
Quality Assurance of RDB2RDF Mappings

Patrick Westphal, Claus Stadler, and Jens Lehmann

Department of Computer Science, University of Leipzig
Augustusplatz 10

04109 Leipzig
{pwestphal|cstadler|lehmann}@informatik.uni-leipzig.de

Abstract

Today, the Web of Data evolved to a semantic information network containing large
amounts of data. Since such data may stem from different sources, ranging from au-
tomatic extraction processes to extensively curated knowledge bases, its quality also
varies. Thus, currently research efforts are made to find methodologies and approaches
to measure the data quality in the Web of Data. Besides the option to consider the ac-
tual data in a quality assessment, taking the process of data generation into account
is another possibility, especially for extracted data. An extraction approach that gained
popularity in the last years is the mapping of relational databases to RDF (RDB2RDF).
By providing definitions of how RDF should be generated from relational database
content, huge amounts of data can be extracted automatically. Unfortunately, this also
means that single errors in the mapping definitions can affect a considerable portion of
the generated data. Thus, from a quality assurance point of view, the assessment of these
RDB2RDF mapping definitions is important to guarantee high quality RDF data. This is
not covered by recent quality research attempts in depth and is examined in this report.
After a structured evaluation of existing approaches, a quality assessment methodology
and quality dimensions of importance for RDB2RDF mappings are proposed. The for-
malization of this methodology is used to define 43 metrics to characterize the quality
of an RDB2RDF mapping project. These metrics are also implemented for a software
prototype of the proposed methodology, which is used in a practical evaluation of three
different datasets that are generated applying the RDB2RDF approach.

Table of Contents

1 Introduction . 1
1.1 Motivation . 2
1.2 Goal . 2
1.3 Structure of this Report . 2
1.4 Conventions . 3

2 State of the Art . 4
2.1 RDB2RDF . 4
2.2 Data Quality . 10

3 Quality of RDB2RDF Mappings . 17
3.1 Design Considerations . 17
3.2 Formal Foundations . 18
3.3 Methodology. 21
3.4 Quality Dimensions for RDB2RDF Mappings 22
3.5 Metrics . 29

4 R2RLint . 68
4.1 Implementation Limitations . 69

5 Evaluation . 71
5.1 Availability . 73
5.2 Completeness . 73
5.3 Conciseness . 73
5.4 Consistency . 74
5.5 Interlinking . 74
5.6 Interoperability . 75
5.7 Interpretability . 75
5.8 Performance . 75
5.9 Relevancy . 75
5.10 Representational Conciseness . 76
5.11 Semantic Accuracy . 76
5.12 Syntactic Validity . 77
5.13 Understandability . 77

6 Conclusions and Future Work . 78
A Auxiliary Definitions . 79

A.1 Metric 14 (No Bogus Inverse-functional Properties) 79
A.2 Metric 23 (OWL Ontology Declarations) . 79
A.3 Metric 42 (HTTP URIs) . 79
A.4 Metric 43 (Dataset Metadata) . 81

B Evaluation Results . 83
B.1 Availability . 83
B.2 Completeness . 83
B.3 Conciseness . 85
B.4 Consistency . 86

B.5 Interlinking . 87
B.6 Interoperability . 88
B.7 Interpretability . 88
B.8 Performance . 89
B.9 Relevancy . 89
B.10 Representational Conciseness . 90
B.11 Semantic Accuracy . 90
B.12 Syntactic Validity . 90
B.13 Understandability . 90

C Data Quality Dimensions Overview . 91
List of Figures . 103
List of Tables . 104
Listings . 105
Bibliography . 106

1 Introduction

Today, more than 20 years after Tim Berners-Lee first published his ideas of a ‘linked
information system’ [1], this vision of an information web evolved into a mature medium
for information access, communication, entertainment and commerce. Moreover this
World Wide Web (WWW) today is the major medium for all kinds of information ex-
change. Initially, this information network mainly grounded on the idea of hypertext
documents that allow the linking to all kinds of related information, possibly other hy-
pertext documents. This Web of Documents is currently being extended to also serve as
a Web of Data. Inside, data is provided and stored using so called Semantic Web tech-
nologies, which not only allow a database-style access but further come with linking
and inference capabilities which make this web a Semantic Web.

Besides the technological foundations, bootstrapping such a linked data network
requires data. Even though a vast amount of datasets is already part of such networks,
most of the data nowadays is stored in relational database systems [2,3], of which only
a few also provide means for data access via Semantic Web technologies. Since the
logical foundations of relational databases and Semantic Web data endpoints are com-
parable with regards to the underlying semantics [4], it seems natural to build con-
verters that are able to transform the one into the other. This was also considered by
Tim Berners-Lee back in 1998 [5] and a working group was founded under the um-
brella of the World Wide Web Consortium1 to standardize languages and approaches
to map relational databases and its schemas to the Resource Description Framework
(RDF) [6] – the predominant Semantic Web data model. One such language is the RDB
to RDF Mapping Language (R2RML) [7] providing means to define mappings between
relational data and data expressed in RDF. This mapping process is in the following re-
ferred to as RDB2RDF mapping. Apart from R2RML, there are further languages that
can be used to define RDB2RDF mappings. One example is the Sparqlification Map-
ping Language (SML)2, designed to be easy to read and write by human beings, and
which is convertible to R2RML and vice versa.

To make this Web of Data valuable and usable, not only the data generation and
preparation needs consideration, but also its quality evaluation and evolution [8]. Being
discussed in the context of many different domains within the last decades, the data
or information quality assessment became a current research topic for Semantic Web
data. Since it may stem from many different sources, ranging from crowdsourced user
input or automatic extraction processes to extensively curated knowledge bases, the
consideration of data quality in the Semantic Web context is of importance [9]. Ac-
cordingly, common and generally accepted perceptions, like viewing data quality as a
multi-dimensional concept expressing the data’s ‘fitness for use’ [10], were applied to
the Semantic Web context to derive relevant quality aspects.

This report focusses on the combination of the two introduced fields, i.e. how the
findings of current data quality research can be applied and extended to be used in the
RDB2RDF context.

1 http://www.w3.org/2001/sw/rdb2rdf/
2 http://sml.aksw.org

http://www.w3.org/2001/sw/rdb2rdf/
http://sml.aksw.org

1.1 Motivation

The mapping of relational data to RDF is an ongoing topic which led to recent stan-
dardizations [7,11] as well as commercial, free-to-use and free software tools (cf. Sec-
tion 2.1). Currently there are many prominent RDF datasets that contribute to the Web
of Data, which were generated applying RDB2RDF mechanisms. Examples are Linked-
GeoData3, a Linked Data mirror of the OpenStreetMap4 project, the RDF version of the
data provided by the PanLex5 project, and LinkedBrainz6, which was mapped to RDF
from the MusicBrainz7 database. But although a considerable amount of RDF data is
generated from relational databases, quality considerations of RDB2RDF mappings are,
to the best of our knowledge, not discussed extensively, yet. Even though general Se-
mantic Web-related quality assessment methodologies and tools could be applied to the
data generated by RDB2RDF mappings, such attempts would not take the actual data
source and the transformation process into account. Accordingly, there might be errors
introduced during the data conversion, that are not detectable by just assessing the RDF
output. Moreover, since the mapping of relational data to RDF is a mass generation
approach [12], a single mapping error might have a great impact on the resulting data.
Thus, it is of crucial importance to develop theoretical concepts and means to make
such errors detectable, and the overall quality of RDB2RDF mappings assessable.

1.2 Goal

In this report the RDB2RDF mapping process and the resulting data and schemas are
to be examined from a data quality point of view, deriving criteria for high quality
RDB2RDF mappings. Based on a structured evaluation of existing approaches an as-
sessment methodology shall be developed that suits the RDB2RDF process, consider-
ing characteristics of the input data, the actual mapping configuration and the generated
output. Using a formalization of the proposed methodology, actual metrics are to be
defined. Besides this, a software prototype shall be developed, implementing this as-
sessment methodology and the proposed metrics for the Sparqlify RDB2RDF mapping
tool. The prototype shall further be used to run data quality assessments on real world
RDB2RDF mapping projects to detect actual quality errors and get some initial feed-
back on which deficiencies are likely to occur in RDB2RDF settings.

1.3 Structure of this Report

First, Section 2 describes the state of the art with respect to RDB2RDF mapping and
data quality. These findings are used in Section 3 to develop an approach to derive qual-
ity aspects of significance for RDB2RDF mappings and a methodology to assess them,
as well as actual metrics. In Section 4 the assessment tool is introduced, followed by an
evaluation of assessment runs on different RDB2RDF mapping projects in Section 5.
The conclusions are drawn in Section 6.

3 http://linkedgeodata.org
4 http://www.openstreetmap.org
5 http://panlex.org
6 http://linkedbrainz.org
7 http://musicbrainz.org

http://linkedgeodata.org
http://www.openstreetmap.org
http://panlex.org
http://linkedbrainz.org
http://musicbrainz.org

1.4 Conventions

In this report URIs are represented by their qualified names, if possible, for brevity and
to ease the reading. The prefixes used, are given in Table 1.

Prefix Namespace

dbr http://dbpedia.org/resource/

dcterms http://purl.org/dc/terms/

dc http://purl.org/dc/elements/1.1/

ex http://ex.org/

foaf http://xmlns.com/foaf/0.1/

geodata http://sws.geonames.org/

owl http://www.w3.org/2002/07/owl#

rdfs http://www.w3.org/2000/01/rdf-schema#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rr http://www.w3.org/ns/r2rml#

sioc http://rdfs.org/sioc/ns#

void http://rdfs.org/ns/void#

xsd http://www.w3.org/2001/XMLSchema#

Table 1: Prefix definitions of qualified names used in this report

2 State of the Art

This section presents the current state of the art of the two major topics of this report:
RDB2RDF mappings and data quality. First, the main ideas, standards and tools of the
RDB2RDF approach are introduced. In the second part of this section, different models
and definitions for data quality are described. Afterwards, methodological aspects of
the process of determining the quality of data are considered.

2.1 RDB2RDF

Since nowadays most of the data stored digitally resides in relational databases [12],
they are an important data source for the Web of Data [13]. To utilize such data, one
can distinguish between three different approaches. First, a snapshot of the relational
data can be converted to the RDF data model and then made available via SPARQL
or as Linked Data. The advantage of this Extract Transform Load (ETL) approach is
that the RDF data is accessible in a certain serialization format which allows further
processing. Nonetheless, this approach is not optimal in cases where the database to
convert is frequently updated since the conversion has to be performed repeatedly to
stay up-to-date.

A second approach applies an on-the-fly conversion, using a service that translates
SPARQL queries against a virtual RDF graph to SQL queries against the considered
database. Therefore a special configuration is needed that defines, how the virtual RDF
graph is derived from the underlying relational data, or conversely, what the basic spec-
ifications for the query translations are. Such a service can deliver current data but
requires some overhead for every query to translate.

Finally, these two techniques can be combined. In this case, the converting software
may pre-process the SPARQL query, generate SQL queries that return intermediate
results to derive the final result from. However, this approach may require quite a lot of
main memory to hold the intermediate results.

All these techniques are referred to as relational database to RDF mapping (ab-
breviated RDB to RDF or RDB2RDF mapping) approaches [14]. Apart from the dif-
ferences concerning the point in time when to perform the conversion and on which
portion of data, they all have in common, that the conversion rules are applied to sin-
gle tuples retrieved via an SQL query [12]. Thus, the RDB2RDF quality considerations
hold for all of the introduced approaches.

These approaches can be applied following different strategies and using different
languages to express the transformation rules. The two basic strategies – retrieving the
mapping configuration automatically and defining them by hand – are introduced in
the following. To support the manual mapping definitions, several languages evolved.
Two of them – the RDB to RDF Mapping Language and the Sparqlification Mapping
Language – are also covered in the next section. Afterwards, current RDB2RDF imple-
mentations are considered.

RDB2RDF Strategies and Mapping Languages

Relational Database RDF

table class
row resource typed with its table class
column property
column value literal value assigned via column property
foreign key relation column property considered as object property; object is

the resource representing the target row

Table 2: Example translation patterns of the direct mapping approach

Direct Mapping Since the conceptions of the relational model and the Description Log-
ics have some structural similarities, they can be used to automatically derive a generic
RDB2RDF mapping. Regarding, e.g. relations as ‘containers’ for entities that share the
same relational structure, this notion can be compared to concepts in Description Log-
ics. Following this idea, the W3C RDB2RDF working group published a W3C Rec-
ommendation [11] for the generic generation of an RDF schema, based on the schema
structures of a relational database. Some example translation patterns are shown in Ta-
ble 2. In its entirety this recommendation provides means to convert any input database
to RDF without manual mapping definitions.

Being based completely on tables and its schema definitions, the resulting ontology
is a schema ontology reflecting the database structure. This has to be distinguished from
a domain ontology that is actually modeled by a knowledge engineer. Thus even though
direct mapping has the advantage of working automatically, it is not able to generate
ontologies that reflect the nature of a certain domain, or to map the database at hand to
a given vocabulary or ontology.

RDB to RDF Mapping Language Besides this automatic approach, modeling a domain
ontology by hand requires a language to express the corresponding mapping definitions.
One such language, that recently became a W3C Recommendation [7], is the RDB to
RDF Mapping Language (R2RML). It provides means to express so called triples maps,
that determine how a certain triple template is filled with relational data. Such defini-
tions are expressed as RDF graphs using the Turtle serialization. The main structure
of such a triples map is depicted in Figure 1. The logical table, the actual data is re-
trieved from, is defined via the rr:logicalTable property. Its value is a blank node that
can either refer to an existing relational table or view of the underlying database via
rr:table, or contain a custom SQL query assigned via the rr:sqlQuery property. The
definitions of how to generate RDF nodes, i.e. RDF resources or literals, are expressed
in term maps. These generate resources or literals based on column values of the un-
derlying logical table or constant expressions. The column values may be used as is, or
referenced in a custom template string. Depending on where such term maps are used,
they are called subject map, predicate map or object map, with corresponding predicate
and object maps being grouped in one predicate object map. Moreover it is possible to
relate subject or predicate object maps to RDF graphs, which is also represented using
a term map. Such term maps are then called graph map. An example of an RDB2RDF

Subject Map

Predicate Object Map

Triples Map

Predicate Map

Object Map

Logical Table

*

+

+

Fig. 1: General structure of an R2RML triples map. Parts marked with ‘+’ and ‘*’ may
appear at least once and zero or multiple times, respectively.

1 <#DepartmentTriplesMap >
2 rr:logicalTable [rr:tableName "DEPT"];
3 rr:subjectMap [
4 rr:template "http://ex.org/department{DEPTNO}";
5 rr:graphMap [
6 rr:constant ex:DeptGraph
7];
8];
9 rr:predicateObjectMap [

10 rr:predicateMap [
11 rr:constant ex:location
12];
13 rr:objectMap [
14 rr:column "DNAME"
15];
16 rr:graphMap [
17 rr:constant ex:DeptGraph
18];
19].

Listing 1.1: R2RML triples map example

mapping defined in R2RML is given in Listing 1.1. Besides this, R2RML provides fur-
ther features like references between triples maps and a well defined datatype handling.

Sparqlification Mapping Language The Sparqlification Mapping Language (SML) is a
mapping language, designed to be intuitive and expressive [15]. Since there are tools to
convert SML to R2RML and vice versa8, both languages are of equal expressiveness
whereas SML is terser and requires less syntactical noise. The main entities defined
with SML are view definitions. Such a view definition is shown in Listing 1.29. The ac-
tual view definition is declared by the Create View ... As keywords in line 1. The re-
mainder of a view definition is structured in three parts. The From directive (line 10-12)
defines the logical table based on a physical table or view contained in the considered

8 https://github.com/AKSW/Sparqlify-Extensions
9 Prefix definitions in Listing 1.2 are omitted for brevity

https://github.com/AKSW/Sparqlify-Extensions

1 Create View employee As
2 Construct {
3 ?empl ex:worksAt ?dept .
4 ?dept rdfs:label ?dnme .
5 }
6 With
7 ?empl = uri(ex:employee, ’/’, ?emp_id)
8 ?dept = uri(ex:dept, ’/’, ?dpt_id)
9 ?dnme = plainLiteral(?name)

10 From
11 [[SELECT emp.emp_id AS emp_id, emp.dept_id AS dpt_id, dept.name AS

name
12 FROM emp JOIN dept ON emp.dept_id=dept.id]]

Listing 1.2: Example of a view definition in SML

Argument 1 Argument 2 Argument 3 Argument 4

type:

va
lu

e
ex

pr
es

si
on0. . . blank node empty empty

1. . . URI empty empty
2. . . plain literal language tag empty
3. . . typed literal empty datatype

Fig. 2: Overview of the arguments of SML term constructors

database, or a custom SQL query (denoted by the opening and closing double brackets).
An RDF quad pattern is defined in the Construct part by means of URI, blank node or
literal constants (e.g. ex:worksAt) and variables (e.g. ?empl, ?dept). This quad pattern
has the same purpose as in a SPARQL CONSTRUCT query: It is used to create triples,
replacing the variables with matching RDF nodes. The actual bridge between the logi-
cal table and the quad pattern is given in the With part. There, the variables used in the
quad pattern are defined via term constructor expressions (line 7-9), where the term con-
structor expressions refer to columns of the logical table (e.g. ?emp_id, ?dpt_id). Such
term constructor expressions can be seen as generic quaternary functions that require
the type of the RDF node to return and further expressions that are evaluated to repre-
sent a URI, blank node or literal value as well as the datatype (in case of a typed literal)
and language tag (in case of a plain literal). An overview of the possible arguments and
their meanings is given in Figure 2. Accordingly, the typed literal "42"^xsd:int can
be created using the term constructor function tc(3, 42, ε, xsd : int), with ε being the
empty input. A more schematic view of the SML view system, introducing the SML
terminology as defined in [15], is given in Figure 3.

Apart from the structures mentioned above, a view definition may also contain a
Constraint clause, used to give constraint hints to improve the query performance.
Since the Constraint clause does not contribute to the actual semantics as far as the
RDB2RDF mapping is concerned, it is not considered in the following.

TCE
(1, ,_,_)

TCE
(3, ,_,xsd:int)

TCE
(2, ,en,_)

?b ?c ?d

rdf:type ex:Dept

rdfs:label

ex:deptNr

?b

?a

?b ?c

?d

relational tables/table views

logical table

term constructor
expressions

variables

quad pattern

variable
definitions RDB2RDF

mapping

RDF dump SPARQL

.

.

.

view
definition

TCE
(1, ,_,_)

?a

Fig. 3: The SML view definition system

RDB2RDF Tools Currently there is a wide range of RDB2RDF tools. A selection of
implementations mentioned in [12] and [16] comprises Ultrawrap10, D2RQ11, Virtu-
oso [17] and Spyder12. Further state of the art solutions are -ontop-13, Asio Semantic
Bridge for Relational Databases14, SparqlMap [18] and Sparqlify15. An overview of
the tools is given in Table 3. There, the different ways to actually define an RDB2RDF
mapping are shown. Besides graphical tools like Snoggle16 and the mapping languages
already introduced, further custom languages to express transformation rules can be
found. The direct mapping approach, applied by the Ultrawrap tool, is also contained.

Besides this, the tools differ e.g. with regards to the license used, the supported fea-
tures, and their maturity. The Virtuoso triple store, which also has RDB2RDF capabili-
ties, can be considered to be the most mature of the introduced tools. If the performance
of the query engine is of major importance, the -ontop- system proofed to be very effi-
cient17. A tool with a wide range of features is the Sparqlify SPARQL to SQL rewriter,

10 http://capsenta.com/ultrawrap
11 http://d2rq.org/
12 http://www.revelytix.com/content/spyder
13 http://ontop.inf.unibz.it/
14 http://bbn.com/technology/knowledge/asio_sbrd
15 http://sparqlify.org
16 http://snoggle.semwebcentral.org/
17 see http://ontop.inf.unibz.it/?page_id=74 for more details

http://capsenta.com/ultrawrap
http://d2rq.org/
http://www.revelytix.com/content/spyder
http://ontop.inf.unibz.it/
http://bbn.com/technology/knowledge/asio_sbrd
http://sparqlify.org
http://snoggle.semwebcentral.org/
http://ontop.inf.unibz.it/?page_id=74

License Mapping Definition Version

Asio Semantic
Bridge for Relational
Databases

proprietary; free of
charge for non-profit use

graphical (Snoggle) —

D2RQ Apache 2.0 License D2RQML —

-ontop- Apache 2.0 License Quest Mapping
syntax, R2RML

1.10

SparqlMap GNU Lesser General
Public License

R2RML 0.6.1

Sparqlify Apache 2.0 License Sparqlification Map-
ping Language

0.6.6

Spyder proprietary; free of
charge

R2RML 2.1.2

Ultrawrap proprietary Direct Mapping —

Virtuoso GNU General
Public License

Virtuoso Meta Schema
Language

7.0.0

Table 3: Overview of RDB2RDF tools

which e.g. supports the integration of the Linked Data publishing tool Pubby18 and the
SPARQL browser SNORQL19, provides an experimental web administration interface20

and SPARQL UPDATE support21.

2.2 Data Quality

This section covers the state of the art with regards to data quality. Besides some his-
torical remarks, the term ‘data quality’ is introduced and different theoretical models
are presented. An established proceeding is to break down the quality of the considered
data into measurable quality dimensions. This approach is further discussed, followed
by an overview of common data quality assessment methodologies.

Overview Quality is considered not just since the so called Information Age. First
publications on this subject go back to the 1940s [10], mainly considering quality
from an economic and management perspective. These considerations led to current
standardizations like the ISO 9000 standards familiy [19] and are also subject of pub-
lished best practices of local administrations and governments, e.g. in the education
sector [20,21,22] or the international financial marked [23].

Other than the approaches, dealing with quality of processes, products and services,
data quality refers to the quality of stored information22. The understanding of data in
this context, is based on the definition in [25], stating that data “represent real world
objects, in a format that can be stored, retrieved, and elaborated by a software pro-
cedure, and communicated through a network”. There are different categorizations of
data [26,25], whereas the focus of this report is clearly on structured data, neglecting
other categorizations.

Even though the data quality domain differs from the economic and management
perspective, general quality definitions are still applicable. Phrases like ‘freedom from
deficiencies’ or ‘fitness for use’ [10] are also suitable definitions for data quality and are
used widely in the literature. In the following section further definitions and models are
introduced, giving a deeper understanding of data quality.

Data Quality Models and Definitions “While fitness for use captures the essence of
quality, it is difficult to measure quality using this broad definition.” [27] Thus, fur-
ther research was done to find more suitable data definitions and models. One approach
examined the weaknesses and strengths of the definitions of quality in general as ‘ex-
cellence’, ‘value’, ‘conformance to specifications’ and ‘meeting or exceeding consumer
expectations’ [28]. The outcome of this study was that none of them alone can describe
quality satisfyingly since it often depends on the underlying use case.

18 http://www4.wiwiss.fu-berlin.de/pubby/
19 https://github.com/kurtjx/SNORQL
20 https://github.com/AKSW/Sparqlify
21 https://github.com/AKSW/Sparqlify-Extensions
22 Though there are publications, e.g. [24], pointing out the difference between data and infor-

mation, this distinction is not made in this report.

http://www4.wiwiss.fu-berlin.de/pubby/
https://github.com/kurtjx/SNORQL
https://github.com/AKSW/Sparqlify
https://github.com/AKSW/Sparqlify-Extensions

r-ideal r-real

Sinaccurate

Smismember

Saccurate

Sincomplete

Fig. 4: Accuracy model of Parssian et al. [29]

Other approaches to find models that describe quality, especially data quality, in
a more formal way, often only refer to certain aspects of quality. One such model is
described by Parssian et al. [29,30] and depicted in Figure 4. There, the process of
capturing a model (r-real) of the real world (r-ideal) is shown23. During this process
information gets lost (information flow to S incomplete), corrupted (information flow to
S inaccurate) or is added without describing the considered domain (information flow to
S mismember). Hence, this model concentrates on the accuracy and completeness of a sys-
tem, describing the real world, and has similarities to Shannon’s model of a noisy chan-
nel [31].

The model created by Wand and Wang [32] uses the notion of an information sys-
tem, being a “representation of a real world system as perceived by the user” and
describes the mapping problems between the real world and its representation. Certain

Proper representation Incomplete representation Ambiguous representation Meaningless state

Fig. 5: Quality model of Wand and Wang [32]. In each of the depicted mappings the left
hand side represents the real world system states and the right hand side the mapped
states in the information system.

quality aspects are derived by looking at possible mapping deficiencies as shown in
Figure 5.

In both models quality is described as the difference between the domain that should
be expressed and the expression itself. The model of Wand and Wang moreover explic-
itly considers data quality as the extend to which the real world system can be mod-
eled without errors. There are also other sources sharing this definition, e.g. [33,34], or

23 Within the model r-ideal is used to denote a system that models the real world ideally, i.e.
accurately and completely, whereas r-real refers to a real system that might have errors.

Orr [35] stating that “Data quality is the measure of the agreement between the data
views presented by an information systems [sic] and the same data in the real-world”.
The question that remains, is how this difference can be determined and measured.

Other models share a more process oriented view, regarding the data quality of an
information product, being created in a chain of production steps [36,37]. Such models
should provide means to examine why a particular piece of information has a certain
quality and which are the most influencing processing steps as far as data quality is
concerned. These approaches consider data quality as a composite phenomenon and
also try to develop calculation models to compute quality by means of a composition
algebra [38].

Even though these models provide different views of quality, they all face the same
problem of making quality tangible and computable. Since quality is a broad concept
and depends on the use case, it was increasingly considered as multi-dimensional in the
sense that is has many different aspects that can be examined separately. This idea is
introduced in the following section.

Data Quality Dimensions Since data quality touches many different aspects it can be
decomposed into different data quality dimensions. Depending on the use case, only a
subset of all known dimensions needs consideration, breaking the problem of measur-
ing quality down into smaller pieces. Even though regarding data quality as a multi-
dimensional concept is a common view in the literature and an enormous amount of
dimensions were proposed (cf. Section C), “there is no agreement on the set of di-
mensions characterizing data quality” [39]. Another issue is that there is also no con-
sensus on what particular dimensions mean, leading to multiple definitions of single
dimensions. This situation to some extent reflects the circumstance that quality is often
considered in connection with a certain use case or application domain. Besides these
differing views of quality dimensions there are also different approaches to actually in-
fer them from a given use case. These are categorized into theoretical, empirical and
intuitive approaches [39,25].

In a theoretical approach the modeled system is considered in a more abstract way,
deriving a formal model to detect and describe quality issues. An example of such an
approach is the quality model of Wand and Wang. Due to the presented abstraction,
viewing the development of an information system as a mapping problem of the real
world, several artifacts can be derived that are of interest. These are design deficien-
cies referring to the errors shown in Figure 5 (incomplete representation, ambiguous
representation and meaningless state) and operation deficiencies standing for inappro-
priate behaviour of the system. With these deficiencies at hand one can define quality
dimensions as shown in Table 4. The process oriented models mentioned in the previous
section are theoretical approaches as well.

The empirical approach does not consider formal models but takes stakeholder opin-
ions into account. In most cases such approaches are based on a user survey as in the
method of Wang and Strong [40]. There, a survey performed in multiple steps led to
a shortlisted catalogue of 19 quality dimensions grouped in four categories shown in
Figure 6.

Dimension Description

Accuracy and
Precision

“inaccuracy implies that the information system represents a real
world state different from the one that should have been repre-
sented.”

Reliability indicates “whether the data can be counted on to convey the right
information; it can be viewed as correctness of data.”

Timeliness and
Currency

refers to “the delay between a change of the real-world state and the
resulting modification of the information system state.”

Completeness is “the ability of an information system to represent every meaning-
ful state of the represented real world system.”

Consistency

inconsistency of data values occurs if there is more than one state
of the information system matching a state of the real-world system;
therefore “inconsistency would mean that the representation map-
ping is one-to-many.”

Table 4: Quality dimensions derived from the quality model of Wand and Wang [32]

When following an intuitive approach, data quality dimensions are defined “ac-
cording to common sense and practical experience” [25]. A concrete example of this
approach is given by Redman [41]. The corresponding data quality dimensions are listed
in Table 5.

These three approaches and their prerequisites are summarized in Figure 7. Apart
from the dimensions presented for the three approaches, an overview of all dimensions
introduced in the considered literature, can be found in Section C. To ease the un-
derstanding, the dimension definitions or descriptions were normalized using a shared
vocabulary for formulae, and consolidated in case multiple dimensions share the same
meaning.

Quality Assessment Methodologies Having defined the data quality dimensions to
assess, a certain methodology for the actual assessment has to be applied. Quality as-
sessment here means “evaluating if a piece of information meets the information con-
sumer’s needs in a specific situation” [42], or, if possible, “assigning numerical and
categorical values to [data quality] dimensions” [43]. As with data quality dimensions,
there are several different approaches proposed (cf. [44] and [25] for current method-
ology surveys). Nonetheless, many of the methodologies mentioned in the literature
share the same general key quality evaluation activities [45,46,34]. These are to first
specify the context-dependent quality requirements, followed by the identification and
distinction of actual quality problems. After that the current quality status is assessed,
analyzing the evaluation results afterwards. To present a selection of more concrete

Data Quality

Intrinsic
Data Quality

Contextual
Data Quality

Representational
Data Quality

Accessibility
Data Quality

 - Believability
 - Accuracy
 - Objectivity
 - Reputation

 - Value-added
 - Relevancy
 - Timeliness
 - Completeness
 - Appropriate amount
 of data

 - Interpretability
 - Ease of understanding
 - Representational
 consistency
 - Concise representation

 - Accessibility
 - Access security

Fig. 6: Quality dimensions according to Wang and Strong [40]

Type Dimension Description

Data
value

Accuracy “Distance between v and v′, considered as correct”

Completeness “Degree to which values are present in a data collection”

Currency “Degree to which a datum is up to date”

Consistency “Coherence of the same datum, represented in multiple
copies, or different data to respect integrity constraints and
rules”

Data
format

Appropriateness “One format is more appropriate than another if it is more
suited to the user needs”

Interpretability “Ability of the user to interpret correctly values from their
format”

Portability “The format can be applied to as a wide set of situations
as possible”

Format precision “Ability to distinguish between elements in the domain that
must be distinguished by users”

Format flexibility “Changes in user needs and recording medium can be eas-
ily accommodated”

Ability to repre-
sent null values

“Ability to distinguish neatly (without ambiguities) null
and default values from applicable values of the domain”

Efficient use of
memory

“Efficiency in the physical representation. An icon is less
efficient than a code”

Representation
consistency

“Coherence of physical instances of data with their for-
mats”

Table 5: Quality dimensions proposed by Redman [41] (cited from [25])

theoretical

empirical

intuitive

experience/
intuition

survey

model/
formalization

dim
dim

dim
dim

dim

approachprerequisites dimensions

Fig. 7: Approaches to derive quality dimensions to consider for a given domain and
their prerequisites

methodologies, proposed in the literature, one popular general data quality assessment
methodology was chosen as well as three approaches focusing on Semantic Web data.

The methodology proposed by Lee et al. to assess data quality in a general-purpose
manner is called AIMQ (AIM quality) [45]. The main components of AIMQ are sketched
in Figure 8. The first component defines which quality dimensions to use and groups

Usable information
- Believability
- Accessibility
- Ease of operation
- Reputation

Conforms to
specifications

Meets or exceeds
consumer expectations

Product
Quality

Sound information
- Free-of-error
- Concise
 representation
- Completeness
- Consistent
 representation

Useful information
- Appropriate amount
- Relevancy
- Understandability
- Interpretability
- Objectivity

Service
Quality

Dependable
information
- Timeliness
- Security

1) 2 x 2 model 2) questionnaire

Usable
information

 avg: 5

Sound
information

 avg: 6

Useful
information

 avg: 8

Dependable
information

 avg: 3

vs.

best practices
organization

quality
estimations
(different

perspectives)

3) analysis

Fig. 8: Schematic representation of the AIMQ components

them into four categories arranged in a 2 × 2 matrix. The categories are sound infor-
mation, useful information, dependable information and usable information. Based on
this 2 × 2 model a questionnaire is set up covering all dimensions mentioned. After
doing the actual measurement based on a survey using the questionnaire, the results
are averaged per quadrant of the 2 × 2 matrix. These results are then compared with
a benchmark of a fictional best practice company, as well as with the expectations and
estimations of different roles using or producing the data under assessment.

Another methodology considering semantic metadata is introduced by Lei et al. [34].
The main steps here are to first specify and weight the quality issues to assess and to pro-
vide a gold standard to compare with. Next, the actual assessment is run, encompassing
three tasks. The first task is to detect data problems (e.g. completeness, accuracy) based
on a comparison with the provided gold standard. In a second task it is checked if the
metadata reflects the real world status, considering other trusted knowledge resources.
Finally, the consistency of the involved ontologies is checked. Based on the assessment
results and comparisons with best practices the data quality status is calculated in the
last step.

A very recent methodology following the crowd-sourcing approach is applied by
the TripleCheckMate tool [47]. It is tailored for the assessment of RDF data providing
a user interface where users can log in and get credit points per detected error. The
methodology comprises four steps. In the first one, the resources to assess are chosen
based on a manual choice, on the resource’s class, or selected randomly. In the fol-
lowing step the evaluation mode is selected, which can be automatic, semi-automatic
or manual. Step three performs the resource evaluation. In case the manual mode was
chosen, the user then analyzes all resources individually otherwise the evaluation is run
(semi-)automatically. The improvement of the assessed data can be performed directly
by editing the erroneous resources or by creating a patch using the Patch Request On-
tology [48].

The last methodology presented is inspired by the ideas of test driven software de-
velopment, coined test-driven data quality methodology [49]. To assess the data quality
of a given RDF dataset, data quality test cases are used. These are SPARQL queries
checking if the dataset contains triples violating certain constraints that must hold. The
constraints can be inferred from the vocabularies and ontologies used in the dataset or
created manually. After having set up all quality test cases they are run against the con-
sidered SPARQL endpoint which returns all constraint violations. These can then be
used to correct data or improve the processes that led to the erroneous data.

3 Quality of RDB2RDF Mappings

Since RDB2RDF tools produce Semantic Web data, or even Linked Data, the consider-
ation of its quality is of even more importance because the data is re-used in many dif-
ferent scenarios and the actual context is lost [50]. But even though data quality is well
analyzed in the database and information system area [41,51,52,53,25] and there are
approaches to tackle data problems [54,55,56,57,58,59,60,61,62] and measure dataset
statistics [63] or even quality scores in the Semantic Web [50,64,65,66,67,47,9,49],
there were none found that cover RDB2RDF applications in greater depth.

In this section the theoretical framework for a quality assessment of RDB2RDF
mappings is considered. After motivating the major design decisions, formal founda-
tions are introduced. These cover a theoretical model and a terminology to describe a
quality assessment formally. Afterwards, a methodology is proposed and the derivation
of applicable quality dimensions is analyzed. The section is closed with the definition
and discussion of concrete metrics to apply in an RDB2RDF quality assessment.

3.1 Design Considerations

Since the RDB2RDF approach is rather generic, covering a variety of application sce-
narios, in this section the scope considered in this report is narrowed down by intro-
ducing concrete design decisions. A classification scheme for the different RDB2RDF
techniques and their applications, proposed in [12], is depicted in Figure 9. The main
applications considered here are the mass generation of Semantic Web data and the
ontology based access to relational data. Accordingly, RDB2RDF techniques to model
existing or new, domain-specific ontologies are covered, without applying database re-
verse engineering. More specifically, the data quality assessment methodology to de-
velop should support the modeling of datasets of a certain domain, backed by existing
relational data. Hence, ontology learning approaches like the direct mapping technique
are not considered, since “the resulting ontology looks a lot like a copy of the database
relational schema as all relations are translated to RDFS classes, even the ones which
are mere artifacts of the logical database design (e.g. relations representing a many-to-
many relationship between two entities)” [12]. Moreover, the direct mapping technique
has some difficulties in practice, e.g. with regards to composite (foreign) keys [68,4]
or NULL values [69]. Thus, a domain-driven modeling [14] is preferred to the automatic
generation of a schema ontology.

Even though, the quality of the relational data to map has an impact on the resulting
RDF data, it is not considered in this report. Data quality aspects of relational data are
already discussed in detail [25] and are thus not part of this study.

To evaluate the theoretical findings in terms of the quality of RDB2RDF mappings
in practice, any of the tools introduced in Section 2.1 can be used. Although all im-
plementations follow the same principle of a tuple-wise conversion based on mapping
definitions, they differ in the number of features, performance and maturity. So, to avoid
practical restrictions of the quality assessment and provide a usable and stable evalua-
tion software, the underlying tool should be flexible, feature-rich, performant and ma-
ture. Besides this, the mapping language supported by the RDB2RDF tool which will be
utilized for the assessment should be expressive and at least compatible to the R2RML

RDB2RDF

New Ontology Existing Ontology

Database Schema
Ontology

Domain-specific
Ontology

No DB Reverse
Engineering

DB Reverse
Engineering

- semantic annotation of dynamic web pages
- mass generation of SW data
- definition of meaning of relational schema
- heterogeneous database integration
- ontology based access
- integration with other sources

- semantic annotation of dynamic web pages
- ontology based access
- mass generation of SW data
- heterogeneous database integration

- ontology based access
- mass generation of SW data
- heterogeneous database integration
- integration with other sources

- heterogeneous database integration
- ontology learning
- ontology based access

Fig. 9: Classification of RDB2RDF techniques [12]

standard to be as universal as possible. Furthermore the tool should be available under
a permissive license with the option to inspect its source code.

One of the more feature-rich, flexible and mature state of the art RDB2RDF tools
is the Sparqlify SPARQL to SQL rewriter. Sparqlify is utilized to provide SPARQL ac-
cess to different important relational datasets like OpenStreetMap [70] or PanLex [71].
Moreover, Sparqlify proved to be competitive in terms of performance and scalabil-
ity [15] and turned out to be very efficient serving large datasets. The tool is available
as free software24 and the project team is open for community feedback and issue re-
ports. Besides this promising status quo, there are further development and research
efforts to improve and extend Sparqlify. The underlying mappings are defined in the
Sparqlification Mapping Language and there are also tools to convert them to R2RML
and vice versa25.

In its entirety the Sparqlify project is considered suitable to be utilized for a practical
RDB2RDF quality assessment. Sparqlify and the Sparqlification Mapping Language
are thus used as foundations for further quality considerations in this report.

3.2 Formal Foundations

In this section a formal terminology is defined to be able to describe an RDB2RDF
quality assessment methodology and actual metrics. Besides the concepts of a view def-
inition, a quad pattern and a relation which were introduced in previous sections, the
notion of a dataset is used. A dataset is usually defined as a set of graphs, that consist
of triples [72]. For the sake of simplicity, the terminology describing the assessment
methodology and metrics in this report uses a slightly different definition. Here, the ab-
straction of a dataset to assess refers to a set of RDF triples, not regarding RDF graphs.
This deviation does not restrict the assessment capabilities, but eases later definitions in
terms of conciseness and understandability.

24 https://github.com/AKSW/Sparqlify
25 https://github.com/AKSW/Sparqlify-Extensions

https://github.com/AKSW/Sparqlify
https://github.com/AKSW/Sparqlify-Extensions

Further clarifications have to be made with regards to relations. In the following,
only non-metadata relations are considered. Moreover, it is assumed that they are in a
consistent state.

The notion of an RDB2RDF mapping is fundamental for the RDB2RDF approach
and defined as follows:

Definition 1. Let H denote the set of valid RDB2RDF mappings, V the set of valid
view definitions, P the set of valid quads in a pattern, Q the set of valid quad variables,
D the set of valid RDF datasets and T the set of valid RDF triples. An RDB2RDF
mapping H ∈ H is a tuple (V,RDB,D) where

– V ⊂ V is a finite set of SML view definitions, with the option to access the quads in
the quad pattern (quads(vi) ⊂ P) and relational table (rel_table(vi)) of each view
definition vi ∈ V. Given a quad variable q ∈ Q, its term constructor can be retrieved
via term_constructor(q). The term constructor’s RDF term type, i.e. whether it
generates a URI, blank node, typed or plain literal, is returned by the function
term_type(term_constructor(q)). Moreover, the set of relational columns refer-
enced in the term constructor of q can be retrieved with cols(term_constructor(q))

– RDB is the set of relations contained in a considered relational database
– D ∈ D is the RDF dataset generated when applying all view definitions vi ∈ V to

the relations in RDB. D ⊂ T is a finite set of valid RDF triples.

Based on this, the conception of a scope can be defined:

Definition 2. Given the sets N , R, L, Q, T , D, V and the power set function P(. . .)
with T ,D,V, Q defined as above and

– D = P(T)
– N = R ∪ L ∪ Q denotes the set of valid nodes, i.e. all valid resources R, literals L

and quad variables Q

The quality assessment scope of a piece of data x is a function defined as follows

scope(x) =


node scope S N if x ∈ N
triple scope S T if x ∈ T
dataset scope S D if x ∈ D
view scope S V if x ∈ P(V)

(1)

Accordingly, the scope is a categorization of the granularity a certain piece of data has.
This is useful since different ‘amounts’ of context information can be needed for the
assessment. These amounts correspond to the introduced scopes, i.e. they can either be
the whole dataset, one triple, one node or a set of view definitions. These scopes also
correspond to the possible domains of the functions that do the actual computation of a
quality score.

Definition 3. A mapping quality metric M is a pair (f , θ) where f is a quality score
function and θ is a numerical value representing a threshold. A quality score function f
computes a numeric quality score f (x) of a piece of data x. A low quality score reflects

low quality where the worst possible quality score is 0. Perfect quality is represented by
a quality score of 1.

A mapping quality metric M = (f , θ) can be further classified as follows:

M is called


node metric if dom(f) = N

triple metric if dom(f) = T

dataset metric if dom(f) = D

view metric if dom(f) = P(V)

where dom(. . .) returns the domain of a function.

It has to be noted, that other than proposed in [42,64,66], the concept of a quality
indicator is not used in the methodology proposed in this report. Another difference
is that the quality score function, there called scoring function, is not intended to be
reusable among different metrics. This is not due to a limitation of the methodology,
but simply not regarded necessary as none of the metrics that were implemented in
R2RLint shared any considerable functionality to reuse.

To initialize an assessment run, a configuration is needed, which is defined as fol-
lows:

Definition 4. A quality assessment configuration C is a set of mapping quality met-
rics {M1,M2, . . . ,Mn} representing all metrics enabled for an assessment, together with
their threshold initializations.

This conceptualization allows enabling and disabling metrics to fit the given assess-
ment needs as well as defining the per metric thresholds. The threshold concept was
introduced to reduce the amount of measurement data and to be able to concentrate on
cases that are considered to be critical, as only those quality scores are reported, that
are worse than the configured threshold.

Definition 5. A quality assessment (H,C, S) is the process of evaluating the quality
score function fi of every metric Mi ∈ C on a certain RDB2RDF mapping H with

– D ∈ D being the RDF dataset generated by H
– V ⊂ V being the view definitions of H .

It is further derived, that
T =

⋃
t∈D

t (2)

is the set of triples in D and

N =
⋃
t∈T

sub ject(t) ∪ predicate(t) ∪ ob ject(t) (3)

the set of nodes of T , being either a resource or a literal. The functions sub ject(t),
predicate(t) and ob ject(t) of a triple t return its subject, predicate and object, respec-
tively. When applied to sets of triples, these functions will return all subjects, predicates
and objects of the corresponding input triples. Additionally µMi is defined as a set of
metadata of a metric Mi.

Representing the access to a certain tuple position (starting with 0) putting it in
subscript brackets, the overall assessment result ρ is defined as

ρ =
⋃

Mi∈C


⋃

n∈N(µMi , fi(n)) if Mi[0] = fi ∧ dom(fi) ∈ N⋃
t∈T (µMi , fi(t)) if Mi[0] = fi ∧ dom(fi) ∈ T

(µMi , fi(D)) if Mi[0] = fi ∧ dom(fi) ∈ D⋃
v∈V (µMi , fi(v)) if Mi[0] = fi ∧ dom(fi) ∈ P(V)

(4)

ρ is then written to an assessment sink S .

The assessment results comprising pairs (µMi , fi(x)) of a metric’s metadata together
with its calculated quality score (with respect to the input data x) can then be stored in
a configured sink for further inspection. This can be a relational database, a file or other
storage mechanisms.

3.3 Methodology

A quality assessment methodology as used in this report is a coarse description of how
to perform the actual assessment. An assessment methodology should therefore provide
a number of steps to be executed in the given order. To find such a general execution
plan it is first examined if there are already existing methodologies suiting the needs of
an RDB2RDF quality assessment.

The AIMQ methodology [45] uses surveys to get quality scores of considered di-
mensions. This is not desired, since the assessment tool to develop should run automat-
ically and calculate values that represent the current status of the RDB2RDF mapping
quality. Apart from that, AIMQ needs a best practice dataset to compare the assessment
results with, which is usually not available in the case of RDB2RDF mappings.

The same problem holds for the methodology of Lei et al. [34] which considers
semantic metadata for assessment. Even though its application context might predestine
this methodology to be reused in Semantic Web-related quality evaluations, it is also
grounded on a gold standard comparison and thus not suitable for an RDB2RDF setup.

The crowd-sourced approach of the TripleCheckMate tool is applicable to assess
the generated RDF data but does in no way regard the underlying semantics of an
RDB2RDF conversion nor does it allow to explicitly evaluate the mapping definitions.
The same holds for the test-driven data quality approach [49].

Thus, ideas of the methodology of Lei et al., the crowd-sourced approach and the
test-driven methodology could be used for certain parts of an RDB2RDF quality as-
sessment. But since the underlying structures and focuses differ it would be difficult to
integrate them in one methodology. Further methodologies proposed in the literature
[29,36,73,27,46,74,75,76,77,33,44,25,78,64,65] were either too generic or tailored for
a specific scope and are thus not reusable in the RDB2RDF domain. As a consequence,
a methodology specific for the RDB2RDF situation is compiled in the following.

The R2RLint methodology (R2RLM) proposed in this report is based on the RDB2RDF
mapping and assessment definition as introduced above. Given a quality assessment
A = (H,C, S) its main steps are:

1) Assessment configuration The overall configuration of the assessment comprises
three parts: the setup of the database connection to access the set of relations RDB
of the RDB2RDF mapping H, the selection of metrics to apply together with their
thresholds (C) and the configuration of the assessment sink S to write the assessment
results to.

2) Automatic assessment run After the configuration, the actual assessment is run, ex-
amining the RDB2RDF mapping on the different scopes. Every metric Mi may have
access to the underlying relations RDB and a service called pinpointer. Given a triple
t ∈ D this service can determine all the information of view definitions Vt ⊆ V that most
probably generated t. The assessment runner feeds

– all dataset metrics with the generated dataset D
– all triple metrics with all triples t j ∈ D
– all node metrics with all nodes nk ∈ N (with N defined as above)
– all view metrics with the set of definitions V defined in H

When a metric Mi finished the assessment of the given piece of input data, it writes the
quality score and a set of metadata µMi to the sink S . This metadata may contain pin-
pointing information, scope information, the actual name of the metric etc. The concrete
set of metadata is defined by the metric.

3) Result analysis After the assessment finished, all assessment results ρ are written to
the sink S . Depending on the utilized sink, they can now be further aggregated, visual-
ized or stored to document a temporal quality progress. Since the results also contain
several metadata to locate the actual error causes, i.e. the view definitions’ quads, its
term constructors and source relation, a manual repair phase may follow.

3.4 Quality Dimensions for RDB2RDF Mappings

To break down the problem of determining the actual quality of RDB2RDF mappings
and the resulting data, different quality dimensions are considered. To compile a set
of dimensions that are relevant for the RDB2RDF process the theoretical, empirical or
intuitive approach can be followed (cf. Figure 10). Since the application of the intuitive
approach would lack scientific soundness and comprehensibility, it is not considered.
Even though taking the experiences of a group of RDB2RDF users and experts into
account would be valid from a scientific point of view, the RDB2RDF technique seems
not widespread enough allowing a survey with a representative amount of questionees.
Thus, empirical results were only regarded indirectly in terms of metrics proposed by
other literature sources. The method to obtain quality dimensions, which is considered
in this report, is the theoretical approach.

To derive quality dimensions of importance for a considered domain on a theoreti-
cal basis, a quality model is required. In the case of RDB2RDF mappings not all of the
introduced quality models are suitable. First of all, the underlying workflow involves
transformations of data that are already given in a relational database, which can be
viewed as an information system in the sense of Wand and Wang [32] (cf. Figure 11).

theoretical

empirical

intuitive

experience/
intuition

survey

model/
formalization

dim
dim

dim
dim

dim

approachprerequisites dimensions

Fig. 10: Approaches to derive quality dimensions to consider for a given domain and
their prerequisites (pale approaches are not applied)

information system mapping RDB2RDF mapping

real
world

information
system
(rel. DB)

mapping
definition

RDF
data

Create View emp As
 Construct {
 ?emp a ex:Person
 }
 With
 ?emp = uri(…)
 From
 [[SELECT …]]

Fig. 11: Comparison of the quality model of Wand and Wang [32] with the RDB2RDF
workflow

The data of this information system are then further transformed to be part of another
information system, the Resource Description Framework. Accordingly, RDB2RDF
could be seen as a transitive mapping problem. But apart from these transformations,
the Sparqlification Mapping Language also provides means to add further information
not contained in the database. In the models of Parssian et al. or Wand and Wang, this
would be considered as introduced inaccuracy. Moreover, since the RDB quality is not
evaluated, it is difficult to apply models regarding data quality as an appropriate map-
ping from a real world to an information system. Even if the relational database would
be considered as real world, such a comparison may be unsuitable since the underlying
use case does not follow the aim to just convert the hole data in the database to RDF.
Thus, a mismatch between database and RDF data may to some extent be intended and
should not be an indication of bad quality.

Regarding an RDB2RDF mapping not as a mapping but as a view brings up the
consideration of the global as view approach [79,25]. Since such a view based per-
ception is conceptually more free as far as possible restrictions to quality policies are
concerned, its quality is also harder to measure. Accordingly there are only few dimen-
sions proposed for this approach [25]. These comprise the considerations whether views

1) SPARQL query
2) SPARQL algebra
 expression3) SQL query

4) result tuples 5) result triples 6) serialized
 result triples

SPARQL servicemapping servicedatabase server

RDB2RDF service

Create View emp As
 Construct {
 ?emp a ex:Person
 }
 With
 ?emp = uri(…)
 From
 [[SELECT …]]

Fig. 12: SML mapping workflow

are sound, complete and exact. In contrast to models assessing if a real world system
is ‘copied’ accurately to an information system, the view based dimensions are rather
abstract, referring to a set oriented assessment. Thus, there are no explicit requirements,
that data are not modified, but just that data entities contained in a view must represent
entities of the dataset the view is defined on. But since these dimensions are meant to
characterize views in general, they are not always suitable to reflect the actual quality
of RDB2RDF mappings. Even though they give an impression of how well a mapping
definition covers a relational database, this should not be seen as a hard quality criterion.
Besides this, these three provided dimensions are not considered sufficient to describe
the quality of an RDB2RDF mapping adequately.

Since the RDB2RDF mapping can also be regarded as a process with certain steps
(e.g. data retrieval from the relational database, term construction, triple construction,
RDF serialization and RDF output), process oriented models are applicable and pro-
vide the best abstraction of the given approaches. Thus, in the following this process is
analyzed with regards to points where data quality degradations may occur. Along with
this, quality aspects are considered that are affected by these possible degradations. To
divide the RDB2RDF mapping workflow into single steps, the mapping model of the
Sparqlification Mapping Language is regarded. In Figure 12 the case of processing a
SPARQL query is depicted. To answer a query, received by the SPARQL service (1), it
has to be parsed and transformed to primitives of the SPARQL algebra (2). Afterwards
the query is combined with the mapping definitions and translated to an SQL query sent
to the relational database management system (3). Hereafter, the answer containing the
relational result set is retrieved (4), transformed to RDF (5) and output in a proper seri-
alization format (6).

With regards to possible quality degradations, step 1 is not of interest since the input
is uninfluenceable user input that has no effect on the quality of the actual output. Step 2
performs a lossless, deterministic transformation that does not influence the output as
well. The first time quality is affected, is when the SQL query is built based on the
mapping definitions (3). Since these definitions provide a certain view of the underly-
ing database, this affects quality aspects like how complete an SML view definition is
(in a global-as-view sense) or if the portion of data, to be generated by the view defi-
nition is relevant for the modeled domain. Assuming, that its actual execution time is

Timeliness
Licensing
Versatility
Security

Consistency
Conciseness
Completeness

…

Timeliness
Licensing
Versatility
Security

Consistency
Conciseness
Completeness

…

quality depends
on RDB2RDF
mapping

RDB2RDF
mapping has no
influence on
quality

Create View emp As
 Construct {
 ?emp a ex:Person
 }
 With
 ?emp = uri(…)
 From
 [[SELECT …]]

Fig. 13: Quality dimensions depending on RDB2RDF mapping

neglectable26, running the SQL query in step 4 does not influence the quality. The fol-
lowing transformation to RDF (5) however does have an effect on representational and
syntactic aspects of the generated data, since resource identifiers and literal values are
created based on the SQL result set and the mapping configuration. Moreover, the SML
quad patterns can be compiled to generate inconsistent RDF data. The serialization step
(6) is again a lossless and deterministic process that does not harm the quality.

This shows that the main influencing part within the workflow are the mapping def-
initions. But not all quality dimensions are really affected, as indicated in Figure 13.
To gather dimensions relevant for describing quality issues of RDB2RDF mapping,
a shortlisting strategy is applied. Starting with data quality dimensions proposed in a
recent and comprehensive survey of quality assessment in Linked Data by Zaveri et
al. [67] (cf. Table 6), these dimensions are evaluated with regards to their applicability
in the RDB2RDF mapping process using the Sparqlification Mapping Language and the
introduced formal foundations (cf. Section 3.2). The applicability is determined based

26 This assumption was made, since the execution time depends on many different factors that
are not within the scope of this report. Apart from the fact, that the execution time does not
depend on the mere mapping definitions, in theory it can be optimized to be neglectable.

Category Dimension Category Dimension

Accessibility

Availability

Intrinsic

Syntactic Validity
Licensing Semantic Accuracy
Interlinking Consistency
Security Conciseness
Performance Completeness

Contextual

Relevancy

Representational

Representational Conciseness
Trustworthiness Interoperability
Understandability Interpretability
Timeliness Versatility

Table 6: Overview of the dimensions proposed in [67]

on two issues. First, a dimension is not applicable if it is not relevant for the RDB2RDF
process, i.e. the actual quality score does not depend on the RDF transformation. More-
over, a dimension is also considered not applicable if there are no quality indicators [42],
i.e. it is not possible to actually measure this dimension due to the lack of information
needed to do so. In the following the proposed dimensions are considered in more detail
giving an explanation why they are used or why not.

Availability (considered) The availability dimension refers to the extend to which data
are “present, obtainable and ready for use” [67]. An SML view definition only indi-
rectly influences the availability of data, namely when URIs are generated that are not
dereferenceable. All other aspects of availability are not influenced.

Completeness (considered) Viewing the completeness quality dimension as “the de-
gree to which all required information is present” [67], makes it hard to assess without
the provision of the gold standard, containing the required information to compare with.
Thus, the weaker completeness notion from the global-as-view approach is applied, re-
ferring to the portion of data, that is covered by a view. Since an RDB2RDF mapping
can be regarded as an RDF view on a relational database, the completeness term as used
here, describes how well the underlying database is covered. As there is conceptually no
need to map all the data values given in the database to RDF, this completeness aspect
is of less importance and should not be seen as a hard quality criterion. Nevertheless,
getting feedback of the actual portion of data that is used by a view definition helps
finding errors in case the completeness value is much greater or much smaller than
expected. Moreover, additional completeness metrics can be introduced, like the inter-
linking completeness or the completeness with respect to modeled classes or properties
of reused vocabularies.

Conciseness (considered) Conciseness as understood here covers the avoidance of any
kinds of redundancy, be it on the schema, triple or instance level. Such redundancies can
arise from low quality view definitions and are considered in the quality assessment.

Consistency (considered) Consistency, expressing the degree to which a dataset is “free
of (logical/formal) contradictions” [67], highly depends on the view definitions’ term
constructors and quad patterns. These can produce datatype inconsistencies or ontology
violations and are thus considered in the quality assessment.

Interlinking (considered) The importance of providing interlinks to other datasets is
already reflected in the Linked Data guidelines [80]. Interlinking aspects can be influ-
enced by a view definition’s quad pattern and term constructors and are thus subject of
the assessment.

Interoperability (considered) Interoperability issues are violations of best practices like
term or vocabulary reuse. Since the generated RDF, and thus the degree of reuse, de-
pends on the term constructors and quad pattern defined in an SML view definition, this
dimension is considered in the quality assessment.

Interpretability (considered) This quality dimension measures “whether information
is represented using an appropriate notation” [67] and thus depends on generated re-
source identifiers or literal representations as well as certain quad pattern constructs.
Interpretability considerations also cover issues elsewhere referred to as uniformity or
readability, and is evaluated in the assessment.

Licensing (not considered) The licensing quality dimension is defined as “the granting
of permission for a consumer to re-use a dataset under defined conditions” [67]. Since
the terms of usage are already determined by the license used for the relational data,
in the most cases RDB2RDF tools are not able to influence whether data are open or
restricted. Only in rare cases where relational data is provided under a very permissive
license, it may be published under more restricted terms of usage by RDB2RDF tools.
Apart from this, there is no standardized way of retrieving the actual license information
from relational databases. Usually, such licensing meta information is part of the actual
relational data to be mapped to RDF. Since there is also no way to detect licensing
metadata in a relational database automatically, it can neither be measured, whether
the data contained is open or restricted, nor can be determined if there is any licensing
information that could have been provided as RDF data. Thus, the licensing dimension
is not considered in the quality assessment.

Performance (considered) The mapping process as introduced comprises different ser-
vices influencing the overall performance. Besides the actual query rewriting engine
there is also the relational database with its search and indexing strategies, the actual
RDF generation and serialization, and network bandwidth and latency when transmit-
ting the query results to the client. The only point where RDB2RDF mapping definitions
may influence the performance negatively, is when they contain inefficient SQL queries
that define logical tables to map to RDF. This issue is not evaluated since the query
optimization topic is already covered widely in the literature. Moreover to optimize a
query in an RDB2RDF mapping definition, also database details like existing indexes
or the underlying storage architecture have to be taken into account, which may not be
accessible to the mapping author.

A further performance aspect, discussed controversially27 and examined in different
sources [64,67], is the usage of hash URIs. In the data quality literature, they are usually
considered as bad practice as far as performance is concerned, since in case of accessing
a Web resource via a hash URI, the whole document has to be retrieved, even though
only a fraction of it was requested. Although the usage of hash URIs has no influence
on the performance of the RDB2RDF mapping workflow it is evaluated in the quality
assessment to be able to give feedback that a bad practice is applied that may harm the
performance in general.

Relevancy (considered) Even though there are models to compute the relevancy of a
document with regards to a certain topic or keywords [81], it is not trivial to calculate
if certain data values are relevant or not. Moreover, since relevancy refers to a certain
task and user [67], there is no easy way to determine relevant data in general. The only

27 See http://www.w3.org/wiki/HashVsSlash for a further discussion

http://www.w3.org/wiki/HashVsSlash

issues that can be measured are coverage concerns, i.e. how detailed a dataset is or how
many resources are described. Relevancy is thus considered in the quality assessment.

Representational Conciseness (considered) Representational conciseness in the Se-
mantic Web context mainly refers to issues of URI design and the usage of certain
deprecated features of RDF. These depend on the term construction and quad design of
an SML view definition and are thus evaluated in the quality assessment.

Security (not considered) Security as a quality dimension mainly covers access con-
trol and features to detect unauthorized alteration of data [67]. Since the Sparqlification
Mapping Language and the Sparqlify SPARQL to SQL rewriter (as well as the other
query rewriting tools) do not provide any means to tackle access control and data in-
tegrity, the security dimension is not regarded in the quality assessment.

Semantic Accuracy (considered) The semantic accuracy of data generated by RDB2-
RDF mappings comprises the accurate modeling of the semantics of the relational
schema and the relational data. Since there is no explicit semantic description that
could be used for a quality assessment, semantically inaccurate data can not be de-
tected. Nonetheless, if there are any constraints encoded in the relational schema, it can
be checked whether these are accurately modeled in the RDF domain. The semantic
accuracy dimension is thus evaluated in the quality assessment.

Syntactic Validity (considered) The syntactic validity refers to the correct representa-
tion and syntax conformance [67]. Since such syntactical aspects highly depend on the
actual usage of the term constructors, the syntactic validity dimension has to be covered
in the quality assessment.

Timeliness (not considered) Since the RDB2RDF mapping languages introduced in
Section 2.1 provide no means to influence “how up-to-date data is” [67], the timeli-
ness quality dimension is not considered. Moreover, SPARQL to SQL rewriters like
Sparqlify are capable of transforming relational data to RDF on-the-fly which makes
the impact on time dependent aspects neglectable.

Trustworthiness (not considered) Trustworthiness, “the degree to which the informa-
tion is accepted to be correct, true, real and credible” [67], primarily depends on the
relation between the data’s authors and its users. Since it is not the task of an RDB2RDF
mapping tool to keep track of data authors and users, trustworthiness is not included in
the quality assessment. Moreover, besides the fact that the authorship of the relational
data is usually not evaluated, data from different authors may be mixed up in one single
resource or statement, making a trust analysis unfeasible.

Understandability (considered) Understandability refers to the data’s ease of use by
an information consumer and is also called usability, readability, or comprehensibility.
This ease of use is mainly achieved by a user-friendly URI design and supporting meta-
data. Since these aspects can be modeled with the Sparqlification Mapping Language,
this dimension is evaluated in the data quality assessment.

Category Dimension Category Dimension

Intrinsic

Syntactic Validity
Accessibility

Availability
Semantic Accuracy Interlinking
Consistency Performance
Conciseness

Representational
Representational Conciseness

Completeness Interoperability

Contextual
Relevancy Interpretability
Understandability

Table 7: Overview of the dimensions considered in the RDB2RDF context

Versatility (not considered) Versatility means the versatility of the supported RDF se-
rializations and versatility with regards to internationalized representations of the data
values [67]. The former aspect is usually handled by the RDB2RDF tools, independent
of the mapping definitions and the created RDF output and thus does not reflect any
quality issues of the actual mapping process. Whether any internationalized versions of
the data exist, depends on the relational data to map and is therefore not subject of the
RDB2RDF quality assessment.

Besides the dimensions proposed by Zaveri et al. [67], further proposals from dif-
ferent literature sources were surveyed (cf. Section C). Among them no additional di-
mensions were found, that could contribute to the quality assessment of RDB2RDF
mappings. Dimensions not covered by Zaveri et al. explicitly, either describe aspects
already concerned under a different name, or express more specific cases of dimensions
already chosen for the assessment. An overview of the dimensions to assess is given in
Table 7.

3.5 Metrics

In this section all the metrics that are implemented and usable in the context of the
R2RLint methodology are introduced and explained. To be consistent, these metrics’
names describe what is taken care of and not what the actual violations are.

Even though all implemented metrics are compliant with the specifications made in
Section 3.2, some definitions of quality score functions made in this section may differ.
In these cases the domain of data serving as input to the function does not match the
actual scope of the metric. Hence, e.g. a quality score function belonging to a dataset
metric and thus having a dataset scope may be presented, getting single triples as input.
This deviation was made to avoid complex tuple notations in the quality score function
definitions since, depending on what is assessed, e.g. dataset metrics may return multi-
ple quality score values, mathematically represented as quality score value tuples. These
slightly simpler expressions were chosen to increase the readability and brevity. Such
pseudo quality score functions are then marked as f̂ . Nonetheless it should be clear how
these pseudo quality score functions relate to the actual quality score functions defined
on the metrics’ scopes.

tuples

relations

attributes

attributes

Fig. 14: Completeness dimensions in the relational database context

Availability The only availability concern that is influenceable by the RDB2RDF map-
ping process, is the dereferenceability of created URIs. To comply with the Linked Data
principles [80], and be able to provide further information of a resource via HTTP, the
generated URIs should be valid and dereferenceable. This metric was further proposed
in different Semantic Web related quality evaluation publications [61,64,62,67]. The
assessment of this requirement is covered by the following metric:

Metric 1 (Dereferenceable URIs) The metric assessing the dereferenceability of a URI
resource is a node metric. For an input node n ∈ N the dereferenceability quality score
function f1 : N → R is given as follows:

f1(n) =

1 if
using n’s URI as URL and requesting the corresponding Web resource
via HTTP GET, the returned HTTP response code is 200 after resolving
any redirects

0 otherwise
(5)

Completeness To evaluate the completeness in the context of RDB2RDF mappings
one can refer to the established ‘dimensions’28 introduced in the relational database
data quality assessment literature [44]. These are shown in Figure 14 and express the
completeness with regards to the number of attributes used to represent real world prop-
erties, the number of database entries used to represent individuals of the real world
and the number of relations describing certain entity types. Adaptions of the proposals
in [44] led to the metrics 2 (Schema Completeness), 3 (Population Completeness) and
4 (Property Completeness). So, when mapping a database to RDF, low quality scores
of the Schema (i), Population (ii) or Property Completeness Metric (iii) indicate, that

(i) more properties could be created, mapping relational columns to RDF that are not
referenced, yet

(ii) more RDF instances could be created utilizing relational tables, not mapped yet,
or relaxing the selectivity of the queries that define the logical tables within the
view definitions

28 These dimensions are to be understood as dimensions in a coordinate system, rather than qual-
ity dimensions.

(iii) for a considered view definition a greater portion of data and thus a wider range
of possible property values could be covered, relaxing the selectivity of the query
that defines the view definition’s logical table

respectively. Accordingly, these metrics are intended to give hints and should not be
understood as hard scores, i.e. low completeness values may be intended and thus do
not express a bad quality in all cases.

Metric 2 (Schema Completeness) The metric assessing the ratio between the number
of relational columns referenced in the RDB2RDF mapping and the number of columns
that could be referenced, is a view metric. To evaluate the schema completeness, for
a given relation δ ∈ RDB with the attributes {γ1, γ2, . . . , γn}, δ’s column cardinality
|δ|col = n is defined as the number of columns in δ. Introducing the referenced column
cardinality |V |re f _col of a set of view definitions V ⊂ V as

|V |re f _col =

∣∣∣∣∣∣∣∣∣∣∣
⋃
vi∈V

γ
′

∣∣∣∣∣∣∣∣∣∣∣
q ∈


sub ject(quads(vi))∪
predicate(quads(vi))∪
ob ject(quads(vi))

 ∩ Q ∧
γ′ ∈ cols(term_constructor(q))


∣∣∣∣∣∣∣∣∣∣∣ (6)

the Schema Completeness quality score function f2 : P(V)→ R is computed as follows:

f2(V) =
|V |re f _col∑

δ ∈RDB
|δ|col

(7)

Metric 3 (Population Completeness) The metric measuring the ratio between RDF
instances and objects of the relational database is a dataset metric. To get the number of
database objects of a relation δ ∈ RDB with the attributes {γ1, γ2, . . . , γn}, δ’s relational
object cardinality |δ|rel_ob j is used:

|δ|rel_ob j =
∣∣∣πγp1 ,γp2 ,...,γpm

(δ)
∣∣∣ (8)

with Γpk = γp1 , γp2 , . . . , γpm representing the (not necessarily compound) primary key
of the relation δ and πγ j,γk ,...,γl (δ) being the projection of δ to its attributes γ j, γk, . . . , γl.
The cardinality expression of the projection of δ represents the tuple count with du-
plicate elimination. To avoid counting m:n relations as database objects on its own,
a further restriction must hold. Given all referencing foreign key attributes Γ f k =

{γ f1 , γ f2 , . . . , γ fs } of δ, the following statement must be true for Equation 8:

Γ f k , Γpk

This means that tuples of δ are not counted, if the primary and the foreign key are the
same, as in pure m:n relations.

The instance cardinality |D|inst of a dataset D ∈ D is defined as

|D|inst =

∣∣∣∣∣∣∣∣∣∣∣∣
{
r
∣∣∣ t ∈ D ∧ r ∈ sub ject(t) ∧ r @ (rdfs:Class t owl:Class)

}
∪{

r

∣∣∣∣∣∣ t ∈ D ∧ r ∈ ob ject(t) ∧ r @ (rdfs:Class t owl:Class) ∧
r < L ∧ predicate(t) , owl:sameAs

}
∣∣∣∣∣∣∣∣∣∣∣∣ (9)

Thus |D|inst counts all resources not being an rdfs:Class or owl:Class, whereas objects
of owl:sameAs statements are omitted, to avoid counting resources multiple times that
are explicitly stated to be the same. Accordingly the Population Completeness quality
score function f3 : D → R is given as

f3 =
|D|inst∑

δ ∈RDB
|δ|rel_ob j

(10)

It has to be noted, that since properties are excluded, the notion of an instance here
differs from the definition in the RDFS specification [82]. Usually properties are not
generated based on database objects, but are rather provided via constant expressions.
Hence, to keep the influence of constant and possibly reused external properties low,
they are not counted as instances. Moreover, multiple resources that refer to the same
instances are only counted once. Besides this, in case static triples are generated, re-
ferring to a logical dummy table, e.g. via ‘SELECT 1’, the relational object cardinality
|δ|rel_ob j is assumed to be 1.

Metric 4 (Property Completeness) The metric assessing the completeness with re-
spect to the available values of a property is a view metric. For a given view definition
vi ∈ V and the tuple cardinality | · | counting all tuples of a given relation, the Property
Completeness quality score of v is defined by the function f̂4 : V → R as follows:

f̂4(vi) =
|rel_table(vi)|

|rel_table(vi)unrestricted |
(11)

where rel_table(vi)unrestricted is the logical relational table underlying the view definition
vi with all WHERE clauses removed.

It has to be noted, that the Property Completeness, as proposed here, might be mis-
leading in cases where certain partitions of a (logical) relational table are covered by
dedicated view definitions. Assuming e.g. an employee table with a column that holds
the referencing foreign key to the department identifier an employee works in, there
might be the aim to create different URI schemes for the different departments. In case
the employees are equally distributed to three different departments, each of the corre-
sponding view definitions would have a Property Completeness score of 1

3 , even though
the overall completeness is 1. To tackle this issue, the metric above could be modified
to consider multiple view definitions if they refer to different partitions of one (logi-
cal) table. Nonetheless the metric was introduced in this weaker form to comply with
the actual implementation where the partition detection could not be realized due to
implementation limitations (cf. Section 4.1).

The introduction of a metric comparing the number of classes with the number of
relations, which would refer to the relations axis in Figure 14, is omitted here. This
is mainly due to the perception that these two quantities are only weakly related. Even
though showing how many of the relations of a database are mapped to classes would be
beneficial, RDF classes can be derived from many different RDB artifacts, e.g. relational
attributes, complex joins etc. which leads to a higher number of classes compared to the
number of relations.

Apart from the metrics derived from the completeness dimensions of relational data-
bases, further RDB2RDF related completeness metrics are introduced in the following.
One such metric is the assessment of the interlinking completeness, as proposed in the
Linked Data quality assessment survey by Zaveri et al. [67]. The interlinking complete-
ness is motivated by the Linked Data principles [80]. Accordingly, the more interlinks
exist in a dataset, the better its quality score is with regards to the Interlinking Com-
pleteness metric, which is defined as follows:

Metric 5 (Interlinking Completeness) The metric assessing the ratio of the number
of interlinked external instances and the total number of instances, is a dataset metric.
An instance is considered external, if the string representation of its URI does not start
with one of the local URI prefixes, set up for a dataset D ∈ D. Otherwise the instance
is considered local. The set of local resources is thus defined as follows:

Rlocal =
⋃
t∈D


r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
r ∈

 sub ject(t) ∪
predicate(t) ∪

ob ject(t)

 ∩ R ∧
the string representation of r’s URI starts with a local prefix


(12)

The cardinality function |D|ext_inst, counting the interlinked external resources is given
as:

|D|ext_inst =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sub ject(t)

∣∣∣∣∣∣∣∣
t ∈ D ∧ sub ject(t) < Rlocal ∧

ob ject(t) ∈ Rlocal ∧

sub ject(t) @ (rdfs:Class t owl:Class)

 ∪
ob ject(t)

∣∣∣∣∣∣∣∣
t ∈ D ∧ sub ject(t) ∈ Rlocal ∧

ob ject(t) < Rlocal ∧ ob ject(t) < L ∧
ob ject(t) @ (rdfs:Class t owl:Class)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(13)

Given the quality score function f5 : D → R, the Interlinking Completeness is calcu-
lated as follows:

f5(D) =
|D|ext_inst

|D|inst
(14)

where |D|inst is defined as in Metric 4.

Another best practice concerning the design of RDF data proposes the reuse of
established vocabularies. Besides the assessment of how often established vocabularies
are reused, which is covered by Metric 21, another aspect of importance is how many of
the vocabulary items are actually in use. Considering for example a dataset containing
linguistic data, it would be advantageous to reuse a lot of established vocabularies and
ontologies to describe the data in a highly interoperable way. But it would not be of
much benefit, if e.g. only type assignments for one single class, defined in a reused
vocabulary, are provided. Even though this would be vocabulary reuse, it would not
allow to query more complex facts using the corresponding vocabulary items, e.g. to
retrieve word translations or related part of speech information. This aspect is covered

by the following two metrics, assessing the vocabulary completeness with respect to
defined classes and properties. These two metrics were introduced especially for the
RDB2RDF case and are not proposed elsewhere, so far.

Metric 6 (Vocabulary Class Completeness) The metric assessing the ratio of the num-
ber of classes used and the number of classes defined, with respect to a certain vocab-
ulary Dvoc ∈ D, is a dataset metric. The classes that are defined in a vocabulary Dvoc is
the set CLASSES voc ⊂ R:

CLASSES voc =

{
r

∣∣∣∣∣∣ r ∈
(

sub ject(Dvoc)∪
ob ject(Dvoc)

)
∧ r v (rdfs:Class t owl:Class)

}
(15)

Given the dataset D ∈ D and the quality score function f6 : D → R, the Vocabulary
Class Completeness is calculated as follows:

f6(D) =

∣∣∣∣(sub ject(D) ∪ ob ject(D)
)
∩CLASSES voc

∣∣∣∣
|CLASSES voc|

(16)

Metric 7 (Vocabulary Property Completeness) The metric assessing the ratio of the
number of properties used and the number of properties defined, with respect to a cer-
tain vocabulary Dvoc ∈ D is a dataset metric. The properties that are defined in a
vocabulary Dvoc is the set PROPERTIES voc ⊂ R:

PROPERTIES voc =

r

∣∣∣∣∣∣∣∣r ∈
 sub ject(Dvoc) ∪

predicate(Dvoc) ∪
ob ject(Dvoc)

 ∧ r ∈ rdf:Property

 (17)

Given the dataset D ∈ D and the quality score function f7 : D → R the Vocabulary
Property Completeness is calculated as follows:

f7(D) =

∣∣∣∣∣∣∣∣
 sub ject(D) ∪

predicate(D) ∪
ob ject(D)

 ∩ PROPERTIES voc

∣∣∣∣∣∣∣∣
|PROPERTIES voc|

(18)

The quality scores of the Vocabulary Class and Vocabulary Property Completeness
metrics could also be determined by just taking the view definitions and database values
into account. This would introduce further complexity into the metric definitions and
implementations but would be more efficient, especially in cases where bigger datasets
are assessed.

Conciseness The conciseness dimension refers to the aim of providing data with low
redundancy. This is especially important to save network bandwidth, when querying
data over a computer network, to save hard disk space when storing the data and most
notably to reduce the time to process data.

The aspects of the conciseness dimension, proposed in Zaveri et al. [67] and adapted
for the RDB2RDF case, are the concise representation of properties of relational data

objects (intensional conciseness) and the non-redundant mapping of relational data ob-
jects to RDF resources (extensional conciseness). Furthermore, the conciseness with re-
spect to duplicate statements created by RDB2RDF mappings is regarded. The first two
aspects may occur accidentally when copying and pasting lines of the SML view defini-
tion, forgetting to update the quad or column variables. Duplicate statements, however,
may be introduced e.g. by mapping logical tables that are based on relational joins or
in case the database already contains redundant data. The metrics to detect such issues
are presented in the following.

Metric 8 (Intensional Conciseness) The metric assessing how often redundant pred-
icates are used in an RDB2RDF mapping is a view metric. A predicate is considered
redundant if

1. the same subject and object quad pattern variables of a single view definition are
used more than once, e.g.:

1 ?a ex:worksIn ?b .
2 ?a ex:department ?b . # redundant
3 ?a ?p ?b . # redundant

2. different subject and/or object quad pattern variables of a single view definition are
used more than once, with the different pattern variables being created by equal
term constructors e.g.:

1 Create View redundant As
2 Construct {
3 ?a ex:worksIn ?b .
4 ?a ex:department ?c . # redundant
5 ?a ?p ?c . # redundant
6 }
7 With
8 ?a = uri(ex:person, ?id)
9 ?b = uri(ex:dept, ’/’, ?dept)

10 ?c = uri(ex:dept, ’/’, ?dept)
11 ?p = uri(ex:works, ?kind_of_employment, ’In’)
12 # e.g. ex:worksFullTimeIn
13 From
14 empl

3. different subject and/or object quad pattern variables of different view definitions
are used more than once, with the different view definitions referring to the same
(logical) table and the different pattern variables being created by equal term con-
structors e.g.:

1 Create View redundant1 As
2 Construct {
3 ?a ex:worksIn ?b .
4 }
5 With
6 ?a = uri(ex:person, ?id)
7 ?b = uri(ex:dept, ’/’, ?dept)
8 From
9 empl

10

11 Create View redundant2 As
12 Construct {
13 ?a ex:department ?c . # redundant
14 ?a ?p ?c . # redundant
15 }

16 With
17 ?a = uri(ex:person, ?id)
18 ?c = uri(ex:dept, ’/’, ?dept)
19 ?p = uri(ex:works, ?kind_of_employment, ’In’)
20 # e.g. ex:worksFullTimeIn
21 From
22 empl

Since 1. and 2. are special cases of 3., predicate redundancy can be formulated more
generally: A property (variable or constant) of a quad pattern is considered redundant
if it appears multiple times in connection with subjects and objects that have equal
term constructors using to the same column variables of the same (logical) table, re-
spectively. To track down such duplicates for a given set of view definitions V ⊂ V and
the multiset union

⊎
, a multiset MM8 of tuples is generated as follows:

MM8 =
⊎
vi∈V



 rel_table(vi),

term_constructor(sub ject(p)),
term_constructor(ob ject(p))


∣∣∣∣∣∣∣∣
p ∈ quads(vi) ∧
sub ject(p) ∈ Q ∧
ob ject(p) ∈ Q


 (19)

MM8 contains all available combinations of (logical) tables × subject term constructors
× object term constructors and its counts. The count of a tuple τ ∈ MM8 can be retrieved
via MM8(τ). Given the (multiset) cardinality n = ‖MM8‖ and the quality score function
f8 : P(V)→ Rn the Intensional Conciseness is calculated as follows:

f8(V) =

(
1

MM8(τ)

)
τ∈MM8

(20)

f8 returns a tuple of quality scores containing one score for each of the quads, defined
in all vi ∈ V.

In case of the example under 3., MM8 would contain

1 # from ’?a ex:worksIn ?b .’ in view redundant1:
2 (empl, uri(ex:person, ?id), uri(ex:dept, ’/’, ?dept)),
3 # from ’?a ex:department ?c.’ in view redundant2:
4 (empl, uri(ex:person, ?id), uri(ex:dept, ’/’, ?dept)),
5 # from ’?a ?p ?c .’ in view redundant2:
6 (empl, uri(ex:person, ?id), uri(ex:dept, ’/’, ?dept))

Thus, for each of these tuples 1
MM8(τ) would yield 1

3 .

Metric 9 (Extensional Conciseness) The metric assessing redundant resources is a
view metric. RDF resources are considered redundant if they stem from the same database
object or artifact. In SML this is expressed using quad pattern variables that are built
applying URI term constructors that refer to the same relational columns and (logical)
table. An example that introduces redundant resources in two view definitions is shown
below:

1 Create View redundant1 As
2 Construct {
3 ?a a ex:Employee .
4 }
5 With
6 ?a = uri(ex:employee, ?id)
7 From

8 empl
9

10 Create View redundant2 As
11 Construct {
12 ?b a ex:Person .
13 }
14 With
15 ?b = uri(ex:person, ?id) # redundant
16 From
17 empl

A special corner case with regards to the Extensional Conciseness is given, if referenc-
ing foreign keys are used, as given in the following example.

1 Create View redundant1 As
2 Construct {
3 ?a a ex:Department.
4 }
5 With
6 ?a = uri(ex:dept, ?id)
7 From
8 dept
9

10 Create View redundant2 As
11 Construct {
12 ?b a ex:Person .
13 ?b ex:worksIn ?c
14 }
15 With
16 ?b = uri(ex:person, ?id)
17 ?c = uri(ex:department , ?dept_id) # redundant
18 From
19 empl # contains a foreign key empl.dept_id referencing dept.id

In the example above, ?c can be considered redundant or inconsistent, with the
latter case being covered by Metric 18. To also capture such cases, an extra normal-
ization step has to be performed. Given there are two relational tables δ j and δk with
Γ j being an ordered set of columns of δ j and Γk an ordered set of columns in δk. Then
(δk, Γk) ← (δ j, Γ j) denotes the fact, that all columns in Γ j define a foreign key de-
pendency, referencing the columns in Γk . The normalization step is then performed
applying the following function:

normalizeM9(δ j, Γ j) =

{
(δk, Γk) if (δk, Γk)← (δ j, Γ j)
(δ j, Γ j) otherwise (21)

To track down extensional redundancies for a given set of view definitions V ⊂ V
and the multiset union

⊎
, a multiset of pairs MM9 is generated as follows:

MM9 =
⊎
vi∈V




(
←−
δvi ,
←−−−
Γvi,q)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p ∈ quads(vi) ∧

q ∈

 sub ject(p) ∪
predicate(p) ∪
ob ject(p)

 ∩ Q ∧
rd f _term_type(term_constructor(q)) = uri ∧
Γvi,q = cols(term_constructor(q)) ∧

∣∣∣Γvi,q

∣∣∣ > 0 ∧
(
←−
δvi ,
←−−−
Γvi,q) = normalizeM9(rel_table(vi), Γvi,q)




(22)

MM9 contains all available combinations of (logical) tables and their referenced columns,
as well as the corresponding counts. The count of a pair η can be retrieved via MM9(η).

Given the (multiset) cardinality n = ‖MM9‖ and the quality score function f9 : P(V)→
Rn, the Extensional Conciseness is calculated as follows:

f9(V) =

(
1

MM9(η)

)
η∈MM9

(23)

Again, the quality score function f9 returns a tuple of quality scores with one value for
each term constructor that reference at least one relational column. Given the example
view definitions above, MM9 would look like this:

1 (dept, {?id}), # from redundant1: uri(ex:dept, ?id)
2 (dept, {?id}) # from redundant2: uri(ex:department , ?dept_id)

Thus, for both of these pairs 1
MM9(η) would yield 1

2 .

For a more practical reporting of the actual error cause, the term constructors, the
corresponding quad variables and the view definitions they stem from would have to be
stored as well in Metric 9. This is omitted here for brevity.

With regards to the next metric, it has to be noted, that even though the terms quad
pattern and quad are used, as introduced in the description of the Sparqlification Map-
ping Language in Section 2.1, the definition is formulated for an assessment of duplicate
triples. This restriction was also made for brevity and Metric 10 can easily be extended
to also work on graphs of triples.

Metric 10 (No Duplicate Statements) The metric assessing statement-level redundancy
is a view metric. RDF statements are considered redundant if there are multiple occur-
rences having the same subject, predicate and object. In SML view definitions this can
occur due to multiple SML quads that are equal. The No Duplicate Statements metric
thus regards the SML quads of all possible combinations of view definitions P(V) with
V ⊂ V. The power set P(V) is considered to precisely determine, which SML quad
combinations cause statement duplications.

For every subset V⊆ ∈ P(V) all quads, referencing at least one relational column,
are normalized, replacing quad variables with their anonymized term constructors:

P̃ =
⋃

vi∈V⊆


normalizeM10(sub ject(p)),

normalizeM10(predicate(p)),
normalizeM10(ob ject(p))


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p ∈ quads(vi) ∧

q ∈

 sub ject(p)∪
predicate(p)∪
ob ject(p)

 ∩ Q ∧
|cols(term_constructor(q))| > 0


(24)

with normalizeM10 being defined for a node input n ∈ N as follows:

normalizeM10(n) =

{
anonymize(term_constructor(n)) if n ∈ Q
n otherwise (25)

The anonymize function, applied to the term constructor, replaces all referenced rela-
tional column names with a fixed dummy column, e.g. ?col. Applying this normalization
to the quad of the view definition

1 Create View normalization_example As
2 Construct {
3 ?empl ex:worksAt ?dept .
4 }
5 With
6 ?empl = uri(ex:person, ?id)
7 ?dept = uri(ex:dept, ’/’, ?dept)
8 From
9 empl

will result in a normalized quad

1 (uri(ex:person, ?col), ex:worksAt, uri(ex:dept, ’/’, ?col))

With P̃ containing these normalized tuples, one can easily keep track of all available
quads and their anonymized term constructors. To also preserve the link to the actual
(logical) table of these normalized quads, a mapping has to be established, e.g.

MAPV⊆ =

⋃
vi∈V⊆


(p̃, δ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p ∈ quads(vi) ∧

p̃ =

normalizeM10(sub ject(p)),
normalizeM10(predicate(p)),
normalizeM10(ob ject(p))

 ∧
δ = rel_table(vi)


(26)

Having the set of normalized quads and the mapping to the underlying relational
tables, a generic approach can be followed to detect the introduction of duplicate
triples. Below, expressions like m[i] refer to the ith entry of the tuple m. For quads
pi ∈ (R∪Q)× (R∪Q)× (R∪L∪Q) and their corresponding normalized quads p̃i ∈ P̃
(0 ≤ i <

∣∣∣P̃∣∣∣) the following SQL count queries are generated and executed:

a) count(p̃i,m j)
each : for every map entry m j ∈ MAPV⊆ with m j[0] = p̃i the count of distinct

entries of the table δ j = m j[1] is queried, where δ j is projected to the relational
attributes referenced in the original term constructors of pi

b) count(p̃i)
union: for all map entries mk ∈ M p̃i with M p̃i =

{
m |m ∈ MAPV⊆ ∧ m[0] = p̃i

}
the count of distinct values of the union of all tables

{
δ |m ∈ M p̃i ∧ δ = m[1]

}
(each

projected to the relational attributes referenced in in the original term constructors
of pi) is queried

Given a considered set of view definitions V⊆ ∈ P(V), a quad p ∈ (R ∪ Q) × (R ∪
Q) × (R ∪ L ∪ Q) and its normalized quad representation p̃ ∈ P̃, the quality score
with regards to the No Duplicate Statements metric is determined by the function f̂10 :
(R ∪ Q) × (R ∪ Q) × (R ∪ L ∪ Q)→ R:

f̂10(p) =
count(p̃)

union∑
m j ∈ {m|m ∈MAPV⊆ ∧m[0] = p̃}

count(p̃,m j)
each

(27)

An example, presenting the different steps of Metric 10 is given in Figure 15.
The complexity of this metric had to be introduced due to the fact, that in a prac-

relational tables

PERS
pers_id given_name surname

1 Klaus Weichelt

2 Olaf Schubert

3 Alex Köhring

EMPL
id full_name

3 Jochen Barkas

4 Bert Stephan

5 Stephan Gräber

view definitions

1 Create View view_01 As
2 Construct {
3 ?p a ex:Person .
4 }
5 With
6 ?p = uri(ex:person, ?pers_id)
7 From
8 PERS

1 Create View view_02 As
2 Construct {
3 ?e a ex:Person .
4 }
5 With
6 ?e = uri(ex:person, ?id)
7 From
8 EMPL

set of normalized quads

1 (uri(ex:person, ?col) , rdf:type , ex:Person)

count(p̃)
union query

1 # will return 5
2 SELECT count(*) AS count FROM (
3 SELECT DISTINCT col1 FROM (
4 (
5 # ?pers_id originally referenced in the term
6 # constructor of ?pers in view_01
7 SELECT pers_id AS col1 FROM PERS
8 WHERE pers_id IS NOT NULL
9) UNION (

10 # ?id originally referenced in the term
11 # constructor of ?empl in view_02
12 SELECT id AS col1 FROM EMPL WHERE id IS NOT NULL
13) AS unified
14) AS dstnct

count(p̃,m j)
each query

1 # (~p, m1): will return 3
2 SELECT count(*) AS count
3 FROM (
4 SELECT DISTINCT pers_id
5 FROM PERS
6 WHERE pers_id IS NOT NULL
7) AS pers_ids

1 # (~p, m2): will return 3
2 SELECT count(*) AS count
3 FROM (
4 SELECT DISTINCT id
5 FROM EMPL
6 WHERE id IS NOT NULL
7) AS empl_ids

score
count(p̃)

union∑
count(p̃,m j)

each

=
5

3 + 3
=

5
6

−→
there are duplicates
(<http://ex.org/pers3>)

Fig. 15: Example demonstrating the approach of the No Duplicate Statements metric

tical assessment run, depending on which tools or libraries are used to provide ac-
cess to the dataset, duplicates may already be eliminated when the data are loaded.
In such cases, duplicates are only detectable using more complex algorithms like the
one proposed above. Nonetheless, the presented approach does not cover all possible
ways to introduce duplicate statements via RDB2RDF mappings. Redundant statements
might for example be created when different term constructors are involved, that gen-
erate the same URIs or literals, e.g. plainLiteral(?given_name, ’ ’, ?surname) and
plainLiteral(?full_name). Moreover, it has to be noted, that there might be cases,
where the SQL union statement of count(p̃)

union fails due to incompatible datatypes.

Consistency Since an erroneous view definition of an RDB2RDF mapping may af-
fect a lot of generated RDF statements it is of special importance to check whether the
created data is consistent. An inconsistent dataset may be useless or even harm appli-
cations using its data. Besides checking basic consistence aspects covered by the Basic
Ontology Conformance metric, other, more subtle issues like the homogeneous usage
of datatypes and possible defects of classes and properties are assessed. Moreover, the
No Ambiguous Mappings metric checks whether multiple database objects may get
mapped to one single RDF resource. Finally, metrics to detect known error patterns and
the generation of inconsistent URIs in case of referencing foreign key identifiers, are
provided. With these metrics a wide range of errors should be tracked down, increasing
the quality of an RDB2RDF mapping with regards to its consistency.

The first metric presented, covers the introduction of inconsistencies with respect
to the ontologies that are used. Such errors may occur, when using classes or prop-
erties without looking up possible restrictions on them, e.g. when using the property
foaf:interest with the literal value "RDB2RDF", even though foaf:interest is an ob-
ject property. Parts of this metric were proposed in the survey of Zaveri et al. [67].

Metric 11 (Basic Ontology Conformance) The metric checking the conformance of
different ontology consistency aspects is a dataset metric. Such aspects are

– Correct Datatype Property Value: reports property value violations of datatype
properties (e.g. when non-literal values are assigned via a datatype property)

– Correct Object Property Values: reports property value violations of object prop-
erties (e.g. when literal values are assigned via an object property)

– Disjoint Classes Conformance: reports violations of class disjointness axioms
– Valid Range: reports improper values w.r.t. a defined range

Accordingly, given a Dataset D ∈ D and a set of used vocabularies Dvoc ⊂ D, the
actual quality score is assigned per statement t ∈ D by the function f̂ : T → R as
follows:

f̂ (t) =

{
0 if a violation was found in D ∪ (

⋃
Dvoc)

1 otherwise (28)

This metric was introduced rather informal since there are several tools and reason-
ers that may be utilized without having to know the internals. Apart from this, these
generic issues are already discussed in the literature, e.g. [83].

The Basic Ontology Conformance metric here was designed as a dataset metric.
This has the advantage of working and reasoning on the real data, but also has the
disadvantage that it may not be practically computable at all, if the dataset is too big
and the machine running the assessment has not enough memory. A different approach
would be to run the metric just considering the view definitions and the underlying
database schema. Based on the schema definitions, dummy values could be created
for the relational columns referenced in view definitions. This would result in a very
small dataset, that only holds surrogate values, which can be assessed much faster and
with less memory demand. Compared to the straight forward approach, described in
the metric definition above, using dummy data based on the schema might even point
to errors that can not be discovered using the real RDF data. This would be the case,
if there is a view definition that would generate inconsistent triples, but the underlying
logical table is empty. On the other hand, there are also cases, where violations can
not be determined only considering the relational schema, e.g. when class disjointness
statements were generated using relational data.

Besides this ontological consistence there should also be a consensus on which
datatypes to use for property values. This is especially important when processing data
in applications, e.g. when relying on a certain type for displaying or further processing
steps. A concrete example of such an issue was reported in the paper introducing the
test-driven data quality methodology [49]. There, data quality test cases yielded false
positives because certain dates were in an unexpected format. In the RDB2RDF context
inhomogeneous datatypes may occur if different view definitions use the same prop-
erty but apply conflicting types to the properties’ values. The Homogeneous Datatypes
metric detecting such issues is defined as follows:

Metric 12 (Homogeneous Datatypes) The metric assessing the homogeneity of the
datatypes of property values, is a dataset metric. Given a dataset D ∈ D the following
set is created to track occurrences of properties and their value types:

MAPM12 =
⋃
t∈D

{
(r, type)

∣∣∣∣∣∣ r = predicate(t) ∧ ob ject(t) ∈ L ∧
ob ject(t) is of type ‘type’

}
(29)

The function f̂12 : R → R determining the quality score of a predicate r ∈ R is then
defined as follows:

f̂12(r) =

0 if
∣∣∣∣∣{ (rMAP, type)

∣∣∣∣ (rMAP, type) ∈ MAPM12 ∧ r = rMAP

}∣∣∣∣∣ > 1

1 otherwise
(30)

In the definition above, some details are omitted for brevity. First, it is left open, if
plain literals should be considered. If so, their type would be just ‘plain’, allowing to
find inhomogeneities with regards to the usage of plain and typed literals. Metric 12
also does not evaluate type hierarchies, e.g. as defined in the XML Schema specifica-
tion [84]. Another detail left out in the definition, but implemented in R2RLint is the
distinction between outliers and type clashes. Given the threshold θ, a type inhomo-
geneity is considered to be an outlier, if just a portion of all occurrences is affected, that
is smaller than θ. So, if θ is 0.9 and 9% of the values of the considered property have

one type and 91% of the values are of a different type, the 9% are viewed as outliers. In
case the portion is bigger, e.g. 11% a type clash would be reported.

It also has to be noted, that this metric does not evaluate possible rdfs:range defi-
nitions. Thus, a dataset could be consistent with respect to the datatype homogeneity of
property values but inconsistent as far as the compliance with ontological restrictions
is concerned, which is covered by Metric 11 (Basic Ontology Conformance). Moreover
the comments made for Metric 11 also hold for the Homogeneous Datatypes metric,
i.e. that inhomogeneities could also be detected considering the view definitions. Even
though this would reduce the amount of data to process, there are again cases where
the introduction of homogeneity violations depends on the relational data, e.g. when
variable datatypes are used, as in typedLiteral(?value, ?type). Besides this, the dis-
tinction between outliers and type clashes could not be made without evaluating the
generated RDF data.

In contrast to these literal inconsistencies, the next metric covers a more formal in-
consistency, concerning classes and properties. This metric assesses the usage of classes
and properties that are declared to be deprecated and thus should not be used because
they might be removed from the corresponding vocabulary and thus not be supported
in the future:

Metric 13 (No Deprecated Classes or Properties) The metric detecting if deprecated
classes or properties are used, is a dataset metric. Given a dataset D ∈ D and a set of
vocabularies Dvoc ⊂ D that are used within the dataset D, the No Deprecated Classes
or Properties metric looks for explicit statements tdep ∈ Tdep with

Tdep =

tdep

∣∣∣∣∣∣∣∣
tdep ∈ D ∪ (

⋃
Dvoc) ∧ predicate(tdep) = rdf:type ∧(

ob ject(tdep) = owl:DeprecatedClass ∨
ob ject(tdep) = owl:DeprecatedProperty

)  (31)

that express deprecation axioms using the classes owl:DeprecatedClass or owl:De-
precatedProperty.

Given the sets CLASSES ⊂ R containing all defined class resources in D, and PRO-
PERTIES ⊂ R containing all defined property resources in D, the quality score of a class
rc ∈ CLASSES with respect to the No Deprecated Classes or Properties metric is defined
by the function f̂13C : R → R as follows:

f̂13C (rc) =

{
0 if rc ∈ sub ject(Tdep)
1 otherwise (32)

Analogously, the quality score of a property rp ∈ PROPERTIES is defined by the function
f̂13P : R → R as

f̂13P (rp) =

{
0 if rp ∈ sub ject(Tdep)
1 otherwise (33)

The sets CLASSES and PROPERTIES are only introduced informally, since their ac-
tual (sound and complete) acquisition is not within the scope of this report and can be
delegated to several reasoner tools or libraries to implement this metric. These sets are
also assumed to exist for the introduction of the following metrics.

Besides this, it has to be noted, that such deprecation statements refer to the identi-
fier of a resource and not to the resource itself [85]. Thus, as an example, deprecation
can not be inferred for a class that is linked via owl:equivalentClass to another class,
which has a deprecated identifier.

Even though, the authors that first drew attention to the following issue showed
that most of the concrete problems occur rather rarely [61], the corresponding metric
was included. Besides the intention of having a means to detect known, but hard to
find errors, this blacklist-based metric should also serve as place for further fixed error
patterns that may come up in the future.

Metric 14 (No Bogus Inverse-functional Properties) The metric looking for bogus
inverse-functional properties as reported in [61], is a triple metric. To detect such
deficiencies a black list proposed in [61] is used. This black list contains values of
inverse-functional properties that stem from not validated inputs and do in fact not
identify a resource uniquely. An example of such a bogus inverse-functional property
value is a SHA1 hashed empty e-mail address string ’mailto:’, used in connection with
the foaf:mbox_sha1sum property. The actual literal value of the empty, hashed e-mail
address is "08445a31a78661b5c746feff39a9db6e4e2cc5cf" which is the same for all
empty input data, violating the inverse functional nature of foaf:mbox_sha1sum. The
whole black list Tbogus ⊂ T is given in Appendix A.1.

A statement t ∈ D is considered a violation with respect to the No Bogus Inverse-
functional Properties metric if there is a triple tb ∈ Tbogus with predicate(t) = predicate(tb)
and ob ject(t) = ob ject(tb). The quality score function f14 : T → R is then given as
follows:

f14(t) =


0 if ∃tb

 tb ∈ Tbogus ∧

predicate(t) = predicate(tb) ∧
ob ject(t) = ob ject(tb)


1 otherwise

(34)

To be able to utilize datasets participating in the Web of Data in a dependable man-
ner, there must be clear authorities with regards to the definition of established vocab-
ularies and ontologies shared and reused amongst the different data endpoints. Since
the definition authorities in the Semantic Web are clearly determined by the domain
names used in the corresponding URIs and the domain owners, there should be no vo-
cabulary axioms, set up in datasets not belonging to the URI prefix of the so defined
vocabulary. Accordingly, a definition like rdfs:label rdf:type rdfs:Class ., in any
dataset not provided by the authority of the RDF Schema prefix, is considered as on-
tology hijacking. Thus, to avoid inconsistencies based on concurrent and conflicting
statements published by different datasets, the following metric checks if there are any
definitions made for foreign, i.e. non-local, resources. This metric was also part of the
collected metrics in Zaveri et al. [67].

Metric 15 (No Ontology Hijacking) The metric assessing if there are any re-definitions
of parts of vocabularies not being under the authority of the owner of a considered
dataset D ∈ D, is a dataset metric. Given a set Dvoc ⊂ D of known vocabularies,
a triple t ∈ D is a violation with respect to the No Ontology Hijacking metric, if for

any of the vocabularies Dvoc ∈ Dvoc, sub ject(t) ∈ sub ject(Dvoc). In case the URI of
sub ject(t) does not share the local prefix(es) of D, but sub ject(t) < sub ject(Dvoc), t is
considered as ‘bad smell’. With Rlocal being defined as in Metric 5, the quality score of
a triple t ∈ D is determined by the function f̂15 : T → R:

f̂15(t) =



0 if ∃Dvoc

(
Dvoc ∈ Dvoc ∧ sub ject(t) ∈ sub ject(Dvoc)

)
0.5 if

sub ject(t) < Rlocal ∧

@Dvoc

(
Dvoc ∈ Dvoc ∧ sub ject(t) ∈ sub ject(Dvoc)

)
1 otherwise

(35)

The No Ontology Hijacking metric, as defined here, is rather strict since it does not
allow any re-definitions, even if they are consistent with the corresponding vocabulary
and merely serve as a local cache. Consequently this metric could be weakened, allow-
ing re-definitions of external vocabularies if these are identical copies of the original
axioms.

Another issue of RDB2RDF transformations is the silent loss of information due
to ambiguous mappings. In this case, multiple different relational database objects are
mapped to the same RDF resource. Even though, this metric was proposed by Zaveri

et al. [67] as conciseness metric, it is used in the context of the consistency dimen-
sion here. This is motivated by the fact, that the transformation process from relational
data to RDF data is considered, and normally the unique name assumption holds in
relational database systems. Accordingly, it would be an inconsistent state, if two rela-
tional database objects have the same identifier. Thus, the introduction of ambiguities
is viewed as a hard consistency error, rather than a problem of redundant opportunities
of an interpretation of a given identifier, as done by Zaveri et al. [67]. In the RDB2RDF
context, such errors may occur when two term constructors generate the same URIs
based on different database objects. This happens e.g. when existing variable definitions
are copied and pasted, without adapting the corresponding term constructors properly.

Metric 16 (No Ambiguous Mappings) The metric assessing if multiple different data-
base objects were mapped to one single RDF resource, is a view metric. Instead of
actually checking the database entries in connection with the views definitions’ term
constructors, this view metric considers settings in the view definitions that may lead
to ambiguous RDF resources. Such settings are given, if the same term constructor is
used referring to possibly different attributes of different relations, as in the following
example:

1 Create View ambiguous1 As
2 Construct {
3 ?a a ex:Employee .
4 }
5 With
6 ?a = uri(ex:person, ?pid) # ambiguous
7 From
8 pers
9

10 Create View ambiguous2 As
11 Construct {

12 ?b a ex:Person .
13 }
14 With
15 ?b = uri(ex:person, ?eid) # ambiguous
16 From
17 empl

An exception of this simple rule is given in cases where the considered attribute of
one relation is the parent foreign key attribute of another considered relation (and
vice versa). Thus, assuming there is a foreign key dependency between the attribute
empl.dept_id and dept.id (e.g. employee relation pointing to the id of a department
an employee works in), the term constructors marked with a comment in the following
view definitions are not ambiguous, since both refer to the same database object:

1 Create View not_ambiguous1 As
2 Construct {
3 ?e a ex:Employee .
4 ?d a ex:Department .
5 ?e ex:worksIn ?d .
6 }
7 With
8 ?e = uri(ex:empl, ?id)
9 ?d = uri(ex:dept, ?dept_id) # not ambiguous

10 From
11 empl
12

13 Create View not_ambiguous2 As
14 Construct {
15 ?d ex:name ?n .
16 }
17 With
18 ?d = uri(ex:dept, ?id) # not ambiguous
19 ?n = plainLiteral(?name)
20 From
21 dept

To find ambiguous mappings, an approach similar to Metric 10 is followed. First
of all, the anonymize function, introduced there, is reused. Applying anonymize to any
term constructor tc ∈ TC, available in the given set of view definitions V, with

TC =

⋃
vi∈V

tc

∣∣∣∣∣∣∣∣∣∣∣
q ∈

 sub ject(quads(vi)) ∪
predicate(quads(vi)) ∪

ob ject(quads(vi))

 ∩ Q ∧
tc = term_constructor(q)

 (36)

it replaces the relational columns referenced in each term constructor tc with a dummy
variable, e.g. "?col". Besides this, the normalization function normalizeM9 from Met-
ric 9 is utilized. Given the foreign key dependency (δ j, Γ j) ← (δk, Γk), this normaliza-
tion step replaces the referencing table and foreign keys with their actual dereferenced
target. Accordingly normalizeM9(δk, Γk) would yield (δ j, Γ j). To keep track of the (deref-

erenced) relational tables and the (dereferenced) columns the original term constructor
referred to, the set MAPM16 is used, given as follows:

MAPM16 =

⋃
vi∈V


(t̃c,
←−
δ ,
←−
Γ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q ∈

 sub ject(quads(vi)) ∪
predicate(quads(vi)) ∪

ob ject(quads(vi))

 ∩ Q ∧
tc = term_constructor(q) ∧

t̃c = anonymize(tc) ∧
(
←−
δ ,
←−
Γ) = normalizeM9(rel_table(vi), cols(tc))


(37)

With TC being the set of all valid term constructors, the function f̂16 : TC → R to
determine the quality score of a term constructor tc ∈ TC is then defined as follows:

f̂16(tc) =

0 if

∣∣∣∣∣∣
{

(t̃c,
←−
δ ,
←−
Γ)

∣∣∣∣∣∣ t̃c = anonymize(tc) ∧
(t̃c,
←−
δ ,
←−
Γ) ∈ MAPM16

}∣∣∣∣∣∣ > 1

1 otherwise
(38)

Accordingly, if there are at least two different entries in MAPM16 having the same
anonymized term constructor, this may result in an ambiguous mapping and is thus
considered a violation.

Besides this process-oriented assessment approach to find ambiguities introduced
by an RDB2RDF mapping, the problem can also be tackled on an ontological basis.
A weakness of the No Ambiguous Mappings metric is that it does not cover ambigu-
ities introduced by different term constructors, i.e. when t̃ci , t̃c j for two term con-
structors tci and tc j holds. This can be the case, if e.g. tci builds URIs using complete
URL strings retrieved from the underlying relational table and tc j builds URIs only
inserting certain strings gotten from the relational table into a URI template. Consid-
ering the two database values ’http://ex.org/ont/ambiguous’ and ’ambiguous’, they will
both result in the URI <http://ex.org/ont/ambiguous> when applied to the different
term constructors url(?val) and url(ex:ont, ?val), respectively. Thus, the following
metric is introduced detecting ambiguities from an ontological perspective.

Metric 17 (No Resource Name Clashes) The metric assessing if resource identifiers
are used multiple times by different resources, is a dataset metric. To determine such re-
source name clashes in a dataset D ∈ D, the following sets are used: CLASSES , PROPER-
TIES and INDIVIDUALS , where the first two sets are defined as above and INDIVIDUALS ⊂

R holds all individuals defined in D. The function f̂17 : R → R, returning the quality
score for a given resource r ∈ R, is defined as follows:

f̂17(r) =



0 if r ∈ CLASSES ∧ (s, r, o) ∈ D (a1)

0 if r ∈ CLASSES ∧ (r, p, o) ∈ D
∧ p is a datatype or object property

(a2)

0 if r ∈ CLASSES ∧ (s, p, r) ∈ D
∧ p is a datatype or object property

(a3)

0 if r ∈ PROPERTIES ∧ (r, p, o) ∈ D
∧ p is a datatype or object property

(b1)

0 if r ∈ PROPERTIES ∧ (s, p, r) ∈ D
∧ p is a datatype or object property

(b2)

0 if r ∈ INDIVIDUALS ∧ (s, r, o) ∈ D (c1)
1 otherwise

(39)
Thus, to detect resource name clashes, this metric looks for invalid combinations of
occurrences of resources in triples of a dataset D. As shown e.g. in the cases (a1) to
(a3), classes should not appear as predicates of triples or in connection with datatype
or object properties.

Since this metric assesses a dataset with regards to ontological violations, it could
be consolidated with Metric 11 (Basic Ontology Conformance). But due to the concrete
error pattern it covers (copy paste errors), Metric 17 was designed as separate metric to
provide a higher flexibility with regards to the configuration of an assessment run.

The last metric presented for the consistency dimension is assessing the consistent
mapping of relational objects being involved in a foreign key dependency. Since the
primary key values of such objects appear in two relational tables – the referencing and
the referenced one – it has to be taken care of a consistent mapping of the corresponding
foreign and primary key columns.

Metric 18 (Consistent Foreign Key Resource Identifiers) The metric assessing, if ref-
erenced relational foreign key columns are mapped consistently, is a view metric. Given
there are two term constructors tc1 and tc2, each referring to exactly one relational
column γ1 and γ2 respectively, where γ1 is defined in relation δ1 and γ2 is defined in
relation δ2. It is further assumed, that there are no other term constructors, referring to
the columns γ1 and γ2. In addition to this, a foreign key dependency is assumed to exist
between both columns δ1.γ1 ← δ2.γ2 with δ1.γ1 being the referenced (or parent) part
and δ1.γ1 the referencing (or child) one. The relational foreign key column γ2 is not
mapped consistently if tc1 and tc2 construct different URIs. As a consequence such a
mapping would create two different resource identifiers for one single database object.

Let V ⊂ V be a set of view definitions, δi, δ j be relational tables, each referenced in
one of the view definitions of V, and Γi, Γ j ordered sets of columns defined in δi and δ j,
respectively. Let (δi, Γi)← (δ j, Γ j) further denote the fact, that all columns in Γ j define
a foreign key dependency, referencing the columns in Γi. To find inconsistent foreign key

identifiers, a normalization function for term constructors is defined. Here ‘normalized’
means that in case all columns Γ j, referred to in a term constructor tc, define a refer-
encing foreign key dependency (δi, Γi) ← (δ j, Γ j) to another set of columns Γi, a new
term constructor will be created, where all occurrences of referencing columns in Γ j are
replaced with the corresponding referenced column of Γi. This replacement is denoted
by tc|Γi←Γ j . The second part of the normalization is the replacement of the referencing
table δ j with the referenced table δi. The function performing these transformations on
a relational table δ j and a term constructor tc is introduced as follows:

normalizeM18(δ j, tc) =


(δi, Γi, tc|Γi←Γ j) if

Γ j = cols(tc) ∧
(δi, Γi)← (δ j, Γ j)

(δ j, cols(tc), tc) otherwise

(40)

To keep track of term constructors that refer to columns that are the target of some
referencing foreign key columns, a set PAR is introduced as follows:

PAR =
⋃
vi∈V



(δ, Γ, tc)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q ∈

 sub ject(quad(vi)) ∪
predicate(quad(vi)) ∪
ob ject(quad(vi))

 ∩ Q ∧
tc = term_constructor(q) ∧

δ = rel_table(vi) ∧ Γ = cols(tc) ∧

∃(tc′, v′)



v′ ∈ V ∧

q′ ∈

 sub ject(quad(v′)) ∪
predicate(quad(v′)) ∪
ob ject(quad(v′))

 ∩ Q ∧
tc′ = term_constructor(q′) ∧
δ′ = rel_table(v′) ∧
normalizeM18(δ′, tc′) = (δ, Γ, tc)





(41)

Given the set TC of valid term constructors, the set of valid relational tables ∆,
the function f̂18 : TC × ∆ → R assessing, whether the identifier generated by a term
constructor tc, defined on a relational table δ, is consistent, is introduced as follows:

f̂18(tc, δ) =


0 if

rd f _term_type(tc) = uri ∧ (a)
normalizeM18(δ, tc) = (

←−
δ ,
←−
Γ,
←−tc) ∧

(δ, cols(tc), tc) , (
←−
δ ,
←−
Γ,
←−tc) ∧ (b)

∃e
(
e ∈ PAR ∧ e[0] =

←−
δ ∧ e[1] =

←−
Γ
)
∧ (c)

@e′
(
e′ ∈ PAR ∧ e′[0] =

←−
δ ∧ e′[1] =

←−
Γ ∧ e[2] =

←−tc
)

(d)

1 otherwise

(42)

Accordingly,

(a) a uri term constructor tc
(b) with referencing foreign key columns

is considered inconsistent with regards to the Consistent Foreign Key Resource Identi-
fiers metric, if

(c) the referenced table and columns are used by at least one term constructor,
(d) but only by term constructors different from the referencing one, i.e. there is no

entry in PAR for which also holds that its term constructor tc′ = e[2] equals←−tc.

Since it is checked, if tc contains referencing foreign key columns, only those ‘refer-
encing term constructors’ are assumed to violate the consistency, not the term construc-
tors holding the referenced columns. An exmple showing the main evaluation steps is
given in Figure 16.

Interlinking To build a web of data, the linking between different datasets is of crucial
importance. This is also reflected in the Linked Data principles [80] and guidelines [86].
Thus, to provide a high quality RDB2RDF mapping, an adequate portion of interlinks
should be contained. This is assessed by the following metric.

Metric 19 (External Same-as Links) The metric assessing the amount of statements
expressing that a local and an external identifier refer to the same resource, is a dataset
metric. Given a dataset D ∈ D, a triple t ∈ D is considered as external same-as link if
sub ject(t) is a local resource, predicate(t) = owl:sameAs and ob ject(t) is a non-local
(i.e. external) resource. The same holds, if subject and object are are used conversely,
i.e. if the subject is an external resource connected to a local resource via owl:sameAs.
The number of external same-as links of D is expressed with |D|ext_same_as. The quality
score function f19 : D → R is defined as

f19(D) =
|D|ext_same_as

|D|
(43)

Interoperability The interoperability dimension refers to the usage of well known for-
mats and structures [67]. This mainly eases further processing as well as a data source
independent use and may also strengthen the interlinking between different datasets. In
the context of RDB2RDF mappings this can be achieved, if established terms and vo-
cabularies are introduced. Even though, the former is a generalization of the latter, also
covering the reuse of established individuals and the expression of relations to them,
both aspects are assessed separately, to provide a higher flexibility. Both metrics were
also proposed in Zaveri et al. [67] informally and are presented in the following.

Metric 20 (Term Reuse) The metric assessing to which extend established terms are
reused for the RDB2RDF mapping, is a dataset metric. To evaluate if a term is estab-

SML view definitions

1 Create View referenced As
2 Construct {
3 ?d a ex:Department .
4 ?d rdfs:label ?n .
5 }
6 With
7 ?d = uri(ex:dept, ?id)
8 ?n = plainLiteral(?name)
9 From

10 DEPT
11

12 Create View referencing As
13 Construct {
14 ?e a ex:Employee .
15 ?e ex:worksIn ?d .
16 }
17 With
18 ?e = uri(ex:person, ?id)
19 ?d = uri(ex:department , ?dept_id)
20 From
21 EMPL # has referencing foreign key EMPL.dept_id to DEPT.id

set of referenced tables & foreign key columns with corresponding term constructors

1 PAR = { (DEPT, {id}, uri(ex:dept, ?id)) }

condition (a)

rd f _term_type(uri(ex:department, ?dept_id)) = uri �

condition (b)

normalizeM18(EMPL, uri(ex:department, ?dept_id)) =

(DEPT, {id}, uri(ex:department, ?id))

(EMPL, {dept_id}, uri(ex:department, ?dept_id)) ,
(DEPT, {id}, uri(ex:department, ?id)) �

condition (c)

∃e(e ∈ PAR ∧ e[0] = DEPT ∧ e[1] = {id}) �

condition (d)

@e′(e′ ∈ PAR ∧ e′[0] = DEPT ∧ e′[1] = {id} ∧

e′[2] = uri(ex:department, ?dept_id)) �

−→ the URI created by uri(ex:department, ?dept_id) on table EMPL is inconsistent
with respect to the Consistent Foreign Key Resource Identifiers metric

Fig. 16: Example showing the main evaluation steps of the Consistent Foreign Key Re-
source Identifiers metric

lished, a set NS is used containing strings of well known and established namespaces.
For a dataset D ∈ D, the set of established resources can be defined as follows:

Rest =
⋃
t∈D



r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

r ∈

 sub ject(t) ∪
predicate(t) ∪

ob ject(t)

 ∩ R ∧
∃ns

(
ns ∈ NS ∧
the string representation of r starts with ns

)
∧

using r’s URI as URL and requesting the corresponding
Web resource via HTTP GET, returns the HTTP response
code 200 after resolving any redirects



(44)

Accordingly, a resource is considered established if it shares an established namespace
and is dereferenceable. The set of resources that are not established is denoted by Rest

and defined as follows:

Rest =

⋃
t∈D

r

∣∣∣∣∣∣∣∣ r ∈
 sub ject(t) ∪

predicate(t) ∪
ob ject(t)

 ∩ R

\Rest (45)

With the cardinality expressions |Rest | and
∣∣∣Rest

∣∣∣, counting the distinct number of estab-
lished and not established resources, the Term Reuse quality score of a dataset D is
given by the quality score function f20 : D → R:

f20(D) =
|Rest |

|Rest | +
∣∣∣Rest

∣∣∣ (46)

To get the set NS of established namespaces, Metric 20 could use data of the LOD-
Stats [63] project or the prefix.cc29 namespace lookup service.

The concept of term reuse can be further modified to only consider the reuse of vo-
cabularies. Assessing the vocabulary reuse is of importance since established vocabular-
ies are a major requirement for an interoperable Web of Data. Instead of loosing seman-
tic relations between different vocabularies or having to state them explicitly, reusing
established vocabularies allows a direct interoperation amongst different datasets. In
contrast to term reuse, vocabulary reuse only refers to the usage of classes and proper-
ties stemming from established vocabularies or ontologies. The corresponding metric is
defined as follows:

Metric 21 (Vocabulary Reuse) The metric assessing the usage of established vocab-
ularies within a dataset D ∈ D is a dataset metric. To evaluate the vocabulary reuse,
the set of established vocabulariesDest_voc ⊂ D and the sets CLASSES and PROPERTIES

29 http://prefix.cc/

http://prefix.cc/

containing the classes and properties defined in D, are used. The set of established
classes and properties Rest_voc ⊂ R of a dataset D can then be defined as follows:

Rest_voc =
⋃
t∈D

r

∣∣∣∣∣∣∣∣∣∣∣
r ∈

 sub ject(t) ∪
predicate(t) ∪
ob ject(t)

 ∩ (CLASSES ∪ PROPERTIES) ∧

r ∈ sub ject(
⋃
Dest_voc)

 (47)

Accordingly, a class or predicate is considered established if it is defined or explained in
an established vocabulary. The set Rest_voc ⊂ R of not established classes and properties
is defined analogously:

Rest_voc =
⋃
t∈D

r

∣∣∣∣∣∣∣∣∣∣∣
r ∈

 sub ject(t) ∪
predicate(t) ∪
ob ject(t)

 ∩ (CLASSES ∪ PROPERTIES) ∧

r < sub ject(
⋃
Dest_voc)

 (48)

Having the two cardinality expressions
∣∣∣Rest_voc

∣∣∣ and
∣∣∣Rest_voc

∣∣∣ counting the distinct
established and not established classes and properties, the Vocabulary Reuse quality
score is given by the function f21 : D → R:

f21(D) =

∣∣∣Rest_voc

∣∣∣∣∣∣Rest_voc

∣∣∣ +
∣∣∣Rest_voc

∣∣∣ (49)

To retrieve the set Dest_voc of established vocabularies, the LODStats project or the
Linked Open Vocabularies dataset30 could be used.

Interpretability The interpretability dimension refers to the degree to which data are
represented using a proper notation to support their machine processability. Accord-
ingly, an RDB2RDF mapping should generate RDF data, that is meaningful with re-
gards to the applied representation capabilities of the Resource Description Framework.
This means, on the one hand, that if special notational constructs like RDF contain-
ers or RDF collections are used, these must conform with the underlying specifica-
tions. On the other hand, there should also be declarations, describing the semantics
and ontological context of RDF resources appropriately. Just having a resource, e.g.
<http://ex.org/person23> appearing in a statement like <http://ex.org/person23>
rdfs:label "Jochen Barkas"., may be useless for any further inference and may also
be hard to search using SPARQL. This is mainly because from a machine processing
perspective it is not clear, whether <http://ex.org/person23> is a class, a property, or
an instance of a certain class. Since datasets generated by RDB2RDF mappings tend
to be rather simple as far as ontological structures are concerned [50], giving feed-
back about a lacking ontological context seems important. One such requirement for
interpretable data, as pointed out by [61], is the provision of type information of RDF
resources, which is assessed by the following metric.

30 http://lov.okfn.org/dataset/lov/

http://lov.okfn.org/dataset/lov/

Metric 22 (Typed Resources) The metric assessing if local resources of a dataset D ∈
D are properly typed, is a dataset metric. With Rlocal being defined as in Metric 5, the
quality score of an input resource r ∈ Rlocal is determined by the function f̂22 : R → R:

f̂22(r) =



1 if (r, rdf:type , o) ∈ D ∧ o ∈ R
1 if (r, rdf:type , rdfs:Class) ∈ D
1 if (r, rdf:type , owl:Class) ∈ D
1 if (r, rdfs:subClassOf , o) ∈ D ∧ o ∈ R
1 if (r, rdfs:subPropertyOf, o) ∈ D ∧ o ∈ R
1 if (r, owl:equivalentClass, o) ∈ D ∧ o ∈ R
1 if (r, owl:equivalentProperty, o) ∈ D ∧ o ∈ R
0 otherwise

(50)

Consequently, a bad quality score is assigned if there is no explicit type statement for r
and r is not a class itself.

Besides the typing of an RDF resource, further information might be desirable, e.g.
subclass hierarchies, class equivalences, special characteristics of properties etc., which
can be described using the OWL vocabulary. This is checked by the following metric.

Metric 23 (OWL Ontology Declarations) The metric checking if a local resource is
anchored in an ontological context, described via the RDFS or OWL vocabularies, is
a dataset metric. ‘Ontological context’ is referred to as certain statements that de-
fine the relations of a considered resource to an underlying ontology, e.g. its assigned
type, subclass relations, disjointness statements or domain/range restrictions. The pro-
posed properties, applicable for such statements are subsumed in the set ONTDEF-
PROPERTIES ⊂ R and can be looked up in Appendix A.2. The function f̂23 : R → R
assigning a quality score to an input resource r ∈ Rlocal (with Rlocal being defined as in
Metric 5) is then given as follows:

f̂23(r) =

0 if @t
(

t ∈ D ∧ sub ject(t) = r ∧
predicate(t) ∈ ONTDEFPROPERTIES

)
1 otherwise

(51)

Most of the violation cases could also be detected, if this metric was designed as
view metric, looking for the respective predicate constants in the quad patterns. This
would have the advantage that an error is only reported once for a violating resource
generation rule in the view definition. In contrast to this, the metric as defined above
reports each violating resource that was generated by the RDB2RDF mapping rule,
which might result in thousands of entries possibly all having the same cause. Nonethe-
less, certain violations might not be detectable without assessing the actual database
entries, e.g. if predicate variables are used in the corresponding quad patterns. Thus,
to reduce the complexity of the metric, the simpler approach of assessing the dataset
was followed. Since the pinpointing results should also yield the candidates that most
probably generated the violating resource, the reported information should suffice to
find the actual cause of the violations.

Another characteristic of highly interpretable data is the conformance with current
best practices. One such best practice is to avoid blank nodes, since they cannot be

rdf:first

rdf:first

rdf:first

rdf:rest

rdf:rest rdf:first

rdf:rest

i

i+1

i-1

a)

b), e)

c) d)

f)

g)

Fig. 17: Schematic depiction of the checks performed in the Correct Collection Use
metric on an RDF sub graph expressing an RDF collection

interlinked with other resources and hampers the consolidation or merging of data from
different data sources [62]. The metric covering this issue was also proposed by Zaveri

et al. [67] and is introduced in the following.

Metric 24 (Avoid Blank Nodes) The metric assessing if blank nodes are introduced
in a dataset D ∈ D via RDB2RDF mappings, is a view metric. Given the set of quad
variables Q defined in the view definitions of V ⊂ V

Q =

⋃
vi∈V

q

∣∣∣∣∣∣∣∣q ∈
 sub ject(quads(vi))∪

predicate(quads(vi))∪
ob ject(quads(vi))

 ∩ Q
 , (52)

the function f̂24 : Q → R assigning a quality score to a quad variable q ∈ Q is defined
as follows:

f̂24(q) =

{
0 if rd f _term_type(term_constructor(q)) = bNode
1 otherwise (53)

For the creation of Q as well as for the following definitions it is assumed that quad
variables are resolved by view name and name (e.g. example_view.?example) to avoid
variable name clashes amongst different view definitions.

Further capabilities of the Resource Description Framework to describe more com-
plex structures, are RDF collections, RDF containers and RDF reifications. Since the
underlying expression mechanisms also introduce complexity and further constraints
with respect to syntactical structures, they are covered by dedicated metrics, described
in the following.

Metric 25 (Correct Collection Use) The metric checking the correct usage of RDF
collections in a dataset D ∈ D, is a dataset metric. For every statement tcollrest

i
∈ D that

has an rdf:rest predicate, the following checks are performed:

a) rest statement has rdf:nil subject: check, if sub ject(tcollrest
i

) = rdf:nil

b) rest statement has literal object: check, if ob ject(tcollrest
i

) is a literal
c) none or multiple first statements: check, if there is none or more than one statement

tcoll f irst
i

with sub ject(tcoll f irst
i

) = sub ject(tcollrest
i

) and predicate(tcoll f irst
i

) = rdf:first

d) first statement has literal object: if there is a statement tcoll f irst
i

, check if ob ject(tcoll f irst
i

)
is a literal

e) collection not terminated with rdf:nil: check, if ob ject(tcollrest
i

) , rdf:nil and there
is no statement tcollrest

i+1
with sub ject(tcollrest

i+1
) = ob ject(tcollrest

i
)

f) multiple successors: check, if there are multiple statements tcollrest
i+1

with sub ject(tcollrest
i+1

) =

ob ject(tcollrest
i

)
g) multiple predecessors: check, if there are multiple statements tcollrest

i−1
with ob ject(tcollrest

i−1
) =

sub ject(tcollrest
i

)

A schematic depiction of these checks applied to an example RDF sub graph is given
in Figure 17. The function f̂25 : T → R determining the quality score of a collection
statement tcollrest

i
is defined as follows:

f̂25(tcollrest
i

) =


0 if any of the checks b) and d) is positive
0.5 if any of the checks a), c), e), f) and g) is positive
1 otherwise

(54)

Since the RDF specification does not require a collection to be ‘well-formed’ [87],
only the rdfs:range violations in the cases b) and d) are actual errors with regards
to the underlying semantics. Accordingly, all the other cases, checked in a), c), e), f)
and g) are not violating the RDF specification. Nonetheless these cases are considered
violations of a well-formed collection thus yield a score of 0.5.

Metric 26 (Correct Container Use) The metric checking the correct usage of RDF
containers in a dataset D ∈ D, is a dataset metric. For every statement tconti ∈ D that
has a rdfs:ContainerMembershipProperty on predicate position, the following checks
are performed:

a) container not typed: if predicate(tconti) = rdf:_1, check if neither rdf:Bag, rdf:Seq,
nor rdf:Alt is assigned to sub ject(tconti) via rdf:type

b) literal objects: check, if ob ject(tconti) is a literal
c) multiple entries for one container membership property: check, if there is a statement

tconti′ with sub ject(tconti′) = sub ject(tconti), predicate(tconti′) = predicate(tconti) and
ob ject(tconti′) , ob ject(tconti)

d) numbering gaps: check, if
– there is a statement tconti+2 with sub ject(tconti+2) = sub ject(tconti) and the predi-

cates of tconti and tconti+2 are differing in two steps (with predicate(tconti+2) being
the bigger one),

– but no statement tconti+1 with sub ject(tconti+1) = sub ject(tconti) and the predicates
of tconti and tconti+1 differing in one step (with predicate(tconti+1) being the bigger
one)

e) container starts at rdf:_0: check if there is a statement tcont0 with predicate(tcont0) =

rdf:_0

f) container membership properties with leading zeros: check if there are statements
tconti with predicate(tconti) having leading zeros, e.g. rdf:_023

The function f̂26 : T → R assigning a quality score to a container statement tconti is
defined as follows:

f̂26(tconti) =


0 if any of the checks b), e) and f) is positive
0.5 if any of the checks a), c) and d) is positive
1 otherwise

(55)

As with collections, the RDF specification does not impose many restrictions on
containers, as far as semantics is concerned [87]. Thus, only the range violation of
container membership property instances as checked in b), the numbering violation
checked in e), and the syntax violation of d) are real errors with respect to the RDF
specification. The remaining cases are not excluded explicitly or even explicitly stated
to be not a semantic violation. Nonetheless they are considered erroneous with regards
to the ‘well-formedness’ of an RDF container and thus yield a score of 0.5.

The last metric proposed for the interpretability dimension covers reification state-
ments. Even though, the Correct Reification Use metric only covers RDF reification, it
can be easily extended to also support OWL2 annotations, since the classes and proper-
ties involved in RDF reifications have their direct counterparts in OWL2.

Metric 27 (Correct Reification Use) The metric checking the correct usage of reifica-
tion statements in a dataset D ∈ D, is a dataset metric. For every statement trei fi ∈ D
with either predicate(trei fi) ∈ { rdf:subject , rdf:predicate , rdf:object}, or trei fi
being typed as rdf:Statement, the following checks are performed:

a) reification not typed properly: check, if sub ject(trei fi) is not typed as rdf:Statement
b) none or multiple rdf:subject statements: check, if there is none or more than one

statement trei f sub j
i

with sub ject(trei f sub j
i

) = sub ject(trei fi) and predicate(trei f sub j
i

) =

rdf:subject

c) literal value of rdf:subject property: if trei f sub j
i

exists, check if ob ject(trei f sub j
i

) is a
literal

d) none or multiple rdf:predicate statements: check, if there is none or more than
one statement trei f pred

i
with sub ject(trei f pred

i
) = sub ject(trei fi) and predicate(trei f pred

i
) =

rdf:predicate

e) literal or blank node value of rdf:predicate property: if trei f pred
i

exists, check if
ob ject(trei f pred

i
) is a literal or a blank node

f) none or multiple rdf:object statements: check, if there is none or more than one
statement trei f ob j

i
with sub ject(trei f ob j

i
) = sub ject(trei fi) and predicate(trei f ob j

i
) =

rdf:object

The function f̂27 : T → R assigning a quality score to an input statement trei fi involved
in a reification, is defined as follows:

f̂27(trei fi) =

{
0 if any of the checks a) - f) is positive
1 otherwise (56)

Performance RDB2RDF mappings usually have no influence on the actual perfor-
mance of the underlying service, which is mainly determined by characteristics of the
server machine and the implementation. The only aspect that can be influenced con-
cerns the URI design. Since slash URIs are considered preferable to hash URIs as far
as performance is concerned [64], Metric 28 reports hash URI occurrences. This metric
was also proposed by Zaveri et al. [67].

Metric 28 (No Hash URIs) The metric checking if a hash URI is used as identifier of
a local resource, is a node metric. Assuming that for every URI the percent-encoding
was applied and Rlocal is defined as in Metric 5, the function f̂28 : R → R determining
the quality score of an input resource r, is defined as follows:

f̂28(r) =

{
0 r ∈ Rlocal ∧ the URI string of r contains the hash character ‘#’
1 otherwise

(57)

Even though, the usage of hash URIs is mostly considered as bad, as far as perfor-
mance is concerned, it might also be advantageous in some cases. Given an application
will have to access a bigger portion of hash URIs via HTTP, it can be designed to just
retrieve the document located at the URL without the fraction part once and save it for
caching purposes. Thus, further accesses could be served from the cache without need-
ing any HTTP requests at all, which would be a performance benefit. Accordingly, it
also depends on the actual use case and the dataset, if such URIs really harm the overall
performance.

Relevancy The relevancy dimension “refers to the provision of information which is
in accordance with the task at hand” [67]. Since this is usually not assessable without
further specifications of the requirements a certain task has, more general aspects are
considered here. These comprise the categorization of the created dataset with respect
to its triple count and the evaluation of characterizing ratios. Having the triple count,
gives at least some rough feedback, whether the dataset can be expected to contain the
desired information. For the actual categorization the scale of Flemming [64] is applied.
The values used by Flemming reflect the size distribution of the datasets contributing
to the LOD Cloud in the year 2011. Based on the current statistics of the LODStats
project31, these values are considered to be still applicable for a categorization and are
thus used here. The corresponding metric is defined as follows:

Metric 29 (Amount of Triples) The metric assessing the size of a dataset D ∈ D is a
dataset metric. The actual size of D is determined by counting the triples t ∈ D, denoted
by the cardinality bars |D|. The quality score function f29 : D → R for an input dataset
D is defined as follows:

f29(D) =


1 if |D| ≥ 1, 000, 000, 000
0.75 if 1, 000, 000, 000 > |D| ≥ 10, 000, 000
0.5 if 10, 000, 000 > |D| ≥ 500, 000
0.25 if 500, 000 > |D| ≥ 10, 000
0 if 10, 000 > |D|

(58)

31 http://stats.lod2.eu/stats

http://stats.lod2.eu/stats

The ratio characteristics to be evaluated in the assessment are the coverage with
respect to the level of detail of a dataset and with respect to its scope. As introduced
by Flemming [64], these characteristics reflect the aim of providing enough properties
to describe resources in detail, and of having enough of these resources to cover the
considered domain. Accordingly, if a dataset contains only few distinct RDF properties,
its coverage with respect to the level of detail is low. On the other hand, if there are
actually only few instances described in the dataset the scope coverage is considered to
be bad. Thus, both aspects are contradictory in the sense, that a dataset can not have a
perfect scope coverage and detail coverage at the same time. Instead, increasing one of
them lowers the other one. The corresponding metrics are defined as follows:

Metric 30 (Coverage (Detail)) The metric assessing the coverage of a dataset with
respect to its level of detail is a dataset metric. For a dataset D ∈ D this coverage is
given as the ratio of the number of properties |D|prop and the number of triples |D|. The
quality score function f30 : D → R for an input dataset D is defined as follows:

f30(D) =
|D|prop

|D|
(59)

Metric 31 (Coverage (Scope)) The metric assessing the coverage of a dataset with
regards to its scope is a dataset metric. For a dataset D ∈ D this coverage is given as
the ratio of the number of instances |D|inst (as introduced in Metric 3), and the number
of triples |D|. The quality score function f31 : D → R for an input dataset D is defined
as follows:

f31(D) =
|D|inst

|D|
(60)

Representational Conciseness The representational conciseness dimension covers
best practices that guarantee a terse and clear representation of the RDF data. The main
aspects, proposed by Zaveri et al. [67], are short and query parameter free URIs and the
avoidance of so called ‘prolix features’ [62]. Short URIs can be memorized more easily
by users. Moreover, they are better suited for efficient storage concerns, e.g. on-disk
indexes, compression techniques or caching [62]. The avoidance of prolix features like
RDF collections, RDF containers and reification statements is motivated in [86,62] with
the assertion, that they lack a wide tool support and are hard to query via SPARQL.

The actual metrics assessing these issues are introduced in the following.

Metric 32 (Short URIs) The metric assessing the length of the identifier string of a
resource r ∈ R is a node metric. Assuming a certain threshold θ was set up, the function
f̂32 : R → R assessing the quality score of an input resource r, is defined as follows:

f̂32(r) =

{
0 the URI string length is greater than θ
1 otherwise (61)

Metric 33 (No Prolix Features) The metric checking if prolix features are used in an
RDF statement is a triple metric. According to [62] such prolix features are (a) RDF

reifications, (b) RDF containers and (c) RDF collections. The function f33 : T → R
determining the quality score of an input triple t ∈ D (D ∈ D) is given as:

f33(t) =



0 if predicate(t) = rdf:subject (a1)
0 if predicate(t) = rdf:predicate (a2)
0 if predicate(t) = rdf:object (a3)
0 if sub ject(t) ∈ rdf:Statement (a4)
0 if predicate(t) ∈ rdfs:ContainerMembershipProperty (b1)
0 if sub ject(t) ∈ rdf:Alt (b2)
0 if sub ject(t) ∈ rdf:Bag (b3)
0 if sub ject(t) ∈ rdf:Seq (b4)
0 if sub ject(t) ∈ rdf:Container (b5)
0 if predicate(t) = rdf:first (c1)
0 if predicate(t) = rdf:rest (c2)
0 if sub ject(t) ∈ rdf:List (c3)
1 otherwise

(62)

The conditions checked in f33 are grouped as follows: (a1) − (a4) check for reification
use, (b1) − (b5) asses if t is an RDF container statement, and (c1) − (c3) covers RDF
collection expressions.

Metric 34 (Query Parameter-free URIs) The metric checking whether the identifier
string of a resource r ∈ R contains query parameters, is a node metric. Assuming that
percent-encoding was applied for every URI, the quality score of an input resource r is
determined by the function f̂34 : R → R, which is defined as follows:

f̂34(r) =

{
0 if the URI string of r contains the question mark character ‘?’
1 otherwise (63)

Semantic Accuracy The semantic accuracy dimension refers to the extent “to which
data values are represented correctly” [67]. Since the actual values are copied from
the database to become (parts of) RDF literals or URIs, an accuracy degradation with
regards to the extensional data seems implausible. Even the decision, if values should
be represented as own resources or whether they should be mapped to literals, highly
depends on the actual use case and can not be judged in general. In case inaccuracies
are introduced, the actual variations have to be stated explicitly using the corresponding
modification expressions. Thus, the introduction of extensional inaccuracy based on
erroneous mappings is unlikely to occur.

Semantic information that should be accurate in both, the RDB and RDF context,
and can degrade during the conversion, are intensional data stored in the relational
schema definitions. Such relational schema information can be divided into intrarela-
tion and interrelation constraints [25]. Their translation to RDF will result in richer
ontologies, which are desired from an accuracy perspective. Intrarelation constraints
define restrictions on single attributes as well as constraints that must hold between
multiple attributes. One representative of this category is the NOT NULL constraint, stat-
ing that a certain attribute of a relation must exist. To preserve this in the RDF data,

cardinality constraints have to be introduced for properties using values derived from
NOT NULL-constrained attributes. To give an example, an employee database can be con-
sidered. There, a relational table EMPL, holding employee entries, might have a column
birth_date which is constrained to be not NULL. In case the birth_date column is used
in an RDB2RDF mapping, to accurately translate this to RDF, the modeled vocabulary
or ontology should contain a corresponding hint, that every employee resource has a
birthday. The metric to assess this is defined as follows:

Metric 35 (Preserved NOT NULL Constraints) The metric assessing the preserva-
tion of relational NOT NULL constraints is a view metric. Given a set of view definitions
V ⊂ V, the set of quad object variables referencing database values having a NOT NULL
constraint, can be defined as follows:

QNOT_NULL =
⋃
vi∈V

q

∣∣∣∣∣∣∣∣∣
q ∈

(
ob ject(quads(vi)) ∩ Q

)
∧

Γ = cols(term_constructor(q)) ∧
∃γ (γ ∈ Γ ∧ γ has a NOT NULL constraint)

 (64)

The function f̂35 : N ×N × N → R assigning a quality score to a quad p ∈ quads(vi)
of a view definition vi ∈ V is given as

f̂35(p) =


0 if

ob ject(p) ∈ QNOT_NULL ∧

@pc


pc ∈

⋃
vi∈V quads(vi) ∧

sub ject(pc) = predicate(p) ∧(
predicate(pc) = owl:cardinality ∨
predicate(pc) = owl:minCardinality

)


1 otherwise

(65)

Another intrarelation constraint is the UNIQUE restriction, forbidding multiple equiv-
alent values of a certain attribute. Conversely, this means, that a database object is
identified by such an attribute uniquely. The corresponding OWL class to be assigned
to the respective RDF properties used in conjunction with the UNIQUE values, is the
owl:InverseFunctionalProperty class. A metric checking the accurate mapping of
UNIQUE values could be defined analogous to Metric 35 (Preserved NOT NULL Con-
straints), which is omitted here for brevity.

A further means to define intrarelation constraints in SQL is the CHECK clause. Such
an expression can contain arbitrary conditions that must hold and would require a for-
mal introduction of the SQL, and on the implementation side a full fledged SQL parser
to read all constraints. Moreover all these constraints that refer to parts of the relational
database, that are also mapped to RDF must be translated to suitable OWL constraints.
Since this is not an easy task and may not be feasible in a generic and automatic way at
all, this is not considered here and also not checked by the R2RLint prototype.

Apart from such restrictions stated explicitly, another kind of constraint arises from
the semantics of relational databases. In one single tuple, every attribute can be consid-
ered functional for the entry at hand. Regarding the birthday example of the employee
database again, this would also impose the explicit declaration of the introduced birth-
day property to be functional. The preservation of such functional attributes is assessed
by the following metric.

Metric 36 (Preserved Functional Attributes) The metric assessing the preservation
of relational attributes’ characteristics of being functional is a view metric. Given a set
of view definitions V ⊂ V, the set of quad object variables, whose term constructors
refer to functional columns of the underlying relational table, can be defined as follows:

Q f unc =
⋃
vi∈V


no

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t ∈ quads(vi) ∧ ns = sub ject(t) ∧ no = ob ject(t) ∧
ns ∈ Q ∧ no ∈ Q ∧

∃Γ

Γ ⊆ cols(term_constructor(ns)) ∧
Γ can be considered as primary key of
the underlying (logical) relational table




(66)

Q f unc then contains all quad variables on object positions that should be declared
functional via the appropriate type of the corresponding property. The function f̂36 :
N × N × N → R assigning a quality score to a quad pattern p ∈ quads(vi) of a view
definition vi ∈ V is given as

f̂36(p) =


0 if

ob ject(p) ∈ Q f unc ∧

@p f


p f ∈

⋃
vi∈V quads(vi) ∧

sub ject(p f) = predicate(p) ∧
predicate(p f) = rdf:type ∧
ob ject(p f) = owl:FunctionalProperty


1 otherwise

(67)

Interrelation constraints, in contrast, are restrictions defined over multiple relations.
Besides more complex CHECK constraints, foreign key dependencies are the most promi-
nent representatives. One major condition that can be checked with respect to accuracy
is whether foreign key relations are preserved by the RDB2RDF mapping. Given a tuple
that contains a foreign key reference to another tuple, at least two RDF resources can
be introduced: one that represents the considered tuple entity and another one for the
referenced tuple. In case, both resources were generated in an RDB2RDF mapping, to
preserve the foreign key relation between them, there should also be a statement having
the former as triple subject and the latter as triple object (cf. Figure 18). The metric
evaluating this aspect is given as follows:

Metric 37 (Preserved Foreign Key Constraints) The metric assessing the preserva-
tion of foreign key relations between relational database entries is a view metric. Given
the set Ψ of all foreign key dependencies (δi, Γi) ← (δ j, Γ j) defined over RDB and the
set of view definitions V ⊂ V, a set PSUB of pairs can be constructed. Each pair in
PSUB represents a view definition’s quad subject that is constructed using data from
columns that are the target of a foreign key dependency. The first entry of each pair
contains the corresponding relational table and the second one holds the actual quad
variable. PSUB is then defined as follows:

PSUB =
⋃
vi∈V

(δ, q)

∣∣∣∣∣∣∣∣∣
δ = rel_table(vi) ∧ q ∈

(
sub ject(quads(vi)) ∩ Q

)
∧

Γ = cols(term_constructor(q)) ∧
∃(δ′, Γ′)

(
(δ, Γ)← (δ′, Γ′) ∈ Ψ

)
 (68)

With this set, violations with regards to the Preserved Foreign Key Constraints metric
can be found. To give an example, the RDB2RDF mappings depicted in Figure 18 are
considered. Due to the foreign key dependency (DEPT, id) ← (EMPL, dept) between the
two relational tables EMPL and DEPT, PSUB would contain (DEPT, uri(ex:dept, ?id)).
This means that there are URIs constructed, using data from the id column of the DEPT
table. Since the view definition empl_view also generates statements about resources,
that are constructed using the primary key columns of EMPL (via uri(ex:person, ?id)),
there should be an assertion, expressing the ‘foreign key link’ that existed in the rela-
tional database (cf. Figure 18). Accordingly, the function f̂37 : V → R assinging a

?b

rdf:type ex:Employee

ex:worksIn

?a

?a ?b

.

.

?a

rdf:type ex:Department?c .

uri(ex:dept, ?id)

?c

'foreign key link'

EMPL DEPT
foreign

key
constraint

uri(ex:dept, ?dept)uri(ex:pers, ?id)

empl_view dept_view

Fig. 18: Example showing the preservation of a relational foreign key constraint via a
‘foreign key link’ SML quad expression

quality score to a view definition vi ∈ V, is defined as follows:

f̂37(vi) =



0 if

qs ∈
(

sub ject(quads(vi)) ∩ Q
)
∧ δ = rel_table(vi) ∧

Γs = cols(term_constructor(qs)) ∧
Γs are the primary key columns of δ ∧
(δ′, Γ′)← (δ, Γo) ∈ Ψ ∧

∃(δ′, q′)
(

(δ′, q′) ∈ PSUB ∧
cols(term_constructor(q′)) = Γ′

)
∧ †

@p′

 p′ ∈ quads(vi) ∧ sub ject(p′) = qs ∧

ob ject(p′) ∈ Q ∧
cols(term_constructor(ob ject(p′))) = Γo

 ‡

1 otherwise

(69)

In the definition of f̂ , the term marked with † expresses the requirement, that there is
a quad, generating statements about a resource constructed using data from the target
columns of a foreign key dependency. Assessing empl_view from the example above,
this would correspond to the existence of the quad variable ?c in dept_view. The term
marked with ‡ however, checks if no ‘foreign key link’ exists. Since the example contains
the quad expression ?a ex:worksIn ?c with ?c referring to the referencing foreign key
columns Γo = {dept}, it is not violating the preservation of a relational foreign key
dependency.

It has to be noted, that even though it could have been defined somewhere else, in
this metric the ‘foreign key link’ is only searched within one view definition. This was
done to reduce complexity and is not a limitation of the overall approach.

Syntactic Validity The syntactic validity dimension refers to the conformance of data
with given syntax specifications [67]. Since the specifications of most importance in the
RDB2RDF case are those that define the structures of RDF data, the assessment of syn-
tactic validity, as considered here, should ensure that valid RDF data is generated. Due
to the fact that the Sparqlification Mapping Language does not allow to create invalid
RDF structures in general, the only aspects to cover are the datatype compatibility of
typed literals, as proposed by Zaveri et al. [67], and the usage of valid language tags.
The introduction of literals with invalid datatypes may occur due to copy and paste er-
rors, when setting up a view definition. Invalid language tags, on the other hand, might
be introduced by accident, e.g. because of typing errors, or if database values are used to
generate the language tags. The metrics covering these issues, are introduced as follows:

Metric 38 (Datatype-compatible Literals) The metric assessing the compatibility of
literals with respect to their XML Schema datatypes is a node metric. A typed literal’s
value is compatible with the literal’s datatype if its lexical representation is within the
datatype’s value range as specified in [84]. The quality score function f38 : N → R for
an input node n ∈ N is given as

f38(n) =

{
0 if n ∈ L ∧ n’s value is not compatible with n’s datatype
1 otherwise (70)

As a convention, f38 returns 1, if the input node is not a literal.

This metric could also be designed as view metric. But, since its formalization
would be very complex, especially for the consideration of all the term constructor
functions defined in the Sparqlification Mapping Language, this simpler node metric
was introduced.

The same holds for the next metric. Here language tags, defined as constant ex-
pressions, could also be evaluated in the corresponding view definition and would not
require the assessment of all generated plain literals. But since the actual language tag
could also be defined referring to database values, and to avoid an overly complex for-
malization, again the simpler definition of a node metric is introduced as follows:

Metric 39 (Valid Language Tag) The metric assessing the validity of a literal’s lan-
guage tag is a node metric. A plain literal’s language tag is considered valid if it is
compliant with the BCP 47 standard [88]. The quality score function f39 : N → R for
an input node n ∈ N is given as

f39(n) =

{
0 if n ∈ L ∧ n has a language tag ∧ n’s language tag is not valid
1 otherwise (71)

Again, 1 is returned by convention for non-literal nodes or literal nodes not having a
language tag.

Understandability The understandability dimension contains metrics assessing whether
RDF data, generated by an RDB2RDF mapping can be easily consumed by humans.
One first step towards this ease of consumption is the provision of human readable
labels for resources, as proposed by Zaveri et al.[67]. The corresponding metric is in-
troduced in the following.

Metric 40 (Labeled Resources) The metric assessing whether a resource r ∈ R is
properly labeled, is a dataset metric. With Rlocal being defined as in Metric 5, the func-
tion f̂40 : R → R assessing the Labeled Resources quality score of a resource r is given
as follows:

f̂40(r) =

{
0 if r ∈ Rlocal ∧ (r , rdfs:label , l) < D
1 otherwise (72)

This metric could be further extended, to also regard the provision of labels in dif-
ferent languages. Then, the requirements would be to support as much languages as
possible and to cover these languages homogeneously. This means, that if e.g. 10 lan-
guages are supported, every resource that is labeled, should have a label in each of these
languages, which would require 10 labels in the given example. Conversely, if e.g. 50
languages are supported, but every labeled resource just had one label in one single
language, this would be regarded as bad quality.

Apart from human readable labels of resources, their actual identifiers, the URIs,
should be sounding to be easy to remember and easy to type manually. Since it can
not be directly derived if a URI is sounding, a dictionary approach could be used. But
applying a dictionary comparison introduces further problems of natural language pro-
cessing, e.g. finding word boundaries in case a URI contains multiple words not sep-
arated explicitly or the resolution of abbreviations. To assess if a URI contains parts,
that sound like words of a given language several trials were made to apply phonotac-
tic [89] techniques [90,91,92], libraries32 and tools33. Unfortunately, none of them were
able to provide or persist phonotactic rules, to be reused for the quality assessment, with
a reasonable effort. Thus, a probabilistic phonotactics [93] approach based on trigrams
was developed. With this approach trigrams that are common in a given language get
a higher score than uncommon ones. Accordingly, strings that sound like real words,

32 e.g. https://github.com/marytts/marytts/tree/master/marytts-lang-en
33 e.g. http://www.linguistics.ucla.edu/people/hayes/Phonotactics/Manual.pdf

https://github.com/marytts/marytts/tree/master/marytts-lang-en
http://www.linguistics.ucla.edu/people/hayes/Phonotactics/Manual.pdf

e.g. ‘uffish’ in the English language are rated higher than words like ‘czvfgw’. The
corresponding metric is defined as follows:

Metric 41 (Sounding URIs) The metric assessing whether a URI is sounding, is a
node metric. The degree to which a URI is sounding, is determined using trigram statis-
tics of a training set of words stemming from a corpus in a certain language. For every
word the occurrences of its contained trigrams are counted and added to a global statis-
tic Φ. Φ then contains the more frequent trigrams of a language (w.r.t. to the underlying
corpus) with higher counts and uncommon, less frequent trigrams with lower counts.
The global count of a trigram φ can be retrieved via Φ(φ), returning 0 if φ is not con-
tained in Φ. It is further possible to query the maximal count gathered with max(Φ).
The maximal count can be used to set up a normalization factor ν as follows:

ν =
1

max(Φ)
(73)

With φ ∈ r expressing that a certain trigram φ is contained in the identifier of a resource
r ∈ R, and |r|tri denoting the number of trigrams contained in r, the function f̂41 : R →
R, assessing the quality score of an input resource r is given as:

f̂41(r) =

∑
φ∈r Φ(φ)
|r|tri

ν (74)

One detail, omitted in the metric definition for brevity, is that actually not the whole
URI string, but its parts are assessed. The corresponding partial results are then aggre-
gated for the whole URI string. This was mainly done to avoid counting characters like
‘/’ and ‘:’, intended to serve as word separator.

Another important issue concerning the understandability dimension is the provi-
sion of further information on the Web. Thus URIs should also be valid HTTP URLs.
Since in the RDB2RDF case URIs are mostly generated, it is of importance to verify
that the created URIs are valid with respect to the underlying standards. Unfortunately
there are different standards that should be taken into account, depending on the con-
sidered part of the URI. Even though there are URI and URL schema definitions34,35

as well as corresponding standards [94,95] provided by the Internet Engineering Task
Force (IETF) and W3C, these are not throughout consistent with other standards, e.g.
for internet host names [96], URIs based on IP addresses [97] or Internationalized Do-
main Names (IDN) [98]. To actually check, if a URI is a valid HTTP URI a regular
expression was compiled taking into account most of the involved standards. The regu-
lar expression can be looked up in Appendix A.3. This regular expression is used in the
following metric, defined to assess if resource identifiers are valid HTTP URIs.

Metric 42 (HTTP URIs) The metric assessing whether an identifier of a resource r ∈
R is a valid HTTP URI, is a node metric. The function f̂42 : R → R determining the
quality score of an input resource r is defined as:

f̂42(r) =

{
0 if r is not a valid HTTP URI
1 otherwise (75)

34 http://www.w3.org/Addressing/URL/5_BNF.html
35 http://tools.ietf.org/html/draft-fielding-url-syntax-09#appendix-A

http://www.w3.org/Addressing/URL/5_BNF.html
http://tools.ietf.org/html/draft-fielding-url-syntax-09#appendix-A

Another way to support the understandability is the provision of certain metadata [67].
Such metadata may concern the actual data (e.g. a short description, the intended lan-
guage or the covered topic), their titles or the creators. There are many different vo-
cabularies that might be used to express such information. The vocabularies proposed
here are the Vocabulary of Interlinked Datasets (VoID)36, the Dublin Core Metadata
Initiative (DCMI) Metadata Terms vocabularies37 and the Friend of a Fried (FOAF) vo-
cabulary38. Following the proposal of [64] to check, whether metadata is contained in
the dataset, the corresponding metric is defined as follows:

Metric 43 (Dataset Metadata) The metric assessing if certain metadata descriptions
are provided, is a dataset metric. Given the three sets of proposed metadata properties
Rtitle ⊂ R, Rcontent ⊂ R and Rcreator ⊂ R, as defined in Appendix A.4. For a dataset
D ∈ D the quality score function f43 : D → R is given as follows:

f43(D) =



1 if ∃ti ∃t j


ti, t j ∈ D ∧
predicate(ti) = rdf:type ∧

ob ject(ti) = void:Dataset ∧

sub ject(t j) = sub ject(ti) ∧ t j , ti ∧
predicate(t j) ∈ (Rtitle ∪ Rcontent ∪ Rcreator)


0.5 if ∃ti ∃t j


ti, t j ∈ D ∧
predicate(ti) = rdf:type ∧

ob ject(ti) = void:Dataset ∧

sub ject(t j) = sub ject(ti) ∧ t j , ti ∧
predicate(t j) < (Rtitle ∪ Rcontent ∪ Rcreator)


0 otherwise

(76)

Accordingly, a quality score of 0 is returned in case D does not contain a dataset re-
source rvoid:Dataset typed as void:Dataset or D does contain a dataset resource, but no
further statements about it are contained. A score of 0.5 is assigned if further statements
about rvoid:Dataset are made, but without using the proposed properties of the sets Rtitle,
Rcontent or Rcreator. Only if at least one of these properties is used, the score 1 is returned.

36 http://vocab.deri.ie/void
37 http://dublincore.org/documents/2012/06/14/dcmi-terms
38 http://xmlns.com/foaf/spec/

http://vocab.deri.ie/void
http://dublincore.org/documents/2012/06/14/dcmi-terms
http://xmlns.com/foaf/spec/

QualityAssessment

readViewDefs()
setUpDataset()
setUpMetrics()
exec()

environment
configuration

metrics
configuration

MetricA
DataSetMetric

<<interface>>

assessDataset(dataset : SparqlifyDataset)

MetricB
MetricC

TripleMetric

<<interface>>

assessTriple(triple : Triple)

MetricD
MetricE

MetricF

NodeMetric

<<interface>>

assessNodes(triple : Triple)

MetricG
MetricH

MetricI

ViewMetric

<<interface>>

assessViewDefs(viewDefs : Collection<ViewDefinition>)

MetricJ
MetricK

MetricL

Pinpointer

getViewCandidates(triple : Triple)

SparqlifyDataset

it() : Iterator<Triple>

com.hp.hpl.jena.rdf.model.Model

<<interface>>

MeasureDataSink

<<interface>>

write(datum : MeasureDatum)

RdbSink

...registered to all metrics

javax.sql.DataSource

...registered on demand to all metrics that utilize it

Fig. 19: Class diagram of the R2RLint prototype

4 R2RLint

This section introduces R2RLint, the software prototype implementing the R2RLint
methodology. Besides its basic features, implementation limitations are presented to
also show the differences to the proposed definitions.

R2RLint is designed as a command line tool, aligned with the requirements for qual-
ity evaluation frameworks [34,42]. Due to the decoupling of assessment runner (Qual-
ityAssessment), configuration (environment configuration, metrics configuration), and
the actual metrics (example metric classes MetricA - MetricL, cf. Figure 19), R2RLint
allows to customize the assessment, defining which metrics to apply with which thresh-
olds. Even though R2RLint is equipped with the 43 metrics, introduced in Section 3.5,
the R2RLint framework provides an easy way to define own metrics. A simple dummy
example is given in Listing 1.3. Due to decoupling mechanisms of the Spring Frame-
work39 no further wiring or interaction with the assessment framework is needed. This is
mainly achieved applying Springs component autowiring mechanisms. The same holds
for the actual reporting entity of R2RLint, the measure data sink. Besides the existing
RDB sink, writing the assessment results to a configured relational database, and the
logging sink, just logging the results to the console, own sinks can be programmed eas-
ily, implementing the initialization and write methods of the corresponding interface.
This was also used for testing, where special sinks were introduced to easily verify
expected results.

R2RLint, comprising the R2RLint framework and 43 implemented metrics backed
by 420 software tests, currently contains 16661 lines of code (comments, empty lines

39 http://projects.spring.io/spring-framework/

http://projects.spring.io/spring-framework/

1 package org.aksw.sparqlify.qa.metrics.example;
2

3 import org.aksw.sparqlify.qa.dataset.SparqlifyDataset;
4 import org.aksw.sparqlify.qa.metrics.DatasetMetric;
5 import org.aksw.sparqlify.qa.metrics.MetricImpl;
6 import org.springframework.beans.factory.annotation.Autowired;
7 import org.springframework.stereotype.Component;
8

9 @Component
10 public class Example extends MetricImpl implements DatasetMetric {
11

12 @Autowired
13 DataSource rdb;
14 @Autowired
15 Pinpointer pinpointer;
16

17 @Override
18 public void assessDataset(SparqlifyDataset dataset) {
19 // custom dataset assessment
20 }
21 }

Listing 1.3: Simple example metric defined for the R2RLint framework

and import statements excluded) and is available on GitHub40 under the Apache Li-
cense41. R2RLint was developed using the state-of-the-art software project management
tool Maven42 and the RDF libraries of the Jena project43.

Even though R2RLint was implemented as a prototype of the R2RLint methodology
and the proposed metrics, there were some practical limitations that forced changes
leading to certain deviations. These are covered in the following section.

4.1 Implementation Limitations

Although the R2RLint methodology and the proposed metrics are all implementable
in theory, there were some hurdles in practice. The major limitations faced during the
development of R2RLint and the practical evaluation were hardware resource short-
ages when running the assessment on big datasets and the complexity in terms of the
programming effort required to calculate intermediate results of certain corner cases.
Thus, three metrics could not be run on all assessed datasets, or at least not without
modifications.

Besides this, there is one case, also shown in Figure 19, where R2RLint differs due
to practical reasons: Since the pinpointing mechanism, yielding the actual RDB2RDF
mapping rules that most probably generated a given RDF statement, only works on
triples or quads, the node metric method assessNodes(...) is defined for triple instead
of node input. Nonetheless, internally all node metrics implemented assess the subject,

40 https://github.com/AKSW/Sparqlify-Extensions/tree/patrick/sparqlify-qa
41 http://www.apache.org/licenses/LICENSE-2.0.html
42 http://maven.apache.org
43 http://jena.apache.org

https://github.com/AKSW/Sparqlify-Extensions/tree/patrick/sparqlify-qa
http://www.apache.org/licenses/LICENSE-2.0.html
http://maven.apache.org
http://jena.apache.org

predicate and object node separately, without the need of a triple scope. The whole
triple is just used to provide the triple context information, required by the pinpointer
to find view definition candidates that led to the erroneous data.

The more severe difference to the formal metric definitions, is that in most cases
logical tables used in view definition, that are based on SQL expressions are not eval-
uated due to the lack of an applicable SQL parser. Even though there are SQL parsers,
they either required an amount of memory typically not available on current desktop or
notebook computers or they are embedded in larger software libraries and are hard to
reuse or not intended for reuse at all. Thus, the SQL parsing is left out in the prototype
which means that the evaluation of logical tables based on SQL expressions is skipped.
This affects the metrics 2, 10, 16, 35, 36 and 37.

Another case, where the effort to work with up-to-date external data was not made,
concerns the Vocabulary Reuse (Metric 21) and Term Reuse (Metric 20) metric. To de-
termine a quality score, the top 100 ranking of the namespace lookup service prefix.cc
is used. Instead of requesting the current top 100 namespaces before running the as-
sessment, the results retrieved Sep 16, 2013 were hard coded. Apart from the effort to
write the source code to fetch the desired entries, in some cases results were discarded
because they seemed not to be reasonable – a verification step that can hardly be au-
tomatable. One example is the entry <http://dbpedia.org/property/years/> for the
prefix dbpprop.

The last case where things left unimplemented, concerns the regular expression used
to detect valid HTTP URIs in Metric 42. Even though a big effort was made to integrate
different standards, the specifications for Internationalized Domain Names [98] and
IPv6 zone identifiers [97] were left out.

5 Evaluation

To get an impression on actual data quality deficiencies of real RDB2RDF mappings,
practical assessment runs were performed on three different datasets. These should also
serve to proof the proper functioning of the R2RLint framework and to get feedback
with regards to the applicability of the implemented metrics. The assessed RDB2RDF
mapping projects are introduced in the following, discussing the assessment results of
each quality dimension afterwards.

The first data source under assessment is part of the LinkedGeoData [70] project,
being the Linked Data mirror of OpenStreetMap. LinkedGeoData provides spatial data
stemming from crowd-sourced user input covering the whole globe. Since the amount
of data is far to much to be assessed as a whole, only a small portion of LinkedGeoData
was chosen for evaluation. This portion was created using the OpenStreetMap database
snapshot for the smallest of Germany’s federal states, Bremen. After having loaded
the snapshot, a full RDF dump was created using the Sparqlify tool and the mapping
definitions from the LinkedGeoData GitHub repository44. This RDF dump was then
loaded into a Virtuoso 7.0.0 triple store45 which was used for the assessment. Event
though the RDF dataset of Bremen is just a very small portion of the whole dataset
provided by the project, it is referred to as LinkedGeoData in the following for brevity.

LinkedGeoData was chosen as a medium size dataset with RDB2RDF mapping
definitions that are expected to have a high quality. This assumption is backed by the
fact that LinkedGeoData is part of GeoKnow46, a comprehensive, EU funded research
project aiming at connecting heterogeneous spatial data with Semantic Web technolo-
gies. General statistics of the LinkedGeoData dataset are shown in Table 8.

Dataset D
at

e/
Ve

rs
io

n

Tr
ip

le
s

D
ist

in
ct

Re
so

ur
ce

s

Li
te

ra
l V

al
ue

s

LinkedGeoData bremen-latest.osm.pbf47 13,726,852 3,726,142 6,200,583
LCC (Eng) eng_wikipedia_2010_10K 656,704 128,582 149,788
LinkedBrainz musicbrainz-server-2013-10-14 197,399,205 1,048,239 92,183,398

Table 8: General statistics of the assessed datasets

44 https://github.com/GeoKnow/LinkedGeoData/blob/master/
linkedgeodata-core/src/main/resources/org/aksw/linkedgeodata/sml/
LinkedGeoData-Triplify-IndividualViews.sml

45 http://sourceforge.net/projects/virtuoso/files/virtuoso/7.0.0/
46 http://geoknow.eu/Project.html
47 http://download.geofabrik.de/europe/germany/bremen-latest.osm.pbf, re-

trieved Nov 17, 2013

https://github.com/GeoKnow/LinkedGeoData/blob/master/linkedgeodata-core/src/main/resources/org/aksw/linkedgeodata/sml/LinkedGeoData-Triplify-IndividualViews.sml
https://github.com/GeoKnow/LinkedGeoData/blob/master/linkedgeodata-core/src/main/resources/org/aksw/linkedgeodata/sml/LinkedGeoData-Triplify-IndividualViews.sml
https://github.com/GeoKnow/LinkedGeoData/blob/master/linkedgeodata-core/src/main/resources/org/aksw/linkedgeodata/sml/LinkedGeoData-Triplify-IndividualViews.sml
http://sourceforge.net/projects/virtuoso/files/virtuoso/7.0.0/
http://geoknow.eu/Project.html
http://download.geofabrik.de/europe/germany/bremen-latest.osm.pbf

The second dataset that was evaluated is an RDF version of parts of the Leipzig
Corpora Collection (LCC) provided by the Wortschatz project of the University of
Leipzig48. The dataset49 contains per-language statistics about co-occurrences of dif-
ferent words stemming from different corpora, e.g. Wikipedia pages or news sites. It
was generated ad-hoc to support the creation of multilingual Linked Open Data ap-
plications at the Multilingual Linked Open Data for Enterprises (MLOD) conference
201250. Being an ad-hoc attempt, created for a very limited purpose, the mapping is ex-
pected to be of poor quality. It does not contain much ontological structures, but merely
the core statistics. Since the original RDF data is not available anymore, the dataset was
rebuilt using the original SML mapping definitions. Even though the data, as created at
the MLODE conference, comprised statistics of different languages, only those of the
English language were loaded for this assessment. The RDF data was generated using
the 10K version of a tab-separated values (TSV) dump51 holding statistics of words and
stemming from 10,000 sentences of the English Wikipedia. After loading each TSV
file, again a full RDF dump was created utilizing the Sparqlify tool with the original
SML mapping definitions52. This RDF dump was then loaded into a Virtuoso 7.0.0
triple store, used for the assessment run. The dataset is referred to as LCC (Eng) in the
following and its general statistics can be looked up in Table 8.

The last RDB2RDF mapping project under assessment is LinkedBrainz which pro-
vides SPARQL access to an RDF version of the MusicBrainz database. Initially funded
by the non-departmental public body Jisc53, LinkedBrainz later became part of the EU-
CLID54 EU project. LinkedBrainz is now maintained at the British Museum55. Accord-
ingly, this dataset is also expected to be of high quality.

Since the RDB2RDF mapping definitions for the LinkedBrainz data were only
available in R2RML, they were translated to SML in the first step. Afterwards an RDF
dump was generated using the MusicBrainz database embedded in the MusicBrainz
Server Virtual Machine generated on October 14 2013 and the Sparqlify tool. This
dump was loaded into a Virtuoso 7.0.0 triple store for the assessment. General statistics
of the LinkedBrainz dataset are given in Table 8.

In the following the assessment results for the introduced RDB2RDF mapping
projects are discussed, considering single quality dimensions in separate sections. A
more detailed overview, showing the outcome of all metrics is given in Appendix B.

48 http://corpora.uni-leipzig.de
49 http://datahub.io/dataset/lcc
50 http://sabre2012.infai.org/mlode
51 http://corpora.uni-leipzig.de/downloads/eng_wikipedia_2010_10K-text.
tar.gz

52 https://github.com/AKSW/Sparqlify/blob/master/sparqlify-examples/src/
main/resources/sparqlify-examples/wortschatz-merged.sparqlify

53 http://jisc.ac.uk/
54 http://euclid-project.eu/
55 http://www.britishmuseum.org/

http://corpora.uni-leipzig.de
http://datahub.io/dataset/lcc
http://sabre2012.infai.org/mlode
http://corpora.uni-leipzig.de/downloads/eng_wikipedia_2010_10K-text.tar.gz
http://corpora.uni-leipzig.de/downloads/eng_wikipedia_2010_10K-text.tar.gz
https://github.com/AKSW/Sparqlify/blob/master/sparqlify-examples/src/main/resources/sparqlify-examples/wortschatz-merged.sparqlify
https://github.com/AKSW/Sparqlify/blob/master/sparqlify-examples/src/main/resources/sparqlify-examples/wortschatz-merged.sparqlify
http://jisc.ac.uk/
http://euclid-project.eu/
http://www.britishmuseum.org/

5.1 Availability

The only metric that was evaluated for the availability dimension, was the dereference-
ability of generated URIs. For the assessment run, only external URIs were considered.

With regards to the dereferenceability, LinkedGeoData attained a perfect result
without any violations.

The only errors found in the LCC dataset were non-dereferenceable URLs pointing
to Wikipedia pages that were the actual corpus sources, but do not exist anymore. Since
these were also the only external URIs in this dataset, the assessment result of 117 vio-
lations within 9,543 assessed Wikipedia URLs amounts to an overall dereferenceability
of about 99%.

The main cause of dereferenceability violations of the LinkedBrainz dataset were
Discogs URLs like http://www.discogs.com/artist/AC%2FDC. Even though they
can all be looked up in a browser, trying to retrieve them via the corresponding Java
libraries or curl command line queries results in a response ‘500 Internal Server Error’.
These errors amount to 97% of all dereferenceability problems. An actual mapping
error could be found via the Dereferenceable URIs metric, where bare integer values
were mapped to URIs. Further dereferenceability issues arose for owl:sameAs links to
different DBpedia datasets.

5.2 Completeness

For the completeness dimension, the schema, property, interlinking and vocabulary
completeness were assessed. First of all, the results of the Schema Completeness met-
ric are highly influenced by the implementation limitation, that SQL parsing is not
supported. Since view definitions with query based logical tables could thus not be
evaluated, the corresponding results are not meaningful at all. The actual scores are in
fact much higher than evaluated in the assessment. In case of the LCC dataset, for ex-
ample, the correct value would be 0.54 instead of 0.04. This clearly shows the need to
extend the R2RLint prototype with SQL parsing support.

With the Property Completeness metric a view definition of the LinkedBrainz RDB2-
RDF mappings could be detected, that does not generate any triples. Besides this, it can
be observed that the LinkedBrainz and LCC datasets are only poorly interlinked. The
different results of the vocabulary completeness metrics show, that only in rare cases
higher scores are achieved.

5.3 Conciseness

Regarding the conciseness dimension, it can be said, that even though the assessed
datasets are perfectly concise with respect to the intentional conciseness, there are often
single view definitions that generate multiple different RDF resources, based on single
database objects.

An obvious outlier in the results of the LinkedBrainz dataset could be detected for
the No Duplicate Statements metric. The value of 0.04 showed that a lot of duplicate
triples were introduced. In fact, this was caused by an erroneous mapping, referring to a

http://www.discogs.com/artist/AC%2FDC

wrong relational column56. Further, it has to be noted, that in case of the LinkedGeoData
and LinkedBrainz dataset, the No Duplicate Statements metric did not assess the whole
power set P(V) of view definitions V , since the power set generation was refused by the
underlying library. The corresponding number of view definitions was too big, so that,
as a fallback, only single view definitions were considered.

5.4 Consistency

With regards to the consistency metrics it showed that two of them, the Basic Ontology
Conformance and the No Resource Name Clashes metric, were not computable for all
datasets due to RAM shortages. In the case of the Basic Ontology Conformance met-
ric the LinkedGeoData dataset could only be assessed using sample triples. Nonethe-
less, these yielded violations for the object property <http://linkedgeodata.org/
page/ontology/wheelchair> used with literal values, the datatype property <http:
//linkedgeodata.org/page/ontology/agricultural> used with non-literal val-
ues, as well as several properties used with a wrong range datatype. Further, LinkedGeo-
Data made statements about external resources from the geodata and dbr namespaces,
which are thus considered to be bad smells with regards to the No Ontology Hijacking
metric. Actual hijacking violations were also found, since the LinkedGeoData dataset
contained ontological re-definitions concerning the foaf:mbox property. But it has to be
noted, that only one of these four statements differs from the original definitions of the
FOAF vocabulary.

The reported warnings of the No Ambiguous Mappings metric all stem from cases,
where references to tables embedded in logical table definitions could not be resolved
due to the lack of SQL parsing capabilities. Thus, after validating most of these vio-
lations by hand, it turned out, that these are false negatives and the number of errors
should be much smaller.

Besides this, no further violations were found. In some cases, this can be attributed
to rather poor ontologies, that do not define many consistency restrictions, as in the case
of the LCC dataset. The Consistent Foreign Key Resource Identifiers, on the other hand,
could not be violated during the assessment of the LinkedGeoData and LinkedBrainz
mappings, since no foreign key dependencies were defined on the underlying databases
for performance reasons.

5.5 Interlinking

Even though there are great differences between the LinkedGeoData dataset on the one
hand, and LCC (Eng) and LinkedBrainz on the other hand, it has to be noted, that the
External Same-as Links metric creates noticeable low scores. Nonetheless it can be
seen, that LinkedGeoData is better interlinked than LinkedBrainz, and LCC (Eng) only
provides a very small portion of owl:sameAs links.

56 The object map in the mapping https://github.com/LinkedBrainz/
MusicBrainz-R2RML/blob/de10106bde0ae0c14b2a7e51baac49abc7dcd823/
mappings/artist.ttl#L212-L224 erroneously refers to gid instead of recording_gid

http://linkedgeodata.org/page/ontology/wheelchair
http://linkedgeodata.org/page/ontology/wheelchair
http://linkedgeodata.org/page/ontology/agricultural
http://linkedgeodata.org/page/ontology/agricultural
https://github.com/LinkedBrainz/MusicBrainz-R2RML/blob/de10106bde0ae0c14b2a7e51baac49abc7dcd823/mappings/artist.ttl#L212-L224
https://github.com/LinkedBrainz/MusicBrainz-R2RML/blob/de10106bde0ae0c14b2a7e51baac49abc7dcd823/mappings/artist.ttl#L212-L224
https://github.com/LinkedBrainz/MusicBrainz-R2RML/blob/de10106bde0ae0c14b2a7e51baac49abc7dcd823/mappings/artist.ttl#L212-L224

5.6 Interoperability

With regards to their interoperability, the LinkedGeoData and LinkedBrainz datasets
clearly outperform the LCC (Eng). Whereas LinkedGeoData and LinkedBrainz have
a similar score for the Term Reuse metric, LinkedBrainz has the more comprehensive
vocabulary reuse.

5.7 Interpretability

The interpretability concerns under assessment comprise the typing of resources, the
anchoring of resources in ontological structures, the avoidance of blank nodes and the
correct usage of more complex RDF structures, like collections, containers or reifica-
tion. An obvious quality deficiency with regards to the typing and the provision of an
ontological context for classes and properties, can be determined for the LCC (Eng)
dataset. Thus, from a formal semantic perspective, for the most of the contained re-
sources it is not clear, if they are instances, classes or properties.

Besides this, it could be detected, that in LinkedBrainz certain resources are not
typed. The resources that are explicitly excluded from the type assignments in the
RDB2RDF mappings are MusicBrainz release events that are not dated with a year,
month and day. Nonetheless, since the LinkedBrainz RDB2RDF mappings also gen-
erate release event resources, that are just dated with a year or a year and month, this
seems to be an error, especially because all other introduced resources are typed.

It further turned out, that the only resources that did not have an ontological context,
as measured by the OWL Ontology Declarations metric, were those that were not typed.
Thus, the more general OWL Ontology Declarations metric did not find any violations,
other than those already reported by the Typed Resources metric.

Another significant error pattern was detected for the LinkedGeoData mappings.
There, the first container member is declared using the container membership property
rdf:_0 instead of rdf:_1.

5.8 Performance

The only performance aspect, considered relevant for the assessment of RDB2RDF
mappings, was the introduction of local hash URIs. With respect to the view that hash
URIs should be avoided, the LinkedBrainz dataset is of bad quality, since all local URIs
are designed to contain the hash sign. Nonetheless, nearly all of them have the fixed
fraction part #_. Thus, there are usually no two resources sharing a non-fraction part.
Accordingly, the argumentation, that hash URIs would harm the performance does not
hold in this case.

5.9 Relevancy

The assessment of the relevancy dimension comprises the classification of the datasets
with regards to their triple counts as well as the detection of two different coverage val-
ues. With regards to the triple counts, LinkedGeoData and LinkedBrainz are considered
of good quality, whereas LCC (Eng) has only medium quality.

The coverage metrics yielded noticeable low scores, which nonetheless do not seem
to reflect a bad quality of the assessed datasets, but rather should be normal for datasets
of a certain size. The coverage scores of the LinkedGeoData dataset are considerably
higher than those of the other datasets, with LinkedBrainz having the lowest quality
with regards to the combination of detail and scope. For the Coverage (Scope) metric,
evaluated with the LCC (Eng) dataset, the worst possible quality score was assigned.
This is also not considered to reveal its actual quality, but has to be attributed to the
missing type information. Since the dataset does not contain type statements, there are
no explicitly defined instances, which have a direct influence on the calculated score.

5.10 Representational Conciseness

The assessment of the representational conciseness dimension comprises the check, if
short and query parameter-free URIs are introduced, and if so called prolix features
were avoided. With regards to the URI length, it has to be noted, that only a smaller
portion of the very long URIs can be attributed to a bad URI design. Instead many of
the violations are URIs that contain a lot of special characters, being percent-encoded.
With this respect, resource identifiers based on characters from writing systems not
allowed within URIs, have a clear disadvantage. The only exception, where URIs were
considerably long by design was given in the RDB2RDF mappings of the LinkedBrainz
dataset. There, URIs were generated that hold two UUID57 strings, each having 36
characters.

The only URIs found in the assessment, that contain query parameters were in-
troduced by the mappings of the LinkedGeoData dataset. Since the corresponding re-
sources were external, built to express interlinks, these are not considered as an indica-
tion of bad quality.

The only prolix features were also found in the LinkedGeoData dataset. There con-
tainers are used to express node paths. Since such node paths have to be expressed as an
ordered list, it is doubtful if the usage of containers has to be considered as an indicator
of bad quality.

5.11 Semantic Accuracy

The metrics assessing the semantic accuracy of RDB2RDF mappings all refer to certain
characteristics of the relational schema definitions of the underlying database. Since a
view definition’s logical table was not assessed, if it is based on an SQL query, all these
metrics were affected by the missing SQL parsing support of the R2RLint prototype.
Nonetheless, with respect to the tables, that could be assessed, a considerable number
of inaccuracies could be found. Thus it can be generally stated, that there was certain
semantic information contained in the corresponding relational databases, that was not
considered in the RDB2RDF mappings under assessment. On the other hand, it has to
be noted, that gathering all these (partly implicit) relational constraints is rather cum-
bersome if it is done by hand. Thus, the R2RLint tool could be extended to propose the
corresponding mappings based on an automatic schema evaluation.

57 http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt

http://www.opengroup.org/dce/info/draft-leach-uuids-guids-01.txt

5.12 Syntactic Validity

The aspects, assessed with regards to the syntactic validity dimension, were the use of
valid datatypes and language tags. The only violation found, was the invalid typing of
date information as xsd:dateTime. The corresponding RDB2RDF mapping definition
stems from the LCC (Eng) project.

Even though, this shows a good quality with regards to the syntactic validity of the
assessed datasets, the R2RLint tool could again be used to make guiding suggestions.
These concern the datatype to use, in cases where values from relational tables where
transformed to typed literals without any modifications. In such cases, the datatype of
the underlying schema could be used to propose an XSD datatype.

5.13 Understandability

The understandability dimension was assessed, checking if resources are labeled, whether
their URIs are sounding and valid HTTP URLs and if certain metadata are provided.
All of the three datasets contained a considerable number of resources that are not
labeled and not sounding. With regard to sounding URIs, again a notable portion of
the violating URIs contain percent-encoded strings. It further has to be noted, that
the training corpus of the Sounding URIs metric stemmed from English Wikipedia
sources. Thus, language specific resource names, like for example Czech artists from
the LinkedBrainz dataset, might have gotten a lower score than they could have, if
they were assessed using a training corpus of their native language. Apart from this,
the Sounding URIs showed also some weaknesses. Besides the fact, that some rela-
tively short, but sounding URIs were reported as violations with respect to the con-
figured threshold, there were also URIs that are obviously not sounding, but got suffi-
ciently high scores. These are for example the URIs containing two UUID strings, e.g.
http://musicbrainz.org/release/3b52a520-88b8-4ecb-bbf7-2168ab6c9499#-
489ce91b-6658-3307-9877-795b68554c98. A proposed deviation of the underlying met-
ric would be to just consider the local part of the URI, omitting the URI namespace.
Thus, in the example above just the string of hex symbols with dashes would be as-
sessed – a combination that is not likely to appear in natural languages. A further im-
provement would be to decode percent-encoded URIs before assessing them, to reduce
the bias of giving preference to URIs expressible in ASCII characters.

The URIs reported because they are not valid HTTP URLs, mainly contained certain
characters that should have been percent-encoded, e.g. the colon character in http:
//dbpedia.org/resource/Che:_Chapter_127.

The metric assessing, whether dataset metadata is contained within the dataset under
assessment, yielded a score of 0 for all datasets. One interpretation of these results could
be, that it is uncommon to embed such metadata in the actual dataset. In fact, there is a
corresponding W3C Interest Group Note, proposing a deployment of VoiD information
“alongside a dataset” [99]. So even though there are datasets with embedded VoiD
metadata, the provision of such information might not be assessable this way in general.

http://dbpedia.org/resource/Che:_Chapter_127
http://dbpedia.org/resource/Che:_Chapter_127

6 Conclusions and Future Work

In this report, a quality assessment methodology as well as aspects to consider for an
RDB2RDF quality assessment were developed systematically. After a comprehensive
survey of literature sources covering information and data quality, a set of dimensions
suitable for the quality assessment of RDB2RDF mappings were compiled. Each qual-
ity dimension was substantiated with a set of quality assessment metrics that were in-
troduced formally.

Besides the formal and conceptual considerations, a software prototype was devel-
oped, implementing the assessment methodology framework and proposed metrics. In
practical assessment runs on three different datasets, generated via RDB2RDF map-
pings, the software could extract clear characteristics with regards to the considered
dataset. The provision of actual quality scores allowed a comparison of the three datasets,
general judges on their quality and, most of all, showed actual mapping errors. Making
deficiencies measurable and visible further enables the data providers to improve their
mappings and fix errors. Thus, the overall goal to provide effective means for a quality
assurance of RDB2RDF mappings could be accomplished.

Apart from this, the developed prototype also showed directions for further im-
provements. The major drawback was, that the computation of some metrics took im-
practically long time or was not feasible at all due to memory shortages. This scalability
problem occurred mainly during the computation of metrics requiring dataset scope.
Thus, one future task will be to put effort into the transformation of dataset metrics to
view metrics. Some suggestions in this respect were already given in Section 3.5.

Moreover, the practical assessment showed the strong need of an SQL parser to be
able to also evaluate logical tables used in the mapping definitions that are expressed as
SQL queries. Since the lack of this capability led to a considerable high number of false
results, the corresponding extension of the R2RLint prototype is of high importance.

Another future step will be to improve the presentation of the assessment results.
Currently the only implemented, practically relevant assessment sink writes the quality
scores and the corresponding metadata to a relational database. Since the sink produces
a quite complex database schema, the exploration capabilities of the results are weak.

Besides the actual assessment of existing mapping definitions, the prototype could
also be extended to make mapping suggestions, which improve the overall quality. Thus,
a further vision would be to use the R2RLint tool as back-end for an RDB2RDF editing
workbench, which interactively guides RDB2RDF mapping authors to optimize the
mapping’s quality.

A Auxiliary Definitions

This section contains several auxiliary definitions referred to in the actual metrics defi-
nitions in Section 3.5. All symbols and variables used in the auxiliary definitions were
introduced and defined in the sections 3.3 and 3.5.

A.1 Metric 14 (No Bogus Inverse-functional Properties)

Blacklist of statements expressing bogus inverse-functional properties (?s ∈ Q):

Tbogus =

{(?s, <http://xmlns.com/foaf/0.1/mbox_sha1sum>, "08445a31a78661b5c746feff39a9db6e4e2cc5cf"),
(?s, <http://xmlns.com/foaf/0.1/mbox_sha1sum>, "da39a33ee5e6b4b0d3255bfef95601890afd80709"),
(?s, <http://xmlns.com/foaf/0.1/homepage>, <http://>),
(?s, <http://xmlns.com/foaf/0.1/mbox_sha1sum>, ""),
(?s, <http://xmlns.com/foaf/0.1/isPrimaryTopicOf>, <http://>)}

A.2 Metric 23 (OWL Ontology Declarations)

List of proposed properties providing ontological context of an RDF resource
(ONTDEFPROPERTIES ⊂ R):

ONTDEFPROPERTIES = { rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain,
rdfs:range, owl:complementOf, owl:disjointWith,
owl:equivalentClass, owl:equivalentProperty,
owl:intersectionOf, owl:inverseOf, owl:oneOf, owl:unionOf }

A.3 Metric 42 (HTTP URIs)

Definition of the regular expression intended to find valid HTTP URIs, as taken from
the Java Source code of R2RLint:

1 public static final String httpUrlPattern = "^" +
2 // protocol: http:// or https://
3 "(?:(?:https?)://)" +
4 // user info, e.g. user@ or user:passwd@
5 "(?:\\S+(?::\\S*)?@)?" +
6 // host part, e.g. localhost , aksw.org, 127.0.0.1
7 "(?:" +
8 // IP address based host names, like 193.239.40.138
9

10 // exclude host names based on local IP addresses because
they

11 // cannot be resolved in the WWW
12 // 10.x.x.x
13 "(?!10(?:\\.\\d{1,3}){3})" +
14 // 127.x.x.x
15 "(?!127(?:\\.\\d{1,3}){3})" +

16 // 169.254.x.x
17 "(?!169\\.254(?:\\.\\d{1,3}){2})" +
18 // 172.16.0.0/12 (172.16.0.0 to 172.31.255.255)
19 "(?!172\\.(?:1[6-9]|2\\d|3[0-1])(?:\\d{1,3}){2})" +
20 // 192.168.x.x
21 "(?!192\\.168(?:\\.\\d{1,3}){2})" +
22

23 // all remaining and valid IP addresses:
24 // first octet:
25 // 1-99 1xx 2xx up to 223
26 "(?:[1-9]\\d?|" + "1\\d\\d|" + "2[01]\\d|22[0-3])" +
27 // second and third octet
28 // 0-99 1xx 2xx up to 255
29 "(?:\\.(?:\\d{1,2}|" + "1\\d\\d|" + "2[0-4]\\d|25[0-5]))

{2}" +
30 // fourth octet
31 // omitting network (x.x.x.0) and broadcast (x.x.x.255)
32 // addresses
33 // 1-99 1xx 2xx up to 254
34 "(?:\\.(?:[1-9]\\d?|" + "1\\d\\d|" + "2[0-4]\\d|25[0-4]))

" +
35 "|" +
36 // domain name based host names like aksw.org or
37 // mail.informatik.uni-leipzig.de
38

39 // TODO: add support for internationalized domain names
40

41 // domain name
42 // restrictions: only one hyphen *between* two chars; a char

can
43 // be a letter or digit
44 "(?:(?:(?:[a-zA-Z0-9]-?)*(?:[a-zA-Z0-9])+\\.)+)" +
45 // TLD identifier
46 "(?:[a-z]{2,})" +
47 ")" +
48 // port number
49 "(?::\\d{2,5})?" +
50

51 // path
52 //
53 // according to
54 // http://tools.ietf.org/html/draft-fielding -url-syntax -09#

appendix -A :
55 // path = ["/"] path_segments
56 // path_segments = segment *("/" segment)
57 // segment = *pchar *(";" param)
58 // param = *pchar
59 // pchar = unreserved | escaped | ":" | "@" | "&" | "=" |

"+"
60 // unreserved = alpha | digit | mark
61 // escaped = "%" hex hex
62 // alpha = lowalpha | upalpha
63 // mark = "$" | "-" | "_" | "." | "!" | "~" |
64 // "*" | "’" | "(" | ")" | ","
65 "(?:(?:/([a-zA-Z\\d_~’,\\Q$-.!*()\\E]|%[a-fA-F\\d]{2})*)*)" +
66

67 // opaque URLs not considered here
68

69

70 // query
71 //

72 // http://tools.ietf.org/html/draft-fielding -url-syntax -09#
appendix -A:

73 //
74 // rel_path = [path_segments] ["?" query]
75 // query = *urlc
76 // urlc = reserved | unreserved | escaped
77 // reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+"
78 // unreserved = alpha | digit | mark
79 // escaped = "%" hex hex
80

81 // http://tools.ietf.org/html/rfc3986#page -23:
82 //
83 // query = *(pchar / "/" / "?")
84 // pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
85 // unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
86 // sub-delims = "!" / "$" / "&" / "’" / "(" / ")"
87 // / "*" / "+" / "," / ";" / "="
88 "(?:\\?" +
89 "(?:" +
90 // field
91 "(?:([a-zA-Z\\d;/:_~’,\\Q-?@$+*.!()\\E]|%[a-fA-F\\d]{2}))

+" +
92 // =
93 "(?:=" +
94 // value &
95 "(?:([a-zA-Z\\d;/:_~’,\\Q-?@$+*.!()\\E]|%[a-fA-F\\d]{2}))

+)?[&;]" +
96 ")*" +
97

98 "(?:" +
99 // field

100 "(?:([a-zA-Z\\d;/:_~’,\\Q-?@$+*.!()\\E]|%[a-fA-F\\d]{2}))
+" +

101 // =
102 "(?:=" +
103 // value
104 "(?:([a-zA-Z\\d/:_~’,\\Q;-?@$+*.!()\\E]|%[a-fA-F\\d]{2}))

+)?" +
105 ")" +
106 ")?" +
107

108 // fragment
109 "(?:#(?:([a-zA-Z\\d/:_~’,=&\\Q;-?@$+*.!()\\E]|%[a-fA-F\\d]{2}))*)

?" +
110 "$";

Listing 1.4: Regular expression to detect HTTP URIs, defined in Java source code

A.4 Metric 43 (Dataset Metadata)

Rtitle = {dcterms:alternative, dcterms:title, dc:title, sioc:name}

Rcontent =



dc:coverage, dc:description, dc:language, dc:source, dc:subject, dc:type,
dcterms:abstract, dcterms:accrualMethod, dcterms:accrualPeriodicity,
dcterms:accrualPolicy, dcterms:audience, dcterms:available, dcterms:coverage,
dcterms:description, dcterms:language, dcterms:provenance, dcterms:source,
dcterms:spatial, dcterms:subject, dcterms:tableOfContents, dcterms:type,
foaf:primaryTopic, foaf:topic, sioc:about, sioc:has_space, sioc:topic,
void:classPartition, void:classes, void:class, void:dataDump,
void:distinctObjects, void:distinctSubjects, void:documents, void:entities,
void:exampleResource, void:feature, void:inDataset, void:linkPredicate,
void:objectsTarget, void:openSearchDescription, void:properties,
void:propertyPartition, void:property, void:rootResource, void:sparqlEndpoint,
void:subjectsTarget, void:subset, void:target, void:triples,
void:uriLookupEndpoint, void:uriRegexPattern, void:uriSpace, void:vocabulary


Rcreator =

{
dc:contributor, dc:creator, dc:publisher, dcterms:contributor,
dcterms:creator, dcterms:publisher, foaf:maker, sioc:has_creator

}

B Evaluation Results

B.1 Availability

Dataset M
et

ric
1

LinkedGeoData 0
LCC (Eng) 117
LinkedBrainz 239,924‡

Table 9: Assessment results of the availability dimension metric:
Metric 1: Dereferenceable URIs.
The table shows the number of violations with a disabled threshold. Values marked with
‡ are projections based on sample data.

B.2 Completeness

Dataset M
et

ric
2
†

M
et

ric
3

M
et

ric
4
‡

M
et

ric
5

LinkedGeoData 0.30 2.62 (0.02/0.94/1.00) 0.54
LCC (Eng) 0.04 2.81 (1.00/1.00/1.00) 0.08
LinkedBrainz 0.02 0.69 (0.00/0.88/1.00) 0.03

Table 10: Assessment results of the completeness dimension metrics:
Metric 2: Schema Completeness,
Metric 3: Population Completeness,
Metric 4: Property Completeness,
Metric 5: Interlinking Completeness.
The table shows the quality scores of the corresponding metrics. The scores of metrics
marked with † are affected by implementation limitations (cf. Section 4.1) and might
thus in fact be higher. The content of columns marked with ‡ represents the (mini-
mum/average/maximum) of the metric’s values with respect to the given dataset.

Vocabulary M
et

ric
6

M
et

ric
7

http://geovocab.org/geometry# 0.11 0.09
http://geovocab.org/spatial# 1.00 0.00
http://purl.org/dc/terms/ 0.05 0.07
http://www.opengis.net/ont/geosparql# 0.00 0.03
http://www.w3.org/1999/02/22-rdf-syntax-ns# 0.17 0.14
http://www.w3.org/2000/01/rdf-schema# 0.00 0.44
http://www.w3.org/2002/07/owl# 0.12 0.02
http://www.w3.org/2003/01/geo/wgs84_pos# 0.00 0.40
http://www.w3.org/2004/02/skos/core# 0.00 0.04
http://xmlns.com/foaf/0.1/ 0.00 0.03

Table 11: Assessment results of the completeness dimension metrics
Metric 6: Vocabulary Class Completeness,
Metric 7: Vocabulary Property Completeness
applied to the LinkedGeoData dataset

Vocabulary M
et

ric
6

M
et

ric
7

http://www.w3.org/1999/02/22-rdf-syntax-ns# 0.00 0.14
http://www.w3.org/2000/01/rdf-schema# 0.00 0.22
http://www.w3.org/2002/07/owl# 0.00 0.08

Table 12: Assessment results of the completeness dimension metrics
Metric 6: Vocabulary Class Completeness,
Metric 7: Vocabulary Property Completeness
applied to the LCC (Eng) dataset

http://geovocab.org/geometry#
http://geovocab.org/spatial#
http://purl.org/dc/terms/
http://www.opengis.net/ont/geosparql#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.w3.org/2004/02/skos/core#
http://xmlns.com/foaf/0.1/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#

Vocabulary M
et

ric
6

M
et

ric
7

http://www.w3.org/1999/02/22-rdf-syntax-ns# 0.17 0.43
http://www.w3.org/2002/07/owl# 0.65 0.45
http://www.w3.org/2003/01/geo/wgs84_pos# 0.50 0.00
http://www.w3.org/2004/02/skos/core# 0.00 0.04
http://xmlns.com/foaf/0.1/ 0.00 0.08
http://purl.org/dc/elements/1.1/ — 0.13
http://open.vocab.org/terms/ 0.00 0.01
http://purl.org/ontology/mo/ 0.20 0.08
http://purl.org/NET/c4dm/event.owl# 0.00 0.11

Table 13: Assessment results of the completeness dimension metrics
Metric 6: Vocabulary Class Completeness,
Metric 7: Vocabulary Property Completeness
applied to the LinkedBrainz dataset

B.3 Conciseness

Dataset M
et

ric
8

M
et

ric
9

M
et

ric
10

LinkedGeoData (1.00/1.00/1.00) (0.20/0.95/1.00) (0.94/0.99/1.00)∗

LCC (Eng) (1.00/1.00/1.00) (0.50/0.97/1.00) (0.15/0.92/1.00)
LinkedBrainz (1.00/1.00/1.00) (0.33/0.93/1) (0.04/0.99/1.00)∗

Table 14: Assessment results of the conciseness dimension metrics:
Metric 8: Intensional Conciseness,
Metric 9: Extensional Conciseness,
Metric 10: No Duplicate Statements.
The table shows the (minimum/average/maximum) of the quality scores of the cor-
responding metrics. Values marked with ∗ are affected by implementation limitations
(cf. Section 4.1).

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.w3.org/2004/02/skos/core#
http://xmlns.com/foaf/0.1/
http://purl.org/dc/elements/1.1/
http://open.vocab.org/terms/
http://purl.org/ontology/mo/
http://purl.org/NET/c4dm/event.owl#

B.4 Consistency

Metric Part. Whole, est.

Correct Datatype Property Value 9 18
Correct Object Property Value 2,942 5,884
Disjoint Classes Conformance 0 0
Correct Datatype Range 47,773 95,546

Table 15: Assessment results of the consistency dimension metric
Metric 11: Basic Ontology Conformance
applied to the LinkedGeoData dataset. Due to memory limitations only sample data of
the whole dataset was assessed (cf. Section 4.1). The number of violations w.r.t. a sub-
metric and with a disabled threshold are presented in column Part.. A simple projection
of these numbers to the whole dataset are given in column Whole, est..

Metric Whole

Correct Datatype Property Value 0
Correct Object Property Value 0
Disjoint Classes Conformance 0
Correct Datatype Range 0

Table 16: Assessment results of the consistency dimension metric
Metric 11: Basic Ontology Conformance
applied to the LCC (Eng) dataset. The number of violations w.r.t. a sub-metric and with
a disabled threshold are presented in column Whole.

Dataset

M
et

ric
12

Metric 13 M
et

ric
14

M
et

ric
15

M
et

ric
16

M
et

ric
17

M
et

ric
18

C P

LinkedGeoData 0 0 0 0 (602,151/4) 13∗ 0 0
LCC (Eng) 0 0 0 0 (0/0) 4∗ 0 0
LinkedBrainz 3 0 0 0 (0/0) 12∗ — 0

Table 17: Assessment results of the consistency dimension metrics:
Metric 12: Homogeneous Datatypes,
Metric 13: No Deprecated Classes or Properties,
Metric 14: No Bogus Inverse-functional Properties,
Metric 15: No Ontology Hijacking,
Metric 16: No Ambiguous Mappings,
Metric 17: No Resource Name Clashes,
Metric 18: Consistent Foreign Key Resource Identifiers.
The table shows the number of violations with a disabled threshold where the columns
labeled with C refer to the number of violating classes and the number of violating
properties are given in the columns labeled with P. Values marked with ∗ are affected
by implementation limitations (cf. Section 4.1) and may thus in fact be smaller. The
values of Metric 15 are given as value pair, where the first entry represents the number
of bad smells and the second entry the number of violations.

B.5 Interlinking

Dataset M
et

ric
19

LinkedGeoData 0.044
LCC (Eng) ~ 0.000
LinkedBrainz 0.001

Table 18: Assessment results of the interlinking dimension metric
Metric 19: External Same-as Links.

B.6 Interoperability

Dataset M
et

ric
20

M
et

ric
21

LinkedGeoData 0.41 0.56
LCC (Eng) 0.13 0.25
LinkedBrainz 0.47 0.79

Table 19: Assessment results of the interoperability dimension metrics:
Metric 20: Term Reuse,
Metric 21: Vocabulary Reuse.

B.7 Interpretability

Dataset M
et

ric
22

M
et

ric
23

M
et

ric
24

M
et

ric
25

M
et

ric
26

M
et

ric
27

LinkedGeoData 546,154 546,154 0 0 140,737 0
LCC (Eng) 75,837 75,837 0 0 0 0
LinkedBrainz 526,529 526,529 0 0 0 0

Table 20: Assessment results of the interpretability dimension metrics:
Metric 22: Typed Resources,
Metric 23: OWL Ontology Declarations,
Metric 24: Avoid Blank Nodes,
Metric 25: Correct Collection Use,
Metric 26: Correct Container Use,
Metric 27: Correct Reification Use.
The table shows the number of violations with a disabled threshold.

B.8 Performance

Dataset M
et

ric
28

LinkedGeoData 0
LCC (Eng) 2
LinkedBrainz 397,343,729

Table 21: Assessment results of the performance dimension metric
Metric 28: No Hash URIs.
The table shows the number of violations with a disabled threshold.

B.9 Relevancy

Dataset M
et

ric
29

M
et

ric
30

M
et

ric
31

LinkedGeoData 0.75 0.000351 0.017343
LCC (Eng) 0.50 0.000171 0.000000
LinkedBrainz 0.75 0.000001 ~0.000000

Table 22: Assessment results of the relevancy dimension metrics:
Metric 29: Amount of Triples,
Metric 30: Coverage (Detail),
Metric 31: Coverage (Scope).
The table shows the quality scores of the corresponding metrics.

B.10 Representational Conciseness

Dataset M
et

ric
32

(7
5)

M
et

ric
32

(9
5)

M
et

ric
33

M
et

ric
34

LinkedGeoData 747,934 34 (0/1,274,822/0) 747,127
LCC (Eng) 13,807 32 (0/0/0) 0
LinkedBrainz 4,103,053 2,829,088 (0/0/0) 0

Table 23: Assessment results of the representational conciseness metrics:
Metric 32: Short URIs,
Metric 33: No Prolix Features,
Metric 34: Query Parameter-free URIs.
The table shows the number of violations with a disabled threshold, except in case of
Metric 32 (Short URIs). For this metric two results are presented: Metric 32(75) with a
URI length threshold of 75 and Metric 32(95) with a URI length threshold of 95 charac-
ters. The values shown for Metric 33 refer to the number of the RDF reification, RDF
container and RDF collection statements, respectively.

B.11 Semantic Accuracy

Dataset M
et

ric
35

M
et

ric
36

M
et

ric
37

LinkedGeoData 7∗ 15∗ 0∗

LCC (Eng) 0∗ 2∗ 0∗

LinkedBrainz 17∗ 19∗ 0∗

Table 24: Assessment results of the accuracy dimension metrics:
Metric 35: Preserved NOT NULL Constraints,
Metric 36: Preserved Functional Attributes,
Metric 37: Preserved Foreign Key Constraints.
The table shows the number of violations with a disabled threshold. Values marked with
∗ are affected by implementation limitations (cf. Section 4.1) and may thus in fact be
greater.

B.12 Syntactic Validity

B.13 Understandability

Dataset M
et

ric
38

M
et

ric
39

LinkedGeoData 0 0
LCC (Eng) 9,543 0
LinkedBrainz 0 0

Table 25: Assessment results of the accuracy dimension metrics:
Metric 38: Datatype-Compatible Literals,
Metric 39: Valid Language Tags.
The table shows the number of violations with a disabled threshold.

Dataset M
et

ric
40

M
et

ric
41

M
et

ric
42

M
et

ric
43

LinkedGeoData 1,007,987 66,778 21,980 0
LCC (Eng) 77,592 2 53,968 0
LinkedBrainz 1,019,219 1,019,001 1,199,716 0

Table 26: Assessment results of the understandability dimension metrics:
Metric 40: Labeled Resources,
Metric 41: Sounding URIs,
Metric 42: HTTP URIs,
Metric 43: Dataset Metadata.
The table shows the number of violations with a disabled threshold, except for Metric 41
(Sounding URIs). This metric’s threshold is adjusted to accept the score of rdf:type. In
case of Metric 43 the actual score is shown.

C Data Quality Dimensions Overview

This overview shows the data quality dimensions found in the literature sources. The
table contains not all dimensions mentioned but these that were actually proposed by
the corresponding publication. This means, that in publications where first dimensions
from all the considered literature sources were collected and in a second step shortlisted
according to the given use case, only the shortlisted dimensions will appear in the table.

When possible formulas are shown to calculate a score of the given dimension. For
this sake identifiers are used, defined below:

β sensitivity parameter chosen by the user
attrdata set of unique attributes of data in a data source
attrdom set of unique attributes of individuals in the considered domain
currency see the Currency dimension in the overview table

C(t) function that estimates the given value completeness at a point in time
t (timepub ≤ t ≤ timemax)

Dcorr set of data values that are correct (or ‘accurate’)
Derr set of data values that are erroneous
Dideal set of data values reflecting the modeled domain without any errors
Dnon−null set of data values not being NULL
Dreal set of all data values as given in the considered data source
Fexp(t) probability distribution function of the probability that for a given

point in time t holds: t = timeexp

ob jdata set of unique objects (individuals of the modeled domain) stored in a
data source

ob jdom set of unique objects (individuals) of the considered domain
ob j|prop set of all unique objects (individuals of the modeled domain) with a

property prop, stored in the data source
ob j|propuniq set of all unique objects (individuals of the modeled domain) having a

unique value for a property prop, stored in the data source
ob j|propcons set of all unique objects (individuals of the modeled domain) not hav-

ing any conflicts for a property prop, stored in the data source
timecurr the current point in time
timeexp the point in time when the data expires
timelast_update the point in time when the last update of the data source occurred
timemax the latest point in time the whole system is observed
timenext_change the point in time when the next change of the underlying modeled

domain (real world) will occur
timenext_update the point in time when the next update of the data source will occur
timepub the point in time when the data was published
period_o f _validity see the Period of validity dimension in the overview table

Apart from these, abbreviations were used in citations quoted literally. These are:
IS (information system), RW (real world) and NSI (National Statistical Institute).

Within a dimension entry, the corresponding descriptions are sorted as follows: En-
tries with no description (marked with ‘—’) are put on top, followed by descriptions
sorted by year (ascending). If there are multiple literature sources, they are noted in
chronological order as well. If authors referred to dimensions under a different name,
this is marked as here ‘Different name’ . In case of specializations or sub-dimensions
these are noted un-italicized at the beginning of the description.

Dimension Definition Source

Ability to represent
null values

“Ability to distinguish neatly (without ambiguities) null and de-
fault values from applicable values of the domain”

[41]

Accessibility
—

[40,100]
[73,45]
[39,76]

Schema: “Is the schema definition accessible by the users?” [101]

Accessibility
(cont.)

Type: “Is the type visible and accessible for users?” [101]
Agent: “Is the network sufficient for delivered data?” [101]
Data Store: “Is the data store accessible?” [101]
“extent to which information is available, or easily and quickly
retrievable”

[46,81]

“physical conditions under which users can obtain data: where
to go, how to order, delivery time, clear pricing policy, conve-
nient marketing conditions (copyright, etc.), availability of micro
or macro data, various formats (paper, files, CD-ROM, Internet
etc.) etc.”

[102]

“refers to the proper functioning of all access methods” [64]

Accuracy

—
[40,100]
[73,39]
[34]

“Distance between v and v′, considered as correct” [41]
Agent: “Number of delivered accurate tuples” [101]
Data Store: “Level of preciseness; Number of accurate tuples” [101]
|Dcorr |

|Dreal|
[29,103]

Known: “True or error-free w/respect to some known value” [104]
Assigned: “True or error-free w/respect to some designated or as-
signed value”

[104]

Measured: “True or error-free w/respect to a measured value” [104]
“The extent to which collected data are free of measurement er-
rors.”

[37]

1 − |Derr |

|Dreal|
[76]

“closeness of computations or estimates to the (unknown) exact
or true values”

[102]

“degree of correctness and precision with which information in an
information system represents states of the real world”

[81]

distinction: syntactic accuracy vs. semantic accuracy
[44,43]
[67]

here: ‘Semantic accuracy’: “degree to which data values correctly
represent the real world facts”

[67]

Aesthetics — [105]

Amount
of data

— [100]
here ‘Appropriate amount of data’ [40,45]
“size of the query result, measured in bytes” [103]
here ‘Appropriate amount of data’: “The extent to which the vol-
ume of information is appropriate for a specific theory.”

[37]

“extent to which the volume of data is appropriate for the task at
hand”

[46,81]
[64]

Applicability — [73]

Appropriateness
— [76]
“One format is more appropriate than another if it is more suited
to the user needs”

[41]

Arrangement — [76]

Availability
Schema: “Frequency of updates” [101]
Type: “Frequency of updates” [101]
Agent: “Response time” [101]

Availability
(cont.)

Data store: “Uptime of data store, response time” [101]
“probability that a feasible query is correctly answered in a given
time range”

[103]

“extent to which information is physically accessible” [77]
“extent to which data (or some portion of it) is present, obtainable
and ready for use”

[67]

Believability
—

[40,100]
[45,76]

“degree to which the data is accepted as correct by the user” [103]
“extent to which information is regarded as true and credible” [46,81]

Clarity

— [73]
“The extent to which data contain no fuzzy and ambiguous obser-
vations.”

[37]

“the data’s information environment whether data are accompa-
nied with appropriate documentation and metadata, illustrations
such as graphs and maps, whether information on their quality is
also available (including limitation in use etc.) and the extent to
which additional assistance is provided by the NSI”

[102]

Coherence
“adequacy to be reliably combined in different ways and for vari-
ous uses”

[102]

Comparability
“impact of differences in applied statistical concepts and mea-
surement tools/procedures when statistics are compared between
geographical areas, non-geographical domains, or over time”

[102]

Completability
∫ timemax

timecurr
C(t) dt [106]

Completeness

—
[107,40]
[100,45]
[39,34]

here ‘Spurious’ [34]
“Degree to which values are present in a data collection” [41]
here ‘Complete’: “Improper representation: missing IS states” [32]
|Dreal∩Dideal|
|Dideal|

[38]

Model: “Level of covering, number of represented business rules” [101]
Concept: “Number of missing attributes; Are the assertions re-
lated to the concept complete?”

[101]

Schema: “Number of missing entities wrt. conceptual model” [101]
Type: “Number of missing attributes wrt. conceptual model” [101]
Agent: “Number of tuples delivered wrt. expected number” [101]
Data Store: “Number of stored null values where there are not
expected”

[101]

“All required parts present; all attributes needed are present; no
missing records; some tolerance for missing values”

[104]

|Dnon−null|
|D| [103]

“All values that are supposed to be collected as per a collection
theory are collected.”

[37]

“degree to which information is not missing” [46,81]
extensional: coverage, completeness of entities [108]
intensional: density, completeness of attributes [108]

Completeness
(cont.)

value completeness: “capture the presence of null values for some
attributes of tuples”

[109]

tuple completeness: “characterize the completeness of a whole tu-
ple with respect to the values of all attributes”

[109]

attribute completeness: “measure the number of null values of a
specific attribute in a relation”

[109]

relation completeness: “captures the presence of null values in the
whole relation”

[109]

Schema completeness: “degree to which entities and attributes are
not missing in a schema”

[81,43]

Column completeness: “function of the missing values in a col-
umn”

[81,43]

Population completeness: “ratio of entities represented in an in-
formation system to the complete population”

[81,43]

“degree to which a given data collection includes data describing
the corresponding set of real-world objects”

[44]

extensional: |ob jdata|
|ob jdom|

[66]

intensional: |attrdata|
|attrdom|

[66]

of property prop: |ob j|prop|
|ob jdom|

[66]

“degree to which all required information is present in a particu-
lar dataset”

[67]

Schema Completeness/Ontology Completeness: “degree to which
the classes and properties of an ontology are represented”

[67]

Property completeness: “measure of the missing values for a spe-
cific property”

[67]

Population completeness: “percentage of all real-world objects of
a particular type that are represented in the datasets”

[67]

Interlinking completeness: “degree to which instances in the
dataset are interlinked”

[67]

Comprehensiveness — [73]

Comprehensibility
“ease with which human consumers can understand and utilize
the data”

[64]

Concise
representation

—
[40,100]
[45,76]

here ‘Representational conciseness’: “degree to which the struc-
ture of the data matches the data itself”

[103]

“extent to which information is compactly represented” [46,81]
here ‘Representational conciseness’: “refers to the representation
of the data which is compact and well formatted on the one hand
and clear and complete on the other hand”

[67]

Conciseness

— [73]
here ‘Duplicate’ [34]
here ‘Minimality’, Model: “Number of redundant entities/rela-
tionships in a model”

[101]

here ‘Minimality’, Concept: “Equivalence of the description with
that of other concepts in the same model”

[101]

here ‘Minimality’, Schema: “Number of redundant relations” [101]
here ‘Minimality’, Type: “Number of redundant attributes” [101]

Conciseness
(cont.)

here ‘Redundancy’: “same real-world entity or relationship is rep-
resented more than once”

[50]

here ‘Uniqueness’: “degree to which data is free of redundancies
in breadth, depth, and scope”

[43]

of property prop:

∣∣∣∣ob j|propuniq

∣∣∣∣
|ob j|prop|

[66]

“refers to the minimization of redundancy of entities at the schema
and the data level”

[67]

distinction: ‘intensional conciseness’ (schema level, redundant
classes and properties) vs. ‘extensional conciseness’ (data level,
redundant instances)

[67]

Conformance — [105]

Consistent
representation

—
[100,45]
[76]

here ‘Representation consistency’: “Coherence of physical in-
stances of data with their formats”

[41]

here ‘Representational consistency’ [40]
here ‘Representational consistency’: “degree to which the struc-
ture of the data conforms to previously returned data”

[103]

“extent to which information is represented in the same format” [46,81]
here ‘Representational inconsistency’: “data quality problems
that originate from an actual state σ′ of an element E to differ
from the required state σ for E”

[50]

Consistency

—
[51,73]
[34]

“Coherence of the same datum, represented in multiple copies, or
different data to respect integrity constraints and rules”

[41]

Agent: “Is the delivered data consistent with other data” [101]
Data Store: “Number of tuples violating constraints, number of
coding differences”

[101]

Discrete: “Same value across all cases” [104]
Continuous1: “Same value across multiple occurrences” [104]
Continuous2: “Tightly dispersed values across multiple mea-
sures”

[104]

“Different data in a database are logically compatible.” [37]
distinction:‘format level’ vs. ‘instance level’ [39]
“Consistency implies that two or more values do not conflict with
each other”

[81]

“refers to the violation of semantic rules defined over a set of data
items”

[44]

“degree to which the statements of a source’s data are conflict-free
and no conflicting statements are inferable”

[64]

of a property prop: |ob j|propcons |
|ob j|prop|

[66]

“means that a knowledge base is free of (logical/formal) contra-
dictions with respect to particular knowledge representation and
inference mechanisms”

[67]

Convenience — [73]
Correctness — [73,76]

Correctness
(cont.)

here ‘Correct’: “Garbling (map to a wrong state)” [32]
Model: “Number of conflicts to other models/real world” [101]
Concept: “Correctness of the description wrt. real world entity” [101]
Schema: “Correctness of mapping of the conceptual model to log-
ical schema”

[101]

Type: “Correctness of the mapping of the concept to a type” [101]

Cost

“How the user measures the cost of retrieving the information.” [104]
own cost model [76]
“sum of the cost of data quality assessment and improvement ac-
tivities, also referred to as the cost of the data quality program
and the cost associated with poor data quality”

[44]

Credibility
Agent: “Believability in the process that delivers the values” [101]
Data Store: “Number of tuples with default values” [101]

Currency

— [73]
“Degree to which a datum is up to date” [41]
“Recentness of collection” [104]
timenext_update − timelast_update −→ “age [. . .] from generation to
status change”

[76]

Customer support “amount and usefulness of human help via email or telephone” [103]
Data deficiency — [110]

Data
interpretability

Agent: “Number of tuples with interpretable data, documentation
for key values, is the format understandable?”

[101]

Data Store: “Number of tuples with interpretable data, documen-
tation for key values, is the format understandable?”

[101]

Design deficiencies — [110]
Documentation “amount and usefulness of documents with metadata” [103]
Durability — [105]

Ease of
manipulation

“The extent to which data can be processed easily (e.g., indexed
and analyzed).”

[37]

“the extent to which data is easy to manipulate and apply to dif-
ferent tasks”

[46]

Ease of operation — [45]
Ease of querying — [101]

Efficiency

Software efficiency: “Performance, response time, processing
time”

[101]

Storage efficiency: “It takes less space to store data.” [37]
Retrieval efficiency: “It is fast to find desired information.” [37]

Efficient use of
memory

“Efficiency in the physical representation. An icon is less efficient
than a code”

[41]

Faithfulness
“The extent to which the presented data are identical to the origin
in meaning and precision.”

[37]

Features — [105]
Formality “Data are presented concisely and consistently” [37]

Format flexibility
“Changes in user needs and recording medium can be easily ac-
commodated”

[41]

Format precision
“Ability to distinguish between elements in the domain that must
be distinguished by users”

[41]

Free-of-error — [45]

Free-of-error (cont.) “extent to which data is correct and reliable” [46]

Functionality
“Number of functions not appropriate for specified tasks, number
of modules unable to interact with specified systems”

[101]

Heterogeneity

structural: “same real-world domain is represented by different
schema elements”

[50]

semantic: “difference in the intension of the compared schemata
with overlapping elements”

[50]

Intelligibility “Capable of being understood, apprehended or comprehended” [104]
Interactivity — [73]

Interlinking

— [65]
“degree to which entities that represent the same concept are
linked to each other, be it within or between two or more linked
data sources”

[67]

Interoperability
“degree to which the format and structure of the information con-
forms to previously returned information as well as data from
other sources”

[67]

Interpretability

—
[40,100]
[45,39]
[76]

“Ability of the user to interpret correctly values from their format” [41]
Model: “Quality of documentation” [101]
Concept: “Quality of documentation” [101]
Schema: “Quality of documentation”, “Is the schema understand-
able?”

[101]

Type: “Quality of documentation”, “Is the type understandable?” [101]
Agent: “Is the data delivered understandable?” [101]
Data Store: “Is the data stored understandable?” [101]
“degree to which the information conforms to the technical ability
of the consumer”

[103]

“Data have clear meaning.” [37]
“extent to which information is in appropriate languages, sym-
bols, and units, and the definitions are clear”

[46,81]

“refers to technical aspects of the data, that is, whether informa-
tion is represented using an appropriate notation and whether the
machine is able to process the data”

[67]

Lack of confusion — [111]

Latency
“amount of time in seconds from issuing the query until the first
data item reaches the user”

[103]

Licensing

here ‘License’: “degree to which the provided data can be used
with own applications”

[64]

“granting of permission for a consumer to re-use a dataset under
defined conditions”

[67]

Maintainability
— [73]
“Man-hours needed for maintaining and testing this software” [101]

Meaningfulness

— [76]
“If intelligible, the information has some minimum level of mean-
ing to the user. The meaning content may be increased by adding
structure or organization.”

[104]

Meaningfulness
(cont.)

here ‘Meaningful’: “Meaningless IS state and Garbling (map to a
meaningless state)”

[32]

Metadata
evolution

Model: “Is the evolution of the model documented?” [101]
Concept: “Is the evolution of the concept documented?” [101]
Schema: “Is the evolution of the schema documented?” [101]
Type: “Is the evolution of the type documented?” [101]

Navigation
here ‘Navigability’: “One can navigate around the related infor-
mation.”

[37]

“extent to which data are easily found and linked to” [77]

Non-
fictitiousness

Records: “No false or redundant records exist” [104]
Attributes: “No false or redundant attributes exist” [104]
Values: “No false values exist” [104]

Objectivity

—
[40,100]
[45,76]

here ‘Freedom from bias’ [112]
here ‘Neutrality’: “Data selected for presentation are not in favor
of any particular opinion or purpose.”

[37]

“degree to which data is unbiased and impartial”
[103,46]
[81]

“The extent to which the sample selected for observation is repre-
sentative of a population.”

[37]

Offensiveness
“Information consumers can consider web content offensive for
moral, religious, or political reasons.”

[81]

Operation
deficiencies

—
[110]

Perceived quality — [105]

Performance

own performance model [105]
“comprises aspects of enhancing the performance of a source as
well as measurings of the actual values”

[64]

“efficiency of a system that binds to a large dataset, that is, the
more performant a data source is the more efficiently a system can
process data”

[67]

Period of validity
timenext_change − timelast_update −→ “how long the item remains
valid”

[76]

Portability

“Number of cases where the software failed to adopt to new en-
vironments; man-hours needed to install software in new environ-
ments”

[101]

“The format can be applied to as a wide set of situations as pos-
sible”

[41]

Precision — [76]
Price “amount of money a user has to pay for a query” [103]
Privacy “The extent to which a task has permissions to access the data.” [37]

Punctuality
“refers to the time lag between the release date of data and the
target date when it should have been delivered”

[102]

Quality of service “measure for transmission and error rates of Web sources” [103]
Readability — [76]
Reasonability — [113]

Relevancy —
[40,100]
[45,76]

Relevancy
(cont.)

“degree to which the provided information satisfies the users
need”

[103]

“extent to which data are applicable and useful for a specific the-
ory”

[37]

“extent to which information is applicable and helpful for the task
at hand”

[46,81]

“degree to which statistics meet current and potential user needs” [102]
“refers to the provision of information which is in accordance with
the task at hand and important to the users’ query”

[67]

Reliability

— [105]
“Frequency of failures, Fault tolerance” [101]
here ‘Reliability of Data Clerks’: “The extent to which data entry
clerks are able to avoid mistakes.”

[37]

Reputation

—
[40,100]
[45,76]

“degree to which the data or its source is in high standing” [103]
“extent to which data is highly regarded in terms of its source or
content”

[46]

Response time
“delay in seconds between submission of a query by the user and
reception of the complete response from the data source”

[103,81]

Security

— [73,45]
here ‘Access security’ [40,100]
Schema: “Level of security (access rights)” [101]
Type: “Level of security (access rights)” [101]
Agent: “Are there physical access restrictions?” [101]
Data Store: “Is the store able to prevent unauthorized access?” [101]
“degree to which data is passed privately from users to the data
source and back”

[103]

“The extent to which a task has secured access to the data.” [37]
“extent to which access to data is restricted appropriately to main-
tain its security”

[46]

“extent to which data is protected against alteration and misuse” [67]
Semantic stability “The same data have same meaning across time and space.” [37]
Serviceability — [105]

Soundness |Dreal∩Dideal|
|Dreal|

[38]

Speed — [73]

Syntactic validity
“degree to which an RDF document conforms to the specification
of the serialization format”

[67]

Time “How long it takes to retrieve the information” [104]
Time-inaccuracy here ‘Time-inaccurate’ [34]

Timeliness

—
[40,100]
[101,73]
[45,39]

“average age of the data in a source” [103]

“extent to which data are sufficiently up-to-date for a task.”
[37,46]
[67]

max
((

1 − currency
period_o f _validity

)
, 0

)β
[76]

Timeliness

“length of time between [an information’s] availability and the
event or phenomenon it describes”

[102]

“degree to which information is up-to-date” [81]
conversion scenario: data outdated if modification time of the
source more current than modification time of target or if expiry
date passed

[43]

“refers to the currentness of the data provided by a source” [64]

Traceability

— [73]
Model: “Are the designer’s requirements and changes recorded?” [101]
Concept: “Are the designer’s requirements and changes
recorded?”

[101]

Schema: “Are the designer’s requirements and changes
recorded?”

[101]

Type: “Are the designer’s requirements and changes recorded?” [101]

Trustworthiness

here ‘Trustworthiness of the collector’: “The extent to which the
collector has integrity of not committing falsification.”

[37]

“degree to which the information is accepted to be correct, true,
real and credible”

[67]

Unambiguity

here ‘Ambiguous’ [34]
here ‘Unambiguous’: “Improper representation: multiple RW
states mapped to the same IS state”

[32]

here ‘Ambiguity’: “Ambiguity is if an instance or a schema ele-
ment can represent two or more meanings that are treated differ-
ently by any consumer of the data.”

[50]

Understanda-
bility

— [45]
here ‘Ease of understanding’ [40,100]
here ‘Case of understanding’ (sic) [76]
“degree to which the data can be easily comprehended by the
user”

[103,46]
[81]

“refers to the ease with which data can be comprehended without
ambiguity and be used by a human information consumer”

[67]

Uniformity
“refers to the usage of established techniques in order to increase
the usability of the data”

[64]

Usability
“Acceptance of the users” [101]
“extent to which information is clear and easily used” [77]

Usefulness

Schema: “Is the schema used by any users?” [101]
Type: “Is the type used by any users?” [101]
Agent: “Is the data delivered by the agent really used in the desti-
nation store?”

[101]

Data Store: “Is the data in this store queried by a user?” [101]

Vacuity
“We consider instances or schema elements that have no meaning
at all in the presented context as vacuous.”

[50]

Validity
“consists of two aspects influencing the usability of the docu-
ments: the valid usage of the underlying vocabularies and the
valid syntax of the documents”

[64]

Value-
added

—
[40,100]
[76]

“amount of monetary benefit the use of the data provides” [103]

Value-added
(cont.)

“extent to which data is beneficial and provides advantages from
its use”

[46]

Verifiability
“degree and ease with which the data can be checked for correct-
ness”

[103,81]

“refers to the means a consumer is provided with, which can be
used to examine the data for correctness”

[64]

Versatility
“refers to alternative representations of the data and its handling” [64]
“refers to the availability of the data in an internationalized way
and alternative representations of data”

[67]

Volatility
“How long it remains valid” [104](
timeexp − timecurr

)
−

∫ timeexp

timecurr
Fexp(t) dt [106]

List of Figures

1 General structure of an R2RML triples map . 6
2 Overview of the arguments of SML term constructors 7
3 The SML view definition system . 8
4 Accuracy model of Parssian et al. 11
5 Quality model of Wand and Wang . 11
6 Quality dimensions according to Wang and Strong 14
7 Approaches to derive quality dimensions . 15
8 Schematic representation of the AIMQ components 15
9 Classification of RDB2RDF techniques . 18
10 Approaches to derive quality dimensions . 23
11 Comparison of the quality model of Wand and Wang with the

RDB2RDF workflow . 23
12 SML mapping workflow . 24
13 Quality dimensions depending on RDB2RDF mapping 25
14 Completeness dimensions in the relational database context 30
15 Example demonstrating the approach of the No Duplicate

Statements metric . 40
16 Example showing the main evaluation steps of the Consistent

Foreign Key Resource Identifiers metric . 51
17 Schematic depiction of the checks performed in the Correct

Collection Use metric . 55
18 Example showing the preservation of a relational foreign key

constraint via a ‘foreign key link’ SML quad expression 63
19 Class diagram of the R2RLint prototype . 68

List of Tables

1 Prefix definitions of qualified names used in this report 3
2 Example translation patterns of the direct mapping approach 5
3 Overview of RDB2RDF tools . 9
4 Quality dimensions derived from the quality model of Wand and

Wang . 13
5 Quality dimensions proposed by Redman . 14
6 Overview of the dimensions proposed by Zaveri et al. 25
7 Overview of the dimensions considered in the RDB2RDF context 29
8 General statistics of the assessed datasets . 71
9 Assessment results of the availability dimension metric 83
10 Assessment results of the completeness dimension metrics 83
11 Assessment results of the Vocabulary Class Completeness and

Vocabulary Property Completeness metrics (LinkedGeoData) 84
12 Assessment results of the Vocabulary Class Completeness and

Vocabulary Property Completeness metrics (LCC (Eng)) 84
13 Assessment results of the Vocabulary Class Completeness and

Vocabulary Property Completeness metrics (LinkedBrainz) 85
14 Assessment results of the conciseness dimension metrics 85
15 Assessment results of the Basic Ontology Conformance metric

(LinkedGeoData) . 86
16 Assessment results of the Basic Ontology Conformance metric

(LinkedGeoData) . 86
17 Assessment results of the consistency dimension metrics 87
18 Assessment results of the interlinking dimension metric 87
19 Assessment results of the interoperability dimension metrics 88
20 Assessment results of the interpretability dimension metrics 88
21 Assessment results of the performance dimension metric 89
22 Assessment results of the relevancy dimension metrics 89
23 Assessment results of the representational conciseness metrics 90
24 Assessment results of the accuracy dimension metrics 90
25 Assessment results of the accuracy dimension metrics 91
26 Assessment results of the understandability dimension metrics 91

Listings

1.1 R2RML triples map example . 6
1.2 Example of a view definition in SML . 7
1.3 Simple example metric defined for the R2RLint framework 69
1.4 Regular expression to detect HTTP URIs, defined in Java

source code . 79

References

1. Berners-Lee, Tim: Information Management: A Proposal. Available at http://www.w3.
org/History/1989/proposal.html, March 1989.

2. He, Bin, Mitesh Patel, Zhen Zhang and Kevin Chen-Chuan Chang: Accessing the Deep
Web: A Survey. Communications of the ACM, 50(5):94–101, May 2007.

3. Bertails, Alexandre and Eric Gordon Prud’hommeaux: Interpreting Relational Databases
in the RDF Domain. In Musen, Mark A. and Oscar Corcho (editors): Proceedings of the
6th International Conference on Knowledge Capture, K-CAP ’11, pages 129–136, New
York, NY, USA, 2011. ACM Press.

4. Motik, Boris, Ian Horrocks and Ulrike Sattler: Bridging the Gap Between OWL and
Relational Databases. In Williamson, Carey, Mary Ellen Zurko, Peter Patel-Schneider

and Prashant Shenoy (editors): Proceedings of the 16th International Conference on World
Wide Web, pages 807–816, New York, NY, USA, May 2007. ACM Press.

5. Berners-Lee, Tim: Relational Databases on the Semantic Web. Available at http://www.
w3.org/DesignIssues/RDB-RDF.html, 1998.

6. Manola, Frank and Eric Miller (editors): RDF Primer. W3C Recommendation. World
Wide Web Consortium, February 2004. Available at http://www.w3.org/TR/2004/
REC-rdf-primer-20040210/.

7. Das, Souripriya, Seema Sundara and Richard Cyganiak (editors): R2RML: RDB to RDF
Mapping Language. World Wide Web Consortium, September 2012. http://www.w3.
org/TR/2012/REC-r2rml-20120927/.

8. Auer, Sören, Jens Lehmann, Axel-Cyrille Ngonga Ngomo and Amrapali Zaveri: Introduc-
tion to Linked Data and Its Lifecycle on the Web. In Rudolph, Sebastian, Georg Gottlob,
Ian Horrocks and Frank Harmelen (editors): Reasoning Web. Semantic Technologies for
Intelligent Data Access, volume 8067 of Lecture Notes in Computer Science, pages 1–90.
Springer-Verlag, Berlin Heidelberg, 2013.

9. Zaveri, Amrapali, Dimitris Kontokostas, Mohamed A. Sherif, Lorenz Bühmann, Mohamed

Morsey, Sören Auer and Jens Lehmann: User-driven Quality Evaluation of DBpedia. In
I-SEMANTICS ’13: Proceedings of the 9th International Conference on Semantic Systems,
ACM International Conference Proceeding Series, pages 97–104, New York, NY, USA,
September 2013. ACM Press.

10. Juran, Joseph Moses and Albert Blanton Godfrey: Juran’s Quality Handbook. McGraw-
Hill, New York City, United States, 5th edition, 1998.

11. Arenas, Marcelo, Alexandre Bertails, Eric Prud’hommeaux and Juan Sequeda

(editors): A Direct Mapping of Relational Data to RDF. World Wide Web
Consortium, September 2012. Available at http://www.w3.org/TR/2012/
REC-rdb-direct-mapping-20120927/.

12. Spanos, Dimitrios-Emmanuel, Periklis Stavrou and Nikolas Mitrou: Bringing relational
databases into the Semantic Web: A survey. Semantic Web Journal, 3(2):169–209, 2012.

13. Zhao, Shuxin and Elizabeth Chang: From Database to Semantic Web Ontology: An
Overview. In Meersman, Robert, Zahir Tari and Pilar Herrero (editors): On the Move
to Meaningful Internet Systems 2007: OTM 2007 Workshops – OTM Confederated Interna-
tional Workshops and Posters – AWeSOMe, CAMS, OTM Academy Doctoral Consortium,
MONET, OnToContent, ORM, PerSys, PPN, RDDS, SSWS, and SWWS 2007, Vilamoura,
Portugal, November 25-30, 2007, Proceedings, Part II, volume 4806 of Lecture Notes in
Computer Science, pages 1205–1214, Berlin Heidelberg, November 2007. Springer-Verlag.

14. Sahoo, Satya S., Wolfgang Halb, Sebastian Hellmann, Kingsley Idehen, Ted Thibodeau

Jr, Sören Auer, Juan Sequeda and Ahmed Ezzat: A Survey of Current Approaches for
Mapping of Relational Databases to RDF. Technical Report, W3C RDB2RDF Incubator

http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/DesignIssues/RDB-RDF.html
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-r2rml-20120927/
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/
http://www.w3.org/TR/2012/REC-rdb-direct-mapping-20120927/

Group, January 2009. Available at http://www.w3.org/2005/Incubator/rdb2rdf/
RDB2RDF_SurveyReport.pdf.

15. Stadler, Claus, Jörg Unbehauen, Jens Lehmann and Sören Auer: Connecting Crowd-
sourced Spatial Information to the Data Web with Sparqlify. Technical Report, University of
Leipzig, Leipzig, 2013. Available at http://sparqlify.org/downloads/documents/
2013-Sparqlify-Technical-Report.pdf.

16. RDB2RDF Working Group: Implementations. Available at http://www.w3.org/2001/
sw/rdb2rdf/wiki/Implementations, July 2012. Accessed October 20.

17. Openlink Software: Mapping Relational Data to RDF with Virtuoso’s RDF Views. Avail-
able at http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%
20views%20mapping.html. Accessed September 26, 2013.

18. Unbehauen, Jörg, Claus Stadler and Sören Auer: Accessing Relational Data on the Web
with SparqlMap. In Takeda, Hideaki, Yuzhong Qu, Riichiro Mizoguchi and Yoshinobu Ki-
tamura (editors): Semantic Technology: Second Joint International Conference, JIST 2012,
Nara, Japan, December 2-4, 2012. Proceedings, volume 7774 of Lecture Notes in Com-
puter Science, pages 65–80, Berlin Heidelberg, December 2012. Springer-Verlag.

19. International Organization for Standardization: ISO 9000 - Quality management. Avail-
able at http://www.iso.org/iso/home/standards/management-standards/iso_
9000.htm. Accessed October 23.

20. European Association for Quality Assurance in Higher Education: Standards and Guide-
lines for Quality Assurance in the European Higher Education Area. European Association
for Quality Assurance in Higher Education, Helsinki, Finland, 2005.

21. Oelkers, Jürgen and Kurt Reusser: Qualität entwickeln – Standards sichern – mit Dif-
ferenz umgehen. Bundesministerium für Bildung und Forschung, Berlin, Germany, 2008.

22. Bundesministerium für Familie, Senioren, Frauen und Jugend: Qualitätsstandards für
Beteiligung von Kindern und Jugendlichen. Bundesministerium für Familie, Senioren,
Frauen und Jugend, Berlin, Germany, 2nd edition, February 2012.

23. International Monetary Fund: Data Quality Assessment Framework. http://dsbb.imf.
org/pages/dqrs/DQAF.aspx, 2012. Accessed August 5, 2013.

24. Rowley, Jennifer: The Wisdom Hierarchy: Representations of the DIKW Hierarchy. Journal
of Information Science, 33(2):163–180, 2007.

25. Batini, Carlo and Monica Scannapieco: Data Quality: Concepts, Methodologies and Tech-
niques. Data-Centric Systems and Applications. Springer-Verlag, Berlin Heidelberg, 2010.

26. Dasu, Tamraparni and Theodore Johnson: Exploratory Data Mining and Data Cleaning.
John Wiley & Sons, Hoboken, NJ, USA, 2003.

27. Kahn, Beverly K., Diane M. Strong and Richard Y. Wang: Information Quality Bench-
marks: Product and Service Performance. Communications of the ACM, 45(4):184–192,
April 2002.

28. Reeves, Carol A. and David A. Bednar: Defining Quality: Alternatives and Implications.
Academy of Management Review, 19(3):419–445, 1994.

29. Parssian, Amir, Sumit Sarkar and Varghese S. Jacob: Assessing Data Quality for Infor-
mation Products. In De, Prabuddha and Janice I. DeGross (editors): Proceedings of the
Twentieth International Conference on Information Systems. Association for Information
Systems, December 1999.

30. Parssian, Amir, Sumit Sarkar and Varghese S. Jacob: Assessing Data Quality for Infor-
mation Products: Impact of Selection, Projection, and Cartesian Product. Management
Science, 50(7):967–982, July 2004.

31. Shannon, Claude Elwood and Warren Weaver: A Mathematical Theory of Communica-
tion. University of Illinois Press, Urbana, Illinois, 1949.

32. Wand, Yair and Richard Y. Wang: Anchoring Data Quality Dimensions in Ontological
Foundations. Communications of the ACM, 39(11):86–95, November 1996.

http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://www.w3.org/2005/Incubator/rdb2rdf/RDB2RDF_SurveyReport.pdf
http://sparqlify.org/downloads/documents/2013-Sparqlify-Technical-Report.pdf
http://sparqlify.org/downloads/documents/2013-Sparqlify-Technical-Report.pdf
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
http://www.w3.org/2001/sw/rdb2rdf/wiki/Implementations
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm
http://www.iso.org/iso/home/standards/management-standards/iso_9000.htm
http://dsbb.imf.org/pages/dqrs/DQAF.aspx
http://dsbb.imf.org/pages/dqrs/DQAF.aspx

33. Lei, Yuangui, Andriy Nikolov, Victoria Uren and Enrico Motta: Detecting Quality Prob-
lems in Semantic Metadata without the Presence of a Gold Standard. In García-Castro,
Raúl, Denny Vrandecic, Asunción Gómez-Pérez, York Sure and Zhisheng Huang (ed-
itors): Proceedings of the 5th International Workshop on Evaluation of Ontologies and
Ontology-based Tools (EON2007), volume 329 of CEUR Workshop Proceedings, pages
51–60, Aachen, Germany, November 2007. Redaktion Sun SITE, Informatik V, RWTH
Aachen.

34. Lei, Yuangui, Victoria Uren and Enrico Motta: A Framework for Evaluating Semantic
Metadata. In Sleeman, Derek and Ken Barker (editors): Proceedings of the 4th Inter-
national Conference on Knowledge Capture, pages 135–142, New York, NY, USA, 2007.
ACM Press.

35. Orr, Ken: Data Quality and Systems Theory. Communications of the ACM, 41(2):66–71,
February 1998.

36. Shankaranarayanan, Ganesan, Richard Y. Wang and Mostapha Ziad: IP-MAP: Represent-
ing the Manufacture of an Information Product. In Klein, Barbara D. and Donald F. Rossin

(editors): Fifth Conference on Information Quality (IQ 2000), pages 1–16, Cambridge, MA,
USA, 2000. MIT Press.

37. Liu, Liping and Lauren N. Chi: Evolutional Data Quality: A Theory-specific View. In
Fisher, Craig and Bruce Davidson [114], pages 292–304.

38. Motro, Amihai and Igor Rakov: Estimating the Quality of Databases. In Andreasen,
Troels, Henning Christiansen and Henrik Legind Larsen (editors): Flexible Query An-
swering Systems: Third International Conference, FQAS’98 Roskilde, Denmark, May
13–15, 1998 Proceedings, volume 1495 of Lecture Notes in Computer Science, pages 298–
307, Berlin Heidelberg, 1998. Springer-Verlag.

39. Scannapieco, Monica and Tiziana Catarci: Data Quality under the Computer Science Per-
spective. Archivi & Computer, 2:1–15, 2002.

40. Wang, Richard Y. and Diane M. Strong: Beyond Accuracy: What Data Quality Means to
Data Consumers. Journal of Management Information Systems, 12(4):5–33, March 1996.

41. Redman, Thomas C.: Data Quality for the Information Age. Artech House, 1996.
42. Bizer, Christian and Richard Cyganiak: Quality-driven Information Filtering Using the

WIQA Policy Framework. Web Semantics: Science, Services and Agents on the World
Wide Web, 7(1):1–10, January 2009.

43. Fürber, Christian and Martin Hepp: Swiqa - A Semantic Web Information Quality Assess-
ment Framework. In Tuunainen, Virpi Kristiina, Matti Rossi and Joe Nandhakumar (ed-
itors): 19th European Conference on Information Systems, ECIS 2011, Helsinki, Finland,
June 9-11, 2011, 2011.

44. Batini, Carlo, Cinzia Cappiello, Chiara Francalanci and Andrea Maurino: Methodologies
for Data Quality Assessment and Improvement. ACM Computing Surveys, 41(3):16:1–
16:52, July 2009.

45. Lee, Yang W., Diane Diane M. Strong, Beverly K. Kahn and Richard Y. Wang: AIMQ: A
Methodology for Information Quality Assessment. Information & Management, 40(2):133–
146, December 2002.

46. Pipino, Leo L., Yang W. Lee and Richard Y. Wang: Data Quality Assessment. Communi-
cations of the ACM, 45(4):211–218, April 2002.

47. Kontokostas, Dimitris, Amrapali Zaveri, Sören Auer and Jens Lehmann: TripleCheck-
Mate: A Tool for Crowdsourcing the Quality Assessment of Linked Data. In Klinov, Pavel

and Dmitry Mouromtsev (editors): Knowledge Engineering and the Semantic Web: 4th
International Conference, KESW 2013, St. Petersburg, Russia, October 7-9, 2013. Pro-
ceedings, volume 394 of Communications in Computer and Information Science, pages
265–272, Berlin Heidelberg, October 2013. Springer-Verlag.

48. Knuth, Magnus, Johannes Hercher and Harald Sack: Collaboratively Patching Linked
Data. The Computing Research Repository, abs/1204.2715, April 2012.

49. Kontokostas, Dimitris, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens

Lehmann and Roland Cornelissen: Test-driven Evaluation of Linked Data Quality. In
Chung, Chin-Wan, Andrei Z. Broder, Kyuseok Shim and Torsten Suel (editors): WWW
’14 Proceedings of the 23rd International Conference on World Wide Web, pages 747–758,
New York, NY, USA, 2014. ACM Press.

50. Fürber, Christian and Martin Hepp: Using SPARQL and SPIN for Data Quality Manage-
ment on the Semantic Web. In Abramowicz, Witold and Robert Tolksdorf (editors): Busi-
ness Information Systems: 13th International Conference, BIS 2010, Berlin, Germany, May
3-5, 2010. Proceedings, volume 47 of Lecture Notes in Business Information Processing,
pages 35–46, Berlin Heidelberg, May 2010. Springer-Verlag.

51. English, Larry P.: Improving Data Warehouse and Business Information Quality: Methods
for Reducing Costs and Increasing Profits. John Wiley & Sons, New York, USA, 1999.

52. Redman, Thomas: Data Quality – The Field Guide. Digital Press, 2001.
53. Wang, Richard Y., Mostapha Ziad and Yang W. Lee: Data Quality. Kluwer Academic

Publishers, Dordrecht, Netherlands, 2001.
54. Artz, Donovan and Yolanda Gil: A Survey of Trust in Computer Science and the Semantic

Web. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):58–71,
June 2007.

55. Hartig, Olaf: Trustworthiness of Data on the Web. In Proceedings of the STI Berlin &

CSW PhD Workshop, 2008.
56. Lausen, Georg, Michael Meier and Michael Schmidt: SPARQLing Constraints for RDF.

In Mouaddib, Noureddine, Patrick Valduriez, Alfons Kemper, Mokrane Bouzeghoub,
Volker Markl, Laurent Amsaleg and Ioana Manolescu (editors): Proceedings of the 11th
International Conference on Extending Database Technology: Advances in Database Tech-
nology, EDBT ’08, pages 499–509, New York, NY, USA, March 2008. ACM Press.

57. Hogan, Aidan and Richard Cyganiak: Frequently Observed Problems on the Web of Data.
http://pedantic-web.org/fops.html, November 2009. Accessed August 1, 2013.

58. Böhm, Christoph, Felix Naumann, Ziawasch Abedjan, Dandy Fenz, Toni Grütze, Daniel

Hefenbrock, Matthias Pohl and David Sonnabend: Profiling linked open data with Pro-
LOD. In 2010 IEEE 26th International Conference on Data Engineering Workshops, pages
175–178, Washington, DC, USA, March 2010. Institute of Electrical and Electronics Engi-
neers.

59. Guéret, Christophe, Paul Groth, Frank van Harmelen and Stefan Schlobach: Finding the
Achilles Heel of the Web of Data: Using Network Analysis for Link-Recommendation. In
Patel-Schneider, Peter F. et al. [115], pages 289–304.

60. Halpin, Harry, Patrick J. Hayes, James P. McCusker, Deborah L. McGuinness and
Henry S. Thompson: When owl:sameAs Isn’t the Same: An Analysis of Identity in Linked
Data. In Patel-Schneider, Peter F. et al. [115], pages 305–320.

61. Hogan, Aidan, Andreas Harth, Alexandre Passant, Stefan Decker and Axel Polleres:
Weaving the Pedantic Web. In Bizer, Christian, Tom Heath, Tim Berners-Lee and Michael

Hausenblas (editors): Proceedings of the WWW2010 Workshop on Linked Data on the Web,
volume 628 of CEUR Workshop Proceedings, Aachen, Germany, April 2010. Redaktion
Sun SITE, Informatik V, RWTH Aachen.

62. Hogan, Aidan, Jürgen Umbrich, Andreas Harth, Richard Cyganiak, Axel Polleres and
Stefan Decker: An Empirical Survey of Linked Data Conformance. Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 14:14–44, July 2012.

63. Demter, Jan, Sören Auer, Michael Martin and Jens Lehmann: LODStats – An Exten-
sible Framework for High-performance Dataset Analytics. In ten Teije, Annette, Jo-
hanna Völker, Siegfried Handschuh, Heiner Stuckenschmidt, Mathieu d’Acquin, Andriy

http://pedantic-web.org/fops.html

Nikolov, Nathalie Aussenac-Gilles and Nathalie Hernandez (editors): Knowledge Engi-
neering and Knowledge Management: 18th International Conference, EKAW 2012, Galway
City, Ireland, October 8-12, 2012. Proceedings, volume 7603 of Lecture Notes in Computer
Science, pages 353–362, Berlin Heidelberg, October 2012. Springer-Verlag.

64. Flemming, Annika: Qualitätsmerkmale von Linked Data-veröffentlichenden Datenquellen.
Diploma Thesis, Humbold-Universität zu Berlin, March 2011.

65. Guéret, Christophe, Paul Groth, Claus Stadler and Jens Lehmann: Assessing linked data
mappings using network measures. In Simperl, Elena, Philipp Cimiano, Axel Polleres, Os-
car Corcho and Valentina Presutti (editors): The Semantic Web: Research and Applica-
tions, volume 7295 of Lecture Notes in Computer Science, pages 87–102. Springer-Verlag,
Berlin Heidelberg, 2012.

66. Mendes, Pablo N., Hannes Mühleisen and Christian Bizer: Sieve: Linked Data Quality
Assessment and Fusion. In Srivastava, Divesh and Ismail Ari (editors): EDBT-ICDT ’12:
Proceedings of the 2012 Joint EDBT/ICDT Workshops, pages 116–123, New York, NY,
USA, March 2012. ACM.

67. Zaveri, Amrapali, Anisa Rula, Andrea Maurino, Ricardo Pietrobon, Jens Lehmann and
Sören Auer: Quality Assessment Methodologies for Linked Open Data. To appear in the
Semantic Web Journal, 2014.

68. Lausen, Georg: Relational Databases in RDF: Keys and Foreign Keys. In Christophides,
Vassilis, Martine Collard and Claudio Gutierrez (editors): Semantic Web, Ontologies and
Databases: VLDB Workshop, SWDB-ODBIS 2007, Vienna, Austria, September 24, 2007,
Revised Selected Papers, volume 5005 of Lecture Notes in Computer Science, pages 43–
56, Berlin Heidelberg, September 2007. Springer-Verlag.

69. Levshin, Dmitry V.: Mapping Relational Databases to the Semantic Web with Original
Meaning. In Karagiannis, Dimitris and Zhi Jin (editors): Knowledge Science, Engineering
and Management: Third International Conference, KSEM 2009, Vienna, Austria, November
25-27, 2009. Proceedings, volume 5914 of Lecture Notes in Computer Science, pages 5–16,
Berlin Heidelberg, November 2009. Springer-Verlag.

70. Stadler, Claus, Jens Lehmann, Konrad Höffner and Sören Auer: LinkedGeoData: A Core
for a Web of Spatial Open Data. Semantic Web Journal, 3(4):333–354, 2012.

71. Westphal, Patrick, Claus Stadler and Jonathan Pool: Countering language attrition with
PanLex and the Web of Data. To appear in the Semantic Web Journal, 2014.

72. Harris, Steve and Andy Seaborne (editors): SPARQL 1.1 Query Language. World
Wide Web Consortium, March 2013. Available at http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/.

73. Eppler, Martin J. and Peter Muenzenmayer: Measuring Information Quality in the Web
Context: A Survey of State-of-the-Art Instruments and an Application Methodology. In
Fisher, Craig and Bruce Davidson [114], pages 187–196.

74. Zeng, Liangzhao, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam and Quan Z.
Sheng: Quality Driven Web Services Composition. In Hencsey, Gusztáv, Bebo White, Yih-
Farn Robin Chen, László Kovács and Steve Lawrence (editors): Proceedings of the 12th
International Conference on World Wide Web, pages 411–421, New York, NY, USA, May
2003. ACM Press.

75. Mostafavi, Mir Abolfazl, Geoffrey Edwards and Robert Jeansoulin: An Ontology-based
Method for Quality Assessment of Spatial Data Bases. In Frank, Andrew U. and Eva Grum

(editors): Proceedings of the 3rd International Symposium on Spatial Data Quality, volume
1/28a of Geoinfo series, pages 49–66, Vienna, April 2004. Department for Geoinformation
and Cartography, Vienna University of Technology.

76. Su, Ying and Zhanming Jin: A Methodology for Information Quality Assessment in the De-
signing and Manufacturing Processes of Mechanical Products. In Chengalur-Smith, In-
duShobha N. et al. [116], pages 447–465.

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

77. Knight, Shirlee ann and Janice Burn: Developing a Framework for Assessing Information
Quality on the World Wide Web. Informing Science Journal, 8:160–172, 2005.

78. Fürber, Christian and Martin Hepp: Using Semantic Web Resources for Data Quality Man-
agement. In Cimiano, Philipp and H. Sofia Pinto (editors): Knowledge Engineering and
Management by the Masses: 17th International Conference, EKAW 2010, Lisbon, Portu-
gal, October 11-15, 2010. Proceedings, volume 6317 of Lecture Notes in Computer Sci-
ence, pages 211–225, Berlin Heidelberg, October 2010. Springer-Verlag.

79. Ullman, Jeffrey D.: Information Integration Using Logical Views. In Afrati, Foto and
Phokion Kolaitis (editors): Database Theory — ICDT ’97: 6th International Conference
Delphi, Greece, January 8–10, 1997 Proceedings, volume 1186 of Lecture Notes in Com-
puter Science, pages 19–40, Berlin Heidelberg, January 1997. Springer-Verlag.

80. Berners-Lee, Tim: Linked Data. Available at http://www.w3.org/DesignIssues/
LinkedData.html, June 2009. Accessed October 17, 2013.

81. Bizer, Christian: Quality-Driven Information Filtering in the Context of Web-Based Infor-
mation Systems. PhD thesis, Freie Universität Berlin, March 2007.

82. Brickley, Dan and Ramanathan V. Guha (editors): RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation. World Wide Web Consortium, February 2004.
Available at http://www.w3.org/TR/2004/REC-rdf-schema-20040210/.

83. Baader, Franz, Diego Calvanese, Deborah L. McGuinnes, Daniele Nardi and Peter F.
Partel-Schneider (editors): The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, Cambridge, Second edition, 2010.

84. Biron, Paul V. and Ashok Malhotra (editors): XML Schema Part 2: Datatypes Second
Edition. W3C Recommendation. World Wide Web Consortium, October 2004. Available
at http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

85. Bechhofer, Sean, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider and Lynn Andrea Stein: OWL Web Ontology Language Ref-
erence. W3C Recommendation. World Wide Web Consortium, February 2004. Available
at http://www.w3.org/TR/2004/REC-owl-ref-20040210/.

86. Heath, Tom and Christian Bizer: Linked Data: Evolving the Web into a Global Data Space.
Morgan and Claypool, 1st edition, 2011.

87. Hayes, Patrick John and Peter F. Patel-Schneider (editors): RDF 1.1 Semantics. W3C
Recommendation. World Wide Web Consortium, February 2014. Available at http://
www.w3.org/TR/rdf11-mt/.

88. Phillips, Addison and Mark Davis (editors): Tags for Identifying Languages. Number 5646
in Request for Comments. Internet Engineering Task Force, September 2009. Available at
http://tools.ietf.org/rfc/bcp/bcp47.txt.

89. Bailey, Todd M. and Ulrike Hahn: Determinants of Wordlikeness: Phonotactics or Lexical
Neighborhoods? Journal of Memory and Language, 44(4):568–591, May 2001.

90. Ljolje, Andrej and Stephen E. Levinson: Development of an Acoustic-phonetic Hidden
Markov Model for Continuous Speech Recognition. IEEE Transactions on Signal Process-
ing, 39(1):29–39, January 1991.

91. Albro, Daniel M.: Some Learning Algorithms for Phonotactics. http://
www.linguistics.ucla.edu/people/grads/albro/ucla-learn-talk1.pdf, June
2000. Accessed December 13, 2013.

92. Lentz, Tomas Ostar: Phonotactic Illegality and Probability in Speech Perception: Evidence
from second language listeners. PhD thesis, Utrecht Institute of Linguistics OTS, 2011.

93. Vitevitch, Michael S., Paul A. Luce, David B. Pisoni and Edward T. Auer: Phonotactics,
Neighborhood Activation, and Lexical Access for Spoken Words. Brain and Language,
68(1-2):306–311, June 1999.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf11-mt/
http://tools.ietf.org/rfc/bcp/bcp47.txt
http://www.linguistics.ucla.edu/people/grads/albro/ucla-learn-talk1.pdf
http://www.linguistics.ucla.edu/people/grads/albro/ucla-learn-talk1.pdf

94. Berners-Lee, Tim, Roy Fielding and Larry Masinter (editors): Uniform Resource Identi-
fiers (URI): Generic Syntax. Number 2396 in Request for Comments. Internet Engineering
Task Force, August 1998. Available at http://www.ietf.org/rfc/rfc2396.txt.

95. Berners-Lee, Tim, Roy Fielding and Larry Masinter (editors): Uniform Resource Identifier
(URI): Generic Syntax. Number 3986 in Request for Comments. Internet Engineering Task
Force, January 2005. Available at http://www.ietf.org/rfc/rfc3986.txt.

96. Braden, Robert (editor): Requirements for Internet Hosts – Application and Support. Num-
ber 1123 in Request for Comments. Internet Engineering Task Force, October 1989. Avail-
able at http://tools.ietf.org/rfc/rfc1123.txt.

97. Carpenter, Brian, Stuard Cheshire and Robert Hinden (editors): Representing IPv6 Zone
Identifiers in Address Literals and Uniform Resource Identifiers. Number 6874 in Request
for Comments. Internet Engineering Task Force, February 2013. Available at http://www.
ietf.org/rfc/rfc6874.txt.

98. Klensin, John (editor): Internationalized Domain Names for Applications (IDNA): Defini-
tions and Document Framework. Number 5890 in Request for Comments. Internet Engi-
neering Task Force, August 2010. Available at http://tools.ietf.org/rfc/rfc5890.
txt.

99. Alexander, Keith, Richard Cyganiak, Michael Hausenblas and Jun Zhao: Describ-
ing Linked Datasets with the VoID Vocabulary. World Wide Web Consortium,
March 2011. W3C Interest Group Note, available at http://www.w3.org/TR/2011/
NOTE-void-20110303/.

100. Strong, Diane M., Yang W. Lee and Richard Y. Wang: Data Quality in Context. Commu-
nications of the ACM, 40(5):103–110, May 1997.

101. Jarke, Matthias, Manfred A. Jeusfeld, Christoph Quix and Panos Vassiliadis: Architecture
and Quality in Data Warehouses: An Extended Repository Approach. Information Systems,
24(3):229–253, May 1999.

102. Bergdahl, Mats, Manfred Ehling, Eva Elvers, Erika Földesi, Thomas Körner, Andrea

Kron, Peter Lohauss, Kornelia Mag, Vera Morais, Anja Nimmergut, Hans Viggo Sæbø,
Ulrike Timm and Maria João Zilhão: Handbook on Data Quality Assessment Methods and
Tools. European Commission, Eurostat, Wiesbaden, 2007.

103. Naumann, Felix: Quality-Driven Query Answering for Integrated Information Systems, vol-
ume 2261 of Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg, 2002.

104. Bovee, Matthew, Rajendra P. Srivastava and Brenda Mak: A Conceptual Framework and
Belief Function Approach to Assessing Overall Information Quality. In Pierce, Eliza-
beth M. and Raïssa Katz-Haas (editors): Sixth Conference on Information Quality (IQ
2001), pages 311–328, Cambridge, MA, USA, November 2001. MIT Press.

105. Garvin, David A.: Managing Quality: The Strategic and Competitive Edge. Free Press,
New York, USA, 1988.

106. Pernici, Barbara and Monica Scannapieco: Data Quality in Web Information Systems. Jour-
nal on Data Semantics, 1:48–68, 2003.

107. Ballou, Donald P. and Harold L. Pazer: Modeling Data and Process Quality in Multi-
Input, Multi-Output Information Systems. Management Science, 31(2):150–162, February
1985.

108. Naumann, Felix, Johann-Christoph Freytag and Ulf Leser: Completeness of Integrated
Information Sources. Information Systems, 29(7):583–615, October 2004.

109. Scannapieco, Monica and Carlo Batini: Completeness in the Relational Model: a Compre-
hensive Framework. In Chengalur-Smith, InduShobha N. et al. [116], pages 333–345.

110. Huang, Kuan-Tsea, Yang W. Lee and Richard Y. Wang: Quality Information and Knowl-
edge. Prentice Hall Professional Technical Reference, Upper Saddle River, New Jersey,
USA, 1999.

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/rfc/rfc1123.txt
http://www.ietf.org/rfc/rfc6874.txt
http://www.ietf.org/rfc/rfc6874.txt
http://tools.ietf.org/rfc/rfc5890.txt
http://tools.ietf.org/rfc/rfc5890.txt
http://www.w3.org/TR/2011/NOTE-void-20110303/
http://www.w3.org/TR/2011/NOTE-void-20110303/

111. Goodhue, Dale L.: Understanding User Evaluations of Information Systems. Management
Science, 41(12):1827–1844, December 1995.

112. DeLone, William H. and Ephraim R. McLean: Information Systems Success: The Quest for
the Dependent Variable. Information Systems Research, 3(2):60–95, 1992.

113. Zmud, Robert: Concepts, Theories and Techniques: an Empirical Investigation of the Di-
mensionality of the Concept of Information. Decision Sciences, 9(2):187–195, 1978.

114. Fisher, Craig and Bruce Davidson (editors): 7th International Conference on Information
Quality, Cambridge, MA, USA, November 2002. MIT Press.

115. Patel-Schneider, Peter F., Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang, Jeff Z. Pan,
Ian Horrocks and Birte Glimm (editors): 9th International Semantic Web Conference, vol-
ume 6496 of Lecture Notes in Computer Science, Berlin Heidelberg, 2010. Springer-Verlag.

116. Chengalur-Smith, InduShobha N., Louiqa Raschid, Jennifer Long and Craig Seko (edi-
tors): 9th International Conference on Information Quality, Cambridge, MA, USA, Novem-
ber 2004. MIT Press.

	Quality Assurance of RDB2RDF Mappings
	Introduction
	Motivation
	Goal
	Structure of this Report
	Conventions

	State of the Art
	RDB2RDF
	Data Quality

	Quality of RDB2RDF Mappings
	Design Considerations
	Formal Foundations
	Methodology
	Quality Dimensions for RDB2RDF Mappings
	Metrics

	R2RLint
	Implementation Limitations

	Evaluation
	Availability
	Completeness
	Conciseness
	Consistency
	Interlinking
	Interoperability
	Interpretability
	Performance
	Relevancy
	Representational Conciseness
	Semantic Accuracy
	Syntactic Validity
	Understandability

	Conclusions and Future Work
	Auxiliary Definitions
	Metric 14 (No Bogus Inverse-functional Properties)
	Metric 23 (OWL Ontology Declarations)
	Metric 42 (HTTP URIs)
	Metric 43 (Dataset Metadata)

	Evaluation Results
	Availability
	Completeness
	Conciseness
	Consistency
	Interlinking
	Interoperability
	Interpretability
	Performance
	Relevancy
	Representational Conciseness
	Semantic Accuracy
	Syntactic Validity
	Understandability

	Data Quality Dimensions Overview
	List of Figures
	List of Tables
	Listings
	Bibliography

