
RDF Editing on the Web

Claus Stadler
Department of Computer

Science, University of Leipzig
cstadler@informatik.uni-

leipzig.de

Natanael Arndt
Department of Computer

Science, University of Leipzig
arndt@informatik.uni-

leipzig.de
Michael Martin

Department of Computer
Science, University of Leipzig
martin@informatik.uni-

leipzig.de

Jens Lehmann
Department of Computer

Science, University of Leipzig
lehmann@informatik.uni-

leipzig.de

ABSTRACT
While several tools for simplifying the task of visualizing
(SPARQL accessible) RDF data on the Web are available
today, there is a lack of corresponding tools for exploiting
standard HTML forms directly for RDF editing. The few
related existing systems roughly fall in the categories of (a)
applications that are not aimed at being reused as compo-
nents, (b) form generators, which automatically create forms
from a given schema – possibly derived from instance data
– or (c) form template processors which create forms from a
manually created specification. Furthermore, these systems
usually come with their own widget library, which can only
be extended by wrapping existing widgets. In this paper, we
present the AngularJS-based Rdf Edit eXtension (REX) sys-
tem, which facilitates the enhancement of standard HTML
forms as well as many existing AngularJS widgets with RDF
editing support by means of a set of HTML attributes. We
demonstrate our system though the realization of several
usage scenarios.

1. INTRODUCTION
RDF is designed to provide a uniform data model for repre-
senting knowledge across domain boundaries. However, sus-
taining this flexibility in the context of RDF editing systems
has turned out to be a difficult task. While there are Web
applications for editing RDF data, such as WebProtege1,
there is a lack of components for the light-weight integra-
tion of such capabilities into Web applications. In this pa-
per, we present a novel approach to RDF authoring, which,
to the best of our knowledge, delivers unprecedented flexi-
bility and ease in converting HTML form data to RDF and
demonstrate its applicability in various use cases. Our so-

1http://protegewiki.stanford.edu/wiki/WebProtege

lution is based on using the popular AngularJS framework2

to define a custom set of HTML attributes which add an
RDF context to form controls in the DOM-tree. While this
approach is similar to RDFa3, there are two fundamental
differences: First, RDFa is intended for static annotation of
HTML documents, whereas our annotations are processed
by AngularJS and our framework at runtime based on the
applications’ state. Second, RDFa is aligned with the HTML
standard, whereas our approach exploits concepts of Angu-
larJS and builds upon its abstractions, most prominently
the one introduced by ngModel4 Also, a key distinguish-
ing feature that contrasts current related work is, that our
system does not introduce a widget framework of its own.
Instead, by building on the AngularJS framework and its
abstractions, many already available widgets can be re-used
directly without the need of wrapping.

Our contributions in this paper are twofold: First, we present
the Rdf Edit eXtension system (REX), which makes HTML
forms RDF-aware using a set of custom HTML attributes.
Second, we devise several usage patterns of our system for
solving common problems related to RDF editing.

Our RDF editing system is implemented as a user interface
module as part of our Javascript Suite for SPARQL Access
(Jassa) library [5]. The module is freely available on Github5

and is registered for use as a dependency with the popular
bower tool6 under the name jassa-ui-angular-edit. Fur-
ther, demos are available online7.

The structure of this paper is as follows: In Section 2, we
introduce our REX approach and discuss its use in several
scenarios. A brief outline of use cases is given in Section 3. In
Section 4, we review existing approaches to RDF authoring
and presentation on the Web and discuss their strengths and
weaknesses. Finally, in Section 5 we conclude this paper.

2https://angularjs.org/
3http://www.w3.org/TR/rdfa-syntax/
4https://docs.angularjs.org/api/ng/directive/ng
Model
5https://github.com/GeoKnow/Jassa-UI-Angular/tree
/master/jassa-ui-angular-edit
6http://bower.io/
7http://js.geoknow.eu/demos/rex/

http://protegewiki.stanford.edu/wiki/WebProtege
https://angularjs.org/
http://www.w3.org/TR/rdfa-syntax/
https://docs.angularjs.org/api/ng/directive/ngModel
https://docs.angularjs.org/api/ng/directive/ngModel
https://github.com/GeoKnow/Jassa-UI-Angular/tree/master/jassa-ui-angular-edit
https://github.com/GeoKnow/Jassa-UI-Angular/tree/master/jassa-ui-angular-edit
http://bower.io/
http://js.geoknow.eu/demos/rex/

2. RDF EDIT EXTENSIONS
In this section we, explain our REX annotation system for
extending HTML forms with support for RDF editing. We
introduce our approach using a simple example, then explain
what types of data REX manages and finally we present sev-
eral patterns for solving common problems. Note, that our
annotations can also be used for retrieving data intended
for display. However, REX is focused on the support of bi-
directional mapping of values between an RDF graph and
the model of form controls. Thus, support for arbitrary
SPARQL queries and post-processing of result sets, such as
chosing the best label in regard to a preferences on vocabu-
laries and languages is not strictly part of the core.

It is important to understand, that AngularJS makes it pos-
sible to annotate HTML form controls with ng-model="foo",
which declares a JavaScript variable foo as the model of the
control. When the user enters input, the model’s value is
changed accordingly, and when the model changes, Angu-
larJS automatically updates the form control to reflect the
new state. Our approach is based on the introduction of a
set of annotations which give model values an RDF context.
In the subsequent sections we explain the REX attributes.

2.1 Core HTML Attributes
Consider the example in Listing 1. First of all, the rex-

context is used to activate the REX system on a DOM
element and its descendants. The presence of the attribute
creates the rexContext object in the corresponding scope,
whose purpose is to keep track of (a) RDF values referenced
in form controls, (b) initial data for prefilling forms, (c) mod-
ifications to the initial data for computing diffs, and (d) the
final RDF data.

1 <div rex-context

2 rex-prefix="dbr: http://dbpedia.org/resource/"

3 rex-subject="dbr:Chemnitz">

4 <input type="text"

5 ng-model="cityName"

6 rex-predicate="rdfs:label"

7 rex-object rex-type="literal"

8 rex-value="cityName">

9 </div>

Listing 1: A minimal REX example

Within a rex-context section, the basic annotations are:
rex-subject, rex-predicate, and rex-object. While rex-
subject and rex-predicate accept strings with markup8 for
IRIs as values, rex-object takes an index. The index refers to
the ith RDF term for a given subject and predicate. Inter-
nally, the Talis RDF JSON9 model is used for representing
RDF data. Hence, RDF objects comprise four components
of type string, that can be accessed using the annotations
rex-type, rex-value, rex-lang, and rex-datatype. In ad-
dition, rex-deleted can be used to flag an object at a cer-
tain index – and thus the corresponding triple – as deleted.
We refer to the combination of a subject IRI, predicate IRI,
object index and component name as a coordinate. A coordi-
nate uniquely references a primitive value in an RDF graph.
8https://docs.angularjs.org/api/ng/service
/$interpolate
9http://www.w3.org/TR/rdf-json/

Note, that the Talis RDF JSON is used as an intermediate
representation. The final RDF graph, that corresponds to
the form state, can be serialized in any RDF syntax, includ-
ing JSON-LD10.

For convenience, prefixes can be used to abbreviate IRIs. By
default, all prefixes of the RDFa initial context11 are readily
available. Custom namespaces can be enabled by specifying
rex-prefix, where the argument must follow the same syn-
tax as in RDFa12. Also, REX features the short hands rex-
iri="m" and rex-literal="m", which are expanded to rex-

type="‘uri’", rex-value="m" and rex-type="‘literal’"

and rex-value="m", respectively.

Whenever multiple attributes occur on the same element,
the order of processing depends on their priority value. For
details please refer to the documentation on Github.

2.2 Accessing the Data and Modifications
The rexContext object is a container for all relevant infor-
mation about the state of the form and performed modifi-
cations. It provides the following attributes:

• .base The base RDF graph, in Talis RDF JSON, which
holds information about the resources referenced by
the form controls. This information is automatically
updated accordingly when the set of subject resources
and or lookup functions change.

• .override A (partial) Talis RDF JSON object which
holds the state of the data entered into the form and
which can be seen to “override” any base data.

• .graph The RDF graph that holds the effective set of
triples. This is thus obtained by applying the overrides
to the base data for all data referenced by coordinates
of the form.

• .diff.added and .diff.removed RDF graphs13 containing
the triples that were added/removed in regard to the
base data and referenced coordinates.

Listing 2 shows how a turtle representation of the current
state of the RDF graph and the SPARQL Insert/Delete
queries based on the diff can be rendered in real-time using
AngularJS. The neccessary serialization functions are part
of the REX utility belt.

1 <pre ng−init="rc=rexContext">
2 {{graphToTurtle(rc.graph, rexPrefixMapping)}}
3 {{createInsertRequest(rc. diff .added, rexPrefixMapping)}}
4 {{createDeleteRequest(rc.diff .removed, rexPrefixMapping)}}
5 </pre>

Listing 2: Example of serializing the current state of the
RDF graph as turtle, and creating SPARQL 1.1 Update
queries from the diff

10http://json-ld.org/
11http://www.w3.org/2011/rdfa-context/rdfa-1.1
12http://www.w3.org/TR/rdfa-syntax/#A-prefix
13http://www.w3.org/TR/rdf-interfaces/

https://docs.angularjs.org/api/ng/service/$interpolate
https://docs.angularjs.org/api/ng/service/$interpolate
http://www.w3.org/TR/rdf-json/
http://json-ld.org/
http://www.w3.org/2011/rdfa-context/rdfa-1.1
http://www.w3.org/TR/rdfa-syntax/#A-prefix
http://www.w3.org/TR/rdf-interfaces/

2.3 Conditional RDF generation
There are cases when RDF output should be constructed
conditionally based on the form and validation state. For
example, consider a form that allows a user to enter a Well
Known Text (WKT) string, and corresponding WGS84 lat/-
long triples should be generated for valid POINT geometries.
One way to accomplish this is using a combination of ng-if
and hidden fields, as shown in Listing 3.

1 <input type="hidden"

2 ng-if="PointUtils.isWktPoint(wkt)"

3 rex-predicate="geo:long"

4 rex-literal="‘’ + PointUtils.wktToXy(wkt).x"

5 rex-datatype="‘xsd:float’">

Listing 3: Generating triples only for valid WKT strings

2.4 Data Lookups for Prefilling Forms
Forms can be connected to a SPARQL endpoint using rex-

sparql-service="sparqlService" and rex-lookup="true".
Whenever the value of a rex-subject changes and rex-

lookup is enabled, a lookup will be performed, and the
data is converted to Talis RDF JSON and stored at rex-
Context.json. Listing 4 shows an example set up using a
utility method from the Jassa library.

1 <script type="text/javascript">

2 $scope.sparqlService = new jassa.service

3 .SparqlServiceHttp(endpointUrl, defaultGraphIri);

4 }

5 </script>

6 <form

7 rex-context

8 rex-sparql-service="sparqlService"

9 rex-lookup="true"

10 rex-subject="http://dbpdia.org/resource/Leipzig">

11 <!-- ... further form controls ... -->

12 </form>

Listing 4: Registering a lookup function for prefilling out
forms based on subject resources

2.5 Synchronization with Conversion
Sometimes (datatype) conversions are necessary to map val-
ues between their representation in a form control and the
one in the RDF structure. For example, the model of the
date picker of AngularUI Bootstrap14 stores values of type
Date. However, its appropriate (lexical) representation as a
literal of xsd:date is a string conforming to ISO8601. We
solve this problem by introducing a set of sync-* anno-
tations for synchronizing model values, as shown in List-
ing 5. The source and target of a sync are declared using
sync-source, sync-target. With sync-to-target and/or
sync-to-source any changes in the values are propagated
in the respective direction. Both attributes take a conver-
sion function as an optional argument. If desired, syncing in
one of the directions can be enabled/disabled by specifying
a condition expression using sync-to-target-cond and/or
sync-to-source-cond.

14http://angular-ui.github.io/bootstrap/

1 <div rex-predicate="‘dbo:birthDate’"

2 rex-literal="bdateStr" rex-datatype="‘xsd:date’">

3 <input type="text" ng-model="bdate"

4 sync-source="bdate" sync-target="bdateStr"

5 sync-to-target="dateToString"

6 sync-to-source="stringToDate"

7 datepicker-popup="dd-MMMM-yyyy"

8 datepicker-options="dateOptions">

9 </div>

Listing 5: Data binding with conversions

2.6 Navigation and Filtering
Especially with nested forms it is necessary to navigate be-
tween sets of related resources. For example, consider an
RDF resource that represents the DBpedia dataset, and an-
other set of resources that represent distributions in SPARQL
endpoints on the Web. Further, assume that the distribu-
tions refer to the dataset of which they are a distribution
of.

1 <ul

2 rex-subject="http://.../dataset/dbpedia"

3 rex-nav-predicate="’o:distributionOf’"

4 rex-nav-inverse="true"

5 rex-nav-filter-type="iri"

6 rex-nav-targets="distIris">

7 <li

8 ng-repeat="distIri in distIris"

9 rex-subject="{{distIri}}">

10 <!-- sub-form for each distribution -->

11

12

The variable distIri will be an array containing all distribu-
tions that are reachable from the current subject by follow-
ing the predicate o:distributionOf in inverse direction. The
array distIri has special behaviour attached to it: Pushing
items to it will implicitly create new triples that connect the
given subject with the added URI via the given property.

2.7 Renaming resources
While it may seem intriguing to make use of the rex-subject
annotation for the purpose of renaming resources, this is not
directly in the scope of the REX system. REX uses the con-
cept of coordinates to give model values an RDF context.
Under this perspective, coordinates are only references used
to get and put model values from resp. into an RDF space,
i.e. a component of a triple in an RDF graph. But coor-
dinates are distinct from operations to be performed on an
RDF graph.

3. USE CASES
In this section we briefly outline two use cases that we re-
alized with REX and which are part of the online demo.
The first one is the simple generic resource editor depicted
in Figure 1. When the user configures a SPARQL endpoint
and enters the URI of a resource to edit, a form is generated
by iterating over the corresponding properties and objects
of the data in rexContext. This data is automatically loaded

http://angular-ui.github.io/bootstrap/

Figure 1: A generic resource editor realized with REX

using REX’s lookup mechanism. For each RDF term, an in-
stance of our rdf-term-input widget is created. This widget is
realized as an AngularJS directive whose model represents
an RDF term using the attributes defined by Talis RDF
JSON. We also created a geometry-input widget that can
two-way data bind on models with WKT strings. Another
use case is a simple form for registering datasets together
with information about which SPARQL endpoints they are
distributed in.

4. RELATED WORK
There exist several tools for matching, transforming and
templating RDF data for visual presentation: Fresnel [3] was
one of the first approaches in this regard. Sgvizler [4] is
a library that enables one to use SPARQL queries as at-
tribute values in HTML elements and bind their result sets
to different types of visualizations. Recent approaches in
this category are the AngularJS-based RDF Stylesheet Lan-
guage Transformations [2] and Uduvudu15.

A different approach is taken by frameworks that feature
RDF widgets: SemWidg [6] is a JavaScript based library
that provides a framework and tooling for creating wid-
gets, a widget library and a path query language called
SemwidgQL. Vie.js is a JavaScript library for building de-
coupled Content Management Systems, and implements a
bridge between Backbone.js and Semantic Web data. Vie
also features a form generation component16. RDFauthor17

is a JavaScript library that adds a feature-rich authoring
component to either a specified region of a Web page or its
own window-like overlay.

Semantic Web platforms, such as OntoWiki [1], PoolParty18

and VocBench 19 offer features for many aspects of RDF
data management, as for example data aquisition, analysis
and publishing.

5. CONCLUSIONS & FUTURE WORK
In this demo paper, we presented the REX system for creat-
ing highly dynamic HTML forms for RDF data based on the
AngularJS framework. We showed how the system is used to

15https://github.com/uduvudu/uduvudu
16http://viejs.org/widgets/forms/
17https://github.com/AKSW/RDFauthor
18http://www.poolparty.biz
19http://vocbench.uniroma2.it/

realize a number of use cases, such as prefilling form fields,
conditionally emitting data, converting values between the
fields and the RDF graph, and creating SPARQL 1.1 Update
requests for persisting changes. We showed how our sys-
tem enables idiomatic re-use of existing widgets, such as the
date picker of AngularUI Bootstrap, and our own widgets
for editing RDF terms and geometries. Further, investigat-
ing the use of REX for form generation approaches, which
could arrange predefined HTML building blocks to create
appropriate forms for RDF resources seems worthwhile. Fi-
nally, there are several possibilities of combining this work
with other efforts, such as the RDF Changeset systems or
access control approaches in general.

Acknowledgment
This work was supported by grants from the EU’s 7th Frame-
work Programme provided for the GeoKnow project (GA no.
318159).

References
[1] P. Frischmuth et al. OntoWiki—An Authoring, Pub-

lication and Visualization Interface for the Data Web.
Semantic Web Journal, 2014.

[2] S. Peroni and F. Vitali. Rslt: Rdf stylesheet language
transformations. In Proceedings of the ESWC Developers
Workshop 2015, CEUR Workshop Proceedings, 2015.

[3] E. Pietriga, C. Bizer, D. Karger, and R. Lee. Fresnel: A
browser-independent presentation vocabulary for rdf. In
The semantic web-ISWC 2006, pages 158–171. 2006.

[4] M. G. Skjæveland. Sgvizler: A javascript wrapper for
easy visualization of sparql result sets. In ESWC (Satel-
lite Events), volume 7540 of Lecture Notes in Computer
Science, pages 361–365. Springer, 2012.

[5] C. Stadler, P. Westphal, and J. Lehmann. Jassa - A
javascript suite for sparql-based faceted search. In Proc.
ISWC Developers Workshop 2014, pages 31–36, 2014.

[6] T. Stegemann and J. Ziegler. Semwidgjs: A seman-
tic widget library for the rapid development of user
interfaces for linked open data. In 44. Jahrestagung
der Gesellschaft für Informatik, Informatik 2014, Big
Data - Komplexität meistern, 22.-26. September 2014 in
Stuttgart, Deutschland, pages 479–490, 2014.

https://github.com/uduvudu/uduvudu
http://viejs.org/widgets/forms/
https://github.com/AKSW/RDFauthor
http://www.poolparty.biz
http://vocbench.uniroma2.it/

	Introduction
	RDF Edit eXtensions
	Core HTML Attributes
	Accessing the Data and Modifications
	Conditional RDF generation
	Data Lookups for Prefilling Forms
	Synchronization with Conversion
	Navigation and Filtering
	Renaming resources

	Use Cases
	Related Work
	Conclusions & Future Work

