
The LITMUS Test: Benchmarking RDF and
Graph Data Management Systems

Yashwant Keswani1, Harsh Thakkar2, Mohnish Dubey2, Jens Lehmann2,

Sören Auer2

1 DAIICT, India
2 University of Bonn, Germany

201301047@daiict.ac.in, thakkar@cs.uni-bonn.de, dubey@cs.uni-bonn.de,
jens.Lehmann@cs.uni-bonn.de, auer@cs.uni-bonn.de

Abstract. In this paper we demonstrate the working of proposed LITMUS
benchmark suite. Benchmarking is an extremely tedious task demanding repetitive
manual effort, therefore it is advantageous to automate the whole process.
LITMUS, is an automated benchmarking framework which supports
benchmarking and comparing diverse DMSs for both RDF and property graph
DMS. It also provides custom visualization (i.e. plots) support for the
benchmarked DMSs against a wide range of CPU and memoryspecific evaluation
parameters.

Keywords: Benchmarking, Linked Data, Performance Analysis, RDF Stores, Graph
Stores, Automated Framework

1 Introduction

In order to cope up with the consumption of Open, Linked and Big Data over
the last few years, there has been exponential growth in development of
various Data Management Systems. These existing DMSs can be broadly
divided into two categories depending on the data model they address. 1.)
Triple Stores, which employ the RDF Graph data model and 2.) Graph
Databases, which frequently use the Property Graph data model.

Benchmarking is conducted to assess the performance of these DMSs with
respect to a variety of scenarios, in order to decide their suitability for a given
task. Benchmarking is a difficult and tedious process which involves many
repetitive subtasks such as data loading, query loading, query execution,
clearing the cache, etc for each participating DMS. There exist many
benchmarks (a full list and description of these can be found in the related
work section of the full paper [2] for taskspecific application, some of which
are bundled with their custom data generators [[3], [4], [5] etc] (i.e. synthetic
dataset generators). However, to the best of our knowledge, there is a lack of a
benchmarking framework which:

1. promotes reusability via providing a unied open extensible architecture for
orchestrating userdriven benchmarks

2. provides a list of comprehensive CPU and memorybased metrics and
parameters for performance evaluation

3. offers full automation of the underlying tedious subtasks, and
4. support a comprehensive postbenchmark performance reporting via custom

visualization using tables and plots

In the first working prototype of LITMUS, we only offer a limited number
of benchmarking tasks, such as:

1. Time taken to load a dataset in the memory (linked dataset for RDF based
DMS and property graph for Graph based DMS).

2. Time taken to execute a query (SPARQL query for RDF based DMS and
Gremlin query for Graph based DMS).

2 LITMUS Framework

The framework consists of various plugnplay modules as shown in Figure 1.
We now summarize the function of LITMUS components. However, a detailed
description of the utility of each module can be obtained from [1],[2].

1. Dataset Module: The dataset module provides utilities to convert a RDF
based dataset to a property graph. It also consists of scripts for loading a
dataset in the DMSs selected by the user.

2. DMS Modules : There are separate modules for each DMS which can be
benchmarked using the LITMUS framework. Each module has scripts which
are used to initialize the DMS using the configurations provided and make
the DMS ready for the benchmarking process.

3. Query Module : The query module is responsible for providing SPARQL
queries and the corresponding Gremlin queries for the dataset. At the
moment, we are providing limited SPARQL queries and their Gremlin
translations.

4. Controller and Tester Module : The controller and tester modules is
responsible for preparing the DMSs in the warm cache/cold cache
configuration (specified by the user) and executing the corresponding scripts
on the DMSs.

5. Analysis and Visualization Module : The analysis and visualization
module collects the data from all the log files, generated during the
benchmarking process, conducts the statistical analysis and prepares
visualization in terms boxplots and custom charts.

6. GUI Module : The GUI module is built to allow the user to allow an easy
configuration to the benchmark which needs to be executed. It allows the
user to select integrated DMS, datasets, queries, and save, import, and
export configurations.

The complete source code for the LITMUS framework is available here 1. We
have released the first working prototype of LITMUS benchmark suite (v0.1)

on docker hub2 for encouraging first hand experience and user feedback.

3 LITMUS Environment

In this paper we demonstrate the working of LITMUS (v0.1) using the
environment setup described below.

3.1 Integrated Dataset

The framework provides tools to convert the following datasets from RDF to
Property Graphs, to ensure a uniform and fair benchmarking process : BSBM

[3], WatDiv [4], Northwind 3 and DBpedia [6].
In the current version of LITMUS, we do not consider the semantics of

blank nodes (as in DBpedia and Wikidata) during the conversion of RDF
graphs to PGs.

3.2 Integrated DMS

LITMUS currently allows benchmarking eight DMSs (four RDF based and

four Graph based) currently, which are Openlink Virtuoso 4, ghrdf3x 5,

Apache Jena 6, 4store 7, Sparksee (formerly known as DEX Graph) 8, Neo4j 9,

OrientDB 10 and Apache Tinkerpop 11.

3.3 Supported Queries

A total of 30 SPARQL queries were created and their Gremlin translations
were also created manually. The queries can be executed in the warm cache
and the cold cache (cache is cleared after every run) configuration. The cache
is cleared using the UNIX command echo 3 > /proc/sys/vm/drop_caches .

Figure 1. Figure 1: The architecture of the first working prototype of LITMUS
Benchmark Suite.

Executing the queries in two configurations allow the users to study the
correlation between performance of the DMSs with respect to query, dataset
specific characteristics, the order in which they are run. The influence of
factors like the query length, query size, Graph patterns on the performance of
the system can be seen when run in the queries are run in warm cache
configuration.

3.4 Execution Environment

The following set of rules are followed by the framework to ensure that no
DMS gets an advantage when it is being benchmarked.

1. Each query task is carried out individually, in complete isolation and is run
several times to nullify the effect of anomalies.

2. Each dataset task loading process takes in a new location to ensure no run
is getting an undue advantage of already existing files.

A variety of parameters and metrics are used to evaluate the performance of
every DMS after the benchmarking process. The full descriptions of the
catered evaluation parameters and metrics can be obtained from [2]. The
following parameters are measured using the perf utility tool. Cycles,
Instructions, Cache References, Cache Misses, Bus Cycles, L1 data cache
loads, L1 data cache load misses, L1 data cache stores, dTLB loads, dTLB
load misses, LLC loads, LLC load misses, LLC stores, Branches, Branch
Misses, Context Switches, CPU migrations, Page Faults.

LITMUS also supports calculation of various statistical metrics such as
arithmetic, geometric, harmonic means, median, mode, standard deviation,
minimum, and maximum of each of the measured parameters. Furthermore,
LITMUS allows the users to export the results in form of CSV files and Latex
tables. Boxplots are generated using the matplotlib for each parameter which
is measured during the benchmarking process.

4 A Hands On Experience With LITMUS

We now present the benchmarking results produced for a set of selected
queries using LITMUS (v0.1). The experiments were conducted on the
following setting:

CPU: Intel(R) Core(TM) i54200M CPU @ 2.50GHz; RAM: 8 GB DDR3;
L1d and L1i Caches: 32 KB; L2 Cache: 256 KB; L3 Cache : 3072 KB;
RDF DMSs: Openlink Virtuoso [7.2.5], Apache Jena TDB [3.2.0] , 4store
[1.1.5], ghRDF3X; Graph DMSs: Apache TinkerPop [3.2.4], Neo4J [1.9.6],
Sparksee [5.1], OrientDB [2.1.3]

4.1 Illustration 1

The cold and warm cache query execution performance example.

Gremlin Query : g.V().has("categoryName").categoryName
SPARQL Query : select ?b where {?a <http://www.w3.org/2000/01/rdf-

schema#label> "category" .

?a <http://northwind.com/model/categoryName> ?b .}

Along with measuring the execution time of the various queries, the
LITMUS framework also measures a variety of system parameters which are
responsible for the performance. These parameters are very handy to analyze
the performance. An example in this illustration would be the cachemisses for
the different DMSs. The performance of cold cache suffers in comparison to
that of the warm cache configuration. We observe that the cache misses for
the cold cache configurations are higher when compared to the warm cache
configurations. Figure 2 and Figure 3 are plots of a the system based
parameters.

Table 1. Table summarising the execution time (in seconds) of the query for all the
DMSs for warm cache and cold cache configurations.

4store Jena Neo4j Orient RDF3x Sparksee Tinker Virtuoso

Cold Cache 4.289 0.16510 0.02865 0.0489 0.546 0.0417 0.190 0.001

Warm Cache 0.0245 0.15870 0.02505 0.029 0.0002 0.0255 0.205 0.0008

Table 2. Table summarising the average cache misses for query for the cold cache and
warm cache configurations.

4store Jena Neo4j Orient RDF3x Sparksee Tinker Virtuoso

Cold Cache 6.93e+7 1.45e+8 4.20e+8 7.02e+8 9.52e+6 5.25e+8 2.08e+9 5.27e+6

Warm Cache 4.38e+6 1.42e+8 3.66e+8 4.67e+8 8.02e+5 2.57e+8 1.92e+9 9.64e+5

Figure 2. Time taken (in seconds) to execute the query on the Northwind Dataset in
a cold cache configuration.

4.2 Illustration 2

The dataset loading performance of supported RDF and Graph DMSs. In this
illustration we load the Northwind dataset in the memory for all the DMS. Ta
ble 2 summarizes the time taken in seconds to load the dataset by the
different DMSs.

Figure 3. The instructions taken to run the query by Graph based DMS in Cold
Cache Configuration.

Table 3. Table summarising the time taken (in seconds) for loading the DMS.

4store Jena Neo4j Orient RDF3x Sparksee Tinker Virtuoso

0.977 8.226 1.493 3.5374 0.6962 0.7252 0.6257 0.279

Figure 4. Time taken (in seconds) to load the Northwind Dataset.

Table 4. Table summarising the average values of various parameters for loading the
DMS.

4store Jena Neo4j Orient RDF3x Sparksee Tinker Virtuoso

Instructions 1.31e+
9

1.85e+1
0

1.75e+1
0

4.33e+1
0

1.40e+
9

1.08e+1
0

5.02e+1
0

1.48e+9

Cache Misse
s

2.11e+
7

6.50e+8 6.44e+8 1.73e+9 1.77e+
7

3.93e+8 2.05e+9 2.78e+7

A lot of factors contribute to the performance of a DMS. In Table 4, it can
be observed that the performance of the Jena and the Orient DMSs can be
attributed to the high number of branch misses and dTLB misses.
All the results and plots which were generated as a part of the result can be

found here12.

5 Conclusion and Future Work

In this paper we presented a demonstration of the proposed LITMUS
benchmark suite [2]. To the best of our knowledge, LITMUS is the first of its
kind open, extensible and fully automated benchmarking framework which
allows userdriven benchmarking and result visualization of various RDF and
Graph DMSs. The planned future work is as follows:

1. At present, LITMUS supports eight DMSs. We want to extend the support
to a larger number of DMSs and include them in the next version.

2. We also plan to include task graph computing specific queries such as BFS,
DFS in the future.

3. Furthermore, we plan to provide an onthefly SPARQL to Gremlin query
translation tool “Gremlinator” for ensuring benchmarking fairness. This will
enable constructing gremlin graph pattern matching traversals from
corresponding SPARQL queries using the proposed mapping in [7]

4. LITMUS currently supports the conversion of a few datasets to Property
Graphs. In the next version, we plan to propose a more robust and
generalized RDF to Property Graph convertor which can work for custom
datasets.

5. Lastly, we also eye for developing a synthetic dataset generator which will
enable LITMUS to become a standalone endtoend benchmarking
framework, without any external dependence for datasets.

Acknowledgments

This work is supported by the funding received from EUH2020 WDAqua ITN
(GA. 642795)

References

1. Harsh Thakkar. Towards an Open Extensible Framework for Empirical
Benchmarking of Data Management Solutions: LITMUS. In The Semantic
Web  14th International Conference, ESWC 2017, Portorož, Slovenia, May
28  June 1, 2017, Proceedings, Part II . 256–266. (2017).

dTLB Misse
s

2.81e+
6

1.15e+8 1.25e+8 3.28e+8 1.55e+
6

7.63e+7 3.51e+8 6.05e+6

1
2
3
4
5
6
7
8
9
10
11
12

2. Harsh Thakkar, Yashwant Keswani, Mohnish Dubey, Jens Lehmann, and
Sören Auer. Trying Not to Die Benchmarking – Orchestrating RDF and
Graph Data Management Solution Benchmarks Using LITMUS . In
Proceedings of SEMANTiCS 2017, Amsterdam, Netherlands. (2017).

3. Christian Bizer and Andreas Schultz. The berlin sparql benchmark. (2009).
4. Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee.

Diversified stress testing of RDF data management systems. In
International Semantic Web Conference, Springer, 197212. (2014).

5. Mohamed Morsey, Jens Lehmann, Sören Auer, and others. DBpedia
SPARQL Benchmark – Performance Assessment with Real Queries on Real
Data. Springer Berlin Heidelberg, 454–469. (2011).

6. Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In
The semantic web . Springer, 722–735. (2007).

7. Harsh Thakkar, Dharmen Punjani, MariaEsther Vidal, and Sören Auer.
Towards an Integrated Graph Algebra for Graph Pattern Matching with
Gremlin. In Proceedings of the 28th International Conference, DEXA 2017,
Lyon, France, August 2831, 2017, Proceedings, Part I . Springer, 81–91.
(2017).

Footnotes

LITMUS Benchmark Suite  Github/
Litmus Benchmark Suite  Dockerhub
Northwind Dataset
Openlink Virtuoso
RDF3X
Apache Jena
4store
Sparksee
Neo4J
OrientDB
Apache Tinkerpop
Experiment Results

https://github.com/LITMUS-Benchmark-Suite/
https://hub.docker.com/r/litmusbenchmarksuite/litmus/
https://northwinddatabase.codeplex.com/
https://virtuoso.openlinksw.com/
https://github.com/gh-rdf3x/gh-rdf3x
https://jena.apache.org/
http://www.4store.com/
http://www.sparsity-technologies.com/
https://neo4j.com/
http://orientdb.com/
http://tinkerpop.apache.org/
https://goo.gl/BKcbQE

