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ABSTRACT
Knowledge graphs, usually modelled via RDF or property graphs,
have gained importance over the past decade. In order to decide
which Data Management Solution (DMS) performs best for speci�c
query loads over a knowledge graph, it is required to perform bench-
marks. Benchmarking is an extremely tedious task demanding
repetitive manual e�ort, therefore it is advantageous to automate
the whole process. However, there is currently no benchmarking
framework which supports benchmarking and comparing diverse
DMSs for both RDF and property graph DMS. To this end, we in-
troduce, the �rst working prototype of, LITMUS which provides
this functionality as well as �ne-grained environment con�gura-
tion options, a comprehensive set of DMS and CPU-speci�c key
performance indicators and a quick analytical support via custom
visualization (i.e. plots) for the benchmarked DMSs.
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evaluation; Resource Description Framework (RDF); Extrac-
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1 INTRODUCTION
Over the last few years, the amount and availability of Open, Linked
and Big data on the web has increased. Simultaneously, there has
been an emergence of a number of Data Management Solutions
(DMSs) to deal with the increased amounts of structured data. The
available DMSs for graph structured data can be broadly divided
in two categories on the basis of the data model they address: 1.)
Triple Stores, which employ the RDF Graph data model and 2.)
Graph Databases, which frequently use the Property Graph (PG)
data model. Apart from the format of the dataset that they consume,
there are several other di�erences in the manner in which they
build indexes and execute queries.

In order to objectively decide which DMS are suitable with
respect to particular scenarios, benchmarks involving particular
query loads over characteristic datasets have been de�ned. Some of
the existing benchmarking tools have their own dataset generators
and corresponding queries to run on these datasets [1, 4]. However,
none of the tools allow the users to benchmark both of the above
mentioned categories of graph DMSs, i.e. triple stores and graph
databases, in a uni�ed and comparable manner. We argue that
the the increasing number of available DMSs in both categories
necessitates a benchmarking tool which is su�ciently versatile to
perform those benchmarks.

To this end, we present LITMUS – an open, and a extensible
framework, which allows the users to benchmark DMS for RDF and
property graph data models on a given dataset and query workload.
To enable this, the dataset will be presented as RDF dataset to triple
stores and as property graph to graph databases. The dataset is
then queried using queries written in SPARQL [15] for the RDF
DMSs and Gremlin [16] for the Graph DMSs.

LITMUS is a comprehensive framework, that will serve the aca-
demicians, researchers, DMS developers and the organizations who
employ DMSs for the e�cient consumption of their data, by al-
lowing a choke-point driven performance comparison and analysis
of various Data Management Solutions (Graph and RDF-based),
with respect to di�erent third-party real and synthetic datasets and
queries.

Contributions: (1) To the best of our knowledge, LITMUS is
the �rst framework able to – support both RDF and PG bench-
marking (by SPARQL querying of property graphs).
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Moreover, LITMUS provides bene�ts, which are partially present
in other benchmarking frameworks but not in their combination.
In particular, LITMUS is able to:

(2) promote reusability via providing a uni�ed open extensible
architecture for orchestrating user-driven benchmarks

(3) provide a list of comprehensive CPU and memory-based
metrics and parameters for performance evaluation,

(4) o�er full automation of the underlying tedious sub-tasks,
and

(5) support a comprehensive post-benchmark performance
reporting via custom visualization using tables and plots.

Limitations:
At present, LITMUS does not support the following features:

• Federated querying – Multiple sources/endpoints being
queried at the same time.

• Parallel querying & updates – Multiple users/clients query-
ing and updating a single source at the same time.

• Support for generation of synthetic datasets and queries.
We "use" other benchmarks that o�er such support and
leave it up to the user to chose what they deem �t according
to their needs.

The rest of the article starts with Section 2 reporting the state-
of-the-art in benchmarking, followed by Section 3 portraying the
functional architecture of LITMUS. Section 4 elaborates the curated
LITMUS environment and infrastructure, followed by presenting
the selection of KPIs considered for DMS evaluation in Section 5.
Finally, Sections 6 and 7 illustrate the proposed framework in action
and conclude the paper, presenting future directions.

2 RELATEDWORK
We summarize the current state of the art in benchmarking with
respect to (a) relational databases, (b) graph databases, (c) RDF
stores, and (d) cross-domain benchmarking e�orts in Table 1.

The existing benchmarks, as shown in this table, have various
domain-speci�c strengths. However, they also display limitations
regarding the need of having an integrated generalized benchmark-
ing framework. The existing e�orts, for instance, (i) do not o�er
the capability of benchmarking both RDF and property graphs in
a single environment; (ii) with the exception of HOBBIT, do not
o�er an end-to-end benchmarking and result visualization solution
of cross domain DMSs; and (iii) do not allow easy integration of
existing benchmarks in an user-driven fashion.

LITMUS addresses the above mentioned shortcomings and serves
as an end-to-end benchmarking solution with the capability of ben-
charmking RDF and Property graphs. It promotes interoperability,
reusability and replicability of existing benchmarks via visualiza-
tion of benchmark results, all wrapped in one open, extensible
framework.

3 THE LITMUS FRAMEWORK
The proposed LITMUS framework consists of a number of plug-n-
play modules, which ensures interoperability and extensibility of
future DMSs and datasets in the existing infrastructure. We describe
the �rst prototype of LITMUS Benchmark Suite in Figure 1, which
showcases the interaction between various constituent modules.
A detailed description of the framework, in its �nal stage, can be

referred from [21]. We now summarize the function of each module
in LITMUS:
GUI module: provides a graphical interface for the user to allow
easy con�guration of the benchmark to be executed. It allows the
user to select from the integrated DMSs, datasets, queries and KPIs,
and save, import, export con�gurations, results, etc. artifacts pro-
duced during the benchmark. Figure 2 shows a screen of the GUI
module.
Dataset module: consists of various scripts for loading the user

selected datasets in corresponding DMSs. It also converts a given
RDF dataset in to property graphs if a converted version is not avail-
able. For the integrated datasets, we already provide the converted
version within.
DMSmodules: consists of various scripts for loading user-speci�ed
con�guration to the corresponding DMSs and preparing them for
a benchmark.
Controller & Tester module: consists of various scripts for exe-
cuting the benchmark by – (i) preparing the DMSs for warm-cache
or cold-cache settings by warming up the DMSs (if speci�ed); then
(ii) executing respective SPARQL and Gremlin queries against RDF
and Graph DMSs in a controlled fashion.
Analysis & Visualization module: collects the results (log �les)
from the executed benchmark of both RDF and Graph DMSs. The
matplotlib1 python library is used for generating box-plots of
benchmark results, where as statistical analysis is carried out using
the the Pandas python library, to calculate various parameters, e.g.
arithmetic mean, median, standard deviation etc.
LITMUS docker: The whole framework is encapsulated in a single
con�gurable docker container, to ensure necessary isolation during
the benchmarking process.
Query module: In the current version of LITMUS, we do not
have a separate query module, since we provide limited SPARQL
queries and their Gremlin translation. This is to be addressed in the
next version, which will provide on-the-�y query translation us-
ing "Gremlinator". In a nutshell, this translation requires mapping
SPARQL algebra operators to corresponding Gremlin operators as
proposed in [22], and there by constructing corresponding graph
pattern matching Gremlin traversals.
The complete source is well documented and made available pub-
licly2. The �rst prototype of LITMUS framework (v0.1) is released
on Docker Hub platform3 for encouraging �rst hand experience
and user feedback.

4 THE LITMUS ENVIRONMENT
We now describe in brief the cultivated environment for LITMUS,
consisting of datasets, DMSs, queries and the benchmark environ-
ment con�guration supported in its current (v0.1) release.

4.1 Integrated Datasets
LITMUS framework currently provides support for benchmarking
RDF DMSs (which are RDF stores), and Graph DMSs (which are
Graph stores) using corresponding versions of Linked data (in RDF
and Graph formats) against a set of corresponding queries (SPARQL

1matplotlib – https://matplotlib.org/
2LITMUS Benchmark Suite – https://github.com/LITMUS-Benchmark-Suite/
3LITMUS docker – https://hub.docker.com/r/litmusbenchmarksuite/litmus/

https://matplotlib.org/
https://github.com/LITMUS-Benchmark-Suite/
https://hub.docker.com/r/litmusbenchmarksuite/litmus/


LITMUS Benchmark Suite Semantics2017, September 11–14, 2017, Amsterdam, Netherlands

Table 1: A survey of the state-of-of-the-art in benchmarking e�orts of Relational, RDF and Graph DMSs.

Type Benchmark RDB. RDF Graph Description

TPC [13] X The Transaction Processing Performance Council (TPC) [13] is well established for benchmarking
relational DMSs. TPC provides a range of benchmarks such as the online transaction processing
benchmarks TPC-C and TPC-E (which employ transactions per minute metric), the analytics TPC-H
and decision support TPC-DS (which employ the queries per hour and cost per performance metrics).

XGDBench [6] X is a graph DMS benchmarking platform for cloud computing systems, which is an extension of the
famous Yahoo! Cloud Serving Benchmark to the graph domain. The authors benchmarked graph DMSs
– AllegroGraph, Fuseki, Neo4j, an OrientDB using XGDBench on Tsubame 2.0 HPC cloud environment.

HPC [7] X The HPC Scalable Graph Analysis Benchmark consists of a range of tests for examining a variety
of independent attributes of the hardware of High Performance Computing systems. HPC addresses
graph-speci�c tasks such as graph suitability transformations and graph analysis over graph DMSs in
a distributed environment.

Graph500 [12] X is a benchmark for data intensive supercomputing systems and its applications. It does not consider
benchmarking typical graph databases.

DBPSB [11] X The DBpedia SPARQL Benchmark (DBPSB) benchmarks RDF DMSs using DBpedia by creating a query
workload derived from the DBpedia query logs.
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LUBM [9] X The Lehigh University Benchmark (LUBM) benchmarks RDF DMSs over a large synthetic dataset that
complies to a university domain ontology.

WatDiv [1] X The Waterloo SPARQL Diversity TEST Suite (WatDiv) benchmarks RDF DMSs using their synthetic
data and query generators in order to analyze the corelation between DMS performance against varying
query structures and complexities (query typology).

SP2Bench [20] X is one of the most commonly used synthetic data-based RDF DMS benchmarks, which uses the schema
of the DBLP bibliographic dataset (http://dblp.uni-trier.de/db/) to generate custom sized datasets.

IGUANA [19] X is a generic SPARQL benchmark execution framework focused on benchmarking RDF DMSs and
federated querying.

FEASIBLE [18] X is a feature-based (data-driven and structural) SPARQL benchmarking framework for RDF DMSs. It
employs an automatic approach for the generation of benchmarks using query logs.

LSQ [17] X consists of real world SPARQL queries extracted from the logs of public SPARQL endpoints. These
queries are extracted from four public endpoints: DBpedia (logs 232 million triples), Linked GeoData
(LGD) (1 billion triples), Semantic Web Dog Food (SWDF) (300 thousand triples) and the British Museum
(BM) 1.4 million triples).

HOBBIT [14] X is an end-to-end benchmarking platform (in early stage) focused towards large-scale benchmarking on
all aspects of the Linked Data life cycle. It will enable data, query and task generation functionalities
(in later stages) for benchmarking of RDF DMSs under custom stress loads for the querying of RDF
graphs using industrial use-case queries.

BSBM [4] X X The Berlin SPARQL Benchmark (BSBM) is a synthetic data-based e-commerce use case scenario for
benchmarking RDF and Relational DMSs. It provides custom generators for creating datasets and
queries of custom size and typology.

Pandora X X Pandora (http://pandora.ldc.usb.ve/) is a benchmark which uses the BSBM data to assess the performance
of RDF stores against relational stores (i.e. Jena-TDB, MonetDB, GH-RDF-3X, PostgreSQL, 4Store).
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RDF [5]
X X is a RDF and Graph DMS benchmarking framework, which o�ers a novel SPARQL to SQL translation

engine for multiple backends. Its current version supports benchmarking DB2, PostgreSQL and Apache
Spark. It o�ers custom query loads for both DBpedia (real) and LUBM (synthetic) datasets.

Graphium [8] X X Is a benchmarking plus result visualization e�ort, comparing RDF stores against Graph stores (i.e.
Neo4J, Sparksee/DEX, HypergraphDB, RDF-3X) on custom graph datasets including a 10M triple
dataset (using the BSBM data generator).

LDBC [2] X X The Linked Data Benchmark Council (LDBC) is focused on curating industry-strength benchmarks
for both graph and RDF DMSs. It introduces a choke-point driven analysis methodology for analyzing
and developing benchmark workloads.

and Gremlin). We list the datasets that were converted from the
RDF graphs to Property graphs (PGs), to ensure a uniform and fair
benchmarking process.

In the current version of LITMUS, we do not consider the se-
mantics of blank RDF nodes (as in DBpedia and Wikidata) during

the conversion of RDF graphs to PGs. Addressing these underlying
semantics of RDF graphs, requires an in-depth study of information
preserving techniques. We provide a proof-of-concept implementa-
tion for transforming RDF graphs (in this case directed edge-labelled

http://dblp.uni-trier.de/db/
http://pandora.ldc.usb.ve/
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Figure 1: The architecture of the �rst working prototype of LITMUS Benchmark Suite.

Figure 2: GUI of LITMUS Benchmark Suite.

multi-graphs) [.nt �les] to PGs (directed, edge-labeled, attributed
multi-graphs) [.graphml �les].

We present a set of rules used for the conversion of RDF graphs
to PGs. Given that a RDF triple consists of {s p o.}, each of the S,
P are IRIs and O can be either a IRI or a literal/value. We distinguish
between two types of RDF triples as: (i) attribute triple– if the object
is a literal; (ii) relationship triple– if it is a URI. Attribute triples
correspond to properties in a PG, and relationship triples to edges.
Furthermore, predicates { s p o } can be URI, which can be labels
(rdfs:label), types (rdfs:type), etc in a RDF graph. Depending on
the type of a predicate, we distinguish whether the properties are
of edges or nodes in a PG. We point the interested reader to [10],
for a detailed understanding and illustration of the RDF → PG
transformation.

Berlin SPARQLBenchmark [4] (BSBM) – is a synthetic dataset
built around an e-commerce use case, where a set of products is
o�ered by di�erent vendors and di�erent consumers have posted
reviews about products. BSBM o�ers custom dataset and query gen-
erator scripts, which can be used to generate datasets and queries
of varying size and complexity. We provide generated RDF data
(.nt �le) and converted PGs (.graphml �le) (using custom scripts)
for 1M and 10M triples with the v0.1 of LITMUS.

Waterloo SPARQL Diversity Test Suite [1] (WatDiv) – is a
synthetic dataset which is again based on the e-commerce use case
scenario, however the distinct characteristic that all instances of
the same entity have mixed number of of attributes. We provide
generated RDF data (.nt �les, using its data generation script) and

converted PGs (.graphml �les) (using custom scripts) for 1M and
10M triples with the v0.1 of LITMUS.

DBpedia [3] – is a crowd-sourced community e�ort to extract
structured information from Wikipedia and make this information
available on the Web. The DBpedia dump consists of multiple �les
in the ttl format. We provide a proof-of-concept property graph of
DBpedia. However, we do not benchmark it since it consists blank
node semantics, which are not currently supported by LITMUS v0.1
framework. The script developed for the conversion can be found
here4.

Northwind5 – is a synthetic dataset describing an ecommerce
scenario about the sales and purchase transactions that happen
between the company Northwind Traders and its customers and
suppliers respectively. We provide both RDF data (.nt �les) and
converted PGs (.graphml �les) with the v0.1 of LITMUS.

4.2 Integrated DMSs
LITMUS currently provides support for benchmarking eight DMSs
(four each of RDF & Graph DMS), as listed below:

RDF DMSs The following RDF DMS can be evaluated in the
Litmus framework:

(1) Openlink Virtuoso6

(2) gh-RDF-3x7

4DBpedia Property graph converter https://github.com/LITMUS-Benchmark-Suite/
dbpedia-graph-convertor
5Northwind Database https://northwinddatabase.codeplex.com/
6Openlink Virtuoso – https://virtuoso.openlinksw.com/
7RDF-3X – https://github.com/gh-rdf3x/gh-rdf3x

https://github.com/LITMUS-Benchmark-Suite/dbpedia-graph-convertor
https://github.com/LITMUS-Benchmark-Suite/dbpedia-graph-convertor
https://northwinddatabase.codeplex.com/
https://virtuoso.openlinksw.com/
https://github.com/gh-rdf3x/gh-rdf3x
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Table 2: Query feature design and description
Query No. Feature Count Description

C1-C3 CGPs 3 Queries with mixed number of BGPs
F1-F3 FILTER 3 CGPs with a combination of >=1 FILTER
L1-L3 LIMIT+OFFSET 3 CGPs with a combination of >=1 LIMIT constraints
G1-G3 GROUP BY 3 CGPs with GROUP BY feature
Gc1-Gc3 GROUP COUNT 3 CGPs with GROUP BY + COUNT
O1-O3 ORDER BY 3 CGPs with ORDER BY feature
U1-U3 UNION 3 CGPs with UNION feature
Op1-Op3 OPTIONAL 3 CGPs with a OPTIONAL BGPs
M1-M3 MIX 3 CGPs with a combination of varying features
S1-S3 STAR 3 CGPs forming a STAR shape execution plan
TOTAL 10 30 -

(3) Apache Jena TDB8

(4) 4Store9

For each of the RDF DMS, LITMUS includes two shell scripts for
– (i) benchmarking the process of loading a RDF dataset in a RDF
DMS; and (ii) benchmarking the SPARQL query execution pro-
cess against a DMS. We employ the elapsed time parameter of the
’/usr/bin/time’ utility has been used to measure the execution
time for both the tasks for all the RDF DMSs. Graph DMSs The
following Graph DMS can be benchmarked in the current release
of LITMUS:

(1) Sparksee (formerly known as DEX Graph)10

(2) Neo4j11

(3) OrientDB12

(4) Apache TinkerPop13

For each Graph DMS, LITMUS includes four scripts (2 shell scripts,
2 groovy scripts) which are used for – (i) benchmarking the process
of loading a Graph dataset in a Graph DMS, using the Gremlin
Groovy console; and (ii) benchmarking the Gremlin Query exe-
cution against a Graph DMS, using the Gremlin Groovy console.
The execution time for both the tasks has been measured using the
’System.currentTimemillisecs()’ Groovy function.

4.3 Supported Queries
To demonstrate a benchmark using LITMUS, we curated a query
dataset including both SPARQL and Gremlin queries following the
query features as summarized in Table 2. A total number of 30
SPARQL queries were created (3 of each query feature) for each
RDF dataset. We created their corresponding Gremlin counter-
parts manually for each Graph dataset. The queries are executed
using both warm and cold cache settings, where a warm cache:
implies that the cache is not cleared after each query run, and
cold cache: implies that the cache is cleared using the ’echo 3
> /proc/sys/vm/drop_caches’ unix command after each query.
Running the queries in two con�gurations allow the users to study
the correlation between performance of the DMSs with respect to
query, dataset-speci�c characteristics, and the order in which they
are run. Additionally, the in�uence of factors like the query length,
query size, Graph patterns on the performance of the system can be
seen when run in the queries are run in warm cache con�guration.

8Apache Jena – https://Jena.apache.org/
94Store DMS – http://www.4store.org/
10Sparksee Technologies – http://www.sparsity-technologies.com/
11NEO4J – https://neo4j.com/
12Orient DB – http://orientdb.com/
13Apache TinkerPop – http://tinkerpop.apache.org/

4.4 Execution environment
It is very important to ensure that all DMSs run under identical
conditions for eliminating any bias towards a speci�c run, and
avoiding any inconsistencies and anomalies observed in results.
As a result the following set of rules are followed to ensure a fair
evaluation procedure.

(1) Each query execution task is carried out individually and
is ran several times (default: 10 times, user can de�ne
this before-hand) for each DMS to nullify the e�ect of
anomalies.

(2) Every run of the task is run in isolation. No other unneces-
sary process(es) is running in the background during the
benchmark.

(3) Each dataset loading task makes use of a new location for
every run. This ensures that no run is getting an undue
advantage of an already existing set of �les.

5 PERFORMANCE EVALUATION
LITMUS caters a wide variety of performance evaluation parame-
ters and metrics to allow an in-depth analysis of underlying internal
and external factors of a DMS.

5.1 Selected Parameters
Perf-tool utility. LITMUS uses the perf-tool14 utility to mea-
sure a variety of CPU and RAM-speci�c parameters, e.g. L1d-cache-
misses, L1i-cache-misses, DTLB-misses, etc. for enabling a com-
prehensive analysis of the participating DMSs. We segregate the
parameters o�ered by the perf-tool utility into four groups. Both
the benchmarking tasks, viz. (i) loading the dataset a DMS, and (ii)
executing a query on a DMS, are run separately for each group of
parameters.

These parameters also enable the users to identify the reason(s)
for a superior or inferior performance of any particular DMS. We
present an itemization of the parameters considered to evaluate a
performance of a DMS:

(1) Cycles : The number of cycles taken to execute a task (e.g.
loading a dataset, etc.).

(2) Instructions : The number of instructions executed per
given task.

(3) Cache references : The total number of cache references
made during a given task.

(4) Cache misses : The total number of cache misses occurred
during a given task.

(5) Bus cycles : The number of bus cycles taken during a given
task.

(6) L1 data cache loads : The total number of L1 cache loads
that occur during a given task.

(7) L1 data cache load misses : The total number of L1 data
cache load misses that occur during a given task.

(8) L1 data cache stores : The L1 data cache stores that occur-
during a given task.

(9) dTLB loads : The data translation lookaside bu�er (dTLB)
loads that occur during a given task.

(10) dTLB load misses : The dTLB loads misses that occur during
a given task.

14Perf tool – https://perf.wiki.kernel.org/index.php/Main_Page

https://Jena.apache.org/
http://www.4store.org/
http://www.sparsity-technologies.com/
https://neo4j.com/
http://orientdb.com/
http://tinkerpop.apache.org/
https://perf.wiki.kernel.org/index.php/Main_Page
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(11) LLC loads : The Last level Cache (LLC) loads that occur
during a given task.

(12) LLC load misses : The LLC load misses that occur during a
given task.

(13) LLC stores : The LLC stores that occur during a given task.
(14) Branches : The total number of branches that are encoun-

tered during a given task.
(15) Branchmisses : The total number of branches missed during

a given task.
(16) Context switches : The total context switches that happen

during a given task.
(17) CPU migrations : The CPU migrations that occur during a

given task.
(18) Page faults : The page faults that occur during a given task.

5.2 Selected Metrics
Apart from the dataset loading time and query execution time
(both warm and cold caches) for each DMS and each query, LIT-
MUS provides a list statistical metrics for result aggregation and
analysis. We provide support for computing various mean [µ]
(e.g arithmetic, harmonic [H_M] and geometric [G_M]), median
[x̃], standard deviation [σx ], variance [σ 2], minimum [min(x)]
and maximum [max(x)] for all of the above mentioned CPU and
memory-speci�c parameters using the pandas15 python data anal-
ysis library. Furthermore, we also provide functionality to export
all the metrics results, in CSV �le (comma separated value) format
and LATEX-tabular format.

5.3 Data Visualization
LITMUS provides automated support for visualizing results of the
benchmark using the python matplotlib data visualization library
in the form of boxplots to ease the process of decision making.
The boxplot presents the median value, �rst quartile, third quartile
and the extreme outliers. The Inter Quartile Range(IQR) is de�ned
as the di�erence of the value at the third quartile and the �rst
quartile. An extreme outlier, is de�ned as a value which is not
in the range (�rst quartile −1.5 ∗ IQR, third quartile +1.5 ∗ IQR).
These extreme outliers correspond to the anomalous runs which
were executed. We use a two color coding scheme to highlight
the di�erence between RDF DMSs (using green) and Graph DMSs
(using blue). A distinct plot is generated for each parameter (as
mentioned in the above sections), used for each task per DMS.

6 LITMUS IN ACTION
We demonstrate the working of LITMUS to showcase its applica-
bility, functionality and suitability for conducting benchmarks in a
user-con�gured fashion. Keeping in mind the page limit and the
extensive amount of results and plots generated during the bench-
mark, we list only subset of the complete benchmark results (which
includes benchmarking only a few parameters, queries and tasks).
We only present the results of benchmarking all DMSs using the
Northwind dataset for brevity. However, a complete set of results
can be accessed online via the links provided later in this section.
Benchmarking Tasks: (i) Dataset loading time; and (ii) Query
execution (both Warm Cache & Cold Cache) time
15Pandas Data Analysis Library – http://pandas.pydata.org/

6.1 Experimental Setup
We curated the following con�guration for executing LITMUS:
CPU: Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz; RAM: 8 GB
DDR3; L1d & L1i Caches: 32 KB; L2 Cache: 256 KB; L3 Cache:
3072 KB; RDF DMSs: Openlink Virtuoso [7.2.5], Apache Jena TDB
[3.2.0] , 4store [1.1.5], gh-RDF3X; GraphDMSs: Apache TinkerPop
[3.2.4], Neo4J [1.9.6], Sparksee [5.1], OrientDB [2.1.3]

6.2 Preliminary Results
We now present selected plots generated by LITMUS after the
benchmarking process. A complete set of results (including all plots,
CSV �les, and tables in LATEXformat) for the executed benchmark
are made public and can be found here16.

Table 3 presents the loading time performance comparison
of loading Northwind dataset for all DMSs respectively. Here, in
terms of dataset loading time, we observe that Virtuoso is the fastest
followed by TinkerPop (Tinker) and the slowest reported time is
by Jena.

Furthermore, Tables 4 and 5 present the execution time (both
cold and warm cache) performance comparison on Query 14 (cf.
Appendix A, SPARQL listing 1, Gremlin listing 2) for all DMSs re-
spectively. Here, we observe that (for query 14): (i) For warm cache-
RDF3X is the fastest in terms of query execution time, followed by
Virtuoso, whereas TinkerPop (tinker) is the slowest; and (ii) For
cold cache- Virtuoso is the fastest in terms of query execution time,
followed by Neo4j, whereas 4Store is the slowest.

The better performance of Virtuoso and RDF3X (RDF DMSs)
in terms of query execution can be traced back to the fact that
they both inherently maintain implicit indices. The default in-
dexing scheme17 in Virtuoso enables it to declare 2 full indices
(PSOG, POGS) and 3 partial indices (SP, OP GS) over the RDF graphs.
Whereas RDF3X maintains 6 hash-based indices (SPO, POS, OPS,
PSO, OSP, SOP) over the RDF graphs giving them an upper edge
in terms of performance. In case of TinkerPop (Graph DMS), these
indices have to be declared explicitly by the user, depending on
their need. Since, we did not explicitly declare any index, hence
weaker performance is observed.

Figure 3 presents sample plots of CPU migrations for both cold
and warm caches, page-faults and number of instructions executed,
for Query 20 (cf. Appendix A, SPARQL listing 3 and Gremlin list-
ing 4). By doing so we demonstrate the versatility of LITMUS in
terms of generating plots of varying details of selected KPIs.

7 CONCLUSION & FUTUREWORK
In this paper, we present the �rst working prototype of LITMUS
Benchmark Suite, which is a currently a work in progress. LITMUS
is a novel framework enabling benchmarking of both RDF and
Property graphs via supporting execution of SPARQL queries over
graph databases. It also provides support for visualizing results of
benchmarked DMSs using custom plots and an easy to use GUI. In
its complete capacity, LITMUS will serve as a common platform
for benchmarking RDF, Graph and Relational DMSs, promoting

16Complete benchmark results https://goo.gl/BKcbQE
17RDF indexing scheme in Virtuoso – https://virtuoso.openlinksw.com/dataspace/doc/
dav/wiki/Main/VirtRDFPerformanceTuning#RDFIndexScheme

http://pandas.pydata.org/
https://goo.gl/BKcbQE
https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning#RDF Index Scheme
https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/VirtRDFPerformanceTuning#RDF Index Scheme
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Table 3: The loading time (in seconds) performance comparison for Northwind (respective versions) in all the DMSs.

DMS G_mean H_mean Max Mean Median Min Var.

4Store 0.89 0.86 5.010 0.97 0.83 0.640 0.45
Jena 8.21 8.21 9.780 8.22 8.16 7.700 0.13
Neo4J 1.48 1.47 2.023 1.49 1.44 1.278 0.031
OrientDB 3.51 3.48 5.612 3.53 3.43 2.832 0.22
RDF3X 0.69 0.68 0.920 0.69 0.66 0.580 0.006
Sparksee 0.72 0.72 0.888 0.72 0.73 0.640 0.001
Tinker 0.61 0.61 1.138 0.62 0.60 0.477 0.010
Virtuoso 0.27 0.27 0.580 0.27 0.27 0.250 0.002

Table 4: The warm cache execution time (in seconds) performance comparison for running Query 14 (respective version) on
all DMSs.

DMS G_mean H_mean Max Mean Median Min Var.

4Store 0.021345 0.020474 0.270 0.026250 0.0200 0.020 0.001562
Jena 0.175700 0.175530 0.199 0.175875 0.1740 0.165 0.000065
Neo4J 0.026553 0.026302 0.046 0.026825 0.0270 0.019 0.000017
OrientDB 0.030312 0.029398 0.155 0.032475 0.0310 0.023 0.000410
RDF3X 0.000000 0.000000 0.030 0.000750 0.0000 0.000 0.000023
Sparksee 0.027483 0.027321 0.045 0.027675 0.0270 0.023 0.000013
Tinker 0.209582 0.203346 0.363 0.216650 0.2075 0.136 0.003564
Virtuoso 0.000000 0.000000 0.026 0.001600 0.0010 0.000 0.000016

Table 5: The cold cache execution time (in seconds) performance comparison for running Query 14 (respective version) on all
DMSs.

DMS G_mean H_mean Max Mean Median Min Var.

4Store 4.560672 4.558177 5.050 4.563250 4.510 4.340 2.492506e-02
Jena 0.180934 0.180595 0.200 0.181275 0.179 0.163 1.273327e-04
Neo4J 0.028353 0.027910 0.044 0.028875 0.027 0.021 3.626603e-05
OrientDB 0.051870 0.051043 0.091 0.052875 0.049 0.041 1.329327e-04
RDF3X 0.566901 0.563066 0.730 0.571000 0.540 0.470 5.101538e-03
Sparksee 0.044497 0.044061 0.071 0.044950 0.045 0.034 4.435641e-05
Tinker 0.179499 0.177933 0.258 0.181050 0.187 0.136 5.741000e-04
Virtuoso 0.001278 0.001206 0.003 0.001375 0.001 0.001 3.429487e-07

easy interoperability, reusability and replicability of existing bench-
marks.

As compared to other benchmarking e�orts, e.g. Graphium [8],
LITMUS provides an end-to-end benchmarking solution ensuring
full �exibility to user. With LITMUS it is possible to easily orches-
trate benchmarking by adding other DMSs and use various real
and synthetic data, whereas, the prior is a one time benchmark-
ing e�ort result. LDBC [2] on the other hand is an established
independent authority which leads a community e�ort towards
standardizing Graph DMS benchmarks and also a graph query
language. It consists of individual benchmarks such as the social
network, graph-analytics and semantic publishing benchmarks re-
spectively. However, to the best of our knowledge, LDBC does not
provide an open extensible automated framework such as LITMUS,

which can be used for both small and large scale benchmarking
appealing both industry and the academia researchers.

As near future work we aim to – (i) add support for more RDF
and Graph DMSs; (ii) integrate Gremlinator for enabling automatic
SPARQL→ Gremlin query translation; (ii) increase the set of sup-
ported KPIs, undertaking a systematic study of existing KPIs; and
(iii) devise a novel RDF→ Property graph converter addressing the
requirement to represent complete semantics of RDF graphs (i.e.
blank nodes. etc).

As distant future work, we aim to cultivate support for bench-
marking relational DMSs by integrating existing solutions for SPARQL
query→ SQL query translation. A substantial amount of work has
been done over the years in the this domain, therefore novel re-
search is not required to be carried out, only a systematic study
and integration of existing working solutions.
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(a) CPU Migrations - Query 20 - Warm
Cache

(b) CPU Migrations - Query 20 - Cold
Cache

(c) Page Faults - loading a dataset (d) Instructions - loading a dataset

Figure 3: Demonstration of sample plots generated by LIT-
MUS Benchmark Suite.
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A SPARQL AND GREMLIN QUERIES
Query 14 (C1): "List all the products in the "beverage" category."

1 s e l e c t d i s t i n c t ? s ? o where {
2 ? s < h t t p : / / northwind . com / model / productName > ? o .
3 ? s < h t t p : / / northwind . com / model / c a t e g o r y > < h t t p : / /

northwind . com / Category −1> }

Listing 1: Query 14 in SPARQL.

1 g . V ( ) . has ( " name " , " Be ve ra ge s " ) . i n ( " i n C a t e g o r y " ) . v a l u e s ( "
name " )

Listing 2: Query 14 in Gremlin.

Query 20 (Gc2): "Group the products based on the count of their
total number of units on order."

1 s e l e c t (COUNT( ? uni t sOnOrder ) as ? t o t a l ) where {
2 ? a < h t t p : / / northwind . com / model / product > ? b .
3 ? b < h t t p : / / northwind . com / model / uni tsOnOrder > ?

uni t sOnOrder . } GROUP BY ( ? uni t sOnOrder )

Listing 3: Query 20 in SPARQL.

1 g . V ( ) . match ( __ . as ( ' a ' ) . h a s L a b e l ( " p r o d u c t " ) . a s ( ' b ' ) . v a l u e s
( ' uni t sOnOrder ' ) . a s ( ' c ' ) ) . s e l e c t ( ' c ' ) . groupCount ( )

Listing 4: Query 20 in Gremlin.
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