
Knowledge Base Creation, Enrichment
and Repair

Sebastian Hellmann1(B), Volha Bryl2, Lorenz Bühmann1, Milan Dojchinovski4,
Dimitris Kontokostas1, Jens Lehmann1, Uroš Milošević3, Petar Petrovski2,

Vojtěch Svátek4, Mladen Stanojević3, and Ondřej Zamazal4

1 University of Leipzig, Leipzig, Germany
{hellmann,buehmann,kontokostas,lehmann}@informatik.uni-leipzig.de

2 University of Mannheim, Mannheim, Germany
{volha,petar}@informatik.uni-mannheim.de

3 Institute Mihajlo Pupin, Belgrade, Serbia
{uros.milosevic,mladen.stanojevic}@pupin.rs

4 University of Economics Prague, Prague, Czech Republic
{milan.dojchinovski,svatek,ondrej.zamazal}@vse.cz

Abstract. This chapter focuses on data transformation to RDF and
Linked Data and furthermore on the improvement of existing or extra-
cted data especially with respect to schema enrichment and ontology
repair. Tasks concerning the triplification of data are mainly grounded on
existing and well-proven techniques and were refined during the lifetime
of the LOD2 project and integrated into the LOD2 Stack. Triplification
of legacy data, i.e. data not yet in RDF, represents the entry point for
legacy systems to participate in the LOD cloud. While existing systems
are often very useful and successful, there are notable differences between
the ways knowledge bases and Wikis or databases are created and used.
One of the key differences in content is in the importance and use of
schematic information in knowledge bases. This information is usually
absent in the source system and therefore also in many LOD knowledge
bases. However, schema information is needed for consistency checking
and finding modelling problems. We will present a combination of enrich-
ment and repair steps to tackle this problem based on previous research
in machine learning and knowledge representation. Overall, the Chapter
describes how to enable tool-supported creation and publishing of RDF
as Linked Data (Sect. 1) and how to increase the quality and value of
such large knowledge bases when published on the Web (Sect. 2).

1 Linked Data Creation and Extraction

1.1 DBpedia, a Large-Scale, Multilingual Knowledge Base
Extracted from Wikipedia

Wikipedia is the 6th most popular website1, the most widely used encyclopedia,
and one of the finest examples of truly collaboratively created content. There are
1 http://www.alexa.com/topsites. Retrieved in May 2014.

c© The Author(s)
S. Auer et al. (Eds.): Linked Open Data, LNCS 8661, pp. 45–69, 2014.
DOI: 10.1007/978-3-319-09846-3 3

http://www.alexa.com/topsites

46 S. Hellmann et al.

official Wikipedia editions in 287 different languages which range in size from a
couple of hundred articles up to 3.8 million articles (English edition)2. Besides of
free text, Wikipedia articles consist of different types of structured data such as
infoboxes, tables, lists, and categorization data. Wikipedia currently offers only
free-text search capabilities to its users. Using Wikipedia search, it is thus very
difficult to find all rivers that flow into the Rhine and are longer than 100 km,
or all Italian composers that were born in the 18th century.

Fig. 1. Overview of DBpedia extraction framework

The DBpedia project [9,13,14] builds a large-scale, multilingual knowledge
base by extracting structured data from Wikipedia editions in 111 languages.
Wikipedia editions are extracted by the open source “DBpedia extraction frame-
work” (cf. Fig. 1). The largest DBpedia knowledge base which is extracted from
the English edition of Wikipedia consists of over 400 million facts that describe
3.7 million things. The DBpedia knowledge bases that are extracted from the
other 110 Wikipedia editions together consist of 1.46 billion facts and describe
10 million additional things. The extracted knowledge is encapsulated in mod-
ular dumps as depicted in Fig. 2. This knowledge base can be used to answer
expressive queries such as the ones outlined above. Being multilingual and cov-
ering an wide range of topics, the DBpedia knowledge base is also useful within
further application domains such as data integration, named entity recognition,
topic detection, and document ranking.

The DBpedia knowledge base is widely used as a test-bed in the research
community and numerous applications, algorithms and tools have been built
around or applied to DBpedia. Due to the continuous growth of Wikipedia and
2 http://meta.wikimedia.org/wiki/List of Wikipedias

http://meta.wikimedia.org/wiki/List_of_Wikipedias

Knowledge Base Creation, Enrichment and Repair 47

Fig. 2. Overview of the DBpedia data stack.

improvements in DBpedia, the extracted data provides an increasing added value
for data acquisition, re-use and integration tasks within organisations. While the
quality of extracted data is unlikely to reach the quality of completely manually
curated data sources, it can be applied to some enterprise information integration
use cases and has shown to be relevant in several applications beyond research
projects. DBpedia is served as Linked Data on the Web. Since it covers a wide
variety of topics and sets RDF links pointing into various external data sources,
many Linked Data publishers have decided to set RDF links pointing to DBpedia
from their data sets. Thus, DBpedia became a central interlinking hub in the
Web of Linked Data and has been a key factor for the success of the Linked
Open Data initiative.

The structure of the DBpedia knowledge base is maintained by the DBpe-
dia user community. Most importantly, the community creates mappings from
Wikipedia information representation structures to the DBpedia ontology. This
ontology unifies different template structures, both within single Wikipedia lan-
guage editions and across currently 27 different languages. The maintenance of
different language editions of DBpedia is spread across a number of organisa-
tions. Each organisation is responsible for the support of a certain language.
The local DBpedia chapters are coordinated by the DBpedia Internationalisa-
tion Committee. The DBpedia Association provides an umbrella on top of all the
DBpedia chapters and tries to support DBpedia and the DBpedia Contributors
Community.

1.2 RDFa, Microdata and Microformats Extraction Framework

In order to support web applications to understand the content of HTML pages,
an increasing number of websites have started to semantically markup their

48 S. Hellmann et al.

pages, that is, embed structured data describing products, people, organizations,
places, events, etc. into HTML pages using such markup standards as Microfor-
mats3, RDFa4 and Microdata5. Microformats use style definitions to annotate
HTML text with terms from a fixed set of vocabularies, RDFa allows embedding
any kind of RDF data into HTML pages, and Microdata is part of the HTML5
standardization effort allowing the use of arbitrary vocabularies for structured
data.

The embedded data is crawled together with the HTML pages by search
engines, such as Google, Yahoo! and Bing, which use these data to enrich their
search results. Up to now, only these companies were capable of providing
insights [15] into the amount as well as the types of data that are published
on the web using different markup standards as they were the only ones possess-
ing large-scale web crawls. However, the situation changed with the advent of
the Common Crawl6, a non-profit foundation that crawls the web and regularly
publishes the resulting corpora for public usage on Amazon S3.

For the purpose of extracting structured data from these large-scale web
corpora we have developed the RDFa, Microdata and Microformats extraction
framework that is available online7.

The extraction consists of the following steps. Firstly, a file with the crawled
data, in the form of ARC or WARC archive, is downloaded from the storage.
The archives usually contain up to several thousands of archived web pages. The
framework relies on the Anything To Triples (Any23)8 parser library for extract-
ing RDFa, Microdata, and Microformats from HTML content. Any23 outputs
RDF quads, consisting of subject, predicate, object, and a URL which identifies
the HTML page from which the triple was extracted. Any23 parses web pages
for structured data by building a DOM tree and then evaluates XPath expres-
sions to extract the structured data. As we have found that the tree generation
accounts for much of the parsing cost, we have introduced the filtering step: We
run regular expressions against each archived HTML page prior to extraction to
detect the presence of structured data, and only run the Any23 extractor when
potential matches are found. The output of the extraction process is in NQ (RDF
quads) format.

We have made available two implementations of the extraction framework,
one based on the Amazon Web Services, and the second one being a Map/Reduce
implementation that can be run over any Hadoop cluster. Additionally, we pro-
vide a plugin to the Apache Nutch crawler allowing the user to configure the
crawl and then extract structured data from the resulting page corpus.

To verify the framework, three large scale RDFa, Microformats and Micro-
data extractions have been performed, corresponding to the Common Crawl
3 http://microformats.org/
4 http://www.w3.org/TR/xhtml-rdfa-primer/
5 http://www.w3.org/TR/microdata/
6 http://commoncrawl.org/
7 https://subversion.assembla.com/svn/commondata/
8 https://any23.apache.org/

http://microformats.org/
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/microdata/
http://commoncrawl.org/
https://subversion.assembla.com/svn/commondata/
https://any23.apache.org/

Knowledge Base Creation, Enrichment and Repair 49

data from 2009/2010, August 2012 and November 2013. The results of the 2012
and 2009/2010 are published in [2] and [16], respectively. Table 1 presents the
comparative summary of the three extracted datasets. The table reports the
number and the percentage of URLs in each crawl containing structured data,
and gives the percentage of these data represented using Microformats, RDFa
and Microdata, respectively.

Table 1. Large-scale RDF datasets extracted from Common Crawl (CC): summary

CC 2009/2010 CC August 2012 CC November 2013

Size(TB), compressed 28.9 40.1 44

Size, URLs 2,565,741,671 3,005,629,093 2,224,829,946

Size, Domains 19,113,929 40,600,000 12,831,509

Parsing cost, USD 576 398 263

Structured data, 147,871,837 369,254,196 585,792,337
URLs with triples

Structured data, in % 5.76 12.28 26.32

Microformats, in % 96.99 70.98 47.48

RDFa, in % 2.81 22.71 26.48

Microdata, in % 0.2 6.31 26.04

Average num. of 3.35 4.05 4.04
triples per URL

The numbers illustrate the trends very clearly: in the recent years, the amount
of structured data embedded into HTML pages keeps increasing. The use of
Microformats is decreasing rapidly, while the use of RDFa and especially Micro-
data standards has increased a lot, which is not surprising as the adoption of the
latter is strongly encouraged by the biggest search engines. On the other hand,
the average number of triples per web page (only pages containing structured
data are considered) stays the same through the different version of the crawl,
which means that the data completeness has not changed much.

Concerning the topical domains of the published data, the dominant ones are:
persons and organizations (for all three formats), blog- and CMS-related meta-
data (RDFa and Microdata), navigational metadata (RDFa and Microdata),
product data (all three formats), and event data (Microformats). Additional topi-
cal domains with smaller adoption include job postings (Microdata) and recipes
(Microformats). The data types, formats and vocabularies seem to be largely
determined by the major consumers the data is targeted at. For instance, the
RDFa portion of the corpora is dominated by the vocabulary promoted by Face-
book, while the Microdata subset is dominated by the vocabularies promoted by
Google, Yahoo! and Bing via schema.org.

50 S. Hellmann et al.

More detailed statistics on the three corpora are available at the Web Data
Commons page9.

By publishing the data extracted from RDFa, Microdata and Microformats
annotations, we hope on the one hand to initialize further domain-specific studies
by third parties. On the other hand, we hope to lay the foundation for enlarging
the number of applications that consume structured data from the web.

1.3 Rozeta

The ever-growing world of data is largely unstructured. It is estimated that
information sources such as books, journals, documents, social media content
and everyday news articles constitute as much as 90 % of it. Making sense of all
this data and exposing the knowledge hidden beneath, while minimizing human
effort, is a challenging task which often holds the key to new insights that can
prove crucial to one’s research or business. Still, understanding the context, and
finding related information are hurdles that language technologies are yet to
overcome.

Rozeta is a multilingual NLP and Linked Data tool wrapped around STRU-
TEX, a structured text knowledge representation technique, used to extract
words and phrases from natural language documents and represent them in a
structured form. Originally designed for the needs of Wolters Kluwer Deutsch-
land, for the purposes of organizing and searching through their database of court
cases (based on numerous criteria, including case similarity), Rozeta provides
automatic extraction of STRUTEX dictionaries in Linked Data form, seman-
tic enrichment through link discovery services, a manual revision and authoring
component, a document similarity search tool and an automatic document clas-
sifier (Fig. 3).

1.3.1 Dictionary Management
The Rozeta dictionary editor (Fig. 4) allows for a quick overview of all dictio-
nary entries, as well as semi-automatic (supervised) vocabulary enrichment/link
discovery and manual cleanup. It provides a quick-filter/AJAX search box that
helps users swiftly browse through the dictionary by retrieving the entries that
start with a given string, on-the-fly. The detailed view for a single entry shows
its URI, text, class, any existing links to relevant LOD resources, as well as links
to the files the entry originated from. Both the class and file origin information
can be used as filters, which can help focus one’s editing efforts on a single class
or file, respectively.

To aid the user in enriching individual entries with links to other relevant
linked data sources, Wiktionary2RDF recommendations are retrieved automat-
ically. The user can opt for one of the available properties (skos:exactMatch
and skos:relatedMatch) or generate a link using a custom one. Furthermore,
the Custom link and More links buttons give the user the ability to link the
9 http://webdatacommons.org

http://webdatacommons.org

Knowledge Base Creation, Enrichment and Repair 51

Fig. 3. Rozeta: dictionary selection

Fig. 4. Rozeta: dictionary management

52 S. Hellmann et al.

selected dictionary phrase to any LOD resource, either manually, or by letting
the system provide them with automatic recommendations through one of the
available link discovery services, such as Sindice or a custom SPARQL endpoint.

Fig. 5. Rozeta: text annotation and enrichment

1.3.2 Text Annotation and Enrichment
The text annotation and enrichment module, used for highlighting the learned
vocabulary entries in any natural language document and proposing potential
links through custom services, can be launched from the dictionary editor, or
used as a stand-alone application.

The highlighted words and phrases hold links to the corresponding dictionary
entry pages, as well as linking recommendations from DBpedia Spotlight, or
custom SPARQL endpoints (retrieved on-the-fly; sources are easily managed
through an accompanying widget). The pop-up widget also generates quick-link
buttons (skos:exactMatch and skos:relatedMatch) for linking the related entries
to recommended Linked Open Data resources (Fig. 5).

2 Analysis, Enrichment and Repair of Linked Data with
ORE Tool

The ORE tool supports knowledge engineers in enriching the schema of OWL
based knowledge bases, either accessible as file or via SPARQL. Additionally, it

Knowledge Base Creation, Enrichment and Repair 53

allows for the detection and repair of logical errors as well as the validation of
instance data by defining constraints in forms of OWL axioms. ORE also inte-
grates the PaOMat framework (see Sect. 3), thus, it allows for the detection and
repair of naming issues. The ORE tool is published as an open source project10,11.

2.1 Logical Debugging

2.1.1 Motivation
Along with the uptake of Semantic Web technologies, we observe a steady
increase of the amount of available OWL ontologies as well as an increase of
the complexity of such ontologies. While the expressiveness of OWL is indeed
a strong feature, it can also lead to a misunderstanding and misusage of par-
ticular types of constructs in the language. In turn, this can lead to modeling
errors in the ontology, i.e. inconsistency or unsatisfiable classes. Inconsistency,
in simple terms, is a logical contradiction in the knowledge base, which makes
it impossible to derive any meaningful information by applying standard OWL
reasoning techniques. Unsatisfiable classes usually are a fundamental modeling
error, in that they cannot be used to characterize any individual, that means
they cannot have any individual.

Both kinds of modeling errors are quite easy to detect by standard OWL rea-
soners, however, determining why the errors hold can be a considerable challenge
even for experts in the formalism and in the domain, even for modestly sized
ontologies. The problem worsens significantly as the number and complexity of
axioms of the ontology grows. Clearly, only with the understanding of why such
an undesired entailment holds, it is possible to get rid of the errors, i.e. to repair
the ontology.

In the area of ontology debugging, a specific type of explanation called justifi-
cations [1,7,8,18] was introduced by the research community, which is basically
a minimal subset of the ontology that is sufficient for the entailment to hold.
The set of axioms corresponding to the justification is minimal in the sense that
if an axiom is removed from the set, the remaining axioms no longer support the
entailment. One such justification could be the following example, which gives
an explanation why the class metal is unsatisfiable.

2.1.2 Support in ORE
The debugging view for OWL ontologies (see Fig. 6), here described for unsatisfi-
able classes, consists mainly of four parts: The first part on the left side (1©) gives

10 http://ore-tool.net/Projects/ORE
11 https://github.com/AKSW/ORE

http://ore-tool.net/Projects/ORE
https://github.com/AKSW/ORE

54 S. Hellmann et al.

Fig. 6. Screenshot of the debugging view for OWL ontologies.

a list of the unsatisfiable classes which were detected in the selected knowledge
base. In this list itself, root unsatisfiable classes, i.e. classes which unsatisfiability
does not depend on the unsatisfiability of other classes, are tagged with “Root”.
Usually, in a repair process it is recommended to handle such root unsatisfi-
able classes first, as other conflicts will be solved then too. The second main
part contains the presentation of the explanations, which are computed once
an unsatisfiable class is selected, and shown as tables (3©). In addition to the
axioms of the justification, each of the tables contains two metrics which give
some insights into how an axiom is involved in other justifications (frequency)
and how strong an axiom is connected in the ontology (usage), both metrics
finally aggregated in total score (score). The menu (2©) allows for the choice
between the computation of regular or laconic justifications as well as for the
limitation of the maximum number of computed justifications. Furthermore, it
gives the option to show an aggregated view of all the axioms contained in the
computed justifications, compared to the presentation of each justification in
its own table. In the third part (4©) - the repair plan - a list of all changes a
user has chosen in order to repair the knowledge base is displayed. The changes
can either be the removal or addition of axioms and will be executed once a
user has decided to do so by clicking the “Execute” button. The last part of
the debugging view, located at the bottom right (5©), contains an outline of the
effects the changes of the repair plan would have to the knowledge base, i.e. it
contains lost and retained entailments. If an entailment is found to be lost when
executing the repair plan, it is possible to add an axiom to the knowledge base
which retains that entailment. This part is only available during the debugging of
unsatisfiable classes, as it is (currently) impossible to compute such entailments
in inconsistent knowledge bases.

Knowledge Base Creation, Enrichment and Repair 55

2.2 Schema Enrichment

2.2.1 Motivation
The Semantic Web has recently seen a rise in the availability and usage of knowl-
edge bases, as can be observed within the Linking Open Data Initiative, the
TONES and Protégé ontology repositories, or the Watson search engine. Despite
this growth, there is still a lack of knowledge bases that consist of sophisticated
schema information and instance data adhering to this schema. Several knowl-
edge bases, e.g. in the life sciences, only consist of schema information, while
others are, to a large extent, a collection of facts without a clear structure,
e.g. information extracted from data bases or texts. The combination of sophis-
ticated schema and instance data would allow powerful reasoning, consistency
checking, and improved querying possibilities. Schema enrichment allows to cre-
ate a sophisticated schema base based on existing data (sometimes referred to
as “grass roots” approach or “after the fact” schema creation).

Example 1. As an example, consider a knowledge base containing a class
Capital and instances of this class, e.g. London, Paris, Washington, Canberra,
etc. A machine learning algorithm could, then, suggest that the class Capital
may be equivalent to one of the following OWL class expressions in Manchester
OWL syntax12:

Both suggestions could be plausible: The first one is more general and includes
cities that are capitals of states, whereas the latter one is stricter and limits the
instances to capitals of countries. A knowledge engineer can decide which one is
more appropriate, i.e. a semi-automatic approach is used, and the machine learn-
ing algorithm should guide the user by pointing out which one fits the existing
instances better.

Assuming the knowledge engineer decides for the latter, an algorithm can
show the user whether there are instances of the class Capital which are neither
instances of City nor related via the property isCapitalOf to an instance of
Country.13 The knowledge engineer can then continue to look at those instances
and assign them to a different class as well as provide more complete information;
thus improving the quality of the knowledge base. After adding the definition
of Capital, an OWL reasoner can compute further instances of the class which
have not been explicitly assigned before.
12 For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see http://

www.w3.org/TR/owl2-manchester-syntax/.
13 This is not an inconsistency under the standard OWL open world assumption, but

rather a hint towards a potential modelling error.

http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/

56 S. Hellmann et al.

Fig. 7. Screenshot of the enrichment view for SPARQL knowledge bases.

2.2.2 Support in ORE
The enrichment view for SPARQL knowledge bases(see Fig. 7), can be subdi-
vided into two main parts: The first part on the left side (1©) allows for con-
figuring the enrichment process like to denote for which entity and which types
ORE will search for schema axioms. The second part on the right side(2©) shows
the generated axiom suggestions as well as their confidence score for each cho-
sen axiom type in forms of tables. Additionally, it is possible to get some more
details about the confidence score by clicking on the question mark symbol(?).
This shows up a new dialog as shown in Fig. 8. The dialog gives some natural
language based explanation about the F-score depending on the axiom type.
Moreover, positive and negative examples (if exists) according to the axiom are
shown, thus, giving some more detailed insights in how the axiom fits the data
of the knowledge base.

2.3 Constraint Based Validation

2.3.1 Motivation
Integrity constraints provide a mechanism for ensuring that data conforms to
guidelines specified by the defined schema. The demand for validating instance
data as in relational databases or XML tools also holds for knowledge modeled
in languages of the Semantic Web.

Knowledge Base Creation, Enrichment and Repair 57

Fig. 8. Screenshot of confidence score explanation in enrichment view for SPARQL
knowledge bases.

In some use cases and for some requirements, OWL users assume and intend
OWL axioms to be interpreted as Integrity Constraints. However, the direct
semantics of OWL14 does not interpret OWL axioms in this way; thus, the
consequences that one can draw from such ontologies differ from the ones that
some users intuitively expect and require. In other words, some users want to
use OWL as a validation or constraint language for RDF instance data, but that
is not possible using OWL based tools that correctly implement the standard
semantics of OWL.

To see the nature of the problem, consider an OWL ontology that describes
terms and concepts regarding a book store. The ontology includes the classes Book
and Writer, the object property hasAuthor, and the data property hasISBN. Sup-
pose we want to impose the following ICs on the data:

1. Each book must have an ISBN
2. Only books can have ISBNs
3. Books must not have more than one author
14 http://www.w3.org/TR/owl2-direct-semantics/

http://www.w3.org/TR/owl2-direct-semantics/

58 S. Hellmann et al.

These constraints could be interpreted in the following way:
Whenever an instance bookX of Book is added to the ontology, a check should

be performed to verify whether the ISBN of bookX has been specified; if not,
the update should be rejected. Whenever a fact <bookX, hasISBN, ISBNX> is
added to the ontology, a check should be performed to verify whether bookX
is an instance of Book; if not, the update should be rejected. Whenever a fact
<bookX, hasAuthor, writerX> is added to the ontology, a check should be
performed to verify whether another writer writerY has been specified for bookX;
if so, the update should be rejected. These constraints can be concisely and
unambiguously represented as OWL axioms:

However, these axioms will not be interpreted as checks by tools which imple-
ment the standard OWL semantics. In fact, according to the standard OWL
semantics, we have that:

1. Having a book without an ISBN in the ontology does not raise an error, but
leads to the inference that the book in question has an unknown ISBN. (by
axiom 1)

2. Having a fact <bookA, hasISBN, ISBN1> in the ontology without bookA
being an instance of Book does not raise an error, but leads to the inference
that bookA is an instance of Book. (by axiom 2)

3. Having a fact <bookA, hasAuthor, writerA> having specified a previous
writer writerB for bookA does not raise an error, but leads to the inference
that writerA and writerB denote the same individual. (by axiom 3)

In some cases, users want these inferences; but in others, users want integrity
constraint violations to be detected, reported, repaired, etc.

One approach for using OWL as an expressive schema language, but giving
it an alternative semantics such that OWL axioms can be used as ICs, was pro-
posed in [20]. The idea behind it is to interpret OWL axioms with Closed World
Assumption (CWA) and a weak form of Unique Name Assumption (UNA).
Assuming a CWA interpretation basically means that an assertion is false if it is
not explicitly known it is true or false. Weak UNA means that if two individuals
are not inferred to be the same, then they will be assumed to be distinct. Based
on these assumptions, translating an OWL axiom into one or more SPARQL
queries is suggested to validate the given constraint. This approach is integrated
in ORE, thus, it is possible to define and validate ICs by reusing OWL as a
language.

Knowledge Base Creation, Enrichment and Repair 59

Fig. 9. Screenshot of constraint validation view.

2.3.2 Support in ORE
Basically, the constraint validation view (see Fig. 9) consists of two parts. In the
upper table (1©) the user can define a list of constraints by adding OWL axioms,
here for instance that the object properties birthPlace and team are disjoint, i.e.
there are no pairs of instances that are related by both properties. The bottom
part (2©) is used to visualize violations of the given constraints. In the example
on Fig. 9, it was found that Pat Critchley was born in Port Laoise, but also
was a team member of it, which is obviously a contradiction to the disjointness
statement.

3 Ontology Repair with PatOMat

The PatOMat is a pattern-based ontology transformation framework specifi-
cally designed for OWL ontologies [23]. By applying transformation it enables
a designer to modify the structure of an ontology or its fragments to make it
more suitable for a target application. While it can adapt any ontology aspect
(logical, structural, naming or annotation aspect), within the context of LOD2
project the PatOMat focuses on ontology naming aspect.

During the decades of knowledge engineering research, there has been recur-
rent dispute on how the natural language structure influences the structure of
formal knowledge bases and vice versa. A large part of the community seems
to recognise that the content expressed in formal representation languages, such
as the semantic web ones, should be accessible not only to logical reasoning
machines but also to humans and NLP procedures, and thus resemble the nat-
ural language as much as possible [17].

Often, an ontology naming practice can be captured as a naming pattern.
For instance, it is quite common in ontologies that a subclass has the same

60 S. Hellmann et al.

head noun as its parent class (Non-Matching Child Pattern).15 By an earlier
study [22] it was estimated that in ontologies for technical domains this simple
pattern is verified in 50–80 % of class-subclass pairs such that the subclass name
is a multi-token one. This number further increases if one considers thesaurus
correspondence (synonymy and hypernymy) rather than literal string equality.
In fact, the set-theoretic nature of taxonomic path entails that the correspon-
dence of head nouns along this path should be close to 100 % in principle; the
only completely innocent deviations from it should be those caused by incom-
plete thesauri. In other words, any violation of head noun correspondence may
potentially indicate a (smaller or greater) problem in the ontology. Prototypical
situations are:

• Inadequate use of class-subclass relationship, typically in the place of whole-
part or class-instance relationship, i.e., a conceptualisation error frequently
occurring in novice ontologies.

• Name shorthanding, typically manifested by use of adjective, such as “State-
Owned” (subclass of “Company”).

While the former requires complex refactoring of the ontology fragment, the
latter can be healed by propagation of the parent name down to the child name.

While in the biomedical field there have already been efforts in naming analy-
sis, e.g., in [6,19], naming in the broad field of linked data vocabularies (where
domain- specific heuristics cannot be applied) has rarely been addressed.

A pattern in the PatOMat framework, called transformation, consists of three
parts: two ontology patterns (source OP and target OP) and the description of
the transformation between them, called pattern transformation (PT). Naming
pattern, such as non-matching child pattern, can be captured by specifying vio-
lation of a naming pattern to be detected (i.e. source OP) and its refactored
variant (e.g. non-matching child pattern as target OP). Transformation patterns
can be designed directly as XML files or by using graphical editor. For general
usage the framework can be applied directly from the code by importing the
PatOMat Java library16 or by using Graphical User Interface for Pattern-based
Ontology Transformation [21].

Naming issue detection and repair is supported by integrating the PatOMat
framework into the ORE. The whole process is basically done in three subsequent
steps, all of them visualized in a single view shown in Fig. 10. Here the user
can select a naming pattern in the leftmost list (1©). PatOMat then detects
instances of the selected pattern in the currently loaded ontology, e.g. [?OP1P =
Contribution; ?OP1A = Poster](2©). For the selected pattern instances the user
will be provided a list of renaming instructions (see 3©), for example to rename
the class Poster to PosterContribution, which can then be used to transform
the ontology and solve the detected naming issues.
15 The head noun is typically the last token, but not always, in particular due to

possible prepositional constructions, as, e.g., in “HeadOfDepartment”.
16 http://owl.vse.cz:8080/

http://owl.vse.cz:8080/

Knowledge Base Creation, Enrichment and Repair 61

Fig. 10. Screenshot of naming pattern detection and repair view in the ORE.

4 Linked Data Quality Assessment with RDFUnit

RDFUnit [10–12]17 is a framework for test-driven Linked Data quality assess-
ment, which is inspired by test-driven software development. A key principle of
test-driven software development is to start the development with the implemen-
tation of automated test-methods before the actual functionality is implemented.
Compared to software source code testing, where test cases have to be imple-
mented largely manually or with limited programmatic support, the situation
for Linked Data quality testing is slightly more advantageous. On the Data Web
we have a unified data model – RDF – which is the basis for both, data and
ontologies. RDFUnit exploits the RDF data model by devising a pattern-based
approach for the data quality tests of knowledge bases. Ontologies, vocabularies
and knowledge bases can be accompanied by a number of test cases, which help
to ensure a basic level of quality. This is achieved by employing SPARQL query
templates, which are instantiated into concrete quality test SPARQL queries. We
provide a comprehensive library of quality test patterns, which can be instan-
tiated for rapid development of more test cases. Once test cases are defined
for a certain vocabulary, they can be applied to all datasets reusing elements
of this vocabulary. Test cases can be re-executed whenever the data is altered.
Due to the modularity of the approach, where test cases are bound to certain
vocabulary elements, test cases for newly emerging datasets, which reuse existing
vocabularies can be easily derived.

RDFUnit is capable of performing quality assessments with only a minimal
amount of manual user intervention and is easily applicable to large datasets.
Other tools like the TopBraid Composer18 use the SPARQL Inferencing Notation
17 http://rdfunit.aksw.org
18 www.topbraidcomposer.com

http://rdfunit.aksw.org
www.topbraidcomposer.com

62 S. Hellmann et al.

Fig. 11. Flowchart showing the test-driven data quality methodology. The left part
displays the input sources of our pattern library. In the middle part the different ways
of pattern instantiation are shown which lead to the data quality test cases on the
right.

(SPIN)19 to define SPARQL queries for quality assessment. However, RDFUnit
utilizes an own SPARQL template notation, which better suits our methodology.
An overview of the methodology is depicted in Fig. 11.

5 Analysis of Link Validity

5.1 Web Linkage Validator

With the integration of data into the LOD cloud, it is essential that links between
datasets are discoverable as well as efficiently and correctly assessed. The Web
Linkage Validator is a web-based tool that allows for knowledge base owners to
improve their data with respect to linkage and to assess their linked data for
integration with the LOD cloud.

The goal is to provide a tool to the LOD2 stack to aid in assessing links
between LOD datasets. It analyses the links between entities that a dataset has
as well as links to entities from other datasets. It will help knowledge base users
in improving the quality of links of their datasets.

The Web Linkage Validator’s assessment is based on the concept of a data
graph summary [3,4]. A data graph summary is a concise representation of the
RDF data graph and is composed of the structural elements, i.e., class and
property. The information it contains, such as RDF class and predicate, usage
frequency, provenance and linkage, are the basis for suggesting to knowledge
base owners ways in which they may create or improve the links within their
datasets and with other external datasets.
19 http://spinrdf.org/

http://spinrdf.org/

Knowledge Base Creation, Enrichment and Repair 63

5.2 Data Graph Summary Model

In general, an RDF graph consists of datasets which in turn contain a number
of entities. These entities are organised into classes. Links can exist at any of
these levels; either between datasets, between class of entities or between the
entities themselves. The data graph summary is a meta-graph that highlights
the structure of a data graph (e.g. RDF).

For the graph summary process, we need to represent the data graph using
three conceptual layers: the dataset layer, the node collection layer and the entity
layer. The entity layer represents the original data graph. The node collection
layer captures the schema and structure of the data graph in a concise way by
grouping similar entities into a parent node that we call a node collection. This
grouping is required as it allows for the graph summary to correctly determine
collection specific information about those entities. The dataset layer captures
the link structure across datasets as well as the provenance of the information
on the entity and node collection layers. The Fig. 12 gives an example of the
three layer representation of a data graph. Note that the � symbol represents
terminating or leaf entities, e.g., RDF literal values. The node collection layer
represents a summary computed by grouping together entities having the same
classes. The node collection layer is composed of node collections and linksets,
i.e., a set of links having the same labels between two node collections. For
example, in the figure the links “author” between articles and people on the
entity layer are mapped to two linksets “author” on the node collection layer.

5.3 Link Analysis

A data graph summary provides a unique view on the linkage information of a
dataset. Using this meta-graph, it is possible to analyse the links of a dataset
from the “point of view” of said dataset: links from/to other datasets, internal
links between classes, etc. The Web Linkage Validator shown in Fig. 13a presents
various “point of views” for the purpose of aiding the owners of datasets in the
assessment of their linked data.

Besides giving a structural breakdown of the dataset, the graph summary is
a utility for validating the internal and external links of a particular graph of
data. In terms of external links, it shows what a dataset is “saying” about other
datasets and vice-versa. This is important as it gives knowledge base owners the
ability to validate what the links represent.

5.4 Provenance

The provenance represents the origin of entities and links. The provenance
includes a classification of the relationships as intra-dataset or inter-dataset
respectively based on entity linkage inside singular datasets or across multiple
datasets. For example, a link between two entities can be classified as internal
to a dataset because it was published within it, but can also be further classi-
fied as inter-dataset because the relationship contains an entity outside of the

64 S. Hellmann et al.

Fig. 12. A three layer representation of our Web Data model. On the node collection
layer, nodes labelled with a star � represent blank collections.

publishing context. The Fig. 13b presents a view of the Web Linkage Validator
showing the links internal to a dataset.

Direction. Inter-dataset triples are classified as incoming or outgoing depending
on the direction of the link, relative to its origin (the subject entity) and to its
destination (the object entity), based on its perspective (the context or publishing
domain of the triple). For example, a triple published on the knowledge base (or
domain) “xyz.com” that has a subject entity from “123.com” and object entity
from “xyz.com” would be classified as incoming.

Authority. Similar to provenance and direction, the authority is based on the
datasets and entities linked in a relationship. A link is classified as authoritative if
at least one entity of the link originates from the publishing domain. For example,
if a triple was published on “xyz.com” and the subject was from “xyz.com” and
the object was from “123.com”, then this link would be considered authoritative
because “xyz.com” is asserting it. However, if the domain in which this triple was
published was changed to “123.com”, then it would become a non-authoritative
link.

Third-Party Links. In regards to validating datasets, the authority classifi-
cation helps knowledge base owners to distinguish another important aspect:
third-party links. These represent non-authoritative links where both the sub-
ject and object of the link are defined in a dataset other than the publishing

Knowledge Base Creation, Enrichment and Repair 65

Fig. 13. Views on a dataset provided by the Web Linkage Validator application.

66 S. Hellmann et al.

one. Also, they are useful to discover if they consist of links that are incorrect or
specify relationships that the owner does not explicitly agree with. In some cases,
these links can be connotative to the idea of e-mail spam. Figure 13c presents
the view of the Web Linkage Validator that provides information on the links
classified as non-authoritative.

5.5 How to Improve Your Dataset with the Web Linkage Validator

In this section we show how the results of the Web Linkage Validator can be
used as suggestions for improving one’s dataset. Being able to see the classes
and the properties of his dataset, the dataset owner is able to have a deep
understanding of his dataset. He can determine if the dataset graph looks as
he planned. For example, let’s assume the dataset contains the “foaf:Person”
class which has, among others, the “foaf:name” and “foaf:homepage” properties.
From the number of the occurrences of these properties, the dataset owner can
decide if his dataset is as he intended too: if he knows that most of the people
in the dataset should have a homepage, then this should be reflected in similar
numbers for the occurences of the “foaf:name” and “foaf:homepage” properties.

Also, the dataset owner can identify possible mistakes like typos in the
classes/properties names. For example, it is well known that “foaf:name” is a
property of the FOAF vocabulary but “foaf:naem” is not.

Moreover, having access to the number of links to and from other datasets,
the dataset owner can determine whether his dataset really is part of the LOD.
If the number of links to/from other datasets is quite small or even missing
completely, the Web Linkage Validator supports the dataset owner in improving
the dataset by suggesting similar datasets to which the dataset owner can link.
Based on the top most similar dataset, the dataset owner identify concepts in
the recommended dataset similar to the ones he uses and link them.

Once the changes have been done and the dataset has been improved, the
dataset owner changes his website or his dataset dump. The infrastructure on
which the Web Linkage Validator is based will recompute the data graph sum-
mary for the resubmitted dataset and next time the user will see his improve-
ments.

6 Benchmarking Semantic Named Entity Recognition
Systems

Named entity recognition (NER) became one of the most exploited means for
information extraction and content enrichment. The NER systems detect text
fragments identifying entities and provide classification of the entities into a set
of pre-defined categories. This is usually a fixed set of raw classes such as the
CoNLL set (PERSON, ORGANIZATION, LOCATION, MISCELLANEOUS),
or classes from an ontology, such as the DBpedia Ontology. However, it is a
recent trend that the NER systems such as DBpedia Spotlight to go beyond this
type classification and also perform unique identification of the entities using

Knowledge Base Creation, Enrichment and Repair 67

URIs from a knowledge bases such as DBpedia or Wikipedia. During LOD2,
we have created a collection of tools adhering to this new class of Wikification,
Semantic NER or Entity Linking systems and contributed it the Wikipedia page
about Knowledge Extraction20.

While these Semantic NER systems are gaining popularity, there is yet no
oversight on their performance in general, and their performance in specific
domains. To fill this gap, we have developed a framework for benchmarking
NER systems [5]21. It is developed as a stand-alone project on top of the GATE
text engineering framework22. It is primarily developed for off-line evaluation
of NER systems. Since different NER systems might perform better in one and
worse in another domain, we have also developed two annotated datasets with
entities, the News and the Tweets dataset. The Tweets datasets, consists of
very large number of short texts (tweets), while the News dataset consists of
standard-length news articles.

A prerequisite for benchmarking different NER tools is achieving interoper-
ability at the technical, syntactical and conceptual level. Regarding the technical
interoperability, most of the NER tools provide a REST API over the HTTP
protocol. At the syntactical and conceptual level we opted for the NIF format,
which directly addresses the syntactical and the conceptual aspects. The syn-
tactical interoperability is addressed using the RDF and OWL as standards for
common data model, while the conceptual interoperability is achieved by identi-
fying the entities and the classes using global unique identifiers. For identification
of the entities we opted for re-using URIs from DBpedia. Since different NER
tools classify the entities with classes from different classification systems (clas-
sification ontologies), we perform alignment of those ontologies to the DBpedia
Ontology23.

In the future, we hope to exploit the availability of interoperable NIF corpora
as described in [10].

7 Conclusion

In this chapter we have presented tools for conversion and extraction of data
into RDF that were developed in the context of the LOD2 project. Specifically,
the DBpedia Extraction Framework supports the extraction of knowledge from
Wikis such as Wikipedia, the RDFa, Microdata and Microformats Extraction
Framework crawls and collects data from the Web and Rozeta enables users
to create and refine terminological data such as dictionaries and thesauri from
natural language text. Once this data has been extracted and lifted to RDF,
tools such as ORE and RDFUnit can analyse data quality and repair errors via
a GUI. The presented tools are open source and make part of the Linked Data
20 A frequently updated list can be found here http://en.wikipedia.org/wiki/

Knowledge extraction#Tools.
21 http://ner.vse.cz/datasets/evaluation/
22 http://gate.ac.uk/
23 http://wiki.dbpedia.org/Ontology

http://en.wikipedia.org/wiki/Knowledge_extraction#Tools
http://en.wikipedia.org/wiki/Knowledge_extraction#Tools
http://ner.vse.cz/datasets/evaluation/
http://gate.ac.uk/
http://wiki.dbpedia.org/Ontology

68 S. Hellmann et al.

stack (see Chap. 6). The tools have been extensively evaluated, for the details the
reader is referred to the respective sections, cited articles and tools’ webpages.
These tools have been applied within LOD2 project, e.g. in a media publishing,
enterprise and public procurement use cases, for the details see Chaps. 7, 8 and
10 of the present book, respectively.

Open Access. This chapter is distributed under the terms of the Creative Commons
Attribution Noncommercial License, which permits any noncommercial use, distribu-
tion, and reproduction in any medium, provided the original author(s) and source are
credited.

References

1. Baader, F., Hollunder, B.: Embedding defaults into terminological knowledge rep-
resentation formalisms. In: Nebel, B., Rich, C., Swartout, W.R., (eds.) KR, pp.
306–317. Morgan Kaufmann (1992)

2. Bizer, C., Eckert, K., Meusel, R., Mühleisen, H., Schuhmacher, M., Völker, J.:
Deployment of RDFA, microdata, and microformats on the web - a quantitative
analysis. In: Proceedings of the In-Use Track of the 12th International Semantic
Web Conference (2013)

3. Campinas, S., Perry, T.E., Ceccarelli, D., Delbru, R., Tummarello, G.: Introducing
RDF graph summary with application to assisted SPARQL formulation. In: 23rd
International Workshop on Database and Expert Systems Applications, DEXA
2012, pp. 261–266, Sept 2012

4. Campinas, S., Delbru, R., Tummarello, G.: Efficiency and precision trade-offs in
graph summary algorithms. In: Proceedings of the 17th International Database
Engineering and Applications Symposium, IDEAS ’13, pp. 38–47. ACM, New York
(2013)

5. Dojchinovski, M., Kliegr, T.: Datasets and GATE evaluation framework for bench-
marking wikipedia-based NER systems. In: Proceedings of 1st International Work-
shop on NLP and DBpedia, 21–25 October 2013, Sydney, Australia, volume 1064
of NLP & DBpedia 2013, Sydney, Australia, October 2013, CEUR Workshop Pro-
ceedings (2013)

6. Fernandez-Breis, J.T., Iannone, L., Palmisano, I., Rector, A.L., Stevens, R.: Enrich-
ing the gene ontology via the dissection of labels using the ontology pre-processor
language. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp.
59–73. Springer, Heidelberg (2010)

7. Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, Univer-
sity of Maryland, College Park, College Park, MD, USA (2006) (Adviser-James
Hendler)

8. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

9. Kontokostas, D., Bratsas, Ch., Auer, S., Hellmann, S., Antoniou, I., Metakides,
G.: Internationalization of linked data: the case of the greek DBpedia edition. Web
Semant. Sci. Serv. Agents World Wide Web 15, 51–61 (2012)

http://dx.doi.org/10.1007/978-3-319-09846-3_6
http://dx.doi.org/10.1007/978-3-319-09846-3_7
http://dx.doi.org/10.1007/978-3-319-09846-3_8
http://dx.doi.org/10.1007/978-3-319-09846-3_10

Knowledge Base Creation, Enrichment and Repair 69

10. Kontokostas, D., Brümmer, M., Hellmann, S., Lehmann, J., Ioannidis, L.: NLP
data cleansing based on linguistic ontology constraints. In: Proceedings of the
Extended Semantic Web Conference 2014 (2014)

11. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R.: Databugger: a test-driven framework for debugging the web of data. In: Pro-
ceedings of the Companion Publication of the 23rd International Conference on
World Wide Web Companion, WWW Companion ’14, pp. 115–118, Republic and
Canton of Geneva, Switzerland, 2014, International World Wide Web Conferences
Steering Committee

12. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of
the 23rd International Conference on World Wide Web, WWW ’14, pp. 747–758,
Republic and Canton of Geneva, Switzerland, 2014, International World Wide Web
Conferences Steering Committee

13. Lehmann, J., Bizer, Ch., Kobilarov, G., Auer, S., Becker, Ch., Cyganiak, R.,
Hellmann, S.: DBpedia - a crystallization point for the web of data. J. Web Semant.
7(3), 154–165 (2009)

14. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia. Semant. Web J. (2014)

15. Mika, P., Potter, T.: Metadata statistics for a large web corpus. In: LDOW: Linked
Data on the Web. CEUR Workshop Proceedings, vol. 937 (2012)

16. Mühleisen, H., Bizer, C., Web data commons - extracting structured data from
two large web corpora. In: LDOW: Linked Data on the Web. CEUR Workshop
Proceedings, vol. 937 (2012)

17. Nirenburg, S., Wilks, Y.: What’s in a symbol: ontology, representation and lan-
guage. J. Exp. Theor. Artif. Intell. 13(1), 9–23 (2001)

18. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proceedings of the 18th International Joint
Conference on Artificial Intelligence, pp. 355–360. Morgan Kaufmann Publishers,
San Francisco (2003)

19. Schober, D., Smith, B., Lewis, S.E., Kusnierczyk, W., Lomax, J., Mungall, C.,
Taylor, C.F., Rocca-Serra, P., Sansone, S.-A.: Survey-based naming conventions
for use in OBO foundry ontology development. BMC Bioinform. 10(1), 125 (2009)

20. Sirin, E., Tao, J.: Towards integrity constraints in OWL. In: Hoekstra, R., Patel-
Schneider, P.F., (eds.) OWLED, volume 529 of CEUR Workshop Proceedings
(2008). http://CEUR-WS.org

21. Šváb-Zamazal, O., Dudáš, M., Svátek, V.: User-friendly pattern-based trans-
formation of OWL ontologies. In: ten Teije, A., Völker, J., Handschuh, S.,
Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez,
N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 426–429. Springer, Heidelberg (2012)

22. Šváb-Zamazal, O., Svátek, V.: Analysing ontological structures through name pat-
tern tracking. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol.
5268, pp. 213–228. Springer, Heidelberg (2008)

23. Zamazal, O., Svátek, V.: Patomat - versatile framework for pattern-based ontology
transformation. Comput. Inf. (2014) (Accepted)

http://CEUR-WS.org

	Knowledge Base Creation, Enrichment and Repair
	1 Linked Data Creation and Extraction
	1.1 DBpedia, a Large-Scale, Multilingual Knowledge Base Extracted from Wikipedia
	1.2 RDFa, Microdata and Microformats Extraction Framework
	1.3 Rozeta

	2 Analysis, Enrichment and Repair of Linked Data with ORE Tool
	2.1 Logical Debugging
	2.2 Schema Enrichment
	2.3 Constraint Based Validation

	3 Ontology Repair with PatOMat
	4 Linked Data Quality Assessment with RDFUnit
	5 Analysis of Link Validity
	5.1 Web Linkage Validator
	5.2 Data Graph Summary Model
	5.3 Link Analysis
	5.4 Provenance
	5.5 How to Improve Your Dataset with the Web Linkage Validator

	6 Benchmarking Semantic Named Entity Recognition Systems
	7 Conclusion
	References

