete SPARQL to Gremlin translation
approach is discussed in detail.

3.2 Gremlinator Pipeline

We now present the architectural overview of Gremlinator in
Figure 2 and discuss each of the four steps of its execution pipeline.

Step 1. The input SPARQL query is first parsed using the Jena
ARQ module, thereby: (i) validating the query and (ii) generating
its abstract syntax tree (AST) representation.

Step 2. From the obtained AST of the parsed SPARQL query,
each basic graph pattern (BGP) is visited, mapping them to the
corresponding Gremlin single step traversals (SSTs). An SST in
Gremlin is an atomic traversal step (ψs). We describe this in [15] in
detail.

Step 3. Thereafter, depending on the operator precedence ob-
tained from the AST of the parsed SPARQL query, each of the cor-
responding SPARQL keywords is mapped to their corresponding
instruction steps from the Gremlin instruction library. Thereafter a
final conjunctive traversal (Ψ) is generated appending the SSTs and
instruction steps. This can be perceived analogous to the SPARQL
query language, wherein a set of BGPs form a single complex graph
pattern (CGP).

Step 4. This final conjunctive traversal (Ψ) is used to generate
bytecode5 which can be used on multiple language and platform
variants of the Apache TinkerPop Gremlin family.

SPARQL A.S.T. BGP ➙ SST (ᶪs)

Input query

Traversal (ᵖ)

GREMLINATOR

Figure 2: The Gremlinator pipeline architecture.

For a better conceptualization, we present an illustration of the
SPARQL → Gremlin translation using a sample query in Figure 3.

3.3 Queries

For demonstrating Gremlinator, we provide a set of 30 pre-defined
SPARQL queries for reference, for each dataset, covering 10 dif-
ferent SPARQL query features (i.e. three queries per feature with
a combination of various modifiers) as shown in Table 1. These

5Bytecode is simply serialized representation of a traversal, i.e. a list of ordered instruc-
tions where an instruction is a string operator and a (flattened) array of arguments.

2

https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/
https://neo4j.com/developer/guide-sql-to-cypher/
https://tinkerpop.apache.org/
https://tinkerpop.apache.org/

g.V().match(

 as(‘a’).hasLabel(‘person’),

 as(‘a’).out(‘knows’).as(‘b’),

 as(‘a’).out(‘created’).as(‘c’),

 as(‘b’).out(‘created’).as(‘c’),

 as(‘a’).values(‘age’).as(‘d’).where('d',lte(30))).select(‘a’,’b’,’c’)

SELECT ?a ?b ?c WHERE {

 ?a v:label "person" .

 ?a e:knows ?b .

 ?a e:created ?c .

 ?b e:created ?c .

 ?a v:age ?d .

 FILTER (?d <= 30) }

Gremlin Traversal (ᵖ)SPARQL Query (Q)

BGPs

query modifier

SSTs

(ᷤ
s

)

query modifier

Figure 3: An illustrative example demonstrating the trans-

lation of a sample SPARQL query (Q) to its corresponding

Gremlin traversal (Ψ) in Gremlinator.

Table 1: Query feature and description

Query Id. Feature Description

C1-C3 CGPs Queries with mixed number of BGPs
F1-F3 FILTER CGPs with a combination of ≥1 FILTER constraints
L1-L3 LIMIT+OFFSET CGPs with a combination of LIMIT + OFFSET constraints
G1-G3 GROUP BY CGPs with GROUP BY feature
Gc1-Gc3 GROUP COUNT CGPs with GROUP BY + COUNT
O1-O3 ORDER BY CGPs with ORDER BY feature
U1-U3 UNION CGPs with UNION feature
Op1-Op3 OPTIONAL CGPs with OPTIONAL BGPs
M1-M3 MIX CGPs with a combination of all above features
S1-S3 STAR CGPs forming a STAR shape execution plan (≥10 BGPs)

features were selected after a systematic study of SPARQL query
semantics [1, 7, 12] and from BSBM [2] explore use cases6 andWat-
div Query templates7. Furthermore, we encourage the end user to
write and execute custom SPARQL queries for both the datasets,
for further exploration.

3.4 Limitations

Gremlinator is an on-going effort for achieving seamless transla-
tion of SPARQL queries to Gremlin traversals. The current version
of Gremlinator supports the SPARQL 1.0 SELECT queries with the
following exception: Gremlinator does not support variables for
the property predicate, i.e. the predicate (p) in a graph pattern {s
p o .} has to be defined or known for the traversal to be generated.
This is because traversing a graph is not possible without knowing
the precise traversal operation to the destination (vertex or edge)
from the source (vertex or edge).

4 DEMONSTRATION DETAILS

We next report observations from the experimental evaluation of
our approach – gremlinator, followed by the specifics of the
demonstration setup, and value gremlinator will cater to its users.

Experimental evaluation. To test the applicability and va-
lidity of our approach, we conducted an empirical evaluation by
comparing the results obtained after – (1) executing the SPARQL
queries against three state-of-the-art RDF triplestores (i.e. Virtuoso8
[v7.2.4], JenaTDB9 [v3.2], and 4Store10) [v1.1.5], and (2) executing

6BSBM Explore Use Cases (https://goo.gl/y1ObNN)
7Watdiv Query Features (http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml)
8Openlink Virtuoso (https://virtuoso.openlinksw.com/)
9Apache Jena TDB (https://jena.apache.org/documentation/tdb/index.html)
104Store (https://github.com/4store/4store)

the translated Gremlin traversals (using gremlinator) against
three state-of-the-art graph stores (Neo4J11 [v1.9.6], Sparksee12
[v5.1] and TinkerGraph13 [v3.2.3]), using the two famous Berlin
SPARQL Benchmark (BSBM) [2] and Northwind14 datasets respec-
tively. These systems have been experimented with in vanilla state.
The Northwind dataset consists of 33,003 triples, 55 properties in
the RDF version and 3,209 nodes, 6,177 edges, 55 properties in
the Property graph version. Whereas, the BSBM data consists of
1,000,313 triples, 40 properties in the RDF version and 92,757 nodes,
238,308 edges, 40 properties in the Property graph version. Fur-
thermore, we also asked three Gremlin experts to manually write
the corresponding Gremlin traversals for each SPARQL query for
conducting a two-fold result validation.

Experimental observations.On comparing the results returned
by each SPARQL query and its translated Gremlin traversal, we
observe uniformity (i.e. the results are equal). Thus, implying that
the translation from SPARQL to Gremlin did not alter the meaning
of the input query (i.e. the semantics of the input SPARQL query are
preserved). On analyzing the performances of queries with respect
to RDF triplestores vs Graph stores (we report the results of a subset
of BSBM queries in Figure 5, Appendix A), we observe that –

• For C1-3 (CGPs), O1-3 (order by) andM1-3 (mixed) queries (cf.
Table 1), there is no clear winner reported between SPARQL
and Gremlin.

• For F1-3 (filter), G1-3 (group by) and U1-3 (union) queries
(cf. Table 1), the Gremlin traversals are moderately faster
(1.5-3x) than the corresponding SPARQL queries.

• For Gc1-3 (group count), L1-3 (limit+offset) and S1-3 (star-
shaped queries with ≥10 triples) queries (cf. Table 1), the
Gremlin traversals outperform corresponding SPARQL queries
by an order of two magnitudes. This is because Graph stores
benefit from the neighborhood in a graph and avoid perform-
ing expensive join operations as compared to RDF stores.

Gremlinatordemonstration. For the demonstration of Grem-
linator, we have prepared – (a) an online screencast15 (b) a web
application, see Figure 4)16 (c) a desktop application of Gremlina-
tor (standalone .jar bundle) which requires Java 1.8 JRE installed
on the corresponding host machine, downloadable from the web
demo website. The source code of Gremlinator is made publicly
available here17.

The systemwork-flow for all the above mentioned Gremlinator
versions is alike, wherein – (i) the user selects a dataset (Northwind
or BSBM) from the corresponding drop-down menu; (ii) the user
selects a query (one of the ten SPARQL query features) from the
corresponding drop-down menu; (iii) the user executes the query;
(iv) system returns the selected SPARQL query, translated Gremlin
traversal, its result and traversal profile after the traversal execution;
(v) the user can also edit/write custom SPARQL queries and execute
using the integrated query editor at will.

11Neo4J (https://neo4j.com/)
12Sparksee – formerly DEX (http://sparsity-technologies.com/#sparksee)
13TinkerGraph (http://tinkerpop.apache.org/docs/current/reference/
#tinkergraph-gremlin)
14Northwind Database (https://northwinddatabase.codeplex.com/)
15Gremlinator Demo Screencast – https://youtu.be/Z0ETx2IBamw
16Gremlinator Web Demo – http://gremlinator.iai.uni-bonn.de:8080/Demo and http:
//195.201.31.31:8080/Demo/
17https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin

3

https://goo.gl/y1ObNN
http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
https://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/ index.html
https://github.com/4store/4store
https://neo4j.com/
http://sparsity-technologies.com/#sparksee
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
https://northwinddatabase.codeplex.com/
https://youtu.be/Z0ETx2IBamw
http://gremlinator.iai.uni-bonn.de:8080/Demo
http://195.201.31.31:8080/Demo/
http://195.201.31.31:8080/Demo/
https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin

(a) Desktop app

(b1) Web app front page

(b2) Web app results page

Translated Gremlin
traversal

Result

Traversal Metrics

SPARQL query

Figure 4: Gremlinator approach demonstration snapshots– (a) Desktop application (b1) Web application front page (b2) Web

application results page.

Live demo.Wewill present the live demonstration of Gremlina-
tor using a pre-configured laptop with all the resources including
the SPARQL queries and datasets. In order to demonstrate the cor-
rectness of our approach, we will provide a custom Docker-based
OpenLink Virtuoso SPARQL endpoint, pre-loaded with the datasets,
for a one-to-one query result comparison (for interested visitors).

Value.Gremlinatorwill serve as a user friendly medium to – (i)
execute SPARQL queries over Property graphs bridging the query
interoperability gap; (ii) conduct performance analysis of query
results, comparisons of SPARQL vs. Gremlin traversal operations
using frameworks such as LITMUS [13, 14] ; and (iii) enable query-
ing a spectrum of graph databases via SPARQL 1.0 query fragment,
leveraging the advantages of the Apache TinkerPop framework.

5 CONCLUSION & FUTUREWORK

In this paper, we demonstrated Gremlinator, a novel approach for
supporting the execution of SPARQL queries on Property graphs
using Gremlin traversals. It will serve as an important medium to
bridge the query interoperability gap between the RDF and Graph

database communities covering both OLTP and OLAP graph sys-
tems. Gremlinator has obtained clearance by the Apache Tin-
kerpop development team and is currently in production phase to
be released as a plugin during TinkerPop’s next framework cycle.
Furthermore, Gremlinator is freely available under the Apache
2.0 license for public use.

As future work, we are working on – (1) supporting transla-
tion of variables in predicate position (our current limitation, cf.
Section 3.4), and (2) supporting translation of SPARQL 1.1 query
features such as Property Paths, in the next release.

Acknowledgements. This work is supported by the funding
received from EU-H2020 WDAqua ITN (GA. 642795). We would
like to thank Dr. Marko Rodriguez and Mr. Daniel Kuppitz, of the
Apache TinkerPop project, for their support and quality insights in
developing Gremlinator.

APPENDIX A SPARQL VS GREMLIN

Figure 5 presents the performance comparison of selected SPARQL
queries vs the translated Gremlin traversals on three popular RDF
and Graph stores.

4

http://wdaqua.eu/

Figure 5: Performance comparison of SPARQL queries vs Gremlin (pattern matching) traversals for BSBM dataset (in millisec-

onds (ms), log-scale) with respect to RDF and Graph stores in two cache settings. The inverted bars denote <1 ms run-time.

REFERENCES

[1] Renzo Angles, Marcelo Arenas, Pablo Barceló, et al. 2016. Foundations of Modern
Graph Query Languages. CoRR abs/1610.06264 (2016).

[2] Christian Bizer and Andreas Schultz. 2009. The berlin sparql benchmark. (2009).
[3] Diego Calvanese, Benjamin Cogrel, et al. 2017. Ontop: Answering SPARQL

queries over relational databases. Semantic Web 8, 3 (2017), 471–487.
[4] Artem Chebotko, Shiyong Lu, and Farshad Fotouhi. 2009. Semantics preserving

SPARQL-to-SQL translation. Data & Knowledge Engineering 68, 10 (2009), 973–
1000.

[5] Souripriya Das, Jagannathan Srinivasan, Matthew Perry, et al. 2014. A Tale of
Two Graphs: Property Graphs as RDF in Oracle.. In EDBT. 762–773.

[6] Brendan Elliott, En Cheng, Chimezie Thomas-Ogbuji, et al. 2009. A complete
translation from SPARQL into efficient SQL. In Proceedings of the 2009 Interna-
tional Database Engineering & Applications Symposium. ACM, 31–42.

[7] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2006. Semantics and Com-
plexity of SPARQL. In International semantic web conference. Springer, 30–43.

[8] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. 2014. Formalisation and
experiences of R2RML-based SPARQL to SQL query translation using Morph. In
Proceedings of the 23rd international conference onWorld wide web. ACM, 479–490.

[9] Jyothsna Rachapalli, Vaibhav Khadilkar, Murat Kantarcioglu, et al. 2011. RETRO:
A Framework for Semantics Preserving SQL-to-SPARQL Translation. The Uni-
versity of Texas at Dallas 800 (2011), 75080–3021.

[10] Marko A. Rodriguez. 2015. The Gremlin graph traversal machine and language
(invited talk). In Proceedings of the 15th Symposium on Database Programming
Languages, Pittsburgh, PA, USA, October 25-30, 2015. 1–10.

[11] Mariano Rodriguez-Muro and Martin Rezk. 2015. Efficient SPARQL-to-SQL with
R2RML mappings. Web Semantics: Science, Services and Agents on the World Wide
Web 33 (2015), 141–169.

[12] Michael Schmidt, MichaelMeier, andGeorg Lausen. 2010. Foundations of SPARQL
query optimization. In Proceedings of the 13th International Conference on Database
Theory. ACM, 4–33.

[13] Harsh Thakkar. 2017. Towards an Open Extensible Framework for Empirical
Benchmarking of Data Management Solutions: LITMUS. In The Semantic Web
- 14th International Conference, ESWC 2017, Portorož, Slovenia, May 28 - June 1,
2017, Proceedings, Part II. 256–266.

[14] Harsh Thakkar, Yashwant Keswani, Mohnish Dubey, Jens Lehmann, and Sören
Auer. 2017. Trying Not to Die Benchmarking: Orchestrating RDF and Graph
Data Management Solution Benchmarks Using LITMUS. In Proceedings of the
13th International Conference on Semantic Systems, SEMANTICS 2017, Amsterdam,
The Netherlands, September 11-14, 2017. 120–127.

[15] Harsh Thakkar, Dharmen Punjani, Yashwant Keswani, et al. 2018. A Stitch
in Time Saves Nine – SPARQL querying of Property Graphs using Gremlin
Traversals. CoRR abs/1801.02911 (2018).

[16] Harsh Thakkar, Dharmen Punjani, Maria-Esther Vidal, et al. 2017. Towards
an Integrated Graph Algebra for Graph Pattern Matching with Gremlin. In
Proceedings of the 28th International Conference, DEXA 2017, Lyon, France, August
28-31, 2017, Proceedings, Part I. Springer, 81–91.

[17] F Zemke. 2006. Converting sparql to sql. Technical Report. Technical Report,
October 2006.

5

	Abstract
	1 Introduction
	2 Related Work
	3 Gremlinator Approach
	3.1 Why Gremlin Traversal Language?
	3.2 Gremlinator Pipeline
	3.3 Queries
	3.4 Limitations

	4 Demonstration Details
	5 Conclusion & Future Work
	A SPARQL vs Gremlin
	References

