
Efficient Extraction and Query
Benchmarking of Wikipedia Data

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

eingereichte

DISSERTATION

zur Erlangung des akademischen Grades

Doktor-Ingenieur
(Dr. Ing.)

im Fachgebiet Informatik

vorgelegt

von M.Sc. Mohamed Mabrouk Mawed Morsey

geboren am 15. November 1980 in Kairo, Ägypten

Leipzig, den 13.4.2014

Acknowledgement

First of all I would like to thank my supervisors, Dr. Jens Lehmann, Prof. Sören
Auer, and Prof. Klaus-Peter Fähnrich, without whom I could not start my Ph.D.
at the Leipzig University.

Special thanks to my direct supervisor Dr. Jens Lehmann, with whom I have
started work on my Ph.D. proposal submitted to Deutscher Akademischer Aus-
tauschdienst (DAAD), in order to pursue my Ph.D. at the Agile Knowledge
Engineering and Semantic Web (AKSW) group. He has continuously supported
me through my Ph.D. work, giving advices and recommendations for further re-
search steps. His comments and notes were very helpful for me particularly during
writing the papers we have published together. I would like to thank him also for
proofreading this thesis and for his helpful feedback, which led to improving the
quality of that thesis.

Special thanks also to thank Prof. Sören Auer, whom I have first contacted
asking for a vacancy to conduct my Ph.D. research at his research group. As the
head of our group, Prof. Sören Auer has established a weekly meeting, called
”Writing Group”, for discussing how to write robust scientific papers. His notes
and comments, during these meetings, were very useful for directing me to the
correct way to write a good scientific paper.

I would like also to thank Prof. Klaus-Peter Fähnrich, for the regular follow-up
meetings he has managed in order to evaluate the performance of all Ph.D. students.
During these meetings, he has proposed several directions, for me and for other
Ph.D. students as well, on how to deepen and extend our research points.

I would like to thank all of my colleagues in the Machine Learning and Ontology
Engineering (MOLE) group, for providing me with their useful comments and
guidelines, especially during the initial phase of my Ph.D..

I would like to dedicate this work to the souls of my parents, without whom I
could not do anything in my life. With their help and support, I could take my
first steps in my scientific career.

Special thanks goes to all my family members, my son Momen, my wife Hebaalla,
and my dearest sisters Reham and Nermeen.

III

Bibliographic Data

Title: Efficient Extraction and Query Benchmarking of Wikipedia Data
Author: Mohamed Mabrouk Mawed Morsey
Institution: Universität Leipzig, Fakultät für Mathematik und Informatik
Statistical Information: 128 pages, 29 Figures, 19 tables, 2 appendices, 98
literature references

Abstract

Knowledge bases are playing an increasingly important role for integrating infor-
mation between systems and over the Web. Today, most knowledge bases cover only
specific domains, they are created by relatively small groups of knowledge engineers,
and it is very cost intensive to keep them up-to-date as domains change. In parallel,
Wikipedia has grown into one of the central knowledge sources of mankind and
is maintained by thousands of contributors. The DBpedia (http://dbpedia.org)
project makes use of this large collaboratively edited knowledge source by ex-
tracting structured content from it, interlinking it with other knowledge bases,
and making the result publicly available. DBpedia had and has a great effect on
the Web of Data and became a crystallization point for it. Furthermore, many
companies and researchers use DBpedia and its public services to improve their
applications and research approaches.

However, the DBpedia release process is heavy-weight and the releases are
sometimes based on several months old data. Hence, a strategy to keep DBpedia
always in synchronization with Wikipedia is highly required. In this thesis we
propose the DBpedia Live framework, which reads a continuous stream of updated
Wikipedia articles, and processes it. DBpedia Live processes that stream on-the-fly
to obtain RDF data and updates the DBpedia knowledge base with the newly
extracted data. DBpedia Live also publishes the newly added/deleted facts in
files, in order to enable synchronization between our DBpedia endpoint and other
DBpedia mirrors. Moreover, the new DBpedia Live framework incorporates several
significant features, e.g. abstract extraction, ontology changes, and changesets
publication.

Basically, knowledge bases, including DBpedia, are stored in triplestores in
order to facilitate accessing and querying their respective data. Furthermore, the
triplestores constitute the backbone of increasingly many Data Web applications. It
is thus evident that the performance of those stores is mission critical for individual
projects as well as for data integration on the Data Web in general. Consequently,

IV

it is of central importance during the implementation of any of these applications
to have a clear picture of the weaknesses and strengths of current triplestore
implementations. We introduce a generic SPARQL benchmark creation procedure,
which we apply to the DBpedia knowledge base. Previous approaches often
compared relational and triplestores and, thus, settled on measuring performance
against a relational database which had been converted to RDF by using SQL-like
queries. In contrast to those approaches, our benchmark is based on queries that
were actually issued by humans and applications against existing RDF data not
resembling a relational schema. Our generic procedure for benchmark creation is
based on query-log mining, clustering and SPARQL feature analysis. We argue
that a pure SPARQL benchmark is more useful to compare existing triplestores
and provide results for the popular triplestore implementations Virtuoso, Sesame,
Apache Jena-TDB, and BigOWLIM. The subsequent comparison of our results
with other benchmark results indicates that the performance of triplestores is by
far less homogeneous than suggested by previous benchmarks.

Further, one of the crucial tasks when creating and maintaining knowledge
bases is validating their facts and maintaining the quality of their inherent data.
This task include several subtasks, and in thesis we address two of those major
subtasks, specifically fact validation and provenance, and data quality The subtask
fact validation and provenance aim at providing sources for these facts in order
to ensure correctness and traceability of the provided knowledge This subtask is
often addressed by human curators in a three-step process: issuing appropriate
keyword queries for the statement to check using standard search engines, retrieving
potentially relevant documents and screening those documents for relevant content.
The drawbacks of this process are manifold. Most importantly, it is very time-
consuming as the experts have to carry out several search processes and must
often read several documents. We present DeFacto (Deep Fact Validation), which
is an algorithm for validating facts by finding trustworthy sources for it on the
Web. DeFacto aims to provide an effective way of validating facts by supplying the
user with relevant excerpts of webpages as well as useful additional information
including a score for the confidence DeFacto has in the correctness of the input fact.
On the other hand the subtask of data quality maintenance aims at evaluating and
continuously improving the quality of data of the knowledge bases. We present a
methodology for assessing the quality of knowledge bases’ data, which comprises of
a manual and a semi-automatic process. The first phase includes the detection of
common quality problems and their representation in a quality problem taxonomy.
In the manual process, the second phase comprises of the evaluation of a large
number of individual resources, according to the quality problem taxonomy via
crowdsourcing. This process is accompanied by a tool wherein a user assesses an
individual resource and evaluates each fact for correctness. The semi-automatic
process involves the generation and verification of schema axioms. We report the
results obtained by applying this methodology to DBpedia.

V

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 3
1.3. Chapter Overview . 5

2. Semantic Web Technologies 7
2.1. Semantic Web Definition . 7
2.2. Resource Description Framework - RDF 7

2.2.1. RDF Resource . 8
2.2.2. RDF Property . 8
2.2.3. RDF Statement . 9
2.2.4. RDF Serialization Formats 10

2.2.4.1. N-Triples . 10
2.2.4.2. RDF/XML . 11
2.2.4.3. N3 . 11
2.2.4.4. Turtle . 12

2.2.5. Ontology . 12
2.2.6. Ontology Languages . 13

2.2.6.1. RDFS . 13
2.2.6.2. OWL . 14

2.2.7. SPARQL Query Language 14
2.2.8. Triplestore . 16

3. Overview on the DBpedia Project 17
3.1. Introduction to DBpedia . 17
3.2. DBpedia Extraction Framework 19

3.2.1. General Architecture . 19
3.2.2. Extractors . 20
3.2.3. Raw Infobox Extraction 22
3.2.4. Mapping-Based Infobox Extraction 22
3.2.5. URI Schemes . 25
3.2.6. Summary of Recent Developments 26

3.3. DBpedia Ontology . 27
3.4. Interlinking . 29

3.4.1. Outgoing Links . 29
3.4.2. Incoming Links . 31

VI

Contents

4. DBpedia Live Extraction 33
4.1. Live Extraction Framework . 33

4.1.1. General System Architecture 33
4.1.2. Extraction Manager . 34

4.2. New Features . 36
4.2.1. Abstract Extraction . 37
4.2.2. Mapping-Affected Pages 38
4.2.3. Unmodified Pages . 39
4.2.4. Changesets . 39
4.2.5. Synchronization Tool . 40
4.2.6. New Extractors . 40
4.2.7. Delta Calculation . 41
4.2.8. Important Pointers . 41

4.3. DBpedia Live Usage . 41

5. Data Quality 43
5.1. Crowdsourcing for Data Quality 43

5.1.1. Assessment Methodology 43
5.1.2. Quality Problem Taxonomy 45

5.1.2.1. Accuracy . 46
5.1.2.2. Relevancy . 48
5.1.2.3. Representational-Consistency 49
5.1.2.4. Interlinking . 50

5.1.3. A Crowdsourcing Quality Assessment Tool 50
5.1.4. Evaluation of DBpedia Data Quality 51

5.1.4.1. Evaluation Methodology 51
5.1.4.1.1.Manual Methodology 51
5.1.4.1.2.Semi-automatic Methodology 51
5.1.4.2. Evaluation Results 52
5.1.4.2.1.Manual Methodology 52
5.1.4.2.2.Semi-automatic Methodology 53

5.2. Fact Validation . 54
5.2.1. Trustworthiness Analysis of Webpages 57
5.2.2. Features for Deep Fact Validation 58
5.2.3. Evaluation . 60

5.2.3.1. Training DeFacto 60
5.2.3.2. Experimental Setup 61
5.2.3.3. Results and Discussion 62

6. DBpedia SPARQL Benchmark 64
6.1. Overview on Benchmarking . 64

6.1.1. Objectives of Benchmarking 65
6.2. Dataset Generation . 66
6.3. Query Analysis and Clustering . 68

VII

Contents

6.4. SPARQL Feature Selection and Query Variability 70
6.5. Experimental Setup . 71

6.5.1. Benchmark Phases . 72
6.6. Benchmarking Results . 73

6.6.1. DBPSB Version 1 . 76
6.6.2. DBPSB1 Results Discussion 77
6.6.3. DBPSB Version 2 . 82

7. Related Work 85
7.1. Semantic Data Extraction from Wikipedia 85
7.2. RDF Benchmarks . 86

7.2.1. Existing Benchmarks . 86
7.2.2. Comparison between DBPSB and The Other Benchmarks 88

7.3. Data Quality Assessment . 89
7.4. Fact Validation . 90

8. Conclusions and Future Work 93
8.1. Conclusions . 93

8.1.1. DBpedia Live Extraction 93
8.1.2. DBPSB . 94
8.1.3. DeFacto . 94

8.2. Future Work . 94
8.2.1. DBpedia Live Extraction 94
8.2.2. DBPSB . 95
8.2.3. DeFacto . 96

A. DBpedia SPARQL Benchmark (DBPSB) Queries 97
A.1. DBPSB Version 1 . 97
A.2. DBPSB Version 2 . 99

B. Curriculum Vitae 101

List of Tables 106

List of Figures 108

Selbständigkeitserklärung 120

VIII

1. Introduction

Tim Berners-Lee defines the Semantic Web as “The Semantic Web is an extension
of the current Web in which information is given well-defined meaning, better
enabling computers and people to work in cooperation” [Berners-Lee et al., 2001].
As Semantic Web Technology evolves many open areas emerge, which attract more
research focus. Examples of these areas are ontology management, semantic data
provenance, and interlinking of knowledge bases. In this work we investigate three
topics of Semantic Web, specifically DBpedia Live knowledge base development
and maintenance, triplestores benchmarking, and semantic data provenance.

1.1. Motivation

Knowledge bases are playing an increasingly important role for integrating infor-
mation between systems and over the Web. Today, most knowledge bases cover
only specific domains, they are created by relatively small groups of knowledge en-
gineers, and it is very cost intensive to keep them up-to-date as domains change. In
parallel, Wikipedia has grown into one of the central knowledge sources of mankind
and is maintained by thousands of contributors. Wikipedia is the largest online
encyclopedia and currently the 6th most visited website according to alexa.com.
The DBpedia (http://dbpedia.org) project makes use of this large collaboratively
edited knowledge source by extracting structured content from it, interlinking it
with other knowledge bases, and making the result publicly available. Over the past
few years the DBpedia knowledge base has turned into a crystallization point for
the emerging Web of Data. Several tools have been built on top of it, e.g. DBpedia
Mobile1, Query Builder2, Relation Finder [Lehmann et al., 2007], and Navigator3.
It is used in a variety of applications, for instance Muddy Boots, Open Calais,
Faviki, Zemanta, LODr, and TopBraid Composer (cf. [Lehmann et al., 2009]).

Despite this success, DBpedia faces several obstructions as follows:

� Producing a DBpedia release requires manual effort and – since dumps of
the Wikipedia database are created on a monthly basis – DBpedia has never
reflected the current state of Wikipedia.

� DBpedia uses a wiki for managing the ontology and the mappings4. Con-

1http://beckr.org/DBpediaMobile/
2http://querybuilder.dbpedia.org
3http://navigator.dbpedia.org
4http://mappings.dbpedia.org

1

alexa.com
http://dbpedia.org
http://beckr.org/DBpediaMobile/
http://querybuilder.dbpedia.org
http://navigator.dbpedia.org
http://mappings.dbpedia.org

1. Introduction

tributors of that wiki continuously revise the ontology and/or the mappings,
which leads that the ontology kept in DBpedia gets outdated, i.e. out of
synchronization with that mappings wiki.

� As DBpedia extracts data from Wikipedia, many data quality related prob-
lems and/or issues may arise, e.g. the datatype of a phone number, could be
misclassified as number instead of string.

In this dissertation, each obstruction of those is discussed in detail, and solution
to each one is proposed and discussed.

Basically, knowledge bases use triplestores for hosting and managing their data.
It is thus evident that the performance of those stores is mission critical for
individual projects as well as for data integration on the Data Web in general.
Consequently, it is of central importance during the implementation of any of
these applications to have a clear picture of the strengths and weaknesses of
the available triplestores. Most of the contemporary triplestores mainly adopt
SPARQL [Prud’hommeaux and Seaborne, 2008] as the front-end query language
for their inherent data. In this thesis, we propose a generic SPARQL benchmark
creation methodology. This methodology is based on a flexible data generation
mimicking an input data source, query-log mining, clustering and SPARQL feature
analysis. We apply the proposed methodology to datasets of various sizes derived
from the DBpedia knowledge base.

The significance of knowledge bases is mainly determined by the quality of their
inherent data. In other words, when the data of a knowledge base is of high quality,
this ensures success and value for that knowledge base, and vice versa. The quality
of the data of a knowledge base depends on several factors, e.g. the origin (the
source) of data, and stability of the extraction software. One of the most important
aspects of knowledge quality is provenance. While provenance is an important
aspect of data quality [Hartig, 2009], to date only few knowledge bases actually
provide provenance information. For instance, less than 3% of the more than 708.19
million RDF (Resource Description Framework) documents indexed by Sindice5

contain metadata such such as creator, created, source, modified, contributor, or
provenance.6 This lack of provenance information makes the validation of the facts
in such knowledge bases utterly tedious. In addition, it hinders the adoption of
such data in business applications as the data is not trusted [Hartig, 2009]. In this
work, we propose a fact validation approach and tool which can make use of one
of the largest information sources, i.e. the Web.

5http://www.sindice.com
6Data retrieved on July 9, 2013

2

http://www.sindice.com

1.2. Contributions

1.2. Contributions

This thesis proposes approaches to tackle each of the aforementioned challenges.
Regarding the first challenge, i.e. the challenge of maintaining the DBpedia data
up-to-date, we develop the DBpedia Live framework which aims at keeping DBpedia
always in synchronization with Wikipedia with a minimal delay of only a few
minutes. The main motivation behind this enhancement is that our approach
turns DBpedia into a real-time editable knowledge base, while retaining the tight
coupling to Wikipedia. It also opens the door for an increased use of DBpedia in
different scenarios. For instance, a user may like to add to her movie website a list
of highest grossing movies produced in the current year. Due to the live extraction
process, this becomes much more appealing, since the contained information will
be as up-to-date as Wikipedia instead of being several months delayed.

Overall, we have accomplished the following contributions:

1. migration the previous incomplete DBpedia Live framework, which was PHP-
based, to the new Java-based framework, which also maintains up-to-date
information,

2. addition of abstract extraction capability,

3. re-extraction of mapping-affected pages,

4. flexible low-priority re-extraction of pages, which have not been modified for
a longer period of time – this allows changes in the underlying extraction
framework, which potentially affect all Wikipedia pages, while still processing
the most recent Wikipedia changes,

5. publishing added and deleted triples as compressed N-Triples file,

6. synchronization of the ontology of DBpedia with the ontology contained in
the mappings wiki,

7. building a synchronization tool, which downloads those those compressed
N-Triples files, and update another triplestore with them accordingly, in
order to keep it in synchronization with ours,

8. deployment of the framework on our server.

Apart from DBpedia Live framework, we also devise a data quality assessment
methodology and empirically assess based on this methodology the data quality of
DBpedia. We crowd-source the quality assessment of individual DBpedia resources,
in order to evaluate the type and extent of data quality problems occurring in
DBpedia.

3

1. Introduction

With regard to the challenge of developing a benchmark for RDF triplestores,
we have developed a novel benchmark called DBPSB (i.e. DBpedia SPARQL
Benchmark). We apply this methodology on the DBpedia dataset and its SPARQL
query log. However, the same methodology can be used to obtain application-
specific benchmarks for other knowledge bases and query workloads. In general, our
benchmark follows the four key requirements for domain specific benchmarks which
are postulated in the Benchmark Handbook [Gray, 1991], i.e. it is (1) relevant, thus
testing typical operations within the specific domain, (2) portable, i.e. executable
on different platforms, (3) scalable, e.g. it is possible to run the benchmark on
both small and very large data sets, and (4) it is understandable.

Basically, the DBPSB has the following features:

1. it is based on real data, as it uses the DBpedia knowledge base as its test
dataset,

2. it uses real queries to measure the performance of the test triplestores,

3. the queries used for performance evaluation are selected carefully to cover a
wide spectrum of SPARQL construct,

4. the triplestores are tested through datasets of different sizes, in order to
assess their scalability.

Regarding the data provenance, we have developed the DeFacto (Deep Fact
Validation) system, which implements algorithms for validating statements, specif-
ically RDF triples, by finding confirming sources for it on the web. It takes a
statement as input and then tries to find evidence for the validity of that statement
by searching for textual information in the web. In contrast to typical search
engines, it does not just search for textual occurrences of parts of the statement,
but tries to find webpages which contain the actual statement phrased in natural
language. It presents the user with a confidence score for the input statement as
well as a set of excerpts of relevant webpages, which allows the user to manually
judge the presented evidence.

DeFacto has two major use cases: (1) Given an existing true statement, it can
be used to find provenance information for it. For instance, the WikiData project7

aims to create a collection of facts, in which sources should be provided for each
fact. DeFacto could be used to achieve this task. (2) It can check whether a
statement is likely to be true, provide the user with a confidence score in whether
the statement is true and evidence for the score assigned to the statement. Our
main contributions are thus as follows:

1. an approach that allows checking whether a webpage confirms a fact, i.e., an
RDF triple,

7http://meta.wikimedia.org/wiki/Wikidata

4

http://meta.wikimedia.org/wiki/Wikidata

1.3. Chapter Overview

2. an adaptation of existing approaches for determining indicators for trustwor-
thiness of a webpage,

3. an automated approach to enhancing knowledge bases with RDF provenance
data at triple level,

4. a running prototype of DeFacto, the first system able to provide useful
confidence values for an input RDF triple given the Web as background text
corpus.

1.3. Chapter Overview

Chapter 2 introduces the Semantic Web and its associated technologies which
constitutes the basic scientific background required for the reader to understand
the thesis. It starts by defining the Semantic Web, and afterwards it discusses the
Resource Description Framework (RDF), and its components. It also explains the
various RDF serialization formats, e.g. N-Triples, and the differences among them.
Then, it moves to the crucial topic of Semantic Web, specifically the ontology and
the various languages that can be uses to develop the ontologies. Eventually, it
describes the SPARQL query language and what the triplestores are and how they
support the SPARQL language.

Chapter 3 gives a broad overview over the DBpedia project and how it works.
First it gives a general introduction to the DBpedia project, its objectives, the
languages it supports, and the applications that depend on it. Furthermore, it
outlines the extraction framework, its core extractors, and the part of the Wikipedia
article each extractor handles. Finally, it discusses the ontology on which DBpedia
relies and the mappings between Wikipedia attributes and the ontology properties.

Chapter 4 introduces the live extraction process which aims at keeping the
DBpedia data up-to-date, in order to always reflect the current state of Wikipedia.
In the beginning, it outlines the general system architecture of DBpedia Live,
and then it details the extraction manager, which constitutes the core of the live
extraction process. Afterwards, it lists the new features of DBpedia Live, and
explains each feature, how it works, and its value to DBpedia. Lastly, it gives the
list of important URLs, and presents a graph indicating how important DBpedia
Live is to the community.

Chapter 5 deals mainly with the problem of data quality and data validation
and provenance. Firstly, it describes a data quality evaluation methodology
including the assessment methodology used, the taxonomy of quality problems
and issues, and the automated quality evaluation tool. It then presents the results
of applying this methodology on DBpedia as a use case, in order to measure its
inherent quality. Then, it introduces a data validation approach called DeFacto, and
describes its architecture and how it works. Moreover, it details the trustworthiness
analysis approach used in DeFacto and the features upon which DeFacto depends.
Eventually, it presents the results of DeFacto.

5

1. Introduction

Chapter 6 addresses the issue of benchmarking RDF triplestores. It introduces
our novel RDF benchmark called DBpedia SPARQL Benchmark (DBPSB), which
is based on real data and uses real queries for benchmarking. It starts by giving an
overview on the benchmarking in general and its objectives. Thereafter, it explains
the dataset generation strategy, and the benchmarking queries selection process.
It ends by describing the experimental setup, and comparing the results of the
tested triplestores for both versions of DBPSB.

Chapter 7 discusses the state-of-the-art research work related to each area of
the thesis. It discusses the approaches that extract semantic data Wikipedia , and
then talks about the quality assessment methodologies. Then it describes existing
RDF benchmarks, and the data provenance strategies.

Eventually, Chapter 8 concludes the each point of the thesis and proposes some
future work for it.

6

2. Semantic Web Technologies

This chapter gives a general overview on Semantic Web. Thereafter, it describes
the RDF serialization formats, the ontology and its languages in detail. This
chapter is mainly based on [Yu, 2007].

2.1. Semantic Web Definition

There are several different definitions about what the Semantic Web is. Tim
Berners-Lee, the inventor of Semantic Web, defines it as ”The Semantic Web is
not a separate Web but an extension of the current one, in which information
is given well-defined meaning, better enabling computers and people to work in
cooperation [Berners-Lee et al., 2001].” In other words, says that Semantic Web
makes the machines capable of not only presenting data but also processing them.

There is a team at the World Wide Web consortium (W3C) working on improving,
and standardizing the system, and many languages, publications, tools etc., have
already been developed. They have defined it as ”Semantic Web is the idea of
having data on the Web defined and linked in a way that it can be used by
machines not just for display purposes, but for automation, integration, and reuse
of data across various applications [W3C, 2009].” In other words, Semantic Web
is machine-readable and machine-understandable Web. You can also think of it
as being an efficient way of representing data on the World Wide Web, or as a
globally linked database.

Semantic Web depends on several technologies including Resource Description
Framework (RDF), Uniform Resource Identifiers (URIs), and others. In the
following section we elaborate each of these technologies.

2.2. Resource Description Framework - RDF

RDF is a language used to describe the information of any Web resource. It
uses XML as its base standard. The Web resource can be anything, ranging from
Web page to a book or a person. It plays a similar role to Semantic Web, as the
role of HTML to the conventional Web.

The properties of RDF are:

� RDF is a W3C recommendation [W3C, 2004], and it is centered around
metadata, i.e. this metadata on the one hand adds meaning to the Web

7

2. Semantic Web Technologies

resource it describes, and on the other hand it can be understood and
processed by machines,

� RDF can describe a Web resource regardless of the domain,

� RDF is the foundation for encoding and reusing structured metadata,

� RDF is structured which makes it machine processable. Thus machines
can accomplish some valuable operations with the knowledge represented in
RDF,

� RDF enables interoperability among applications exchanging machine-readable
information on the Web.

2.2.1. RDF Resource

A resource is anything, e.g. a city, a person, or a Web site, which is described by
RDF expressions. The resource is identified and characterized by what is so called
Uniform Resource Identifier (URI). The rationale of using URIs for identifying
resources is that the name of a resource must be globally unique.

Actually, URLs (Uniform Resource Locators), commonly used for accessing Web
sites, are simply a subset of URIs. Like URLs, URIs take the same format, e.g.
http://dbpedia.org/resource/William_Shakespeare. The reason behind this
is that the domain name part used in the URL, i.e. http://dbpedia.org/ in our
example, is ensured to be unique. Therefore the global uniqueness of the resource
is ensured. That domain name part plays the role of a namespace. Whereas URLs
always refer to Web sites, URIs may or may not refer to an actual Web site.

2.2.2. RDF Property

A property is a form of resource which is used to declare a trait, i.e. it can be
used to denote a characteristic, an attribute, or a relation of the resource it is
related to. The property is also called predicate. For instance, http://dbpedia.
org/ontology/birthPlace, denotes the birth place of a human being. In other
words, this property relates a resource representing a person, to his/her birth place.

http://dbpedia.org/resource/William_Shakespeare

http://dbpedia.org/resource/Warwickshire

http://dbpedia.org/ontology/birthPlace http://dbpedia.org/property/name

"William Shakespeare"@en

Figure 2.1.: RDF statements represented as a directed graph.

8

http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/birthPlace

2.2. Resource Description Framework - RDF

2.2.3. RDF Statement

An RDF statement describes a property of a specific resource. It is also called a
triple. It has the following format:
”resource (subject) + property (predicate) + property value (object)” [Yu, 2007].
The property value of a statement can be another resource or a string literal.
For example:
<http://dbpedia.org/resource/William_Shakespeare>

<http://dbpedia.org/ontology/birthPlace>
<http://dbpedia.org/resource/Warwickshire>.

This RDF statement simply says ”The subject identified by http://dbpedia.

org/resource/William_Shakespeare has property identified by http://dbpedia.

org/ontology/birthPlace, whose value is equal to http://dbpedia.org/resource/
Warwickshire”. This means that person ”William Shakespeare” has a ”birthPlace”
whose value is ”Warwickshire”.

Another example:
<http://dbpedia.org/resource/William_Shakespeare>

<http://dbpedia.org/property/name>
”William Shakespeare”@en.

This RDF statement says ”The subject identified by http://dbpedia.org/

resource/William_Shakespeare has property identified by http://dbpedia.

org/property/name, whose value is equal to ”William Shakespeare””. This means
that person ”William Shakespeare” has a ”name” whose value is ”William Shake-
speare”, and the trailing ”@en” is the English language tag. Actually, RDF
statements can also be expressed as directed graphs, as shown in Figure 2.1 .

It is worth pointing out here that the subject or the object or both can be an
anonymous resource, called ”blank node”. The blank node has no data but it plays
the role of a parent of other properties, in order to allow them to appear. In order
to differentiate each blank node from the others, the parser creates an internal
unique identifier for each blank node. In other words, this identifier given to the
blank node helps in identifying that node in a certain RDF document, whereas
the URI given to a resource is guaranteed to be globally unique.

Since the URIs can be so large, there is a short format for writing them, by using a
prefix. For instance, if we use http://dbpedia.org/resource/ as a prefix and give
it a name e.g. dbpedia, then resource http://dbpedia.org/resource/William_

Shakespeare can be written as dbpedia:William_Shakespeare. Similarly, if
http://dbpedia.org/ontology/ is used as a prefix with name dbo, then property
http://dbpedia.org/ontology/birthPlace, can be written as dbo:birthPlace
for short. This format is very useful in writing RDF statements.

Whenever more triples, describing a specific resource are added, this means that
the machine gets more knowledge about that resource. Table 2.1 shows more RDF
statements about William Shakespeare. This means that the resource of William

9

http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Warwickshire
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/Warwickshire
http://dbpedia.org/resource/Warwickshire
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/property/name
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/property/name
http://dbpedia.org/property/name
http://dbpedia.org/resource/
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/resource/William_Shakespeare
http://dbpedia.org/ontology/
http://dbpedia.org/ontology/birthPlace

2. Semantic Web Technologies

Subject Predicate Object

dbpedia:William_Shakespeare rdf:type dbo:Person

dbpedia:William_Shakespeare dbo:birthPlace dbpedia:Warwickshire

dbpedia:William_Shakespeare dbo:child dbpedia:Judith_Quiney

dbpedia:William_Shakespeare dbo:occupation dbpedia:Poet

dbpedia:William_Shakespeare dbo:deathDate "1616-04-23"^^xsd:date

dbpedia:William_Shakespeare dbpprop:name "William Shakespeare"@en

dbpedia:Judith_Quiney dbo:spouse dbpedia:Thomas_Quiney

Table 2.1.: Sample RDF statements.

Shakespeare is the subject of other statements, which give more details about
that resource. Note that the object of a particular statement can be in turn the
subject of other statement(s), e.g. William Shakespeare has a child identified by
URI dbpedia:Judith_Quiney and the knowledge base contains more information
about that child as well. Note also that the object of the fifth statement is a date,
so it has a trailing datatype. This small knowledge base can also be viewed as a
directed graph as shown in Figure 2.2.

dbpedia:William_Shakespeare

dbo:birthPlace

dbo:occupationdbpedia:Judith_Quiney

dbo:spouse

dbo:child

dbo:Person

rdf:type

dbpedia:Warwickshire

dbpedia:Poet

"William Shakespeare"@en

dbpprop:name

dbpedia:Thomas_Quiney

Resource
String Literal

"1616-04-23"^^xsd:date

dbo:deathDate

Figure 2.2.: Small knowledge base about William Shakespeare represented as a
graph.

Now using those simple RDF statements you can pose complex queries to the
machine, e.g. ”Who is the spouse of William Shakespeare’s child?”.

2.2.4. RDF Serialization Formats

Serializing RDF data is a a very crucial issue. There are several formats for
serializing RDF data:

2.2.4.1. N-Triples

N-Triples is a simple line-based RDF serialization format . Each RDF triple
is written as a separate line and terminated by a period (.). Typically files with

10

2.2. Resource Description Framework - RDF

1 <http:// dbpedia.org/resource/ William_Shakespeare > <http :// www.w3.org /1999/02/22 -

rdf -syntax -ns#type > <http :// dbpedia.org/ontology/Person > .

2 <http:// dbpedia.org/resource/ William_Shakespeare > <http :// dbpedia.org/ontology/

birthPlace > <http :// dbpedia.org/resource/Warwickshire > .

3 <http:// dbpedia.org/resource/ William_Shakespeare > <http :// dbpedia.org/ontology/

child > <http :// dbpedia.org/resource/Judith_Quiney > .

4 <http:// dbpedia.org/resource/ William_Shakespeare > <http :// dbpedia.org/ontology/

occupation > <http :// dbpedia.org/resource/Poet > .

5 <http:// dbpedia.org/resource/ William_Shakespeare > <http :// dbpedia.org/ontology/

deathDate > "1616 -04 -23"^^ < http :// www.w3.org /2001/ XMLSchema#date > .

6 <http:// dbpedia.org/resource/ William_Shakespeare > <http :// dbpedia.org/property/

name > "William Shakespeare "@en .

7 <http:// dbpedia.org/resource/Judith_Quiney > <http :// dbpedia.org/ontology/spouse >

<http :// dbpedia.org/resource/Thomas_Quiney > .

Figure 2.3.: Sample N-Triples format.

1 <rdf:RDF xmlns:log="http: //www.w3.org /2000/10/ swap/log#" xmlns:rdf="http://www.

w3.org /1999/02/22 -rdf -syntax -ns#">

2 <rdf:Description rdf:about="http:// dbpedia.org/resource/Judith_Quiney">

3 <spouse xmlns="http: // dbpedia.org/ontology/" rdf:resource="http:// dbpedia.

org/resource/Thomas_Quiney"/>

4 </rdf:Description >

5

6 <Person xmlns="http: // dbpedia.org/ontology/" rdf:about="http: // dbpedia.org/

resource/William_Shakespeare">

7 <birthPlace rdf:resource="http:// dbpedia.org/resource/Warwickshire"/>

8 <child rdf:resource="http: // dbpedia.org/resource/Judith_Quiney"/>

9 <deathDate rdf:datatype="http: //www.w3.org /2001/ XMLSchema#date">1616 -04 -23<

/deathDate >

10 <occupation rdf:resource="http:// dbpedia.org/resource/Poet"/>

11 <name xmlns="http:// dbpedia.org/property/" xml:lang="en">William

Shakespeare </name>

12 </Person >

13 </rdf:RDF >

Figure 2.4.: Sample RDF/XML format.

N-Triples have the .nt extension [Grant and Beckett, 2004]. Figure 2.3 indicates
our sample triples encoded in N-Triples format.

2.2.4.2. RDF/XML

RDF/XML represents RDF triples in XML format [Beckett, 2004]. RDF/XML
format is more convenient for machines than N-Triples. Figure 2.4 shows our RDF
example in RDF/XML format. Files containing RDF/XML data have .rdf as
extension.

2.2.4.3. N3

N3 stands for Notation3 and is a shorthand notation for representing RDF graphs.
N3 was designed to be easily read by humans, and it is not an XML-compliant
language [Berners-Lee and Connolly, 2011]. Figure 2.5 shows our RDF example in
N3 format. Files containing RDF data in N3 format normally have .n3 extension.

11

2. Semantic Web Technologies

1 @prefix dbo: <http:// dbpedia.org/ontology/> .

2 @prefix dbpprop: <http:// dbpedia.org/property/> .

3 @prefix dbpedia: <http:// dbpedia.org/resource/> .

4 @prefix xsd: <http:// www.w3.org /2001/ XMLSchema#> .

5

6 dbpedia:William_Shakespeare a dbo:Person;

7 dbo:birthPlace dbpedia:Warwickshire;

8 dbo:child dbpedia:Judith_Quiney;

9 dbo:deathDate "1616 -04 -23"^^xsd:date;

10 dbo:occupation dbpedia:Poet;

11 dbpprop:name "William Shakespeare"@en .

12

13 dbpedia:Judith_Quiney dbo:spouse dbpedia:Thomas_Quiney .

Figure 2.5.: Sample N3 format.

2.2.4.4. Turtle

Turtle is a subset of N3. Turtle stands for Terse RDF Triple Language. Turtle files
have a .ttl extension [Dave and Berners-Lee, 2011]. This particular serialization is
popular among developers of the Semantic Web.

2.2.5. Ontology

W3C defines an ontology as ”An ontology defines the terms used to describe
and represent an area of knowledge.” [Heflin, 2004].

This definition has several aspects that should be discussed. First, the definition
states that ontology is used to describe and represent a specific area of knowledge.
This means that the ontology is domain specific; it does not cover all knowledge
disciplines, instead a specific area of knowledge. A domain is simply a specific area
or discipline of knowledge, such as literature, medicine, or engineering.

Second, the ontology defines the terms and relationships among those terms as
well. The terms are often called classes, or concepts. The relationships among these
classes can be expressed using a hierarchy, i.e. superclasses represent higher-level
concepts and subclasses represent finer concepts. The finer classes, or lower level
classes, include all attributes and features that their superclasses have.

Third, in addition to defining the relationships among classes, there is another
sort of relationships expressed by using a special set of terms called properties.
These properties define various characteristics of the classes, and they can relate
different classes to each other. In other words, the relationships among classes
are not only hierarchical relationships (parent and child classes), but also the
relationships expressed using properties.

In other words, an ontology defines a set of classes (e.g. ”Person”, ”Book”,
”Writer”), and their hierarchy, i.e. which class is a subclass of another one (e.g.
”Writer” is a subclass of ”Person”). It also defines how those classes interact with
each other, i.e. how different class are connected to each other via properties (e.g.
a ”Book” has an author of type ”Writer”).

Figure 2.6 indicates a sample ontology taken from the DBpedia ontology. This

12

2.2. Resource Description Framework - RDF

Person

Athlete Artist...

SoccerPlayer ... TennisPlayer Actor Writer...

Work

MusicalWorkBook ...

author

Subclass Superclass

Property :

Figure 2.6.: Sample ontology snapshot taken from DBpedia ontology.

ontology says that there is a class called ”Writer” which is a subclass of ”Artist”,
which is in turn a subclass of ”Person”. William Shakespeare, Johann Wolfgang von
Goethe, and Dan Brown are candidate instances of the class ”Writer”. The same
applies on class ”Work” and its subclasses. Note that there is a property called
”author” relating an instance of class ”Work” to an instance of class ”Person”, i.e.
it relates a work to its author. For instance, the book titled ”First Folio” is an
instance of classes ”Work” and ”Book”, and related via property ”author” to its
author ”William Shakespeare” which is an instance of classes ”Person”, ”Artist”,
and ”Writer”.

So, why do need ontologies?. The benefits of ontology are:

� it provides a common and shared understanding/definition about certain key
concepts in the domain,

� it provides a way to for domain knowledge reuse,

� it makes the domain assumptions explicit,

� it provides a way to encode knowledge and semantics such that machines
can understand it.

2.2.6. Ontology Languages

The question now is ”What are the languages used to create ontologies?”.
Actually, there are several languages which can be used to encode ontologies, e.g.
RDF Schema (RDFS), and Web Ontology Language (OWL).

2.2.6.1. RDFS

RDFS is an ontology language, which can be used to create vocabularies defining
classes, their respective subclasses, and properties of the various RDF resources.
Furthermore RDFS is a W3C recommendation [Brickley and Guha, 2004]. RDFS

13

2. Semantic Web Technologies

ontology language also relates the properties to the classes it defines. RDFS can
add semantics to the RDF predicates and resources. In other words, it describes
the meaning of a specific term by defining its associated properties and what sort
of objects these properties might take. It is worthy noting here that RDFS is
written in RDF, so any RDFS document is a legal RDF document.

2.2.6.2. OWL

The Web Ontology Language (OWL) is used to create ontologies and it is also a
W3C recommendation [Bechhofer et al., 2004]. It is built on RDFS. We can say
that, ”OWL = RDFS + new constructs for expressiveness” [Yu, 2007]. All
RDFS classes and properties can be also used for creating OWL ontologies. OWL
and RDFS have the same purpose which is describing the classes, the properties,
and respective relations among those classes. However, OWL has an advantage
over RDFS which is its expressiveness power. In other words, OWL can describe
more complex relationships.

Due its expressiveness power, most ontology developers use OWL to develop their
ontologies. As an example, showing how powerful OWL is, is that the ontology
developer can create a new class as the union or intersection of two or more classes.
With OWL you can also declare that two classes are representing the same thing.
For instance, consider the case that there are two separate ontologies created by
different developers, in the first ontology there is a class called ”Poet”, and in
the other ontology there is a class called ”PoetryWriter”. Actually, those classes
are equivalent to each other, in RDFS you cannot declare that those classes are
equivalent, but with OWL you can.

OWL provides some powerful features for properties as well. For example, in
OWL you can declare that two properties are the inverse of each other, (e.g.
”author”, and ”isAuthorOf”). Figure 2.7 indicates a part of our ontology expressed
in OWL.

Note that for property author we have defined two properties domain, and range.
The domain property defines the class of instances which can be the subject of that
property (author property), while the range property defines the class of instances
which can be the object of that property.

OWL has many powerful features, interested reader can find more about those
feature in [Bechhofer et al., 2004].

2.2.7. SPARQL Query Language

”The SPARQL Protocol and RDF Query Language (SPARQL) is a query
language and protocol for RDF.” [Clark et al., 2008]. It is a W3C standard, and
it is used to ask queries against RDF graphs. SPARQL allows the user to write
queries that consist of triple patterns, conjunctions (logical ”and”), disjunctions
(logical ”or”), and/or a set of optional patterns [Wikipedia, 2013]. Examples of
those optional patterns are, FILTER, REGEX, and LANG.

14

2.2. Resource Description Framework - RDF

1 <http:// dbpedia.org/ontology/Person > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

2 <http:// dbpedia.org/ontology/Artist > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

3 <http:// dbpedia.org/ontology/Artist > <http :// www.w3.org /2000/01/ rdf -schema#

subClassOf > <http :// dbpedia.org/ontology/Person > .

4 <http:// dbpedia.org/ontology/Writer > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

5 <http:// dbpedia.org/ontology/Writer > <http :// www.w3.org /2000/01/ rdf -schema#

subClassOf > <http :// dbpedia.org/ontology/Artist > .

6 <http:// dbpedia.org/ontology/Work > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

7 <http:// dbpedia.org/ontology/Book > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

8 <http:// dbpedia.org/ontology/Book > <http :// www.w3.org /2000/01/ rdf -schema#

subClassOf > <http :// dbpedia.org/ontology/Work > .

9 <http:// dbpedia.org/ontology/author > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#ObjectProperty > .

10 <http:// dbpedia.org/ontology/author > <http :// www.w3.org /2000/01/ rdf -schema#domain

> <http :// dbpedia.org/ontology/Work > .

11 <http:// dbpedia.org/ontology/author > <http :// www.w3.org /2000/01/ rdf -schema#range >

<http :// dbpedia.org/ontology/Person > .

Figure 2.7.: OWL representation of a part our ontology in N-Triples format.

1 PREFIX dbp: <http :// dbpedia.org/resource/>

2 PREFIX dbo: <http :// dbpedia.org/ontology/>

3 SELECT ?spouse

4 WHERE {dbpedia:William_Shakespeare dbo:child ?child.

5 ?child dbo:spouse ?spouse. }

Figure 2.8.: SPARQL query to get the spouse of Shakespeare’s child.

The SPARQL query specifies the pattern(s) that the resulting data should
satisfy. The results of SPARQL queries can be result sets or RDF graphs.
SPARQL has four query forms, specifically SELECT, CONSTRUCT, ASK, and DESCRIBE

[Prud’hommeaux and Seaborne, 2008].
Let’s take an example to clarify the usage of SPARQL. Assume that we want to

ask the query ”Who is the spouse of William Shakespeare’s child?” to our small
knowledge base. SPARQL language can be used to do so. Figure 2.8 shows a
SPARQL query to get information about the spouse of Shakespeare’s child.

In Figure 2.8, lines 1, and 2, defines some prefixes in order to write URIs
in their short forms. Line 3, declares the variables that should be rendered
to the output of that query, which is only one variable ?spouse. Note that
SPARQL variables start either with a question mark ”?”, or with a dollar sign
”$”. Line 4 states that for statement with subject dbpedia:William_Shakespeare
and with property dbo:child, we want the value of its object to be assigned to
a variable called ?child. Upon execution, this variable will take the value of
dbpedia:Judith_Quiney. In line 5, we want variable ?child which now has the
value dbpedia:Judith_Quiney, to be the subject of the other statement. In other
words, the statement will be dbpedia:Judith_Quiney dbo:spouse ?spouse. Now,
variable ?spouse is the only unknown variable of the statement, and it will take
the value dbpedia:Thomas_Quiney. Eventually, its value will be rendered to the

15

2. Semantic Web Technologies

output.

2.2.8. Triplestore

The crucial question here is, ”How do we store RDF data for efficient and quick
access?”. Basically, RDF data is stored in what is so called triplestores. A triple-
store is a software program capable of storing and indexing RDF data efficiently, in
order to enable querying this data easily and effectively. A triplestore for RDF data
is like Relational Database Management System (DBMS) for relational databases.

Most triplestores support SPARQL query language for querying RDF data.
As there are several DBMSs in the wild, such as Oracle1, MySQL2, and SQL
Server3, there are also several triplestores. Virtuoso [Erling and Mikhailov, 2007],
Sesame [Broekstra et al., 2002], and BigOWLIM [Bishop et al., 2011] are typical
examples of triplestores. DBpedia is using Virtuoso as the underlying triplestore.

1http://www.oracle.com/us/products/database/overview/index.html
2http://www.mysql.com
3http://www.microsoft.com/en-us/sqlserver/default.aspx

16

http://www.oracle.com/us/products/database/overview/index.html
http://www.mysql.com
http://www.microsoft.com/en-us/sqlserver/default.aspx

3. Overview on the DBpedia
Project

This chapter gives an introduction to the DBpedia project in general, includ-
ing its structure, its core extractors and the role of each one, etc. It also de-
scribes the significance of the project for the community. This chapter is based
on [Lehmann et al., 2013], which I co-authored together with core members of the
DBpedia community.

3.1. Introduction to DBpedia

The DBpedia community project extracts knowledge from Wikipedia and makes
it widely available via established Semantic Web standards and Linked Data best
practices. Wikipedia is currently the 6th most popular website1, the most widely
used encyclopedia, and one of the finest examples of truly collaboratively created
content. However, due to the lack of the exploitation of the inherent structure of
Wikipedia articles, Wikipedia itself only offers very limited querying and search
capabilities. For instance, it is difficult to find all rivers that flow into the Rhine
or all Italian composers from the 18th century. One of the goals of the DBpedia
project is to provide those querying and search capabilities to a wide community by
extracting structured data from Wikipedia which can then be used for answering
expressive queries.

The core of DBpedia consists of an infobox extraction process, which was first
described in [Auer and Lehmann, 2007]. Infoboxes are templates contained in
many Wikipedia articles. They are usually displayed in the top right corner of
articles and contain factual information (cf. Figure 3.1). The infobox extractor
processes an infobox as follows: The DBpedia URI, which is created from the
Wikipedia article URL, is used as subject. The DBpedia project was started in
2006 and has meanwhile attracted significant interest in research and practice.
It has been a key factor for the success of the Linked Open Data initiative and
serves as an interlinking hub for other datasets (see Section 3.4). For the research
community, DBpedia provides a testbed serving real data spanning various domains
and more than 100 language editions. Numerous applications, algorithms and tools
have been build around or applied to DBpedia. Due to the continuous growth of
Wikipedia and improvements in DBpedia, the extracted data provides an increasing

1See http://www.alexa.com/topsites. Retrieved in February 2013.

17

http://www.alexa.com/topsites

3. Overview on the DBpedia Project

added value for data acquisition, reuse and integration tasks within organizations.
One of the reasons why DBpedia’s data quality has improved over the past

years is that the structure of the knowledge in DBpedia itself is maintained by its
community. Most importantly, the community creates mappings from Wikipedia
information representation structures to the DBpedia ontology. This ontology
unifies different template structures, which will later be explained in detail –
both within single Wikipedia language editions and across currently 27 different
languages. The maintenance of different language editions of DBpedia is spread
across a number of organizations. Each organization is responsible for the support
of a certain language. The local DBpedia chapters are coordinated by the DBpedia
Internationalization Committee. In addition to multilingual support, DBpedia also
provides data-level links into more than 30 external datasets, which are partially
also contributed from partners beyond the core project team.

{{Infobox settlement

| official_name = Algarve

| settlement_type = Region

| image_map = LocalRegiaoAlgarve.svg

| mapsize = 180px

| map_caption = Map showing Algarve

Region in Portugal

| subdivision_type = [[Countries of the

world|Country]]

| subdivision_name = {{POR}}

| subdivision_type3 = Capital city

| subdivision_name3 = [[Faro, Portugal|Faro]]

| area_total_km2 = 5412

| population_total = 410000

| timezone = [[Western European

Time|WET]]

| utc_offset = +0

| timezone_DST = [[Western European

Summer Time|WEST]]

| utc_offset_DST = +1

| blank_name_sec1 = [[NUTS]] code

| blank_info_sec1 = PT15

| blank_name_sec2 = [[GDP]] per capita

| blank_info_sec2 = ¿19,200 (2006)

}}

Figure 3.1.: Mediawiki infobox syntax for Algarve (left) and rendered infobox
(right).

18

3.2. DBpedia Extraction Framework

Figure 3.2.: Overview of DBpedia extraction framework.

3.2. DBpedia Extraction Framework

Wikipedia articles consist mostly of free text, but also comprise various types
of structured information in the form of wiki markup. Such information includes
infobox templates, categorization information, images, geo-coordinates, links to
external web pages, disambiguation pages, redirects between pages, and links across
different language editions of Wikipedia. The DBpedia extraction framework
extracts this structured information from Wikipedia and turns it into a rich
knowledge base. In this section, we give an overview of the DBpedia knowledge
extraction framework.

3.2.1. General Architecture

Figure 3.2 shows an overview of the DBpedia extraction framework. The DBpedia
extraction is structured into four phases:

Input: Wikipedia pages are read from an external source. Pages can either be read
from a Wikipedia dump or directly fetched from a MediaWiki installation
using the MediaWiki API.

Parsing: Each Wikipedia page is parsed by the wiki parser. The wiki parser
transforms the source code of a Wikipedia page into an Abstract Syntax
Tree.

Extraction: The Abstract Syntax Tree of each Wikipedia page is forwarded to
the extractors. DBpedia offers extractors for many different purposes, for
instance, to extract labels, abstracts or geographical coordinates. Each

19

3. Overview on the DBpedia Project

extractor consumes an Abstract Syntax Tree and yields a graph of RDF
statements.

Output: The collected RDF statements are written to a sink. Different formats,
such as N-Triples are supported.

3.2.2. Extractors

The DBpedia extraction framework employs various extractors for translating
different parts of Wikipedia pages to RDF statements. A list of all available
extractors is shown in Table 3.1. DBpedia extractors can be divided into four
categories:

Mapping-Based Infobox Extraction: The mapping-based infobox extraction uses
manually written mappings that relate infoboxes in Wikipedia to terms
in the DBpedia ontology. The mappings also specify a datatype for each
infobox property and thus help the extraction framework to produce high
quality data. The mapping-based extraction will be described in detail in
Section 3.2.4.

Raw Infobox Extraction: The raw infobox extraction provides a direct mapping
from infoboxes in Wikipedia to RDF. As the raw infobox extraction does
not rely on explicit extraction knowledge in the form of mappings, the
quality of the extracted data is lower. The raw infobox data is useful, if a
specific infobox has not been mapped yet and thus is not available in the
mapping-based extraction.

Feature Extraction: The feature extraction uses a number of extractors that are
specialized in extracting a single feature from an article, such as a label or
geographic coordinates. Section 3.2.6 discusses some more of them.

20

3.2.
D
B
p
ed
ia

E
x
traction

F
ram

ew
ork

Name Description Example

abstract Extracts page abstracts. dbpedia:Berlin dbo:abstract "Berlin is the capital city of (...)"

article categories Extracts links from concepts to categories using the SKOS
vocabulary.

dbpedia:Oliver Twist dc:subject dbpedia:Category:English novels

category label Extracts labels for Categories. dbpedia:Category:English novels rdfs:label "English novels"

disambiguation Extracts disambiguation links. dbpedia:Alien dbo:wikiPageDisambiguates dbpedia:Alien (film)

external links Extracts links to external web pages. dbpedia:Animal Farm dbo:wikiPageExternalLink <http://books.google.com/?id=RBGmrDnBs8UC>

geo coordinates Extracts geo-coordinates. dbpedia:Berlin georss:point "52.5006 13.3989"

homepage Extracts links to the official homepage of an instance. dbpedia:Alabama foaf:homepage <http://alabama.gov/>

image Extracts the first image of a Wikipedia page. dbpedia:Berlin foaf:depiction <http://.../Overview Berlin.jpg>

infobox Extracts all properties from all infoboxes. dbpedia:Animal Farm dbo:date "March 2010"

interlanguage links Extracts interwiki links.
label Extracts labels to articles based on their title. dbpedia:Berlin rdfs:label "Berlin"

mappings Extraction based on mappings of Wikipedia infoboxes to the
DBpedia ontology.

dbpedia:Berlin dbo:country dbpedia:Germany

meta information Extracts page’s meta-information, e.g. editlink, and revi-
sonlink.

dbpedia:Berlin <http://dbpedia.org/meta/editlink> <http://en.wikipedia.org/w/index.php?title=Berlin&action=edit>

page ID Extracts page ids of articles. dbpedia:Autism dbo:wikiPageID "25"

page links Extracts internal links between DBpedia instances. dbpedia:Autism dbo:wikiPageWikiLink dbpedia:Human brain

persondata Extracts information about persons dbpedia:Andre Agassi foaf:birthDate "1970-04-29"

PND Extracts PND (Personennamendatei) data about a person. dbpedia:William Shakespeare dbo:individualisedPnd "118613723"

redirects Extracts redirect links between Articles in Wikipedia. dbpedia:ArtificalLanguages dbo:wikiPageRedirects dbpedia:Constructed language

revision ID Extracts revision ids to articles. dbpedia:Autism <http://www.w3.org/ns/prov#wasDerivedFrom> <http://en.wikipedia.org/wiki/Autism?oldid=495234324>

SKOS categories Extracts information about which concept is a category and
how categories are related using the SKOS Vocabulary.

dbpedia:Category:World War II skos:broader dbpedia:Category:Modern history

wiki page Extracts links to corresponding Articles in Wikipedia. dbpedia:AnAmericanInParis foaf:isPrimaryTopicOf <http://en.wikipedia.org/wiki/AnAmericanInParis>

Table 3.1.: Overview of DBpedia extractors.

21

http://books.google.com/?id=RBGmrDnBs8UC
http://alabama.gov/
http://dbpedia.org/meta/editlink
http://en.wikipedia.org/w/index.php?title=Berlin&action=edit
http://www.w3.org/ns/prov#wasDerivedFrom
http://en.wikipedia.org/wiki/Autism?oldid=495234324
http://en.wikipedia.org/wiki/AnAmericanInParis

3. Overview on the DBpedia Project

3.2.3. Raw Infobox Extraction

The type of Wikipedia content that is most valuable for the DBpedia extraction
are infoboxes. Infoboxes are frequently used to list an article’s most relevant facts
as a table of attribute-value pairs on the top right-hand side of the Wikipedia
page (for right-to-left languages on the top left-hand side respectively). Infoboxes
that appear in a Wikipedia article are based on a template that specifies a list of
attributes that can form the infobox. A wide range of infobox templates are used
in Wikipedia. Common examples are templates for infoboxes that describe persons,
organizations or automobiles. As Wikipedia’s infobox template system has evolved
over time, different communities of Wikipedia editors use different templates to
describe the same type of things (e.g. Infobox_city_japan, Infobox_swiss_town
and Infobox_town_de). In addition, different templates use different names for
the same attribute (e.g. birthplace and placeofbirth). As many Wikipedia
editors do not strictly follow the recommendations given on the page that describes
a template, attribute values are expressed using a wide range of different formats
and units of measurement. An excerpt of an infobox that is based on a template
for describing automobiles is shown below:

{{Infobox automobile

| name = Ford GT40

| manufacturer = [[Ford Advanced Vehicles]]

| production = 1964-1969

| engine = 4181cc [[V8 engine|V-8]]

(...)

}}

In this infobox, the first line specifies the infobox type and the subsequent lines
specify various attributes of the described entity.

An excerpt of the extracted data is as follows:2

dbpedia:Ford_GT40 [

dbpprop:name "Ford GT40"@en;

dbpprop:manufacturer dbr:Ford_Advanced_Vehicles;

dbpprop:engine 4181, 4737, 4942, 6997;

dbpprop:production 107 , 1964;

(...)

] .

This extraction output has weaknesses: The resource is not associated to a class
in the ontology and the engine and production values literal values, which are
not meaningful. Those problems can be overcome by the mapping-based infobox
extraction presented in the next subsection.

3.2.4. Mapping-Based Infobox Extraction

In order to homogenize the description of information in the knowledge base, in
2010 a community effort has been initiated to develop an ontology schema and

2We use dbpedia for http://dbpedia.org/resource/, dbo for
http://dbpedia.org/ontology/ and dbpprop for http://dbpedia.org/property/

as prefixes throughout the thesis.

22

3.2. DBpedia Extraction Framework

mappings from Wikipedia infobox properties to this ontology. The alignment be-
tween Wikipedia infoboxes and the ontology is performed via community-provided
mappings that help to normalize name variations in properties and classes. Het-
erogeneity in the Wikipedia infobox system, like using different infoboxes for the
same type of entity or using different property names for the same property (cf.
Section 3.2.3), can be alleviated in this way.

This significantly increases the quality of the raw Wikipedia infobox data by
typing resources, merging name variations and assigning specific datatypes to the
values.

This effort is realized with the DBpedia Mappings Wiki3, a MediaWiki installa-
tion set up to enable the users to collaboratively create and edit mappings. These
mappings are specified using the DBpedia Mapping Language. The mapping
language makes use of MediaWiki templates that define DBpedia ontology classes
and properties as well as template/table to ontology mappings. A mapping assigns
a type from the DBpedia ontology to the entities that are described by the corre-
sponding infobox. In addition, attributes in the infobox are mapped to properties
in the DBpedia ontology. In the following, we show a mapping that maps infoboxes
that use the Infobox_automobile template to the DBpedia ontology:

{{TemplateMapping

|mapToClass = Automobile

|mappings =

{{PropertyMapping

| templateProperty = name

| ontologyProperty = foaf:name }}

{{PropertyMapping

| templateProperty = manufacturer

| ontologyProperty = manufacturer }}

{{DateIntervalMapping

| templateProperty = production

| startDateOntologyProperty = productionStartDate

| endDateOntologyProperty = productionEndDate }}

{{IntermediateNodeMapping

| nodeClass = AutomobileEngine

| correspondingProperty = engine

| mappings =

{{PropertyMapping

| templateProperty = engine

| ontologyProperty = displacement

| unit = Volume }}

{{PropertyMapping

| templateProperty = engine

| ontologyProperty = powerOutput

| unit = Power }}

}}

(...)

}}

The RDF statements that are extracted from the previous infobox example are

3http://mappings.dbpedia.org

23

http://mappings.dbpedia.org

3. Overview on the DBpedia Project

shown below. As we can see, the production period is correctly split into a start
year and an end year and the engine is represented by a distinct RDF node.

dbpedia:Ford_GT40 [

rdf:type dbo:Automobile;

rdfs:label "Ford GT40"@en;

dbo:manufacturer

dbpedia:Ford_Advanced_Vehicles;

dbo:productionStartYear

"1964"^^xsd:gYear;

dbo:productionEndYear "1969"^^xsd:gYear;

dbo:engine [

rdf:type AutomobileEngine;

dbo:displacement "0.004181";

]

(...)

] .

The DBpedia Mapping Wiki is not only used to map different templates within
a single language edition of Wikipedia to the DBpedia ontology, but is used to map
templates from all Wikipedia language editions to the shared DBpedia ontology.
Section 3.3 shows how the infobox properties author and συγγ%αϕεας – author in
Greek – are both being mapped to the global identifier dbo:author. That means,
in turn, that information from all language versions of DBpedia can be merged
and DBpedias for smaller languages can be augmented with knowledge from larger
DBpedias such as the English edition. Conversely, the larger DBpedia editions
can benefit from more specialized knowledge from localized editions, such as data
about smaller towns which is often only present in the corresponding language
edition [Tacchini et al., 2009].

Besides hosting of the mappings and DBpedia ontology definition, the DBpedia
Mappings Wiki offers various tools which support users in their work:

� Mapping Validator: When editing a mapping, the mapping can be directly
validated by a button on the edit page. This validates changes before saving
them for syntactic correctness and highlights inconsistencies such as missing
property definitions.

� Extraction Tester: The extraction tester linked on each mapping page
tests a mapping against a set of example Wikipedia pages. This gives direct
feedback about whether a mapping works and how the resulting data will
look like.

� Mapping Tool: The DBpedia Mapping Tool is a graphical user interface
that supports users to create and edit mappings.

24

3.2. DBpedia Extraction Framework

Figure 3.3.: Depiction of the mapping from the Greek and English
Wikipedia templates about books to the same DBpedia Ontol-
ogy class [Kontokostas et al., 2012].

3.2.5. URI Schemes

For every Wikipedia article, the framework introduces a number of URIs to rep-
resent the concepts described on a particular page. Up to 2011, DBpedia published
URIs only under the http: // dbpedia. org domain. The main namespaces were:

� http: // dbpedia. org/ resource/ (prefix dbpedia) for representing article
data. Apart from a few mapping cases, there is a one-to-one mapping between
a Wikipedia page and a DBpedia resource based on the article title. For
example, for the Wikipedia article on Berlin4, DBpedia will produce the URI
dbpedia:Berlin.

� http: // dbpedia. org/ property/ (prefix dbpprop) for representing prop-
erties extracted from the raw infobox extraction (cf. Section 3.2.3), e.g.
dbprop:population.

� http: // dbpedia. org/ ontology/ (prefix dbo) for representing the DBpe-
dia ontology (cf. Section 3.2.4), e.g. dbo:populationTotal.

Although data from other Wikipedia language editions were extracted, the data
were extracted under the same namespaces. This was achieved by exploiting the

4http://en.wikipedia.org/wiki/Berlin

25

http://dbpedia.org
http://dbpedia.org/resource/
http://dbpedia.org/property/
http://dbpedia.org/ontology/
http://en.wikipedia.org/wiki/Berlin

3. Overview on the DBpedia Project

Wikipedia inter-language links5. For every page in a language other than English,
the page was extracted only if the page contained an inter-language link to an
English page. In that case, using the English link, the data was extracted under
the English resource name (i.e. dbpedia:Berlin).

Recent DBpedia internationalization developments showed that this approach
resulted in less and redundant data [Kontokostas et al., 2012]. Thus with the
DBpedia 3.7 release, we started to produce two types of datasets. The localized
datasets contain all things that are described in a specific language. Within the
datasets, things are identified with language specific URIs such as http: // <lang>
.dbpedia. org/ resource/ for article data and http: // <lang>.dbpedia. org/

property/ for property data. In addition, we produce a canonicalized dataset
for each language. The canonicalized datasets only contain things for which
a corresponding page in the English edition of Wikipedia exists. Within all
canonicalized datasets, the same thing is identified with the same URI from the
generic language-agnostic namespace http://dbpedia.org/resource/.

3.2.6. Summary of Recent Developments

This section summarizes the improvements of the DBpedia extraction framework
since the publication of the DBpedia overview article [Lehmann et al., 2009] in
2009. One of the major changes on the implementation level is that the extraction
framework has been rewritten in Scala in 2010 to improve the efficiency of the
extractors by an order of magnitude compared to the previous PHP based frame-
work. The new more modular framework also allows to extract data from tables in
Wikipedia pages and supports extraction from multiple MediaWiki templates per
page. Another significant change was the creation and utilization of the DBpedia
Mappings Wiki as described above.

In addition, there were several smaller improvements and general maintenance:
Overall, over the past four years, the parsing of the MediaWiki markup improved
quite a lot which led to better overall coverage, for example, concerning references
and parser functions. In addition, the collection of MediaWiki namespace identifiers
for many languages is now performed semi-automatically leading to a high accuracy
of detection. This concerns common title prefixes such as User, File, Template,
Help, Portal etc. in English that indicate pages that do not contain encyclopedic
content and would produce noise in the data. They are important for specific
extractors as well, for instance, the category hierarchy dataset (SKOS) is produced
from pages of the Category namespace. Furthermore, the output of the extraction
system now supports more formats and several compliance issues regarding URIs,
IRIs, N-Triples and Turtle were fixed.

The individual data extractors have been improved as well in both number and
quality in many areas. The abstract extraction was enhanced producing more
accurate plain text representations of the beginning of Wikipedia article texts.

5http://en.wikipedia.org/wiki/Help:Interlanguage_links

26

http://<lang>.dbpedia.org/resource/
http://<lang>.dbpedia.org/resource/
http://<lang>.dbpedia.org/property/
http://<lang>.dbpedia.org/property/
http://en.wikipedia.org/wiki/Help:Interlanguage_links

3.3. DBpedia Ontology

More diverse and more specific datatypes do exist (e.g. many currencies and XSD
datatypes such as xsd:gYearMonth, xsd:positiveInteger, etc.) and for a number
of classes and properties, specific datatypes were added (e.g. inhabitants/km2 for
the population density of populated places and m3/s for the discharge of rivers).
Many issues related to data parsers were resolved and the quality of the owl:sameAs
dataset for multiple language versions was increased by an implementation that
takes bijective relations into account.

There are also new extractors such as extractors for Wikipedia page IDs and
revisions. Moreover, redirect and disambiguation extractors were introduced and
improved since. For the redirect data the transitive closure is computed while
taking care of catching cycles in the links. The redirects also help regarding infobox
coverage in the mapping-based extraction by resolving alternative template names.
Moreover, in the past, if an infobox value pointed to a redirect, this redirection was
not properly resolved and thus resulted in RDF links that led to URIs which did
not contain any further information. Resolving redirects affected approximately
15% of all links, and hence increased the overall inter-connectivity of resources in
the DBpedia ontology substantially.

Finally, a new heuristic to increase the connectivity of DBpedia instances was
introduced. If an infobox contains a string value that is not linked to another
Wikipedia article, the extraction framework searches for hyperlinks in the same
Wikipedia article that have the same anchor text as the infobox value string. If
such a link exists, the target of that link is used to replace the string value in the
infobox. This method further increases the number of object properties in the
DBpedia ontology.

3.3. DBpedia Ontology

The DBpedia ontology consists of 320 classes which form a subsumption hierarchy
and are described by 1,650 different properties. With a maximal depth of 5, the
subsumption hierarchy is intentionally kept rather shallow which fits use cases
in which the ontology is visualized or navigated. Figure 3.4 depicts a part of
the DBpedia ontology, indicating the relations among the top ten classes of the
DBpedia ontology, i.e. the classes with the highest number of instances.

The DBpedia ontology is maintained and extended by the community in the
DBpedia Mappings Wiki. Figure 3.5 depicts the growth of the DBpedia ontology
over time. While the number of classes is not growing too much due to the already
good coverage of the initial version of the ontology, the number of properties
increases over time due to the collaboration on the DBpedia Mappings Wiki.

27

3. Overview on the DBpedia Project

C

P

P xsd:
decimal

C rdf:type owl:Class
rdf:type owl:DatatypeProperty
rdf:type owl:ObjectProperty

Legend

dbo:PopulatedPlace

C dbo:AgentC dbo:Place

C owl:Thing

C dbo:Species

C dbo:Settlement

C dbo:Person

C dbo:Athlete

C dbo:Eukaryote

C dbo:Organisation

C dbo:Work

db
o:

pr
od

uc
er

P

dbo:writer

P

dbo:birthPlace

P
dbo:familyP

P dbo:conservationStatus xsd:
String

P xsd:
date

dbo:releaseDate

P dbo:runtime xsd:
double

P xsd:
datedbo:birthDate

P xsd:
datedbo:deathDate

P xsd:
doubledbo:areaTotal

P xsd:
doubledbo:elevation

P xsd:
Stringdbo:utcOffset

P dbo:populationTotal xsd:
integer

P xsd:
Stringdbo:areaCode

rdfs:subClassOf

rd
fs

:s
ub

Cl
as

sO
f

rd
fs

:s
ub

Cl
as

sO
f

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

rdfs:subClassOf

rd
fs

:d
om

ai
n

rd
fs

:d
om

ai
n

rd
fs

:d
om

ai
nrd

fs
:d

om
ai

n

rd
fs

:d
om

ai
n

rd
fs

:d
om

ai
nrd

fs
:d

om
ai

nrd
fs

:d
om

ai
n

rd
fs

:d
om

ai
n

rd
fs

:d
om

ai
n

dbo:subsequentWorkP

dbo:location

P

dbo:cantonP

rd
fs

:s
ub

Cl
as

sO
f

rd
fs

:s
ub

Cl
as

sO
f

Figure 3.4.: Snapshot of a part of the DBpedia ontology.

● ●
●

● ●

●
●

DBpedia Version

N
um

be
r

of
 o

nt
ol

og
y

el
em

en
ts

3.2 3.3 3.4 3.5 3.6 3.7 3.8

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000
Classes
Properties

Figure 3.5.: Growth of the DBpedia ontology

28

3.4. Interlinking

1 SELECT * { {

2 SELECT ?ftsyear ?ftscountry (SUM(? amount) AS ?funding) {

3 ?com rdf:type fts -o:Commitment .

4 ?com fts -o:year ?year .

5 ?year rdfs:label ?ftsyear .

6 ?com fts -o:benefit ?benefit .

7 ?benefit fts -o:detailAmount ?amount .

8 ?benefit fts -o:beneficiary ?beneficiary .

9 ?beneficiary fts -o:country ?country .

10 ?country owl:sameAs ?ftscountry .

11 } } {

12 SELECT ?dbpcountry ?gdpyear ?gdpnominal {

13 ?dbpcountry rdf:type dbo:Country .

14 ?dbpcountry dbpprop:gdpNominal ?gdpnominal .

15 ?dbpcountry dbpprop:gdpNominalYear ?gdpyear .

16 } }

17 FILTER ((? ftsyear = str(? gdpyear)) &&

18 (? ftscountry = ?dbpcountry)) }

Figure 3.6.: SPARQL query to compare funding per year (from FTS) and country
with the gross domestic product of that country.

3.4. Interlinking

DBpedia is interlinked with numerous external datasets following the Linked
Data principles. In this section, we give an overview of the number and types of
outgoing links that point from DBpedia into other datasets, as well as the external
datasets that set links pointing at DBpedia resources.

3.4.1. Outgoing Links

Similar to the DBpedia ontology, DBpedia also follows a community approach
for adding links to other third party datasets. The DBpedia project maintains a
link repository6 for which conventions for adding linksets and linkset metadata are
defined. The adherence to those guidelines is supervised by a linking committee.
Linksets, which are added to the repository are used for the subsequent official
DBpedia release as well as for DBpedia-Live. Table 3.2 lists the linksets created
by the DBpedia community as of April 2013. The first column names the dataset
that is the target of the links. The second and third column contain the predicate
that is used for linking as well as the overall number of links that is set between
DBpedia and the external dataset. The last column names the tool that was used
to generate the links if the tool is known. The value S refers to Silk, L to LIMES,
and C to custom script.

Links in DBpedia have been used for various purposes. One example is the com-
bination of data about European Union project funding (FTS) [Martin et al., 2013]
and Data about countries in DBpedia. The query shown in Figure 3.6 compares
funding per year (from FTS) and country with the gross domestic product of a
country (from DBpedia).

6https://github.com/dbpedia/dbpedia-links

29

https://github.com/dbpedia/dbpedia-links

3. Overview on the DBpedia Project

Dataset Predicate Count Tool

Amsterdam Museum owl:sameAs 627 S
BBC Wildlife Finder owl:sameAs 444 S
Book Mashup rdf:type 9 100

owl:sameAs
Bricklink dc:publisher 10 100
CORDIS owl:sameAs 314 S
Dailymed owl:sameAs 894 S
DBLP Bibliography owl:sameAs 196 S
DBTune owl:sameAs 838 S
Diseasome owl:sameAs 2 300 S
Drugbank owl:sameAs 4 800 S
EUNIS owl:sameAs 3 100 S
Eurostat (Linked Stats) owl:sameAs 253 S
Eurostat (WBSG) owl:sameAs 137
CIA World Factbook owl:sameAs 545 S
flickr wrappr dbpprop:hasPhoto- 3 800 000 C

Collection
Freebase owl:sameAs 3 600 000 C
GADM owl:sameAs 1 900
GeoNames owl:sameAs 86 500 S
GeoSpecies owl:sameAs 16 000 S
GHO owl:sameAs 196 L
Project Gutenberg owl:sameAs 2 500 S
Italian Public Schools owl:sameAs 5 800 S
LinkedGeoData owl:sameAs 103 600 S
LinkedMDB owl:sameAs 13 800 S
MusicBrainz owl:sameAs 23 000
New York Times owl:sameAs 9 700
OpenCyc owl:sameAs 27 100 C
OpenEI (Open Energy) owl:sameAs 678 S
Revyu owl:sameAs 6
Sider owl:sameAs 2 000 S
TCMGeneDIT owl:sameAs 904
UMBEL rdf:type 896 400
US Census owl:sameAs 12 600
WikiCompany owl:sameAs 8 300
WordNet dbpprop:wordnet type 467 100
YAGO2 rdf:type 18 100 000
Sum 27 211 732

Table 3.2.: Datasets linked from DBpedia

30

3.4. Interlinking

In addition to providing outgoing links on instance-level, DBpedia also sets
links on schema-level pointing from the DBpedia ontology to equivalent terms in
other schemas. Links to other schemata can be set by the community within the
DBpedia Mappings Wiki by using owl:equivalentClass in Class templates and
owl:equivalentProperty in DatatypeProperty or ObjectProperty templates
respectively.

In 2011 Google, Microsoft, and Yahoo! announced their collaboration on
Schema.org, a collection of vocabularies for marking up content on web pages. The
DBpedia 3.8 ontology contains 45 owl:equivalentClass and 31 owl:equivalentProperty
links pointing at http://schema.org terms.

3.4.2. Incoming Links

DBpedia is being linked to from a variety of datasets. The overall number of
links pointing at DBpedia from other datasets is 39,007,478 according to the Data
Hub.7 However, those counts are entered by users and may not always be valid
and up-to-date.

In order to identify actually published and online datasets that link to DBpedia,
we used Sindice [Oren et al., 2008]. The Sindice project crawls RDF resources on
the web and indexes those resources. In Sindice, a dataset is defined by the second-
level domain name of the entity’s URI, e.g. all resources available at the domain
fu-berlin.de is considered to belong to the same dataset. A triple is considered
to be a link if the dataset of subject and object are different. Furthermore, the
Sindice data we used for analysis only considers authoritative entities: The dataset
of a subject of a triple must match the domain it was retrieved, otherwise it is
not considered. Sindice computes a graph summary over all resources they store.
With the help of the Sindice team, we examined this graph summary to obtain
all links pointing to DBpedia. As shown in Table 3.4, Sindice knows about 248
datasets linking to DBpedia. 70 of those datasets link to DBpedia via owl:sameAs,
but other link predicates are also very common as evident in this table. In total,
Sindice has indexed 8 million links pointing at DBpedia. Table 3.3 lists the 10
datasets which set most links to DBpedia along with the used link predicate and
the number of links.

It should be noted that the data in Sindice is not complete, for instance it does
not contain all datasets that are cataloged by the DataHub8. However, it crawls
for RDFa snippets, converts microformats etc. Despite the inaccuracy, the relative
comparison of different datasets can still give us some insights. Therefore, we
analyzed the link structure of all Sindice datasets using the Sindice cluster (see
appendix for details). Table 3.5 shows the datasets with most incoming links.
Those are authorities in the network structure of the web of data and DBpedia is
currently ranked second.

7See http://wiki.dbpedia.org/Interlinking for details.
8http://datahub.io/

31

http://schema.org
http://wiki.dbpedia.org/Interlinking
http://datahub.io/

3. Overview on the DBpedia Project

Dataset Link Predicate Count Link Count

okaboo.com 4 2,407,121
tfri.gov.tw 57 837,459
naplesplus.us 2 212,460
fu-berlin.de 7 145,322
freebase.com 108 138,619
geonames.org 3 125,734
opencyc.org 3 19,648
geospecies.org 10 16,188
dbrec.net 3 12,856
faviki.com 5 12,768

Table 3.3.: Top 10 datasets in Sindice ordered by the number of links to DBpedia.

Metric Value

Total links: 3,960,212
Total distinct datasets: 248
Total distinct predicates: 345

Table 3.4.: Sindice summary statistics for incoming links to DBpedia.

domain datasets links

purl.org 498 6,717,520
dbpedia.org 248 3,960,212
creativecommons.org 2,483 3,030,910
identi.ca 1,021 2,359,276
l3s.de 34 1,261,487
rkbexplorer.com 24 1,212,416
nytimes.com 27 1,174,941
w3.org 405 658,535
geospecies.org 13 523,709
livejournal.com 14,881 366,025

Table 3.5.: Top 10 datasets by incoming links in Sindice.

32

4. DBpedia Live Extraction

This chapter describes the DBpedia Live extraction framework in detail, how it
works, and how it can keep DBpedia in synchronization with Wikipedia. It also
details the features of the DBpedia Live system and how important it is for the
community. This chapter is based on [Morsey et al., 2012b].

4.1. Live Extraction Framework

A prerequisite for being able to perform a live extraction is an access to changes
made in Wikipedia. The WikiMedia foundation kindly provided us access to their
update stream, the Wikipedia OAI-PMH 1 live feed. The protocol allows to pull
updates in XML via HTTP. A Java component, serving as a proxy, constantly
retrieves new updates and feeds the DBpedia framework. The proxy is necessary to
decouple the stream from the framework to simplify maintenance of the software.
It also handles other maintenance tasks such as the removal of deleted articles
and it processes the new templates, which we will introduce in Section 4.2. The
live extraction workflow uses this update stream to extract new knowledge upon
relevant changes in Wikipedia articles.

4.1.1. General System Architecture

The general system architecture of DBpedia Live is depicted in Figure 4.1. The
main components of DBpedia Live system are as follows:

� Local Wikipedia: We have installed a local Wikipedia that will be in synchro-
nization with Wikipedia. The Open Archives Initiative Protocol for Metadata
Harvesting (OAI-PMH) [Lagoze et al., 2008] enables an application to get a
continuous stream of updates from a wiki. OAI-PMH is also used to feed
updates into DBpedia Live Extraction Manager.

� Mapping Wiki: DBpedia mappings can be found at http://mappings.

dbpedia.org. It is also a wiki. We can also use OAI-PMH to get stream of
updates in DBpedia mappings. Basically, a change of mapping affects several
Wikipedia pages, which should be reprocessed.

1Open Archives Initiative Protocol for Metadata Harvesting, cf. http://www.mediawiki.org/
wiki/Extension:OAIRepository

33

http://mappings.dbpedia.org
http://mappings.dbpedia.org
http://www.mediawiki.org/wiki/Extension:OAIRepository
http://www.mediawiki.org/wiki/Extension:OAIRepository

4. DBpedia Live Extraction

Figure 4.1.: General DBpedia Live system architecture.

� DBpedia Live Extraction Manager: This component is the actual DBpedia
Live extraction framework. When there is a page that should be processed,
the framework applies the extractors on it. After processing a page, the
newly extracted triples are inserted into the backend triplestore (Virtuoso),
overwriting the old triples. The newly extracted triples are also written as N-
Triples file and compressed. Other applications or DBpedia Live mirrors that
should always be in synchronization with our DBpedia Live can download
those files and feed them into its own triplestore. The extraction manager is
discussed in more detail below.

� Synchronization Tool: This tool is used for synchronizing other DBpedia
Live mirrors with our DBpedia Live.

4.1.2. Extraction Manager

Figure 3.2 gives a detailed overview of the DBpedia knowledge extraction
framework and its main components.

DBpedia Live uses the same extraction manager as the core of the extraction pro-
cess. In live extraction mode, article texts are accessed via the LiveWikipedia page
collection, which obtains the current version of the article, which was preprocessed
by the Java proxy from the OAI-PMH stream. The content is comprised of the
current wikisource code, language (English only at the moment), an OAI identifier
and a page revision id2. The SPARQL-Update Destination deletes existing triples
and inserts new ones into the target triplestore. According to our measurements,
about 1.4 article pages are updated each second on Wikipedia. This amounts
to 120,000 page updates per day and a maximum processing time of 0.71s per
page for the live extraction framework. Currently, the framework can handle up

2see here for an example http://en.wikipedia.org/wiki/Special:Export/Algarve

34

http://en.wikipedia.org/wiki/Special:Export/Algarve

4.1. Live Extraction Framework

to 1.8 pages per second on a 2.8 GHz machine with 6 core CPUs (this includes
consumption from the stream, extraction, diffing and loading the triples into a
Virtuoso triplestore, and writing the updates into compressed files)3. Performance
is one of the major engineering hurdles we had to take in order to be able to
deploy the framework. The time lag for DBpedia to reflect Wikipedia changes lies
between one and two minutes. The bottleneck here is the update stream, since
changes normally need more than one minute to arrive from Wikipedia.

Apart from performance, another important problem is to identify which triples
have to be deleted and re-extracted upon an article change. DBpedia contains a
“static” part, which is not affected by the live extraction framework. This includes
links to other knowledge bases, which are manually updated as well as the YAGO4

and Umbel5 class hierarchies, which can not be updated via the English Update
Stream. We store the structure of those triples using a SPARQL graph pattern.
Those static triples are stored in a separate graph. All other parts of DBpedia are
maintained by the extraction framework. We redesigned the extractors in such
a way that each generates triples with disjoint properties. Each extractor can
be in one of three states: active, keep, and purge. Depending on the state when
a Wikipedia page is changed, the triples extracted by this extractor are either
updated (active), not modified (keep), or removed (purge).

In order to decide which triples were extracted by an extractor, and also to
identify the triples that should be replaced we use an RDB (relational database)
assisted method, which is described in more detail in [Stadler et al., 2010]. We
create an RDB table consisting of 3 fields, namely page id, resource uri, and
serialized data. Page id is the unique ID of the Wikipedia page. Resource uri
is the URI of DBpedia resource representing that Wikipedia article in DBpedia.
Serialized data is the JSON representation of all extracted triples. It is worth
noting here that we store the extractor responsible for each group of triples along
with those triples in that field. Whenever a Wikipedia page is edited, the extraction
method generates a JSON object holding information about each extractor and
its generated triples. After serialization of such an object, it will be stored in
combination with the corresponding page identifier. In case a record with the same
page identifier already exists in this table, this old JSON object and the new one
are compared. The results of this comparison are two disjoint sets of triples which
are used on the one hand for adding statements to the DBpedia RDF graph and
on the other hand for removing statements from this graph.

We had to make a number of further changes within the DBpedia extraction
framework in order to support live extraction. For instance, to parse article
abstracts properly, we need to be able to resolve templates. This can only be
done if (parts of) the MediaWiki database for the corresponding language edition
is (are) available. For this reason we delegate updates from the stream to the

3see current statistics at http://live.dbpedia.org/livestats
4http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
5http://fgiasson.com/blog/index.php/2008/09/04/exploding-dbpedias-domain-

using-umbel/

35

http://live.dbpedia.org/livestats
http://www.mpi-inf.mpg.de/yago-naga/yago/downloads.html
http://fgiasson.com/blog/index.php/2008/09/04/exploding-dbpedias-domain-using-umbel/
http://fgiasson.com/blog/index.php/2008/09/04/exploding-dbpedias-domain-using-umbel/

4. DBpedia Live Extraction

MediaWiki database so that the local MediaWiki database remains in sync. In
general, all parts of the DBpedia framework, which relied on static databases, files
etc., needed to be exchanged so that no user interaction is required. Also, the
framework had to be refactored to be language independent to make it compatible
to future deployment on language specific DBpedia versions such as the Greek or
German DBpedia 6.

Figure 4.2.: Mapping for infobox of a book.

4.2. New Features

The old php-based framework is deployed on one of OpenLink7 servers and
currently has a SPARQL endpoint at http://dbpedia-live.openlinksw.com/

sparql. In addition to the migration to Java, the new DBpedia Live framework
has the following new features:

1. Abstract extraction: The abstract of of a Wikipedia article are the first few
paragraphs of that article. The new framework has the ability to cleanly

6http://de.dbpedia.org
7http://www.openlinksw.com/

36

http://dbpedia-live.openlinksw.com/sparql
http://dbpedia-live.openlinksw.com/sparql
http://de.dbpedia.org
http://www.openlinksw.com/

4.2. New Features

extract the abstract of an article.

2. Mapping-affected pages: Upon a change in mapping, the pages affected by
that mapping should be reprocessed and their triples should be updated to
reflect that change.

3. Updating unmodified pages: Sometimes a change in the system occurs, e.g. a
change in the implementation of an extractor. This change can affect many
pages even if they are not modified. In DBpedia Live, we use a low-priority
queue for such changes, such that the updates will eventually appear in
DBpedia Live, but recent Wikipedia updates are processed first.

4. Publication of changesets: Upon modifications old triples are replaced with
updated triples. Those added and/or deleted triples are also written as
N-Triples files and then compressed. Any client application or DBpedia Live
mirror can download those files and integrate and, hence, update a local copy
of DBpedia. This enables that application to always in synchronization with
our DBpedia Live.

5. New extractors: We have added new extractors, which enable extracting
more knowledge out of the Wikipedia article.

6. Delta calculation: Via delta, the user can view the latest updates done to a
specific DBpedia resource.

In the following subsections, we will describe each feature in detail.

4.2.1. Abstract Extraction

The abstract extractor extracts two types of abstracts:

1. Short abstract: is the first paragraph from a Wikipedia article and is repre-
sented in DBpedia by rdfs:comment.

2. Long abstract: is the whole text before table of contents in an article, which
is represented by dbpedia:abstract.

The hurdle of abstract extraction is the resolution of templates. A template is a
simple sequence of characters that has a special meaning for Wikipedia. Wikipedia
renders those templates in a specific way.

The following example indicates a typical Wikipedia template:

Example 4.1 Typical Wikipedia Template

{{convert|1010000|km2|sp=us}}

37

4. DBpedia Live Extraction

This templates tells Wikipedia that the area of some country is 1010000 square
kilometers, and when it is rendered, Wikipedia should display its area in both
square kilometers, and square miles. So, Wikipedia will render it as “1,010,000
square kilometers (390,000 sq mi)”. DBpedia should behave similarly towards
those templates.

In order to resolve those templates used in the abstract of the article, we should
install a copy of Wikipedia. The required steps to install a local copy of Wikipedia
are:

1. MySQL: Install MySQL server as back-end relational database for Wikipedia,

2. SQL dumps: Download the latest SQL dumps for Wikipedia, which are freely
available at http://dumps.wikimedia.org/enwiki/,

3. Clean SQL dumps: Those SQL dumps need some adjustment, before you
can insert them into MySQL, You can perform this adjustment by run-
ning “clean.sh”, which you can download from the website containing the
sourcecode, see Section 4.2.8.

4. Import SQL dumps: You can now use script called “import.sh”, which is
also available with the sourcecode,

5. HTTP Server: Apache server should be installed, which will provide a
front-end for abstract extraction.

4.2.2. Mapping-Affected Pages

Whenever a mapping change occurs, some pages should be reprocessed. For
example, in Figure 4.2, if the template property called translator, which is mapped
to DBpedia property translator, is changed to another property, then all entities
belonging to the class Book should be reprocessed. Upon a mapping change, we
identify the list of affected DBpedia entities, along with IDs of their corresponding
Wikipedia pages.

Basically, the DBpedia Live framework has a priority-queue which contains all
pages waiting for processing. This priority-queue is considered the backbone of our
framework as several streams including the live-update stream, mapping-update
stream, and unmodified-pages stream, place the IDs of their pages in this queue.
DBpedia Live consumes the contents of that queue taking the priority of updates
into account.

Specifically, IDs of pages fetched from the live update stream are placed in that
queue with the highest priority. The IDs of pages affected by a mapping change
are also placed in that queue but with lower priority.

38

http://dumps.wikimedia.org/enwiki/

4.2. New Features

4.2.3. Unmodified Pages

Naturally, there is a large variation of the update frequency of individual articles
in Wikipedia. If any change in the DBpedia extraction framework occurs, e.g. a
modification of the implementation of an extractor or an addition of a new extractor,
this will not be a problem for the frequently updated articles as it is likely that
they will be reprocessed soon.

However, less frequently updated articles may not be processed for several
months and would, therefore, not reflect the current implementation state of the
extraction framework. To overcome this problem, we obtain the IDs of pages which
have not been modified between one and three months ago, and place their IDs in
our priority-queue. Those pages have the lowest priority in order not to block or
delay live extraction.

Since we use a local synchronized instance of the Wikipedia database, we can
query this instance to obtain the list of such articles, which have not been modified
between one and three months ago. Directing those queries against Wikipedia
itself would place a too high burden on the Wikipedia servers, because the number
of unmodified pages can be very large.

4.2.4. Changesets

Whenever a Wikipedia article is processed, we get two disjoint sets of triples. A
set for added triples, and another set for deleted triples. We write those 2 sets into
N-Triples files, compress them, and publish the compressed files on our server. If
another triples store wants to synchronize with DBpedia Live, it can just download
those files, decompress them and integrate them with its store.

The folder to which we publish the changesets has a specific structure. The
folder structure is as follows:

� The parent folder contains a folder for each year while running, e.g. 2010,
2011, 2012,

� The folder of a year contains a folder for each month passed while running,
e.g. 1, 2, 3, ..., 12.

� The folder of a month contains a folder for each day passed while running,
e.g. 1, 2, 3,, 28/29/30/31.

� The folder of a day contains a folder for each hour passed while running, e.g.
0, 1, 2,, 23.

� Inside the folder of an hour, we write the compressed N-Triples files with
added or removed, e.g. 000000.added.nt.gz and 000000.removed.nt.gz. This
represents the 2 disjoint sets of added and/or removed triples.

To clarify that structure lets take that example:

39

4. DBpedia Live Extraction

Example 4.2

dbpedia_publish/2011/06/02/15/000000.added.nt.gz

and

dbpedia_publish/2011/06/02/15/000000.removed.nt.gz

This indicates that in year 2011, in 6th month of that year, 2nd day of that
month, in hour 15, 2 files were written, one for added triples, and one for removed
triples.

4.2.5. Synchronization Tool

The synchronization tool enables a DBpedia Live mirror to stay in synchro-
nization with our live endpoint. It downloads the changeset files sequentially,
decompresses them and integrates them with another DBpedia Live mirror. As
described in Section 4.2.4, 2 files are written, one for added triples, and the other for
deleted ones. That tool, simply downloads both of them, creates the appropriate
SPARUL INSERT/DELETE statement and executes it against the triplestore.

An interested user can download this tool and configure it properly, i.e. configure
the address of his/her triplestore, login credentials for that triplestore, and so forth.
Afterwards, he/she can run it to synchronize that triplestore with ours.

4.2.6. New Extractors

Each extractor in the DBpedia framework is responsible for handling a specific
part or parts of the Wikipedia article and extracting structured data out of it. So,
the more extractors the framework has, the more knowledge it generates. We have
created and added two new extractors to the DBpedia framework:

1. Contributor extractor: This extractor basically extracts the contributor of
the Wikipedia article, i.e. the editor of the article. This is extractor is
important as it can track the heavily updated articles, i.e. the articles with
high number of edits, as well as the most active contributors, i.e. the editors
with high number of edits.

2. Meta-Information extractor: The meta-information extractor extracts the
Wikipedia page’s meta-information, including edit-link, revision-link, and
modification date. The edit-link holds the URL through which the user can
edit the Wikipedia article, e.g. http://en.wikipedia.org/w/index.php?

title=Berlin&action=edit. The revision-link represents the URL of the
latest revision of a Wikipedia article, e.g. http://en.wikipedia.org/w/

index.php?title=Berlin&oldid=514878139. The modification date repre-
sents the edit date of a Wikipedia article, e.g for the Wikipedia article of
Berlin the modification date is “2012-09-127T20:52:27Z”, which means that
this article was edited at that timestamp.

40

http://en.wikipedia.org/w/index.php?title=Berlin&action=edit
http://en.wikipedia.org/w/index.php?title=Berlin&action=edit
http://en.wikipedia.org/w/index.php?title=Berlin&oldid= 514878139
http://en.wikipedia.org/w/index.php?title=Berlin&oldid= 514878139

4.3. DBpedia Live Usage

4.2.7. Delta Calculation

The delta calculation feature enables the user to view the latest updates done
to a specific DBpedia resource. In other words, it displays a list of added, deleted,
and modified triples of that resource which were generated during the last iteration
of DBpedia Live over that resource. For example, to view the latest updates
performed on resource ”Leipzig”, you should use http://dbpedia.aksw.org:

8899/delta.vsp?uri=http://dbpedia.org/resource/Leipzig.

4.2.8. Important Pointers

� DBpedia project homepage: http://dbpedia.org.

� SPARQL-endpoint: The DBpedia Live SPARQL-endpoint can be accessed
at http://live.dbpedia.org/sparql.

� DBpedia Live statistics: Some simple statistics are provided upon extraction
on http://live.dbpedia.org/livestats.

� Updates: The N-Triples files containing the updates can be found at http:
//live.dbpedia.org/liveupdates.

� DBpedia sourcecode:
https://github.com/dbpedia/extraction-framework.

� Synchronization tool:
http://sourceforge.net/projects/dbpintegrator/files/.

� Dump files: We regularly create dumps of DBpedia Live data on monthly
basis, which can be found under http://live.dbpedia.org/dumps/.

� Delta: The delta of a DBpedia resource is available at
http://live.dbpedia.org/delta.

� DBpedia discussion mailing list: For reporting and discussing
DBpedia-related issues, users can join our mailing list
https://sourceforge.net/mailarchive/forum.php?forum_name=

dbpedia-discussion.

4.3. DBpedia Live Usage

Since its official release at the end of June 2011, DBpedia Live attracted many
users, and an increasing number of requests are sent to our DBpedia Live endpoint
every day. Furthermore, more users tend to use the synchronization tool to
synchronize their own DBpedia Live mirrors. This leads to an increasing number
of live update, i.e. changeset download, requests. 4.3 indicates the number of

41

http://dbpedia.aksw.org:8899/delta.vsp?uri=http://dbpedia.org/resource/Leipzig
http://dbpedia.aksw.org:8899/delta.vsp?uri=http://dbpedia.org/resource/Leipzig
http://dbpedia.org
http://live.dbpedia.org/sparql
http://live.dbpedia.org/livestats
http://live.dbpedia.org/liveupdates
http://live.dbpedia.org/liveupdates
https://github.com/dbpedia/extraction-framework
http://sourceforge.net/projects/dbpintegrator/files/
http://live.dbpedia.org/dumps/
http://live.dbpedia.org/delta
https://sourceforge.net/mailarchive/forum.php?forum_name=dbpedia-discussion
https://sourceforge.net/mailarchive/forum.php?forum_name=dbpedia-discussion

4. DBpedia Live Extraction

daily SPARQL and synchronization requests sent to DBpedia Live endpoint in the
period between August 2012 and January 2013.

Figure 4.3.: Number of daily requests sent to the DBpedia Live for a) SPARQL
queries and b) synchronization requests from August 2012 until January
2013

42

5. Data Quality

This chapter deals with the data quality evaluation and data validation method-
ologies. It first describes a crowdsourcing methodology for data quality evaluation,
mainly centered on DBpedia.It also discusses the various types of errors and issues
that can appear in semantic data in general and in DBpedia in particular, and how
those errors and issues can be organized in a hierarchy. Afterwards, it introduces a
data validation algorithm called ”DeFacto”, and how its prototype is implemented.
This chapter uses material from [Zaveri et al., 2013a] and [Lehmann et al., 2012].
It is worth mentioning that this is a joint work, i.e. I have contributed as a co-author
and co-developer in those tasks, in which I was involved in the following tasks:

1. Evaluating several DBpedia resources and identifying the errors that exist in
them.

2. Fixing several bugs and enhancing the DBpedia framework, which leads to
resolving some of the detected errors.

3. Assessing the evaluations of the participants, who evaluate random DBpedia
resources and identify their problems, for correctness.

4. Developing the front-end interface of DeFacto.

5. Building the module that generates the provenance data.

5.1. Crowdsourcing for Data Quality

5.1.1. Assessment Methodology

In this section, we describe a generalized methodology for the assessment and
subsequent data quality improvement of resources belonging to a dataset. The
assessment methodology we propose is depicted in Figure 5.1. This methodology
consists of the following four steps: 1. Resource selection, 2. Evaluation mode
selection, 3. Resource evaluation and 4. Data quality improvement. In the following,
we describe these steps in more detail.

Step I: Resource selection In this first step, the resources belonging to a
particular dataset are selected. This selection can be performed in three different
ways:

43

5. Data Quality

� Per Class: select resources belonging to a particular class

� Completely random: a random resource from the dataset

� Manual: a resource selected manually from the dataset

Choosing resources per class (e.g. animal, sport, place etc.) gives the user the
flexibility to choose resources belonging to only those classes he/she is familiar
with. However, when choosing resources from a class, the selection should be made
in proportion to the number of instances of that class. Random selection, on the
other hand, ensures an unbiased and uniform coverage of the underlying dataset.
In the manual selection option, the user is free to select resources with problems
that he/she has perhaps previously identified.

Step II: Evaluation mode selection The assignment of the resources to a
person or machine, selected in Step I, can be accomplished in the following three
ways:

� Manual: the selected resources are assigned to a person (or group of individ-
uals) who will then proceed to manually evaluate the resources individually.

� Semi-automatic: selected resources are assigned to a semi-automatic tool
which performs data quality assessment employing some form of user feedback.

� Automatic: the selected resources are given as input to an automatic tool
which performs the quality assessment without any user involvement.

For the semi-automatic evaluation, machine learning can be applied as shown
in [Bühmann and Lehmann, 2012] and provided by the DL-Learner framework
[Lehmann, 2009, Lehmann and Hitzler, 2010, Lehmann, 2010]. Those algorithms
are based on statistical analysis or refinement operators [Lehmann and Hitzler, 2007a,
Lehmann, 2007, Lehmann and Haase, 2009] and have been applied to various prob-
lems [Lehmann and Hitzler, 2007b, Iglesias and Lehmann, 2011] and shown to be
scalable [Hellmann et al., 2009, Hellmann et al., 2011, Lehmann et al., 2011]. The
workflow can be as follows: (1) based on the instance data, generate OWL axioms
which can also be seen as restrictions1, e.g. learn characteristics (irreflexivity, (in-
verse) functionality, asymmetry) of properties as well as definitions and disjointness
of classes in the knowledge base; (2) ask queries via SPARQL or a reasoner for
violations of theses restrictions, e.g. in case of an irreflexive property, triples where
subject and object are the same would indeed violate the characteristic of the ir-
reflexivity. In the automatic case, a possible approach is to check for inconsistencies
and other modeling problems as, e.g., described in [Lehmann and Bühmann, 2010].

1A local Unique Name Assumption is used therefore, i.e. every named individual is assumed to
be different from every other, unless stated explicitly otherwise

44

5.1. Crowdsourcing for Data Quality

Resource Selection

[Per Class] [Manual]

[Random]

Resource

Evaluation mode
selection

Resource Evaluation

[Manual]

Triples

[Semi-automatic] [Automatic]

List of invalid facts

Data Quality
Improvement

Pre-selection
of triples

Patch Ontology

Figure 5.1.: Workflow of the data quality assessment methodology.

Step III: Resource evaluation In case of manual assignment of resources, the
person (or group of individuals) evaluates each resource individually to detect the
potential data quality problems. In order to support this step, a quality assessment
tool can be used which allows a user to evaluate each individual triple belonging to
a particular resource. If, in case of Step II, the selected resources are assigned to a
semi-automatic tool, the tool points to triples likely to be wrong. For example,
domain or range problems are identified by the tool and then assigned to a person
to verify the correctness of the results.

Step IV: Data quality improvement After the evaluation of resources and
identification of potential quality problems, the next step is to improve the data
quality. There are at least two ways to perform an improvement:

� Direct: editing the triple, identified to contain the problem, with the correct
value

� Indirect: using the Patch Request Ontology2 [Knuth et al., 2012] which
allows gathering user feedbacks about erroneous triples.

5.1.2. Quality Problem Taxonomy

A systematic review done in [Zaveri et al., 2013c] identified several different
data quality dimensions (criteria) applicable to Linked Data. After carrying out

2http://141.89.225.43/patchr/ontologies/patchr.ttl#

45

http://141.89.225.43/patchr/ontologies/patchr.ttl#

5. Data Quality

an initial data quality assessment on DBpedia (as part of the first phase of the
manual assessment methodology cf. Section 5.1.4.1.1), the problems identified
were mapped to this list of the identified dimensions. In particular, Accuracy,
Relevancy, Representational-consistency and Interlinking were identified to be
problems affecting a large number of DBpedia resources. Additionally, these
dimensions were further divided into categories and sub-categories. Table 5.1
gives an overview of these data quality dimensions along with their categories and
sub-categories. Additionally, we indicate whether the problems are automatically
detectable (column D) and fixable (column F). If the problem is fixable, we
determined whether the problem can fixed by amending the (i) extraction framework
(E), (ii) the mappings wiki (M) or (iii) Wikipedia itself (W). Moreover, the table
specifies whether the problems are specific to DBpedia (marked with a 4) or could
potentially occur in any RDF dataset. For example, the sub-category Special
template not properly recognized is a problem that occurs only in DBpedia due
to the presence of specific keywords in Wikipedia articles that do not cite any
references or resources (e.g. Unreferenced stub—auto=yes). On the other hand,
the problems that are not DBpedia specific can occur in any other datasets. In
the following, we provide the quality problem taxonomy and discuss each of the
dimensions along with its categories and sub-categories in detail by providing
examples.

5.1.2.1. Accuracy

Accuracy is defined as the extent to which data is correct, that is, the de-
gree to which it correctly represents the real world facts and is also free of er-
ror [Zaveri et al., 2013c]. We further classify this dimension into the categories (i)
object incorrectly extracted, (ii) datatype problems and (iii) implicit relationship
between attributes.

Object incorrectly extracted. This category refers to those problems which
arise when the object value of a triple is flawed. This may occur when the value
is either (i) incorrectly extracted, (ii) incompletely extracted or (iii) the special
template in Wikipedia is not recognized:

� Object value is incorrectly extracted, e.g.:
dbpedia:Oregon_Route_238 dbpprop:map

"238.0"^^http://dbpedia.org/datatype/second.

This resource about state highway Oregon Route 238 has the incorrect
property ’map’ with value 238. In Wikipedia the attribute ’map’ refers to
the image name as the value: map=Oregon Route 238.svg. The DBpedia
property only extracted the value 238 from his attribute value and gave it
the datatype ’second’ assuming it is a time value, which is incorrect.

� Object value is incompletely extracted, e.g.:
dbpedia:Dave_Dobbyn dbpprop:dateOfBirth

46

5.1. Crowdsourcing for Data Quality

"3"^^xsd:integer.

In this example, only the day of birth of a person is extracted and mapped
to the ’dateofBirth’ property when it should have been the entire date i.e.
day, month and year. Thus, the object value is not completely extracted.

� Special template not properly recognized, e.g.:
dbpedia:328_Gudrun dbpprop:auto "yes"@en.

Certain article classifications in Wikipedia (such as “This article does not
cite any references or sources.”) are performed via special templates (e.g.
Unreferenced stub—auto=yes). Such templates should be listed on a black-list
and omitted by the DBpedia extraction in order to prevent non-meaningful
triples.

Datatype problems. This category refers to those triples which are extracted
with an incorrect datatype for a typed literal.

� Datatype incorrectly extracted, e.g.:
dbpedia:Stephen_Fry dbo:activeYearsStartYear

"1981-01-01T00:00:00+02:00"^^xsd:gYear.

In this case, the DBpedia ontology datatype property activeYearsStartYear

has xsd:gYear as range. Although the datatype declaration is correct, it is
formatted as xsd:dateTime. The expected value is "1981"^^

xsd:gYear.

Implicit relationship between attributes. This category of problems may
arise due to (i) representation of one fact in several attributes, (ii) several facts
encoded in one attribute or (iii) an attribute value computed from another attribute
value in Wikipedia.

� One fact is encoded in several attributes, e.g.:
dbpedia:Barlinek dbpprop:postalCodeType "Postal code"@en.

In this example, the value of the postal code of the town of Barlinek is
encoded in two attributes ‘postal code type = Postal code’ and ‘postalcode
= 74-320’. DBpedia extracts both these attributes separately instead of
combining them together to produce one triple, such as: dbpedia:Barlinek
dbpprop:postalCode "74-320"@en.

� Several facts are encoded in one attribute, e.g.:
dbpedia:Picathartes dbo:synonym

"Galgulus Wagler, 1827 (non Brisson, 1760:preoccupied)"@en.

In this example, even though the triple is not incorrect, it contains two pieces
of information. Only the first word is the synonym, the rest of the value
is a reference to that synonym. In Wikipedia, this fact is represented as
““synonyms = “Galgulus” 〈small〉 Wagler, 1827 (“non” [[Mathurin Jacques

47

5. Data Quality

Brisson—Brisson]], 1760: [[Coracias—preoccupied]])/〈/small〉””. The DB-
pedia framework should ideally recognize this and separate these facts into
several triples.

� Attribute value computed from another attribute value, e.g.:
dbpedia:Barlinek dbpprop:populationDensityKm "auto"@en.

In Wikipedia, this attribute is represented as “population density km2
= auto”. The word “auto” is an indication in Wikipedia that the value
associated to that attribute should be computed “automatically”. In this case,
the population density is computed automatically by dividing the population
by area.

Dimension Category Sub-category D F DBpedia
specific

Accuracy

Triple
incorrectly
extracted

Object value is incompletely ex-
tracted

– E –

Object value is incompletely ex-
tracted

– E –

Special template not properly
recognized

4 E 4

Datatype problems Datatype incorrectly extracted 4 E –
Implicit
relationship
between
attributes

One fact encoded in several at-
tributes

– M 4

Several facts encoded in one at-
tribute

– E –

Attribute value computed from
another attribute value

– E +
M

4

Relevancy
Irrelevant
information
extracted

Extraction of attributes contain-
ing layout information

4 E 4

Redundant attribute values 4 – –
Image related information 4 E 4
Other irrelevant information 4 E –

Representation-
Consistency

Representation of num-
ber values

Inconsistency in representation
of number values

4 W –

Interlinking

External links External websites 4 W –

Interlinks
with other
datasets

Links to Wikimedia 4 E –
Links to Freebase 4 E –
Links to Geospecies 4 E –
Links generated via Flickr wrap-
per

4 E –

Table 5.1.: Data quality dimensions, categories and sub-categories identified in the
DBpedia resources. Detectable (column D) means problem detection
can be automated. Fixable (column F) means the issue is solvable
by amending either the extraction framework (E), the mappings wiki
(M) or Wikipedia (W). The last column marks the dataset specific
subcategories.

5.1.2.2. Relevancy

Relevancy refers to the provision of information which is in accordance with
the task at hand and important to the users’ query [Zaveri et al., 2013c]. The

48

5.1. Crowdsourcing for Data Quality

only category Irrelevant information extracted of this dimension can be further
sub-divided into the following sub-categories: (i) extraction of attributes containing
layout information, (ii) image related information, (iii) redundant attribute values
and (iv) other irrelevant information.

� Extraction of attributes containing layout information, e.g.:
dbpedia:Lærdalsøyri dbpprop:pushpinLabelPosition

"bottom"@en. Information related to layout of a page in Wikipedia, such as
the position of the label on a pushpin map relative to the pushpin coordinate
marker, in this example specified as ”bottom”, is irrelevant when extracted
in DBpedia.

� Image related information, e.g.:
dbpedia:Three-banded_Plover dbpprop:imageCaption

"At Masai Mara National Reserve, Kenya"@en. Extraction of an image
caption or name of the image is irrelevant in DBpedia as the image is not
displayed for any DBpedia resource.

� Redundant attributes value, e.g.:
The resource dbpedia:Niedersimmental_ District contains the redundant
properties
dbo:thumbnail, foaf:depiction,

dbpprop:imageMap with the same value ”Karte Bezirk Niedersimmental
2007.png” as the object.

� Other irrelevant information, e.g.:
dbpedia:IBM_Personal_Computer

dbpedia:Template:Infobox_information_appliance

"type"@en. Information regarding a templates infobox information, in this
case, with an object value as “type” is completely irrelevant.

5.1.2.3. Representational-Consistency

Representational-consistency is defined as the degree to which the format and
structure of information conforms to previously returned information and other
datasets. [Zaveri et al., 2013c] and has the following category:

� Representation of number values, e.g.:
dbpedia:Drei_Flüsse_Stadion dbpprop:seating

Capacity "20"^^xsd:integer. In Wikipedia, the seating capacity for this
stadium has the value “20.000”, but in DBpedia the value displayed is only
20. This is because the value is inconsistently represented with a dot after
the first two decimal places instead of a comma.

49

5. Data Quality

5.1.2.4. Interlinking

Interlinking is defined as the degree to which entities that represent the same
concept are linked to each other [Zaveri et al., 2013c]. This type of problem is
recorded when links to external websites or external data sources are either incorrect,
do not show any information or are expired. We further classify this dimension
into the following categories:

� External websites: Wikipedia usually contains links to external web pages
such as, for example, the home page of a company or a music band. It may
happen that these links are either incorrect, do not work or are unavailable.

� Interlinks with other datasets: Linked Data mandates interlinks between
datasets. These links can either be incorrectly mapped or may not contain use-
ful information. These problems are recorded in the following sub-categories:
1. links to Wikimedia, 2. links to Freebase, 3. links to Geospecies, 4. links
generated via Flickr wrapper.

5.1.3. A Crowdsourcing Quality Assessment Tool

In order to assist several users in assessing the quality of a resource, a tool has
been developed called the TripleCheckMate tool3 aligned with the methodology
described in Section 5.1.1, in particular with Steps 1 – 3. To use the tool, the user
is required to authenticate himself, which not only prevents Spam but also helps
in keeping track of his evaluations. After authenticating himself, he/she proceeds
with the selection of a resource (Step 1). He/She is provided with three options:
(i)per class, (ii)completely random and (iii)manual (as described in Step I of the
assessment methodology).

After selecting a resource, the user is presented with a table showing each triple
belonging to that resource on a single row. Step 2 involves the user evaluating
each triple and checking whether it contains a data quality problem. The link to
the original Wikipedia page for the chosen resource is provided on top of the page
which facilitates the user to check against the original values. If the triple contains
a problem, he/she checks the box “is wrong”. Moreover, he/she is provided with a
taxonomy of pre-defined data quality problems where he/she assigns each incorrect
triple to a problem. If the detected problem does not match any of the existing
types, he/she has the option to provide a new type and extend the taxonomy. After
evaluating one resource, the user saves the evaluation and proceeds to choosing
another random resource and follow the same procedure.

Another important feature of the tool is to allow measuring of inter-rater
agreements. That is, when a user selects a random method (Any or Class) to
choose a resource, there is a 50% probability that he/she is presented with a
resource that was already evaluated by another user. This probability as well

3available at http://github.com/AKSW/TripleCheckMate

50

http://github.com/AKSW/TripleCheckMate

5.1. Crowdsourcing for Data Quality

as the number of evaluations per resource is configurable. Allowing many users
evaluating a single resource not only helps to determine whether incorrect triples
are recognized correctly but also to determine incorrect evaluations (e.g. incorrect
classification of problem type or marking correct triples as incorrect), especially
when crowdsourcing the quality assessment of resources. One important feature of
the tool is that although the tool was built for DBpedia, it is parametrizable to
accept any endpoint and, with very few adjustments in the database back-end (i.e.
ontology classes and problem types) one could use it for any Linked Data dataset
(open or closed).

5.1.4. Evaluation of DBpedia Data Quality

5.1.4.1. Evaluation Methodology

5.1.4.1.1 Manual Methodology

We performed the assessment of the quality of DBpedia in two phases: Phase
I: Problem detection and creation of taxonomy and Phase II: Evaluation via
crowdsourcing.

Phase I: Creation of quality problem taxonomy. In the first phase, two researchers
independently assessed the quality of 20 DBpedia resources each. During this phase
an initial list of data quality problems, that occurred in each resource, was identified.
These identified problems were mapped to the 26 different quality dimensions
from [Zaveri et al., 2013c]. After analyzing the root cause of these problems, a
refinement of the quality dimensions was done to obtain a finer classification of
the dimensions. This classification of the dimensions into sub-categories resulted
in a total of 17 types of data quality problems (cf. Table 5.1) as described in
Section 5.1.2.

Phase II: Crowdsourcing quality assessment. In the second phase, we crowd-
sourced the quality evaluation wherein we invited researchers who are familiar with
RDF to use the TripleCheckMate tool (described in Section 5.1.3). First, each user
after authenticating oneself, chooses a resource by one of three options mentioned
in Section 5.1.4.1.1. Thereafter, the extracted facts about that resource are shown
to the user. The user then looks at each individual fact and records whether it
contains a data quality problem and maps it to the type of quality problem.

5.1.4.1.2 Semi-automatic Methodology

We applied the semi-automatic method (cf. Section 5.1.1), which consists of two
steps: (1) the generation of a particular set of schema axioms for all properties in
DBpedia and (2) the manual verification of the axioms.

Step I: Automatic creation of an extended schema. In this step, the enrichment
functionality of DL-Learner [Bühmann and Lehmann, 2012] for SPARQL end-
points was applied. Thereby for all properties in DBpedia, axioms expressing the
(inverse) functional, irreflexive and asymmetric characteristic were generated, with

51

5. Data Quality

a minimum confidence value of 0.95. For example, for the property dbo:firstWin,
which is a relation between Formula One racers and grand prix, axioms for all four
mentioned types were generated: Each Formula One racer has only one first win
in his career (functional), each grand prix can only be won by one Formula One
racer (inverse functional). It is not possible to use the propertys dbo:firstWin in
both directions (asymmetric), and the property is also irreflexive.

Step II: Manual evaluation of the generated axioms. In the second step, we used
at most 100 random axioms per axiom type and manually verified whether this
axiom is appropriate. To focus on possible data quality problems, we restricted
the evaluation data to axioms where at least one violation can be found in the
knowledge base. Furthermore, we tried to facilitate the evaluation by taking also
the target context into account, i.e. if it exists we consider the definition, domain
and range as well as one random sample for a violation. When evaluating the
inverse functionality for the property dbo:firstWin, we can therefore make use of
the following additional information:

1 Domain : dbo : FormulaOneRacer Range : dbo : GrandPrix
2 Sample V io l a t i on :
3 dbpedia : Fernando Alonso dbo : f i r s tWin
4 dbpedia :2003 Hungarian Grand Prix .
5 dbpedia : WikiProject Formula One dbo : f i r s tWin
6 dbpedia :2003 Hungarian Grand Prix .

5.1.4.2. Evaluation Results

5.1.4.2.1 Manual Methodology

An overview of the evaluation results is shown in Table 5.24. Overall, only 16.5%
of all resources were not affected by any problems. On average, there were 5.69
problems per resource and 2.24 problems excluding errors in the dbprop namespace5

[Lehmann et al., 2009]. While the vast majority of resources have problems, it
should also be remarked that each resource has 47.19 triples on average, which
is higher than in most other LOD datasets. About 83.49% of all resources have
at least one problem according to our data quality taxonomy. The tool was
configured to allow two evaluations per resource and this resulted to a total of
268 inter-evaluations. We computed the inter-rater agreement for those resources,
which were evaluated by two persons by adjusting the observed agreement with
agreement by chance as done in Cohen’s kappa6. The inter-rater agreement results
– 0.34 for resource agreement and 0.38 for triple agreement – indicate that the same
resource should be evaluated more than twice in future evaluations. To assess
the accuracy of the crowdsourcing evaluation, we took a random sample of 700
assessed triples (out of the total 2928) and evaluated them for correctness based
on the formula in [Krejcie and Morgan, 1970] intended to be a representative of
all the assessed triples. Additionally, we assumed a margin of 3.5% of error, which

4Also available at: http://aksw.org/Projects/DBpediaDQ
5http://dbpedia.org/property/
6http://en.wikipedia.org/wiki/Cohen%27s_kappa

52

http://aksw.org/Projects/DBpediaDQ
http://dbpedia.org/property/
http://en.wikipedia.org/wiki/Cohen%27s_kappa

5.1. Crowdsourcing for Data Quality

Total no. of users 58
Total no. of distinct resources evaluated 521
Total no. of resources evaluated 792
Total no. of distinct resources without problems 86
Total no. of distinct resources with problems 435
Total no. of distinct incorrect triples 2928
Total no. of distinct incorrect triples in the dbprop namespace 1745
Total no. of inter-evaluations 268
No. of resources with evaluators having different opinions 89
Resource-based inter-rater agreement (Cohen’s Kappa) 0.34
Triple-based inter-rater agreement (Cohen’s Kappa) 0.38
No. of triples evaluated for correctness 700
No. of triples evaluated to be correct 567
No. of triples evaluated incorrectly 133
% of triples correctly evaluated 81
Average no. of problems per resource 5.69
Average no. of problems per resource in the dbprop namespace 3.45
Average no. of triples per resource 47.19
% of triples affected 11.93
% of triples affected in the dbprop namespace 7.11

Table 5.2.: Overview of the manual quality evaluation.

is a bound that we can place on the difference between the estimated correctness
of the triples and the true value, and a 95% confidence level, which is the measure
of how confident we are in that margin of error7. From these 700 triples, 133 were
evaluated incorrectly resulting in about 81% of triples correctly evaluated.

Table 5.3 shows the total number of problems, the distinct resources and the
percentage of affected triples for each problem type. Overall, the most prevalent
problems, such as broken external links are outside the control of the DBpedia
extraction framework. After that, several extraction and mapping problems that
occur frequently mainly affecting accuracy, can be improved by manually adding
mappings or possibly by improving the extraction framework.

When looking at the detectable and fixable problems from Table 5.1, in light
of their prevalence, we expect that approximately one third of the problems can
be automatically detected and two thirds are fixable by improving the DBpedia
extraction framework. In particular, implicitly related attributes can be properly
extracted with a new extractor, which can be configured using the DBpedia
Mappings Wiki. As a result, we expect that the improvement potential is that
the problem rate in DBpedia can be reduced from 11.93% to 5.81% (calculated by
subtracting 7.11% from 11.93% reported in Table 5.2). After revising the DBpedia
extraction framework, we will perform subsequent quality assessments using the
same methodology in order to realize and demonstrate these improvements.

5.1.4.2.2 Semi-automatic Methodology

The evaluation results in Table 5.4 show that for the irreflexive case all 24
properties that would lead to at least one violation should indeed be declared
as irreflexive. Applying the irreflexive characteristic would therefore help to

7http://research-advisors.com/tools/SampleSize.htm

53

http://research-advisors.com/tools/SampleSize.htm

5. Data Quality

Criteria IT DR AT %

Accuracy
Object incorrectly extracted 32 14 2.69

Object value is incorrectly extracted 259 121 23.22
Object value is incompletely extracted 229 109 20.92
Special template not recognized 14 12 2.30

Datatype problems 7 6 1.15
Datatype incorrectly extracted 356 131 25.14

Implicit relationship between attributes 8 4 0.77
One fact is encoded in several attributes 670 134 25.72
Several facts encoded in one attribute 87 54 10.36
Value computed from another value 14 14 2.69

Accuracy unassigned 31 11 2.11
Relevancy

Irrelevant information extracted 204 29 5.57
Extraction of layout information 165 97 18.62
Redundant attributes value 198 64 12.28
Image related information 121 60 11.52
Other irrelevant information 110 44 8.45

Relevancy unassigned 1 1 0.19
Representational-consistency

Representation of number values 29 8 1.54
Representational-consistency unassigned 5 2 0.38

Interlinking
External websites (URLs) 222 100 19.19
Interlinks with other datasets (URIs) 2 2 0.38
Links to Wikimedia 138 71 13.63
Links to Freebase 99 99 19.00
Links to Geospecies 0 0 0.00
Links generated via Flickr wrapper 135 135 25.91

Interlinking unassigned 3 3 0.58

Table 5.3.: Detected number of problem for each of the defined quality problems.
IT = Incorrect triples, DR = Distinct resources, AT = Affected triples.

find overall 236 critical triples, for e.g. dbpedia:2012_Coppa_ Italia_Final

dbo:followingEvent dbpedia:2012_Coppa_Italia_Final, which is not mean-
ingful as no event is the following event of itself. For asymmetry, we got 81 approved
properties, for example, containing dbo:starring with domain Work and range
Actor. Compared with this, there are also some properties where asymmetry is
not always appropriate, e.g. dbo:influenced.

Functionality, i.e. having at most one value of a property, can be applied to 76
properties. During the evaluation, we observed invalid facts such as, for example,
two different values 2600.0 and 1630.0 for the density of the moon Himalia. We
spotted overall 199,480 errors of this type in the knowledge base. As the result of
the inverse functionality evaluation, we obtained 13 properties where the object in
the triple should only be related to one unique subject, e.g. there should only be
one Formula One racer which won a particular grand prix, which is implicit when
using the property dbo:lastWin.

5.2. Fact Validation

54

5.2. Fact Validation

Characteristic
#Properties

Correct
#Violations

Total Violated Min. Max. Avg. Total

Irreflexivity 142 24 24 1 133 9.8 236
Asymmetry 500 144 81 1 628 16.7 1358
Functionality 739 671 76 1 91581 2624.7 199480
Inverse Functionality 52 49 13 8 18236 1685.2 21908

Table 5.4.: Results of the semi-automatic evaluation. The table shows the total
number of properties that have been suggested to have the given
characteristic by Step I of the semi-automatic methodology, the number
of properties that would lead to at least one violation when applying
the characteristic, the number of properties where the characteristic is
meaningful (manually evaluated) and some metrics for the number of
violations.

Jamaica
Inn

director

Alfred
Hitchcock

BOA Pattern
Library

Search Engine

"Jamaica Inn" "written and directed by" "Alfred Hitchcock"

Training Set

Trustworthiness

Fact
Confirmation

Training Set

Training Set

Machine
Learning

Machine
Learning

Figure 5.2.: Overview of Deep Fact Validation.

Input and Output: The DeFacto system consists of the components depicted
in Figure 5.2. The system takes an RDF triple as input and returns a confidence
value for this triple as well as possible evidence for the fact. The evidence consists
of a set of webpages, textual excerpts from those pages and meta-information on
the pages. The text excerpts and the associated meta information allow the user
to quickly get an overview over possible credible sources for the input statement:
Instead of having to use search engines, browsing several webpages and looking for
relevant pieces of information, the user can more efficiently review the presented
information. Moreover, the system uses techniques which are adapted specifically
for fact validation instead of only having to rely on generic information retrieval
techniques of search engines.

Retrieving Webpages: The first task of the DeFacto system is to retrieve
webpages which are relevant for the given task. The retrieval is carried out by
issuing several queries to a regular search engine. These queries are computed by
verbalizing the RDF triple using natural-language patterns extracted by the BOA

55

5. Data Quality

1 dbpedia:Jamaica_Inn_ %28 film %29 dbo:director

2 dbpedia:Alfred_Hitchcock .

Figure 5.3.: Input data for Defacto..

framework8 [Gerber and Ngonga Ngomo, 2011, Gerber and Ngomo, 2012]. As a
next step, the highest ranked webpages for each query are retrieved. Those
webpages are candidates for being sources for the input fact. Both the search
engine queries as well as the retrieval of webpages are executed in parallel to keep
the response time for users within a reasonable limit. Note that usually this does
not put a high load on particular web servers as webpages are usually derived from
several domains.

Evaluating Webpages: Once all webpages have been retrieved, they undergo
several further processing steps. First, plain text is extracted from each webpage
by removing most HTML markup. In essence, the algorithm decides whether
the web page contains a natural language formulation of the input fact. This
step distinguishes DeFacto from information retrieval methods. If no webpage
confirms a fact according to DeFacto, then the system falls back on light-weight
NLP techniques and computes whether the webpage does at least provide useful
evidence. These indicators are of central importance because a single trustworthy
webpage confirming a fact may be a more useful source than several webpages
with low trustworthiness. The fact confirmation and the trustworthiness indicators
of the most relevant webpages are presented to the user.

Confidence Measurement: In addition to finding and displaying useful sources,
DeFacto also outputs a general confidence value for the input fact. This confidence
value ranges between 0% and 100% and serves as an indicator for the user: Higher
values indicate that the found sources appear to confirm the fact and can be
trusted. Low values mean that not much evidence for the fact could be found on
the Web and that the websites that do confirm the fact (if such exist) only display
low trustworthiness. Naturally, DeFacto is a (semi-)automatic approach: We do
assume that users will not blindly trust the system, but additionally analyze the
provided evidence.

A prototype implementing the above steps is available at http://defacto.

aksw.org. It shows relevant webpages, text excerpts and five different rankings
per page. The generated provenance output can also be saved directly as RDF.
For representing the provenance output, we use the W3C provenance group9

vocabularies. The source code of both, the DeFacto algorithms and user interface,
are openly available10.

8http://boa.aksw.org
9http://www.w3.org/2011/prov/

10https://github.com/AKSW/DeFacto

56

http://defacto.aksw.org
http://defacto.aksw.org
http://boa.aksw.org
http://www.w3.org/2011/prov/
https://github.com/AKSW/DeFacto

5.2. Fact Validation

It should be noted that we decided not to check for negative evidence of facts
in DeFacto, since a) we considered this to be too error-prone and b) negative
statements are much less frequent on the web. It is also noteworthy that DeFacto
is a self training system on two levels: For each fact, the user can confirm after
reviewing the possible sources whether he/she believes it is true. This is then
added to the training set and helps to improve the performance of DeFacto. The
same can be done for text excerpts of web pages: Users can confirm or reject
whether a given text excerpt actually does confirm a fact. More detail of the BOA
framework can be found at [Lehmann et al., 2012].

5.2.1. Trustworthiness Analysis of Webpages

To determine the trustworthiness of a website we first need to determine its
similarity to the input triple. This is determined by how many topics belonging to
the query are contained in a search result retrieved by the web search. We extended
the approach introduced in [Nakamura et al., 2007] by querying Wikipedia with
the subject and object label of the triple in question separately to find the topic
terms for the triple. A frequency analysis is applied on all returned documents
and all terms above a certain threshold that are not contained in a self-compiled
stop word list are considered to be topic terms for a triple. Let s and o be the
URIs for the subject and object of the triple in question and t be a potential topic
term extracted from a Wikipedia page. In addition, let X = (s, p, o).We compare
the values of the following two formulas:

p(t|X) =
|topic(t, d(X))|
|d(X)|

,

p(t|intitle(d(X), s ∨ o)) =
|topic(t, intitle(d(X), s) ∪ intitle(d(X), o))|
|intitle(d(X), s) ∪ intitle(d(X), o)|

.

where d(X) is the set all web documents retrieved for X , intitle(d(X), x) the set of
web documents which have the label of the URI x in their page title. topic(t, d(X))
is the set of documents which contain t in the page body. We consider t to be
a topic term for the input triple if p(t|t(d(X), s) ∨ t(d(X), o)) > p(t|X). Let
TX = {t1, t2, . . . , tn} be the set of all topic terms extracted for a input triple.
Defacto then calculates the trustworthiness of a webpage as follows:

Topic Majority in the Web represents the number of webpages that have
similar topics to the webpage in question. Let P be the set of topic terms appearing
on the current webpage. The Topic Majority in the Web for a webpage w is then
calculated as:

tmweb(w) =

∣∣∣∣∣
n⋃

i=1

topic(ti, d(X))

∣∣∣∣∣− 1

57

5. Data Quality

where t1 is the most occurring topic term in the webpage w. Note that we subtract
1 to prevent counting w.

Topic Majority in Search Results calculates the similarity of a given webpage
for all webpages found for a given triple. Let wk be the webpage to be evaluated,
v(wk) be the feature vector of webpage wk where v(wk)i is 1 if ti is a topic term of
webpage wk and 0 otherwise, ‖v‖ be the norm of v and θ a similarity threshold.
We calculate the Topic Majority for the search results as follows:

tmsearch(w) =

∣∣∣∣{wi|wi ∈ d(X),
v(wk)× v(wi)

‖v(wk)‖ ‖v(wi)‖
> θ

}∣∣∣∣
Topic Coverage measures the ratio between all topic terms for X and all topic
terms occurring in w:

tc(w) =
|TX ∩ P|
|TX |

Pagerank: The Pagerank11 of a webpage is a measure for the relative importance
of a webpage compared to all others, i.e. higher pagerank means that a webpage is
more popular. There is a positive correlation between popularity of a webpage and
its trustworthiness as those pages are more likely to be reviewed by more people
or may have gone under stricter quality assurance before their publication.While a
high pagerank alone is certainly not a sufficient indicator for trustworthiness, we
use it in combination with the above criteria in DeFacto.

5.2.2. Features for Deep Fact Validation

In order to obtain an estimate of the confidence that there is sufficient evidence
to consider the input triple to be true, we decided to train a supervised machine
learning algorithm. Similar to the above presented classifier for fact confirmation,
this classifier also requires computing a set of relevant features for the given task.
In the following, we describe those features and why we selected them.

First, we extend the score of single proofs to a score of web pages as follows:
When interpreting the score of a proof as the probability that a proof actually
confirms the input fact, then we can compute the probability that at least one
of the proofs confirms the fact. This leads to the following stochastic formula12,
which allows us to obtain an overall score for proofs scw on a webpage w:

scw(w) = 1−
∏

pr∈prw(w)

(1− fc(pr))

11http://en.wikipedia.org/wiki/Pagerank
12To be exact, it is the complementary even to the case that none of the proofs do actually

confirm a fact.

58

http://en.wikipedia.org/wiki/Pagerank

5.2. Fact Validation

In this formula, fc (fact confirmation) is the classifier trained in [Lehmann et al., 2012],
which takes a proof pr as input and returns a value between 0 and 1. prw is a
function taking a webpage as input and returning all possible proofs contained in
it.

Combination of Trustworthiness and Textual Evidence In general, the
trustworthiness of a webpage and the textual evidence we find in it, are orthogonal
features. Naturally, webpages with high trustworthiness and a high score for its
proofs should increase our confidence in the input fact. Therefore, it makes sense
to combine trustworthiness and textual evidence as features for the underlying
machine learning algorithm. We do this by multiplying both criteria and then
using their sum and maximum as two different features:

Ffsum(t) =
∑

w∈s(t)

(f(w) · scw(w)) Ffmax(t) = max
w∈s(t)

(f(w) · scw(w))

In this formula f can be instantiated by all four trustworthiness measures: topic
majority on the the web (tmweb), topic majority in search results (tmsearch), topic
coverage (tc) and pagerank (pr). s is a function taking a triple t as argument,
executing the search queries explained in [Lehmann et al., 2012] and returning a
set of webpages. Using the formula, we obtain 8 different features for our classifier,
which combine textual evidence and different trustworthiness measures.

Other Features In addition to the above described combinations of trustwor-
thiness and fact confirmation, we also defined other features:

1. The total number of proofs found.

2. The total number of proofs found above a relevance threshold of 0.5. In some
cases, a high number of proofs with low scores is generated, so the number
of high scoring proofs may be a relevant feature for learning algorithms.

3. The total evidence score: This is the probability that at least one of the
proofs is correct, which is defined analogously to scw above:

1−
∏

pr∈prt(t)

(1− sc(pr))

4. The total evidence score above a relevance threshold of 0.5. This is an
adaption of the above formula, which considers only proofs with a confidence
higher than 0.5.

5. Total hit count: Search engines usually estimate the number of search results
for an input query. The total hit count is the sum of the estimated number
of search results for each query send by DeFacto for a given input triple.

59

5. Data Quality

6. A domain and range verification: If the subject of the input triple is not
an instance of the domain of the property of the input triple, this violates
the underlying schema, which should result in a lower confidence in the
correctness of the triple. This feature is 0 if both domain and range are
violated, 0.5 if exactly one of them is violated and 1 if there is no domain or
range violation.

5.2.3. Evaluation

Our main objective in the evaluation was to find out whether DeFacto can
effectively distinguish between true and false input facts. In the following, we
describe how we trained DeFacto using DBpedia, which experiments we used and
then discuss the results of those experiments.

5.2.3.1. Training DeFacto

We focus our tests on the top 60 most frequently used properties in DBpedia.
The system can easily be extended to cover more properties by extending the
training set of BOA to those properties. Note that DeFacto itself is also not limited
to DBpedia, i.e. while all of its components are trained on DBpedia, the algorithms
can be applied to arbitrary URIs. A performance evaluation on other knowledge
bases is subject to future work, but it should be noted that most parts of DeFacto
– except the LOD background feature described in Section 5.2 and the schema
checking feature in Section 5.2.2 work only with the retrieved labels of URIs and,
therefore, do not depend on DBpedia.

For training a supervised machine learning approach, positive and negative
examples are required. Those were generated as follows:

Positive Examples: In general, we use facts contained in DBpedia as positive
examples. For each of the properties we consider, we generate positive examples
by randomly selecting triples containing the property. Technically, this is done
by counting the frequency of the property and sending a corresponding SPARQL
query with random offset to the DBpedia Live endpoint. We obtain 600 statements
this way and verified them. For each statement, we manually evaluated whether
it was indeed a true fact. It turned out that some of the obtained triples were
incorrectly modeled, e.g. obviously violated domain and range restrictions, or could
not be confirmed by an intensive search on the web within ten minutes. Overall,
473 out of 600 checked triples were facts, which we subsequently used as positive
examples.

Negative Examples: The generation of negative examples is more involved
than the generation of positive examples. In order to effectively train DeFacto,
we considered it essential that many of the negative examples are similar to

60

5.2. Fact Validation

true statements. In particular, most statements should be meaningful subject-
predicate-object phrases. For this reason, we derive the negative examples from
positive examples by modifying them, but following domain and range restrictions.
Assume the input triple (s, p, o) in a knowledge base κ is given and let dom and
ran be functions returning the domain and range of a property13. We used the
following methods to generate the negative example sets dubbed domain, range,
domain-range, property, random, 20%mix (in that order):

1. A triple (s′, p, o) is generated where s′ is an instance of dom(p), the triple
(s′, p, o) is not contained in κ and s′ is randomly selected from all resources
which satisfy the previous requirements.

2. A triple (s, p, o′) is generated analogously by taking ran(p) into account.

3. A triple (s′, p, o′) is generated analogously by taking both dom(p) and ran(p)
into account.

4. A triple (s, p′, o) is generated in which p′ is randomly selected from our
previously defined list of 60 properties and (s, p′, o) is not contained in κ.

5. A triple (s′, p′, o′) is generated where s′ and o′ are randomly selected resources,
p′ is a randomly selected property from our defined list of 60 properties and
(s′, p′, o′) is not contained in κ.

6. 20% of each of the above created negative training sets were randomly selected
to create a heterogenous test set.

Note that all parts of the example generation procedure can also take implicit
knowledge into account. Since we used SPARQL as query language for implement-
ing the procedure, this is straightforward by using SPARQL 1.1 entailment14. In
case of DBpedia Live we did not do this for performance reasons and because it
would not alter the results in that specific case.

Obviously, it is possible that our procedure of generating negative examples
may also generate true statements, which just happen not to be contained in
DBpedia. Similar to the analysis of the positive examples, we checked a sample of
the negative examples on whether they are indeed false statements. This was the
case for all examples in the sample. Overall, we obtained an automatically created
and manually cleaned training set, which we made publicly available15.

5.2.3.2. Experimental Setup

In a first step, we computed all feature vectors, described in Section 5.2.2 for the
training set. DeFacto heavily relies on web requests, which are not deterministic,

13Technically, we used the most specific class, which was explicitly stated to be domain and
range of a property, respectively.

14http://www.w3.org/TR/sparql11-entailment/
15http://aksw.org/projects/DeFacto

61

http://www.w3.org/TR/sparql11-entailment/
http://aksw.org/projects/DeFacto

5. Data Quality

Domain Range
P R F1 AUC RSME P R F1 AUC RMSE

Logistic Regression 0.799 0.753 0.743 0.83 0.4151 0.881 0.86 0.859 0.844 0.3454
Näıve Bayes 0.739 0.606 0.542 0.64 0.6255 0.795 0.662 0.619 0.741 0.5815
SVM 0.811 0.788 0.784 0.788 0.4609 0.884 0.867 0.865 0.866 0.3409
J48 0.835 0.827 0.826 0.819 0.3719 0.869 0.862 0.861 0.908 0.3194
RBF Network 0.743 0.631 0.583 0.652 0.469 0.784 0.683 0.652 0.75 0.4421

Table 5.5.: Classification results for trainings sets domain and range.

Domain-Range Property
P R (F1) AUC RSME P R F1 AUC RMSE

Logistic Regression 0.871 0.85 0.848 0.86 0.3495 0.822 0.818 0.818 0.838 0.3792
Näıve Bayes 0.813 0.735 0.717 0.785 0.5151 0.697 0.582 0.511 0.76 0.6431
SVM 0.88 0.863 0.861 0.855 0.3434 0.819 0.816 0.816 0.825 0.3813
J48 0.884 0.871 0.87 0.901 0.3197 0.834 0.832 0.832 0.828 0.3753
RBF Network 0.745 0.687 0.667 0.728 0.4401 0.72 0.697 0.688 0.731 0.4545

Table 5.6.: Classification results for trainings sets domain-range and property.

i.e. the same search engine query does not always return the same result. To
achieve deterministic behavior and to increase performance and reduce load on
the servers, all web requests are cached. The DeFacto runtime for an input triple
was on average slightly below 5 seconds per input triple16 when using caches.

We stored the features in the arff file format and employed the Weka machine
learning toolkit17 for training different classifiers. In particular, we are interested
in classifiers, which can handle numeric values and output confidence values.
Naturally, confidence values for facts such as, e.g. 95%, are more useful for end
users than just a binary response on whether DeFacto considers the input triple
to be true, since they allow a more fine-grained assessment. Again, we selected
popular machine learning algorithms satisfying those requirements.

We performed 10 fold cross validations for our experiments. In each experiment,
we used our created positive examples, but varied the negative example sets
described above to see how changes influence the overall behavior of DeFacto.

5.2.3.3. Results and Discussion

The results of our experiments are shown in Tables 2-4. Three algorithms – J48,
logistic regression and support vector machines – show promising results. Given

16The performance is roughly equal on server machines and notebooks, since the web requests
dominate.

17http://www.cs.waikato.ac.nz/ml/weka/

Random 20% Mix
P R F1 AUC RMSE P R F1 AUC RMSE

Logistic Regression 0.855 0.854 0.854 0.908 0.3417 0.665 0.645 0.634 0.785 0.4516
Näıve Bayes 0.735 0.606 0.544 0.853 0.5565 0.719 0.6 0.538 0.658 0.6267
SVM 0.855 0.854 0.854 0.906 0.3462 0.734 0.729 0.728 0.768 0.4524
J48 0.876 0.876 0.876 0.904 0.3226 0.8 0.79 0.788 0.782 0.405
RBF Network 0.746 0.743 0.742 0.819 0.4156 0.698 0.61 0.561 0.652 0.4788

Table 5.7.: Classification results for trainings sets random and 20%mix.

62

http://www.cs.waikato.ac.nz/ml/weka/

5.2. Fact Validation

the challenging tasks, F-measures up to 78.8% for the combined negative example
set appear to be very positive indicators that DeFacto can be used to effectively
distinguish between true and false statements, which was our primary evaluation
objective. In general, DeFacto also appears to be quite stable against the various
negative example sets: The algorithms with overall positive results also seem less
affected by the different variations. As expected, the easiest task is to distinguish
statements with random subject and object as well as random statements and true
statements, whereas all other test sets are similarly difficult.

When observing single runs of DeFacto manually, it turned out that our method
of generating positive examples is particularly challenging for DeFacto: For many
of the facts in DBpedia only few sources exist in the Web. While it is widely
acknowledged that the amount of unstructured textual information in the Web by
far surpasses the available structured data, we found out that a significant amount
of statements in DBpedia is difficult to track back to reliable external sources
on the Web even with an exhaustive manual search. There are many reasons for
this, for instance many facts are particular relevant for a specific country, such as
“Person x studied at University y.”, where x is a son of a local politician and y is a
country with only limited internet access compared to first world countries. For
this reason, only in some cases, BOA patterns could be found: In 29 of the 527
proofs of positive examples, BOA patterns could directly be found. This number
increased to 195 out of 527 when employing the WordNet expansion described
in [Lehmann et al., 2012]. In general, DeFacto performs better when the subject
and object of the input triple are popular on the web, i.e. there are several webpages
describing them. In this aspect, we believe our training set is indeed challenging
upon manual observation.

63

6. DBpedia SPARQL Benchmark

This chapter deals with the benchmarking in general, and why it is important.
It details the DBPSB (DBpedia SPARQL Benchmark), its architecture, and
its characteristics. Furthermore, it explains the phases of the benchmarking
process, including the dataset generation, query log analysis, query clustering,
query selection, and eventually the actual benchmarking process. This chapter is
based on papers [Morsey et al., 2011] and [Morsey et al., 2012a].

6.1. Overview on Benchmarking

A benchmark is the process of running a computer program, or a set of programs,
in order to measure and/or compare the performance of a systems(s), normally by
running a number of standard tests and trials against them. The term ’benchmark’
is used to refer to the benchmarking programs themselves as well. Benchmarking is
usually associated with assessing performance characteristics of computer hardware,
for example, the floating point operation performance of a CPU, but there are cir-
cumstances when the technique is also applicable to software. Software benchmarks
are, for example, run against database management systems [Wikipedia, 2012].

There are several benchmarks for database management systems (DBMSs), but
the most valuable and important one is Transaction Processing Performance Council
(TPC) [TPC, 2012]. The main advantage of database benchmarks over triplestore
benchmarks is that they are advanced enough to measure the performances of
different DBMSs efficiently. Triplestore benchmarks still need to go through a long
way to stabilize and mature. The core concern of triplestore benchmarks is to
cover and test as many SPARQL features as possible.

In this thesis, we propose a generic SPARQL benchmark creation methodology.
This methodology is based on a flexible data generation mimicking an input data
source, query log mining, clustering and SPARQL feature analysis. We apply
the proposed methodology to datasets of various sizes derived from the DBpedia
knowledge base. In contrast to previous benchmarks, we perform measurements
on real queries that were issued by humans or Data-Web applications against
existing RDF data. Moreover, we do not only consider the query string but also
the SPARQL feature(s) used in each of the queries.

64

6.1. Overview on Benchmarking

6.1.1. Objectives of Benchmarking

The benchmarks aim to simulate the real workload of a system in order to
asses the performance of that system under these conditions. Basically, the main
objectives of benchmarks are the following:

1. assessment and/or comparison of the relative performances of the systems
under test;

2. identification of the strong and weak points of each system, which in turn
helps in selecting the most appropriate system for a specific purpose;

3. identification of the best and worst operating conditions of each system;

4. assistance for the system developers in order to enhance their systems;

5. assistance for building more advanced benchmarks.

In the following paragraphs we will discuss each one of those objectives in more
detail.

Assessment and/or comparison of performances of the systems: the
benchmark imposes workload on the system under test, monitors its behavior
against that workload, and then measures how long it takes to handle it. That
workload should mimic the real workload under which the system works as much
as possible, e.g. number of queries posed per second, number of concurrent users
accessing system simultaneously. When the benchmark measures the performances
of several systems, then it can highlight the efficiency of each system which opens
the way for improvements.

Identification of the strong and weak points of each system: upon run-
ning the benchmark, each system can discover its areas of strength and weakness,
for instance in database benchmarks a system can be fast in running certain SQL
operation, e.g. ”LIKE” SQL operation, whereas it is slow for another operation, e.g.
”REGEXP”. This narrows down the scope of research and investigation required
to be conducted by the system developers, in order improve their system.

Identification of the best and worst operating conditions of each system:
the benchmark also assists the system maintainers to determine the most suitable
running conditions of their system. This assistance has a great advantage and
importance because it helps the developers to create the required system manuals,
which contain the recommended conditions of their system, e.g. the recommended
operating system, the recommended memory assignment, and the recommended
hard drive speed.

65

6. DBpedia SPARQL Benchmark

Assistance for the system developers to enhance their systems: after
running the benchmark on the system(s) under test, it should generate a detailed
performance report for each system. This performance report should include a set
of concrete items describing the environment under which the system was running
and analysis of its performance. The environment parameters include the operating
system, the speed of hard drives, etc. The performance parameters include the
running time of the system, the queries it was able to answer and the time it
needed to respond, the queries it was unable to respond. The system developers
and maintainers can benefit from the report in identifying the best and worst
operating conditions under which their system can work, e.g. the best underlying
operating system. They can also identify the operations and capabilities that
should be enhanced in their system.

Assistance for building more advanced benchmarks: building a bench-
mark can also help in building more advanced and complicated benchmarks in
the future. A specific benchmark may stress and concentrate on measuring some
performance aspects, e.g. the query response time, whereas it ignores some other
aspects, e.g. number of concurrent users trying to access the system at the same
time. A careful and extensive study of a benchmark can help in discovering the
drawbacks of the benchmark itself in order to develop more powerful and compli-
cated benchmarks. As long as the systems under test advance and improve, we need
more complicated and better benchmarks to evaluate their relative performances.

6.2. Dataset Generation

A crucial step in each benchmark is the generation of suitable datasets. Al-
though we describe the dataset generation here with the example of DBpedia, the
methodology we pursue is dataset-agnostic.

The data generation for DBPSB is guided by the following requirements:

� The DBPSB data should resemble the original data (i.e., DBpedia data
in our case) as much as possible, in particular the large number of classes,
properties, the heterogeneous property value spaces as well as the large
taxonomic structures of the category system should be preserved,

� The data generation process should allow to generate knowledge bases of
various sizes ranging from a few million to several hundred million or even
billion triples,

� Basic network characteristics of different sizes of the network should be
similar, in particular the in- and outdegree,

� The data generation process should be easily repeatable with new versions
of the considered dataset.

66

6.2. Dataset Generation

Indegree Outdegree Indegree Outdegree No. of No. of
Dataset w/ literals w/ literals w/o literals w/o literals nodes triples

Full DBpedia 5.45 30.52 3.09 15.57 27 665 352 153 737 776
10% dataset (seed) 6.54 45.53 3.98 23.05 2 090 714 15 267 418
10% dataset (rand) 3.82 6.76 2.04 3.41 5 260 753 16 739 055
50% dataset (seed) 6.79 38.08 3.82 18.64 11 317 362 74 889 154
50% dataset (rand) 7.09 26.79 3.33 10.73 9 581 470 78 336 781

Table 6.1.: Statistical analysis of DBPSB datasets.

The proposed dataset creation process starts with an input dataset. For the case
of DBpedia, it consists of the datasets loaded into the official SPARQL endpoint1.
Datasets of multiple size of the original data are created by duplicating all triples
and changing their namespaces. This procedure can be applied for any scale
factors. While simple, this procedure is efficient to execute and fulfills the above
requirements.

For generating smaller datasets, we investigated two different methods. The
first method (called “rand”) consists of selecting an appropriate fraction of all
triples of the original dataset randomly. If RDF graphs are considered as small
world graphs, removing edges in such graphs should preserve the properties of the
original graph. The second method (called “seed”) is based on the assumption
that a representative set of resources can be obtained by sampling across classes in
the dataset. Let x be the desired scale factor in percent, e.g. x = 10. The method
first selects x% of the classes in the dataset. For each selected class, 10% of its
instances are retrieved and added to a queue. For each element of the queue, its
concise bound description (CBD) [Stickler, 2005] is retrieved. This can lead to new
resources, which are appended at the end of the queue. This process is iterated
until the target dataset size, measured in number of triples, is reached.

Since the selection of the appropriate method for generating small datasets is an
important issue, we performed a statistical analysis on the generated datasets for
DBpedia. The statistical parameters used to judge the datasets are the average
indegree, the average outdegree, and the number of nodes, i.e. number of distinct
IRIs in the graph. We calculated both the in- and the outdegree for datasets once
with literals ignored, and another time with literals taken into consideration, as it
gives more insight on the degree of similarity between the dataset of interest and
the full DBpedia dataset. The statistics of those datasets are given in Table 6.1.
According to this analysis, the seed method fits our purpose of maintaining basic
network characteristics better, as the average in- and outdegree of nodes are closer
to the original dataset. For this reason, we selected this method for generating the
DBPSB.

1Endpoint: http://dbpedia.org/sparql, Loaded datasets: http://wiki.dbpedia.org/

DatasetsLoaded

67

http://dbpedia.org/sparql
http://wiki.dbpedia.org/DatasetsLoaded
http://wiki.dbpedia.org/DatasetsLoaded

6. DBpedia SPARQL Benchmark

6.3. Query Analysis and Clustering

The goal of the query analysis and clustering is to detect prototypical queries that
were sent to the official DBpedia SPARQL endpoint based on a query-similarity
graph. Note that two types of similarity measures can been used on queries,
i. e. string similarities and graph similarities. Yet, since graph similarities are
very time-consuming and do not bear the specific mathematical characteristics
necessary to compute similarity scores efficiently, we picked string similarities for
our experiments. In the query analysis and clustering step, we follow a four-step
approach. First, we select queries that were executed frequently on the input data
source. Second, we strip common syntactic constructs (e.g., namespace prefix
definitions) from these query strings in order to increase the conciseness of the
query strings. Then, we compute a query similarity graph from the stripped
queries. Finally, we use a soft graph clustering algorithm for computing clusters
on this graph. These clusters are subsequently used to devise the query generation
patterns used in the benchmark. In the following, we describe each of the four
steps in more detail.

Query Selection For the DBPSB, we use the DBpedia SPARQL query log
which contains all queries posed to the official DBpedia SPARQL endpoint for a
three-month period in 20102. For the generation of the current benchmark, we
used the log for the period from April to July 2010. Overall, 31.5 million queries
were posed to the endpoint within this period. In order to obtain a small number
of distinctive queries for benchmarking triplestores, we reduce those queries in the
following two ways:

� Query variations. Often, the same or slight variations of the same query are
posed to the endpoint frequently. A particular cause of this is the renaming
of query variables. We solve this issue by renaming all query variables in
a consecutive sequence as they appear in the query, i.e., var0, var1, var2,
and so on. As a result, distinguishing query constructs such as REGEX or
DISTINCT are a higher influence on the clustering,

� Query frequency. We discard queries with a low frequency (below 10) because
they do not contribute much to the overall query performance.

The application of both methods to the query log data set at hand reduced
the number of queries from 31.5 million to just 35,965. This reduction allows our
benchmark to capture the essence of the queries posed to DBpedia within the
timespan covered by the query log and reduces the runtime of the subsequent steps
substantially.

2The DBpedia SPARQL endpoint is available at: http://dbpedia.org/sparql/ and the query
log excerpt at: ftp://download.openlinksw.com/support/dbpedia/.

68

http://dbpedia.org/sparql/
ftp://download.openlinksw.com/support/dbpedia/

6.3. Query Analysis and Clustering

String Stripping Every SPARQL query contains substrings that segment it into
different clauses. Although these strings are essential during the evaluation of the
query, they are a major source of noise when computing query similarity, as they
boost the similarity score without the query patterns being similar per se. Therefore,
we remove all SPARQL syntax keywords such as PREFIX, SELECT, FROM and
WHERE. In addition, common prefixes (such as http://www.w3.org/2000/01/rdf-
schema# for RDF-Schema) are removed as they appear in most queries.

Similarity Computation The goal of the third step is to compute the simi-
larity of the stripped queries. Computing the Cartesian product of the queries
would lead to a quadratic runtime, i.e., almost 1.3 billion similarity computations.
To reduce the runtime of the benchmark compilation, we use the LIMES frame-
work [Ngonga Ngomo and Auer, 2011]3. The LIMES approach makes use of the
interchangeability of similarities and distances. It presupposes a metric space in
which the queries are expressed as single points. Instead of aiming to find all pairs
of queries such that sim(q, p) ≥ θ, LIMES aims to find all pairs of queries such
that d(q, p) ≤ τ , where sim is a similarity measure and d is the corresponding
metric. To achieve this goal, when given a set of n queries, it first computes

√
n

so-called exemplars, which are prototypical points in the affine space that subdivide
it into regions of high heterogeneity. Then, each query is mapped to the exemplar
it is least distant to. The characteristics of metrics spaces (especially the triangle
inequality) ensures that the distances from each query q to any other query p obeys
the following inequality

d(q, e)− d(e, p) ≤ d(q, p) ≤ d(q, e) + d(e, p), (6.1)

where e is an exemplar and d is a metric. Consequently,

d(q, e)− d(e, p) > τ ⇒ d(q, p) > τ. (6.2)

Given that d(q, e) is constant, q must only be compared to the elements of the
list of queries mapped to e that fulfill the inequality above. By these means, the
number of similarity computation can be reduced significantly. In this particular
use case, we cut down the number of computations to only 16.6% of the Cartesian
product without any loss in recall. For the current version of the benchmark, we
used the Levenshtein string similarity measure and a threshold of 0.9.

Clustering The final step of our approach is to apply graph clustering to the
query similarity graph computed above. The goal of this step is to discover very
similar groups queries out of which prototypical queries can be generated. As a
given query can obey the patterns of more than one prototypical query, we opt for
using the soft clustering approach implemented by the BorderFlow algorithm4.

3Available online at: http://limes.sf.net
4An implementation of the algorithm can be found at http://borderflow.sf.net

69

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://limes.sf.net
http://borderflow.sf.net

6. DBpedia SPARQL Benchmark

BorderFlow [Ngonga Ngomo and Schumacher, 2009] implements a seed-based
approach to graph clustering. The default setting for the seeds consists of taking
all nodes in the input graph as seeds. For each seed v, the algorithm begins with
an initial cluster X containing only v. Then, it expands X iteratively by adding
nodes from the direct neighborhood of X to X until X is node-maximal with
respect to a function called the border flow ratio. The same procedure is repeated
over all seeds. As different seeds can lead to the same cluster, identical clusters
(i.e., clusters containing exactly the same nodes) that resulted from different seeds
are subsequently collapsed to one cluster. The set of collapsed clusters and the
mapping between each cluster and its seeds are returned as result. Applying
BorderFlow to the input queries led to 12272 clusters, of which 24% contained only
one node, hinting towards a long-tail distribution of query types. To generate the
patterns used in the benchmark, we only considered clusters of size 5 and above.

6.4. SPARQL Feature Selection and Query
Variability

After the completion of the detection of similar queries and their clustering,
our aim is now to select a number of frequently executed queries that cover most
SPARQL features and allow us to assess the performance of queries with single as
well as combinations of features. The SPARQL features we consider are:

� the overall number of triple patterns contained in the query (|GP |),

� the graph pattern constructors UNION (UON), OPTIONAL (OPT),

� the solution sequences and modifiers DISTINCT (DST),

� as well as the filter conditions and operators FILTER (FLT), LANG (LNG),
REGEX (REG) and STR (STR).

We pick different numbers of triple patterns in order to include the efficiency of
JOIN operations in triplestores. The other features were selected because they
frequently occurred in the query log. We rank the clusters by the sum of the
frequency of all queries they contain. Thereafter, we select 25 queries as follows:
For each of the features, we choose the highest ranked cluster containing queries
having this feature. From that particular cluster we select the query with the
highest frequency.

In order to convert the selected queries into query templates, we manually select
a part of the query to be varied. This is usually an IRI, a literal or a filter condition.
In Figure 6.1 those varying parts are indicated by %%var%% or in the case of multiple
varying parts %%varn%%. We exemplify our approach to replacing varying parts
of queries by using Query 9, which results in the query shown in Figure 6.1.
This query selects a specific settlement along with the airport belonging to that

70

6.5. Experimental Setup

1 SELECT * WHERE {

2 { ?var0 a dbp -owl:Settlement ;

3 rdfs:label %%var%% .

4 ?var1 a dbp -owl:Airport . }

5 { ?var1 dbp -owl:city ?var0 . }

6 UNION
7 { ?var1 dbp -owl:location ?var0 . }

8 { ?var1 dbp -prop:iata ?var2 . }

9 UNION
10 { ?var1 dbp -owl:iataLocationIdentifier ?var2 . }

11 OPTIONAL
12 { ?var1 foaf:homepage ?var3 . }

13 OPTIONAL
14 { ?var1 dbp -prop:nativename ?var4 . }

15 }

Figure 6.1.: Sample query with placeholder.

1 SELECT DISTINCT ?var WHERE {

2 { ?var0 a dbp -owl:Settlement ;

3 rdfs:label ?var .

4 ?var1 a dbp -owl:Airport . }

5 { ?var1 dbp -owl:city ?var0 . }

6 UNION
7 { ?var1 dbp -owl:location ?var0 . }

8 { ?var1 dbp -prop:iata ?var2 . }

9 UNION
10 { ?var1 dbp -owl:iataLocationIdentifier ?var2 . }

11 OPTIONAL
12 { ?var1 foaf:homepage ?var3 . }

13 OPTIONAL
14 { ?var1 dbp -prop:nativename ?var4 . }

15 } LIMIT 1000

Figure 6.2.: Sample auxiliary query returning potential values a placeholder can
assume.

settlement as indicated in Figure 6.1. The variability of this query template was
determined by getting a list of all settlements using the query shown in Figure 6.2.
By selecting suitable placeholders, we ensured that the variability is sufficiently
high (≥ 1000 per query template). Note that the triplestore used for computing
the variability was different from the triplestore that we later benchmarked in
order to avoid potential caching effects.

For the benchmarking we then used the list of thus retrieved concrete values to
replace the %%var%% placeholders within the query template. This method ensures,
that (a) the actually executed queries during the benchmarking differ, but (b)
always return results. This change imposed on the original query avoids the effect
of simple caching.

6.5. Experimental Setup

This section presents the setup we used when applying the DBPSB on four
triplestores commonly used in Data Web applications. We first describe the

71

6. DBpedia SPARQL Benchmark

triplestores and their configuration, followed by our experimental strategy and
finally the obtained results. All experiments were conducted on a typical server
machine with an AMD Opteron 6 Core CPU with 2.8 GHz, 32 GB RAM, 3 TB
RAID-5 HDD running Linux Kernel 2.6.35-23-server and Java 1.6 installed. The
benchmark program and the triplestore were run on the same machine to avoid
network latency.

Triplestores Setup We carried out our experiments by using the triplestores
Virtuoso [Erling and Mikhailov, 2007], Sesame [Broekstra et al., 2002], Jena-TDB
[Owens et al., 2008b], and BigOWLIM [Bishop et al., 2011]. The configuration
and the version of each triplestore were as follows:

1. Virtuoso: Open-Source Edition version 6.1.2: We set the following memory-
related parameters: NumberOfBuffers = 1048576, MaxDirtyBuffers = 786432.

2. Sesame: Version 2.3.2 with Tomcat 6.0 as HTTP interface: We used the
native storage layout and set the spoc, posc, opsc indices in the native storage
configuration. We set the Java heap size to 8GB.

3. Jena-TDB: Version 0.8.7 with Joseki 3.4.3 as HTTP interface: We con-
figured the TDB optimizer to use statistics. This mode is most commonly
employed for the TDB optimizer, whereas the other modes are mainly used
for investigating the optimizer strategy. We also set the Java heap size to
8GB.

4. BigOWLIM: Version 3.4, with Tomcat 6.0 as HTTP interface: We set the
entity index size to 45,000,000 and enabled the predicate list. The rule set
was empty. We set the Java heap size to 8GB.

In summary, we configured all triplestores to use 8GB of memory and used default
values otherwise. This strategy aims on the one hand at benchmarking each
triplestore in a real context, as in real environment a triplestore cannot dispose of
the whole memory up. On the other hand it ensures that the whole dataset cannot
fit into memory, in order to avoid caching.

6.5.1. Benchmark Phases

Once the triplestores loaded the DBpedia datasets with different scale factors,
the benchmark execution phase began. It comprised the following stages:

1. System Restart: Before running the experiment, the triplestore and its
associated programs were restarted in order to clear memory caches.

2. Warm-up Phase: In order to measure the performance of a triplestore
under normal operational conditions, a warm-up phase was used. In the
warm-up phase, query mixes were posed to the triplestore. The queries posed

72

6.6. Benchmarking Results

10% 50% 100% 200%

Dataset size

100

101

102

103

104
QMpH (logarithmic) Virtuoso Sesame Jena-TDB BigOWLIM

Figure 6.3.: QMpH for all triplestores of DBPSB version 1.

during the warm-up phase were disjoint with the queries posed in the hot-run
phase. For DBPSB, we used a warm-up period of 20 minutes.

3. Hot-run Phase: During this phase, the benchmark query mixes were sent
to the tested store. We kept track of the average execution time of each
query as well as the number of query mixes per hour (QMpH). The duration
of the hot-run phase in DBPSB was 60 minutes.

Since some benchmark queries did not respond within reasonable time, we specified
a 180 second timeout after which a query was aborted and the 180 second maximum
query time was used as the runtime for the given query even though no results
were returned. The benchmarking code along with the DBPSB queries is freely
available5.

We have created 2 versions of DBPSB, with the following specifications:

� DBPSB version 1: we used 4 different dataset sizes, i.e. 10%, 50%, 100%,
and 200%, and 25 queries for performance evaluation. The query list of
DBPSB version 1 can be found in Appendix A.

� DBPSB version 2: we used 3 different dataset sizes, i.e. 10%, 50%, and 100%,
and 20 queries for performance evaluation. The query list of DBPSB version
2 can also be found in Appendix A.

6.6. Benchmarking Results

We evaluated the performance of the triplestores with respect to two main metrics:
their overall performance on the benchmark and their query-based performance

5https://akswbenchmark.svn.sourceforge.net/svnroot/akswbenchmark/

73

https://akswbenchmark.svn.sourceforge.net/svnroot/akswbenchmark/

6. DBpedia SPARQL Benchmark

�✁✂ ✄✁✂ �✁✁✂ ☎✁✁✂

✆✝✞✝✟✠✞ ✟✡☛✠

☞

✌☞

✍☞

✎☞

✏☞

✑☞

✒☞

✓✠✝✔ ✕✡✖✞✗✘✟✘ ✙✠✟✝✚✠ ✛✠✔✝✜✢✆✣ ✣✡✤✥✦✧★✓

Figure 6.4.: Geometric mean of QpS of DBPSB version 1.

10% 50% 100% 200%

Dataset size

100

101

102

103

104
QMpH (logarithmic) Virtuoso Sesame Jena-TDB BigOWLIM

Figure 6.5.: QMpH for all triplestores of DBPSB version 2.

0

20

40

60

80

100

120

10% 50% 100%

Mean

Dataset size

Virtuoso Sesame Jena TDB BigOWLIM

Figure 6.6.: Geometric mean of QpS of DBPSB version 2.

74

6.6. Benchmarking Results

� ✁ ✂ ✄ ☎✆ ☎� ☎✁ ☎✂ ☎✄ �✆ �� �✁

✝✞✟✠✡ ☛☞✌

✆

☎✆✆

�✆✆

✍✆✆

✁✆✆

✎✆✆

✏
✑
✒

✓✔✠✕✞☞✖☞ ✗✟✖✘✙✟ ✚✟✛✘ ✜✢✣ ✣✔✤✥✦✧★✩✪✫✬ ✭✮✯ ✰✱✲ ✳✴✵✴✶✷✵

� ✁ ✂ ✄ ☎✆ ☎� ☎✁ ☎✂ ☎✄ �✆ �� �✁

✝✞✟✠✡ ☛☞✌

✆

�✆

✁✆

✂✆

✄✆

☎✆✆

☎�✆

☎✁✆

☎✂✆

☎✄✆

�✆✆

��✆

✍
✎
✏

✑✒✠✓✞☞✔☞ ✕✟✔✖✗✟ ✘✟✙✖ ✚✛✜ ✜✒✢✣✤✥✦✧★✩✪ ✫✬✭ ✮✯✰ ✱✲✳✲✴✵✳

� ✁ ✂ ✄ ☎✆ ☎� ☎✁ ☎✂ ☎✄ �✆ �� �✁

✝✞✟✠✡ ☛☞✌

✆

�✆

✁✆

✂✆

✄✆

☎✆✆

☎�✆

☎✁✆

☎✂✆

☎✄✆

�✆✆

��✆

✍
✎
✏

✑✒✠✓✞☞✔☞ ✕✟✔✖✗✟ ✘✟✙✖ ✚✛✜ ✜✒✢✣✤✥✦✧★✩✪ ✫✬✭ ✮✯✯✰ ✱✲✳✲✴✵✳

� ✁ ✂ ✄ ☎✆ ☎� ☎✁ ☎✂ ☎✄ �✆ �� �✁

✝✞✟✠✡ ☛☞✌

✆

�✆

✁✆

✂✆

✄✆

☎✆✆

☎�✆

☎✁✆

☎✂✆

☎✄✆

�✆✆

��✆

✍
✎
✏

✑✒✠✓✞☞✔☞ ✕✟✔✖✗✟ ✘✟✙✖ ✚✛✜ ✜✒✢✣✤✥✦✧★✩✪ ✫✬✭ ✮✯✯✰ ✱✲✳✲✴✵✳

Figure 6.7.: Queries per Second (QpS) of DBPSB version 1 for all triplestores for
10%, 50%, 100%, and 200%.

The overall performance of the triplestores was measured by computing its query
mixes per hour (QMpH). The metric used for query-based performance evaluation
is Queries per Second (QpS). QpS is computed by summing up the runtime of each
query in each iteration, dividing it by the QMpH value and scaling it to seconds.

75

6. DBpedia SPARQL Benchmark

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

100

200

300

400

500

600

Query No.

Q
pS

QpS for 10% dataset Virtuoso Sesame Jena TDB BigOWLIM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

350

400

Query No.

Q
pS

QpS for 50% dataset Virtuoso Sesame Jena TDB BigOWLIM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

Query No.

Q
pS

QpS for 100% dataset Virtuoso Sesame Jena TDB BigOWLIM

Figure 6.8.: Queries per Second (QpS) of DBPSB version 2 for all triplestores for
10%, 50% and 100%.

6.6.1. DBPSB Version 1

The query mixes per hour (QMpH) as shown in Figure 6.3. Please note that
we used a logarithmic scale in this figure due to the high performance differences
we observed. In general, Virtuoso was clearly the fastest triplestore, followed
by BigOWLIM, Sesame and Jena-TDB. The highest observed ratio in QMpH
between the fastest and slowest triplestore was 63.5 and it reached more than
10 000 for single queries. The scalability of stores did not vary as much as the
overall performance. There was on average a linear decline in query performance
with increasing dataset size.

We tested the queries that each triplestore failed to executed withing the
180s timeout and noticed that even much larger timeouts would not have been
sufficient most of those queries. We did not exclude the queries completely from
the overall assessment, since this would have affected a large number of the
queries and adversely penalized stores, which complete queries within the time

76

6.6. Benchmarking Results

frame. We penalized failure queries with 180s, similar to what was done in the
SP2Bench [Schmidt et al., 2009]. Virtuoso was the only store, which completed
all queries in time. For Sesame and OWLIM only rarely a few particular queries
timed out. Jena-TDB had always severe problems with queries 7, 10 and 20 as
well as 3, 9, 12 for the larger two datasets.

The metric used for query-based performance evaluation is Queries per Second
(QpS). QpS is computed by summing up the runtime of each query in each iteration,
dividing it by the QMpH value and scaling it to seconds. The QpS results for
all triplestores and for the 10%, 50%, 100%, and 200% datasets are depicted in
Figure 6.7.

The outliers, i.e. queries with very low QpS, will significantly affect the mean
value of QpS for each store. So, we additionally calculated the geometric mean of
all the QpS timings of queries for each store. The main advantage of calculating
the geometric mean is that the effect of outliers is weakened. The geometric mean
for all triplestores is also depicted in Figure 6.4.
Detailed results of DBPSB version 1 are indicated in tables 6.2, and 6.3.

6.6.2. DBPSB1 Results Discussion

This section consists of three parts: First, we compare the general performance
of the systems under test. Then we look individual queries and the SPARQL
features used within those queries in more detail to observe particular strengths
and weaknesses of stores. Thereafter, we compare our results with those obtained
with previous benchmarks and elucidate some of the main differences between
them.

General Performance Figure 6.3 depicts the benchmark results for query
mixes per hour for the four systems and dataset sizes. Virtuoso leads the field
with a substantial head start of double the performance for the 10% dataset
(and even quadruple for other dataset sizes) compared to the second best system
(BigOWLIM). While Sesame is able to keep up with BigOWLIM for the smaller
two datasets it considerably looses ground for the larger datasets. Jena-TDB can
in general not deliver competitive performance with being by a factor 30-50 slower
than the fastest system.

If we look at the geometric mean of all QpS results in Figure 6.4, we observe
similar insights. The spreading effect is weakened, since the geometric mean reduces
the effect of outliers. Still Virtuoso is the fastest system, although Sesame manages
to get pretty close for the 10% dataset. This shows that most, but not all, queries
are fast in Sesame for low dataset sizes. For the larger datasets, BigOWLIM is the
second best system and shows promising scalability, but it is still by a factor of
two slower than Virtuoso.

77

6. DBpedia SPARQL Benchmark

Virtuoso Sesame Jena-TDB BigOWLIM
Query QpS SD GM QpS SD GM QpS SD GM QpS SD GM

1 261.6 45.3 250.1 466.3 136.2 428.8 330.4 155.5 258.9 63 8.9 61.9
2 450.9 59 445.6 427.7 15.5 427.4 255.1 80.4 236.5 64.7 4.1 64.4
3 82.8 16.2 81.3 348.3 97.3 320.7 1.4 1.9 0.6 55.3 14.8 52.4
4 138.1 48.9 122.6 10 60 0.2 71.3 61.1 52.7 20.6 21.4 11.6
5 67.7 10.9 67 287.9 65.3 269.6 116.1 70.5 93.3 46.6 17.5 42.1
6 60.5 17.9 58 49.4 5.5 48.2 82.5 58.1 65.2 19.2 5.1 18.5
7 28.5 8.5 26.7 207.1 79 183.7 1.6 2.5 0.5 26.5 13.9 22.7
8 52.8 67.4 24.4 65.7 112.9 23.6 134 75.1 108 18 21.9 9.1
9 22.9 3.9 22.7 226.9 86.8 197.8 0.6 0.6 0.4 48.9 9.1 47.4

10 8.1 0.4 8.1 1.4 0.4 1.4 0.1 0.04 0.1 2.8 0.1 2.8
11 176 36.2 171 289.7 80 265.8 125.3 67 104.9 51.5 12.6 49.3
12 124.8 20.2 123.1 309.9 118 264.8 1 3 0.1 59.6 12.3 57.2
13 129.3 16.5 128.3 367.2 101.4 337.3 190.1 77.3 157.9 46.7 16.4 43
14 83.1 29.8 74.1 179.2 134.6 116 96.2 69 74 25.8 20.5 16.8
15 128.1 67.6 90.3 162.6 148.5 72.6 97.3 100.2 43.9 43.1 23.9 28.4
16 121.5 23.6 118.7 249.9 67.6 236.4 28.8 30.5 19.9 39.8 15.7 35.5
17 102.2 29.8 95.7 186.2 109.5 135.8 115.6 63.6 97.6 42.8 18.9 36.1
18 182.8 33.1 179.1 0.5 0.1 0.5 178.3 52.6 168.1 23.3 15.5 18.3
19 199.8 47.9 191.1 302.5 69.9 286.7 200.8 88.9 174.5 62.2 4.7 61.9
20 18.9 4.1 18.6 221 63.3 203.7 0.1 0.3 0.02 50.6 8.1 49.5
21 483 48 480.6 459.4 16.7 459.1 289.6 92.5 224.9 66.1 1.8 66.1
22 206.1 60.6 190.2 241.4 173.8 140.6 38 86 8.4 52.8 19.3 44.7
23 140.3 27.4 137.1 354.7 116.9 315.3 23.9 39.7 12.6 64.1 6.1 63.6
24 1.2 0.7 0.8 32.4 100.2 3.7 173 88.1 146.4 0.3 0.2 0.2
25 62.8 19 59.2 259.8 120.6 209.5 110.5 99.8 68 52.3 12.5 49.7

1 264.5 76.1 242 153.5 136.3 116.9 64.8 13.6 63.2 56.7 10.1 55.5
2 22.4 3.2 22.2 137 98 109.9 87.6 87.9 68.6 27.7 12.7 25.6
3 55.4 19.7 51.8 81.1 92 52.6 0.1 0.1 0.1 29.4 18.9 23.3
4 44 62.7 17.6 0 0 0 41.7 19.5 38.4 3.9 3.3 3
5 60.3 14 58 46.6 70 24.8 40.2 32 30.6 21.5 15.4 16.9
6 14 7.3 12.3 6.2 2 5 162.5 69.8 141.3 5 2.3 4.3
7 23.1 7.9 21.8 62.2 52.3 42.3 0.2 0.5 0.02 10.7 5.8 9.2
8 32.5 46.9 5 15.6 39.4 2.7 88.2 67.3 67.8 8.2 13.9 1.7
9 20.4 5.3 19.9 42.3 35.3 29.1 2.3 3.8 0.8 27.2 15.1 22.4

10 1 0.1 1 0.2 0 0.2 4.3 3 1 0.28 0.02 0.28
11 97.7 56.9 73.9 45.2 48.1 36.3 37 7.1 36.3 27 10.1 24
12 62.3 22.2 57.6 56.3 58.2 42.4 0.02 0.02 0.02 34.1 18.9 28.7
13 105.1 52.1 91.7 97.5 60.4 86.8 105 94.3 44.9 19.9 10.4 17.9
14 53.9 40 38 20.4 17.6 12.3 42.8 13.2 40.9 7.9 10.6 3.3
15 51.9 32.7 33.4 33.5 66.1 11.5 43.1 38.9 32.8 8.6 13.7 2.2
16 106.7 25.4 103.4 87.7 75.4 64.8 73.2 48.3 63 38.7 12.9 36.7
17 33 11.2 30.6 20.9 19.9 13.3 31.9 9.5 30.5 10.3 8.5 6
18 203.9 57.9 190.4 0.1 0 0.1 57.6 9.6 56.9 29 12.7 26.4
19 106.6 53.6 93.5 46.1 38.1 39.7 26.8 10.2 25.3 33.7 16.9 29.9
20 15 4 14.5 37.7 30.6 28.9 0.01 0 0.01 20.5 16.2 15.2
21 189.1 138.3 135 105.6 87.3 84.3 50 16.2 46.4 28.1 13.4 25.7
22 109.1 43.9 90.3 29.5 41.4 14 1.2 1.5 0.7 15.7 15.9 6.1
23 81.2 31.4 74.4 78.3 97.4 47 1.5 2.4 0.4 32.4 18.2 27.9
24 0.2 0.1 0.2 0.9 0.4 0.7 53.7 39.3 43.6 0.06 0.05 0.04
25 35.6 10.9 33.3 45.2 57.4 26.4 37.1 16 32.4 11.5 7.6 8.6

Table 6.2.: Queries per second (QpS), geometric mean of query runtime in millisec-
onds (GM), and standard deviation of query runtime in milliseconds
(SD), for the 10% dataset, and 50% dataset respectively of DBPSB
version 1.

78

6.6. Benchmarking Results

Virtuoso Sesame Jena-TDB BigOWLIM
Query QpS SD GM QpS SD GM QpS SD GM QpS SD GM

1 245.9 30.9 240.9 112.7 47.1 103.9 54.5 5.9 54.2 58.3 6.1 57.9
2 3.6 0.1 3.6 81.1 45.9 69.8 67.1 40 60 31 11.8 28.7
3 42.8 21.8 37.8 32.1 14.5 28.9 0.02 0.03 0.01 23.9 7.7 22.8
4 34 50.2 14.4 0.03 0.01 0.02 4.6 9.1 0.3 29.4 22.4 18.8
5 47.9 19.7 41.7 10.7 10.6 7.6 12.5 4.9 11.5 16.1 14.5 11.1
6 8.6 2.3 8.3 4.2 2.4 2.8 45.5 46.9 9.6 4.9 2.3 4.1
7 21 12.1 18.2 21.5 37.4 13.8 0.04 0.03 0.03 7.4 4.5 6.1
8 38.3 47.7 4.8 17.8 33.7 2.7 27.1 36.7 1.3 8.3 14.5 1
9 17.8 5.7 17.1 23.3 15.9 19.5 0.01 0 0.01 15.9 6.3 14.9

10 1 0.1 0.9 0.1 0 0.1 0.01 0 0.01 0.16 0.01 0.16
11 115.7 31.7 100.2 48.5 41.9 39.4 2.9 5.7 0.2 36.2 14.4 33.2
12 47.1 25.4 41.7 25.4 12.9 21.7 0.01 0 0.01 24.6 9.7 22.9
13 89.5 73.6 64.6 43.1 41.4 28.6 0.2 0.2 0.1 38.1 17.9 33.6
14 25.1 37.3 6 3.4 5.2 1 26.3 15.7 23 28.1 26.8 8.5
15 48.4 33.2 31.1 3.1 4.7 1.3 0.04 0.04 0.02 7.9 12.2 2.5
16 137.3 14.4 136.7 98.8 49.4 89.7 29.3 30.8 6.2 48.5 10.4 47.1
17 32.8 9.3 31.2 6.3 6.5 2.7 21.7 8.1 20.3 21.5 14.8 12.3
18 208.3 27.1 205.6 0.1 0 0 44.8 34.8 9.2 47 8.3 46.1
19 99.2 67.3 81.8 40.3 20.6 35.8 46.5 24.6 40.9 34.9 7 34.2
20 14.1 4.1 13.5 8.2 6.6 6.8 0.01 0 0.01 15.1 8.3 13.5
21 98.8 76.2 78.3 85.7 69 69.2 0.1 0.1 0.1 31.3 10.5 29.7
22 115.1 52.9 93.6 5.5 8.5 2 9.5 13.3 0.6 9.5 10.6 4.6
23 76.7 38.9 67.8 41 17.8 37.6 20.2 34.4 0.8 29.1 8.4 28.2
24 0.2 0.1 0.1 0.7 0.4 0.4 17.4 15 3.7 0.05 0.05 0.03
25 30.1 11 27.1 16.5 14.5 10.3 18.1 22.5 1.2 14.3 9.4 11

1 247.1 44.4 229.9 93.2 39.2 84.4 226.9 465.5 36.6 54.5 13.4 47.7
2 1.8 0.1 1.8 45.7 27.4 39.9 17.6 6.4 16.6 26.8 11.2 24.5
3 42.8 21.1 36.6 19.8 9.1 17.7 0.03 0.02 0.02 18.1 8.2 16.7
4 26.8 46.1 12.1 0 0 0 45.9 33.6 34.4 6.8 9 4.1
5 52.7 19.8 47.4 5.5 2.7 4.7 5.7 4.3 3 11.8 10.4 8.7
6 9.4 6.1 7.6 2.4 2 1.4 34.6 47 15.1 2.9 1.3 2.6
7 14.3 9.3 11.7 7.1 2.4 6.6 0.01 0 0.01 8.7 5.3 7
8 33.6 42.9 2.8 3.8 6.7 0.4 21.8 19.9 13.9 8.8 15.7 1
9 16.1 6 15.1 9.9 3.2 9.5 0.02 0.04 0.01 14.5 5.1 13.6

10 0.5 0 0.5 0.1 0 0 0.01 0 0.01 0.16 0.02 0.16
11 114.7 57.5 73 34.3 17.2 30.5 15.9 2.7 15.6 21 7.9 19.2
12 43.8 31.8 36.1 18 8.1 15.7 0.01 0 0.01 21.1 5.4 20.4
13 64.7 51.8 48.6 21.7 13.2 18.5 13.6 9.5 11.1 20.1 10.3 18.2
14 23.9 29.5 11.4 1.7 2.8 0.4 7.2 2.9 6.5 6.3 6.5 3.4
15 65.1 51.5 36.9 3.3 4.5 1.4 1.8 1.6 1.2 3.8 8.8 0.8
16 191.2 24.1 189.8 83.6 40.3 74.9 11.1 3.1 10.6 45.4 10.6 44
17 24.1 12.2 19.4 1.6 1.8 0.8 6.9 1.7 6.8 9.1 6.7 6.8
18 212 35.8 207.3 0 0 0 19.7 7.9 17.5 44 8.3 43.1
19 84.8 62.5 69 15.9 4.3 15.3 22.4 13 19.6 34 8.9 32.7
20 13.6 4.4 12.9 8.6 17.5 4.5 0.01 0 0.01 13.1 8.2 11.5
21 93.8 77 73.7 53.6 20.8 50 15.9 4.9 15.2 26.5 6.3 25.7
22 120 80.5 74.3 20.7 66.2 2.1 0.6 0.6 0.4 11.1 11.5 5.9
23 67.6 33.3 60.1 30.3 16.7 26.9 9.2 5.9 6.9 24.1 5.5 23.6
24 0.1 0 0.1 0.3 0.2 0.2 8.3 4.8 6.4 0.05 0.05 0.02
25 23.5 15.2 19 8.1 7.8 5.2 9.2 1.6 9 11.6 9.5 8.6

Table 6.3.: Queries per second (QpS), geometric mean of query runtime in millisec-
onds (GM), and standard deviation of query runtime in milliseconds
(SD), for the 100% dataset, and 200% dataset of DBPSB version 1.

79

6. DBpedia SPARQL Benchmark

Scalability, Individual Queries and SPARQL Features Our first observa-
tion with respect to individual performance of the triple stores is that Virtuoso
demonstrates a good scaling factor on the DBPSB. When dataset size changes
by factor 5 (from 10% to 50%), the performance of the triple store only degrades
by factor 3.12. Further dataset increases (i.e. the doubling to the 100% and
200% datasets) result in only relatively small performance decreases by 20% and
respectively 30%.

Virtuoso outperforms Sesame for all datasets. In addition, Sesame does not scale
as well as Virtuoso for small dataset sizes, as its performance degrades sevenfold
when the dataset size changes from 10% to 50%. However, when the dataset size
doubles from the 50% to the 100% dataset and from 100% to 200% the performance
degrades by just half.

The performance of Jena-TDB is the lowest of all triple stores and for all dataset
sizes. The performance degradation factor of Jena-TDB is not as pronounced as
that of Sesame and almost equal to that of Virtuoso when changing from the 10%
to the 50% dataset. However, the performance of Jena-TDB only degrades by a
factor of 2 for the transition between the 50% and 100% dataset, and reaches 0.8
between the 100% and 200% dataset, leading to a slight increase of its QMpH.

BigOWLIM is the second fastest triple store for all dataset sizes, after Virtuoso.
BigOWLIM degrades with a factor of 7.2 in transition from 10% to 50% datasets,
but it decreases dramatically to 1.29 with dataset size 100%, and eventually reaches
1.26 with dataset size 200%.

Due to the high diversity in the performance of different SPARQL queries, we
also computed the geometric mean of the QpS values of all queries as described in
the previous section and illustrated in Figure 6.4. By using the geometric mean,
the resulting values are less prone to be dominated by a few outliers (slow queries)
compared to standard QMpH values. This allows for some interesting observations
in DBPSB by comparing Figure 6.3 and 6.4. For instance, it is evident that
Virtuoso has the best QpS values for all dataset sizes.

With respect to Virtuoso, query 10 performs quite poorly. This query involves
the features FILTER, DISTINCT, as well as OPTIONAL. Also, the well performing
query 1 involves the DISTINCT feature. Query 3 involves a OPTIONAL resulting in
worse performance. Query 2 involving a FILTER condition results in the worst
performance of all of them. This indicates that using complex FILTER in conjunction
with additional OPTIONAL, and DISTINCT adversely affects the overall runtime of
the query.

Regarding Sesame, queries 4 and 18 are the slowest queries. Query 4 includes
UNION along with several free variables, which indicates that using UNION with
several free variables causes problems for Sesame. Query 18 involves the features
UNION, FILTER, STR and LANG. Query 15 involves the features UNION, FILTER, and
LANG, and its performance is also pretty slow, which leads to the conclusion that
introducing this combination of features is difficult for Sesame. Adding the STR

feature to that feature combination affects the performance dramatically and
prevents the query from being successfully executed.

80

6.6. Benchmarking Results

1M 25M 100M

No. of Triples

0

0.5

1

1.5

2

2.5

R
el

at
iv

e
p

er
fo

rm
an

ce

Sesame Jena TDB Virtuoso BSBM V2 scalability

100M 200M

No. of Triples

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
el

at
iv

e
p

er
fo

rm
an

ce

Jena TDB Virtuoso BigOwlimBSBM V3 scalability

10% 50% 100% 200%

No. of Triples

0

0.5

1

1.5

2

2.5

3

3.5

R
el

at
iv

e
p

er
fo

rm
an

ce

Sesame Jena TDB Virtuoso BigOWLIMDBPSB scalability

Figure 6.9.: Comparison of triple store scalability between BSBM V2, BSBM V3,
DBPSB.

For Jena-TDB, there are several queries that timeout with large dataset sizes,
but queries 10 and 20 always timeout. The problem with query 10 is already
discussed with Virtuoso. Query 20 contains FILTER, OPTIONAL, UNION, and LANG.
Query 2 contains FILTER only, query 3 contains OPTIONAL, and query 4 contains
UNION only. All of those queries run smoothly with Jena-TDB, which indicates that
using the LANG feature, along with those features affects the runtime dramatically.

For BigOWLIM, queries 10, and 15 are slow queries. Query 10 was already
problematic for Virtuoso, as was query 15 for Sesame.

Query 24 is slow on Virtuoso, Sesame, and BigOWLIM, whereas it is faster
on Jena-TDB. This is due to the fact that most of the time this query returns
many results. Virtuoso, and BigOWLIM return a bulk of results at once, which
takes long time. Jena-TDB just returns the first result as a starting point, and
iteratively returns the remaining results via a buffer.

It is interesting to note that BigOWLIM shows in general good performance, but
almost never manages to outperform any of the other stores. Queries 11, 13, 19,
21 and 25 were performed with relatively similar results across triple stores thus
indicating that the features of these queries (i.e. UON, REG, FLT) are already
relatively well supported. With queries 3, 4, 7, 9, 12, 18, 20 we observed dramatic
differences between the different implementations with factors between slowest and
fastest store being higher than 1000. It seems that a reason for this could be the
poor support for OPT (in queries 3, 7, 9, 20) as well as certain filter conditions
such as LNG in some implementations, which demonstrates the need for further
optimizations.

81

6. DBpedia SPARQL Benchmark

Comparison with Previous Benchmarks In order to visualize the perfor-
mance improvement or degradation of a certain triple store compared to its
competitors, we calculated the relative performance for each store compared to the
average and depicted it for each dataset size in Figure 6.9. We also performed this
calculation for BSBM version 2 and version 3. Overall, the benchmarking results
with DBPSB were less homogeneous than the results of previous benchmarks.
While with other benchmarks the ratio between fastest and slowest query rarely
exceeds a factor of 50, the factor for the DBPSB queries (derived from real DBpedia
SPARQL endpoint queries) reaches more than 1 000 in some cases.

As with the other benchmarks, Virtuoso was also fastest in our measurements.
However, the performance difference is even higher than reported previously:
Virtuoso reaches a factor of 3 in our benchmark compared to 1.8 in BSBM V3.
BSBM V2 and our benchmark both show that Sesame is more suited to smaller
datasets and does not scale as well as other stores. Jena-TDB is the slowest store
in BSBM V3 and DBPSB, but in our case they fall much further behind to the
point that Jena-TDB can hardly be used for some of the queries, which are asked
to DBpedia. The main observation in our benchmark is that previously observed
differences in performance between different triple stores amplify when they are
confronted with actually asked SPARQL queries, i.e. there is now a wider gap in
performance compared to essentially relational benchmarks.

6.6.3. DBPSB Version 2

The query mixes per hour (QMpH) as shown in Figure 6.5. Note that we used a
logarithmic scale in this figure due to the high performance differences we observed.
In general, Virtuoso was clearly the fastest triplestore, followed by BigOWLIM,
Sesame and Jena-TDB. The highest observed ratio in QMpH between the fastest
and slowest triplestore was 3.2 and it reached more than 1,000 for single queries.
The scalability of stores did not vary as much as the overall performance. There
was on average a linear decline in query performance with increasing dataset size.

The QpS results for all triplestores and for the 10%, 50% and 100% datasets are
depicted in Figure 6.8. As the outliers (i.e. queries with very low QpS) affect the
mean value of QpS for each store significantly, we also computed the geometric
mean of all the QpS timings of queries for each store. The geometric mean for all
triplestores is also depicted in Figure 6.6.

Although Virtuoso performed best overall, it displayed very low QpS rates on
Q3, Q5 and Q16. All of these queries require dealing extensively with literals (in
contrast to resources). Especially Q16 combined four different SPARQL features
(optional,filter,lang and distinct) which seemed to require a significant amount
of processing time. BigOWLIM was mainly characterized by a good scalability
as it achieves the slowest decrease of its QMpH rates over all the datasets. Still,
some queries were also particularly difficult to process for BigOWLIM. Especially
Q16 and Q12 which involves three resp. four SPARQL features and a lot of string
manipulations were slow to run. Sesame dealt well with most queries for the 10%

82

6.6. Benchmarking Results

Virtuoso Sesame Jena-TDB BigOWLIM
Query QpS SD GM QpS SD GM QpS SD GM QpS SD GM

1 281.8 32.1 280.2 169 9.6 168.4 353.6 161.1 298.4 68.7 8.3 68
2 541.2 58.2 538.1 174 5.4 173.5 445.4 186.1 395.3 71.4 1.3 71.4
3 77.6 14.6 76.1 150.1 9.9 149.2 5.3 29.5 0.5 67.2 3.6 67
4 207.4 26.2 206.1 150.7 20 148 278.4 124.7 237.7 66.3 7.9 65.6
5 129.2 22 127 134.6 25.4 130 139.6 102.6 103.5 63.9 7 63.3
6 503 56.2 499.9 164.3 7 164 356 128.3 326.3 69.8 2.7 69.7
7 104.2 17.6 103.2 148.2 9.8 147.5 239.4 128.6 193.3 66.2 3.3 66.1
8 387.2 33.3 385.9 169.5 6.3 169.1 325.2 198.2 252.6 68.7 8 68
9 134.2 39.9 128.3 73.8 19.5 70.9 292.5 169.6 249.3 61.1 4.5 60.9

10 210.9 43.7 204.3 140.5 30.7 132.6 118.9 135 56.2 65.7 9.8 64.3
11 266 31 264.6 154.7 6.5 154.5 338.7 176.3 276.2 68.4 2.5 68.4
12 90.6 29.5 83 99 42.4 83.8 112.8 90.9 86.1 44.6 20.2 36.7
13 116.1 20.4 114.7 153.8 14.5 152.2 202.9 134.2 164.6 66.8 6.8 66.3
14 305.7 43 303.1 169.8 8.1 169.3 351.1 189.6 286.1 71.1 3.1 71
15 135.3 21.8 134 156.4 8.4 155.9 242.4 137.6 199.8 66 8.6 65.2
16 146.9 58.7 119.4 106.9 50.7 80.7 193.2 146.2 141.7 52.1 19.4 44.2
17 193.5 34.3 189.9 83.1 23 78.7 229.8 99.6 201.3 0.6 0 0.6
18 285.3 32.8 283.6 161.3 8.6 160.8 306.6 163.1 253 66.9 4.4 66.5
19 202.4 34.5 199.7 156.9 13.8 155.5 290.2 203.6 220.7 68.5 4.5 68.3
20 124.1 21.5 122.2 160.3 10.2 159.5 13.8 48.1 4.6 69.1 1.9 69.1

1 267.2 50.9 258.2 131.3 46.3 119 78.2 87.8 56.8 48.2 16.9 45
2 391.1 52 384.2 128.3 52.1 111.6 132.7 168.1 75.5 61.7 10.6 60.5
3 67.6 13.8 65.8 97.9 47.1 82.5 0.2 0.2 0.1 52 16.4 47.9
4 173.5 33.7 168.7 89.4 56.9 64.8 101.1 101.4 69.6 45.4 17.2 41.5
5 100.8 24.5 97.3 72.2 50.7 51.8 47.8 62.8 33.9 46.1 19.7 38.1
6 360.9 50.1 353.7 118.4 50.2 101.6 112.6 120 75.4 60.3 9.3 59.4
7 74.6 16.7 72.6 98.3 41.8 87.5 87.4 75.6 66.5 53.3 11.8 51.7
8 211.5 50.4 200.6 108.5 53.7 89.5 94.9 108.5 64.2 42.7 16.8 39.4
9 111.8 23.2 109.1 82.9 58.2 57.9 40.7 73.6 25.9 50.1 16.6 46.5

10 142 31.4 136 66.1 55.1 39.1 19.7 51.9 8.7 46.2 15.3 42.3
11 181.6 25.1 179.8 125.5 42.4 115.1 130.5 146.8 84 62.2 6.4 61.4
12 84.3 46.5 62.8 45.1 43.6 22.4 43.9 54.2 33.6 13.9 17.2 5
13 93.8 23 90.2 76.5 54.2 53.9 69.6 77 48.9 50.1 12.2 48.5
14 270.1 61.6 256.7 110.9 47.7 97.8 87.7 91.6 64.6 65.1 3.2 65
15 155.1 35.4 149.3 107.3 42.2 96.9 74.5 72.9 56.6 45.2 15 42.4
16 70.7 32.2 54.3 52.6 49.2 25.8 40.5 40.2 33.3 21.6 19.8 10
17 237 36.5 231.5 84.2 52 64.4 54.2 49 43.7 0.1 0 0.1
18 205.8 43.7 198.3 111.4 47.2 98.2 46 36.2 37.5 58.2 9.4 57.2
19 112.6 23.8 109.8 97.4 51.6 79.6 47.2 70.9 33.9 51.4 17.8 47.2
20 98.5 20 96.5 98.8 49.6 82.6 1.2 2 0.5 54.8 15.2 51.5

Table 6.4.: Queries per second (QpS), geometric mean of query runtime in millisec-
onds (GM), and standard deviation of query runtime in milliseconds
(SD), for the 10% dataset, and 50% dataset of DBPSB version 2.

dataset. The QMpH that it could achieve yet diminishes significantly with the
size of the data set. This behavior becomes especially obvious when looking at
Q4, Q10 and Q12. Especially Q4 which combines several triple patterns through a
UNION leads to a considerable decrease of the runtime. Jena TDB had the most
difficulties dealing with the 100% data set. This can be observed especially on Q9,
which contained four triple patterns that might have lead to large intermediary
results. Especially in the case Jena TDB, we observed that the 8GB RAM were
not always sufficient for storing the intermediary results, which led to swapping
and a considerable reduction of the overall performance of the system.
Detailed results of DBPSB version 2 are indicated in tables 6.4, and 6.5.

83

6. DBpedia SPARQL Benchmark

Virtuoso Sesame Jena-TDB BigOWLIM
Query QpS SD GM QpS SD GM QpS SD GM QpS SD GM

1 270 71.3 252.6 24.5 15 21.2 103.7 144.5 52.1 53.4 17.2 49.8
2 226.5 66.5 208.2 33.6 24.6 28.1 110.8 157.6 54.4 50.7 14.7 48.5
3 71.4 22.7 67.3 12.2 5.5 11.2 0.1 0.1 0.1 37.3 14.7 34.2
4 124 39.7 114.4 4.5 2.1 4.2 119.3 118 76.7 30.9 21.6 22
5 73.9 23.4 69.8 14.4 8.2 12 36 60.3 22 46.2 17.9 40.6
6 214 64.6 196 22.9 16.9 19.7 101.3 119.1 57.3 48.8 13.6 46.8
7 63.3 21.2 59.1 22.6 14.9 17.2 73.3 92.4 43 40.6 18.8 35.4
8 266.9 135.3 202.7 41.2 25.4 31.3 81 118.3 41.2 44 21.8 35.1
9 92 34.3 84 5.4 7.2 3.3 37.7 87.3 17.4 30.7 16.7 24.4

10 123.5 35.6 114.7 2.1 0.4 2 11.7 52 1.7 35.3 15.8 31.1
11 131.9 17.8 131 38.5 13.2 35.9 108.1 135 60.6 63.4 3.2 63.3
12 53.7 41 31.2 0.4 1.1 0 24.6 47.2 13.2 9.6 14.7 2.2
13 108 47.5 93.3 8.5 3.7 7.5 36.4 66.1 20.3 34.7 15.8 31
14 234.7 83.5 210.5 47.8 23.9 40.5 102.3 134.2 54 64.7 4.1 64.6
15 168.1 70.8 144.8 16.3 11 13.6 28.5 37.1 20.6 34.1 21.8 26.4
16 70.4 42 42.5 2.1 2.6 0.8 71.2 113.8 32 30 22.6 15.8
17 227 38.5 218.5 41 18.1 37.2 105.3 108.8 61 0.3 0 0.3
18 188 60.4 172.3 30.6 12.8 28.2 101.7 145 49.1 58.1 10.6 56.6
19 128.6 43.5 108.8 28.4 18.6 22.1 78.6 147.4 31.2 60.8 11.2 59.2
20 114 38.7 105.4 19.4 7.2 18.2 4.2 4.9 2.8 43.7 13.5 41.8

Table 6.5.: Queries per second (QpS), geometric mean of query runtime in millisec-
onds (GM), and standard deviation of query runtime in milliseconds
(SD), for the 100% dataset of DBPSB version 2.

84

7. Related Work

This chapter discusses similar work achieved, and contrasts our work to them.
It orders the related work into several categories and compares each category to
the closest category of our thesis.

7.1. Semantic Data Extraction from Wikipedia

There are several projects, which aim at extracting semantic data from Wikipedia.
YAGO2 is an extension of the YAGO knowledge base [Suchanek et al., 2008].

YAGO2 uses Wikipedia, Geonames, and WordNet as sources of data. The prede-
cessor of YAGO2, i.e. YAGO just used Wikipedia as its main source of data. It
extracts several relations (e.g. subClassOf, and type) mainly from the category
pages of Wikipedia. Category pages are lists of articles that belong to a specific
category. For instance, William Shakespeare is in the category English poets.
These lists give candidates for entities (i.e. William Shakespeare), candidates
for concepts (IsA(William Shakespeare, Poet)), and candidates for relations (e.g.
isCitizenOf(William Shakespeare, England)). YAGO, then links the Wikipedia
category hierarchy to the WordNet hierarchy, in order to enhance its classification
hierarchy [Suchanek et al., 2008].

YAGO2 is the new version of the YAGO project. It uses Geonames as an addi-
tional source of data. YAGO2 introduces the integration of the spatio-temporal
dimension. In contrast to the original YAGO, the methodology of building YAGO2
(and also maintaining it) is systematically designed top-down with the goal of
integrating entity-relationship-oriented facts with the spatial and temporal dimen-
sions. Moreover, YAGO represent facts in the form of subject-property-object
triples (SPO triples) according to the RDF data model. YAGO2 introduces a new
spatio-temporally model, which represents facts in the form of SPOTL tuples (i.e.
SPO + Time + Location). This new knowledge representation scheme is very
beneficial. For example, with the old representation scheme a knowledge base may
store that a certain person is the president of a certain country, but presidents of
countries change. So, it is crucial to capture the time periods during which facts
of this kind actually happened [Hoffart et al., 2010]. Both YAGO and YAGO2,
however, do not focus on extracting data from Wikipedia infoboxes.

KYLIN is a project based also on Wikipedia, which aims at creating or completing
infoboxes by extracting information from the article text. KYLIN looks for classes
of pages with similar infoboxes, determines common attributes, creates training
examples, learns the extractors, and runs them on each page. Thus creating new

85

7. Related Work

infoboxes or completing existing ones. It uses learning techniques to automatically
fill in missing values in incomplete infoboxes. There are several problems which
may exist in an infobox, such as incompleteness or inconsistency. For example,
some infoboxes contain incomplete data which may, however, exist in the article
text, while some other infoboxes may contain data that contradicts with the
article text [Wu and Weld, 2007]. Although both DBpedia, and KYLIN work on
Wikipedia infoboxes both have different objectives. DBpedia aims at extracting
data from infoboxes and converting them into semantic data, whereas KYLIN tries
to fill the gaps that may exist in some infoboxes.

Freebase is a large collaborative knowledge base, which uses various sources
of data including Wikipedia and MusicBrainz1. It was originally developed by
the software company Metaweb, which was later acquired by Google. Basically,
Freebase also extracted facts from Wikipedia articles as initial content and which
the users can later extend and revise [Bollacker et al., 2008]. Both DBpedia and
Freebase use Wikipedia as a data source, but Freebase uses it only as a starting
point in a way that its users can modify the data, whereas DBpedia aims to be
closely aligned with Wikipedia.

7.2. RDF Benchmarks

Several RDF benchmarks were previously developed. We first present them, and
then compare them to our benchmark.

7.2.1. Existing Benchmarks

The Lehigh University Benchmark (LUBM) [Pan et al., 2005] was one of the
first RDF benchmarks. LUBM uses an artificial data generator, which generates
synthetic data for universities, their departments, their professors, employees,
courses and publications. This small number of classes limits the variability of
data and makes LUMB inherent structure more repetitive. Moreover, the SPARQL
queries used for benchmarking in LUBM are all plain queries, i.e. they contain only
triple patterns with no other SPARQL features (e.g. FILTER, or REGEX). LUBM
performs each query 10 consecutive times, and then it calculates the average
response time of that query. Executing the same query several times without
introducing any variation enables query caching, which affects the overall average
query times.

SP2Bench [Schmidt et al., 2009] is another more recent benchmark for RDF
stores. Its RDF data is based on the Digital Bibliography & Library Project
(DBLP) and includes information about publications and their authors. It uses
the SP2Bench Generator to generate its synthetic test data, which is in its schema
heterogeneity even more limited than LUMB. The main advantage of SP2Bench

1http://musicbrainz.org/

86

http://musicbrainz.org/

7.2. RDF Benchmarks

over LUBM is that its test queries include a variety of SPARQL features (such
as FILTER, and OPTIONAL). The main difference between the DBpedia benchmark
and SP2Bench is that both test data and queries are synthetic in SP2Bench. In
addition, SP2Bench only published results for up to 25M triples, which is relatively
small with regard to datasets such as DBpedia and LinkedGeoData.

Another benchmark described in [Owens et al., 2008a] compares the performance
of BigOWLIM and AllegroGraph. The size of its underlying synthetic dataset
is 235 million triples, which is sufficiently large. The benchmark measures the
performance of a variety of SPARQL constructs for both stores when running
in single and in multi-threaded modes. It also measures the performance of
adding data, both using bulk-adding and partitioned-adding. The downside of
that benchmark is that it compares the performance of only two triplestores. Also
the performance of each triplestore is not assessed for different dataset sizes, which
prevents scalability comparisons.

The Berlin SPARQL Benchmark (BSBM) [Bizer and Schultz, 2009] is a bench-
mark for RDF stores, which is applied to various triplestores, such as Sesame,
Virtuoso, and Jena-TDB. It is based on an e-commerce use case in which a set of
products is provided by a set of vendors and consumers post reviews regarding
those products. It tests various SPARQL features on those triplestores. It tries to
mimic a real user operation, i.e. it orders the query in a manner that resembles a
real sequence of operations performed by a human user. This is an effective testing
strategy. However, BSBM data and queries are artificial and the data schema
is very homogeneous and resembles a relational database. This is reasonable for
comparing the performance of triplestores with RDBMS, but does not give many
insights regarding the specifics of RDF data management.

In general, existing SPARQL benchmark efforts such as LUBM [Pan et al., 2005],
BSBM [Bizer and Schultz, 2009] and SP2Bench [Schmidt et al., 2009] resemble re-
lational database benchmarks. Especially, the data structures underlying these
benchmarks are basically relational data structures, with relatively few and ho-
mogeneously structured classes. However, RDF knowledge bases are increasingly
heterogeneous. Thus, they do not resemble relational structures and are not
easily representable as such. Examples of such knowledge bases are curated bio-
medical ontologies such as those contained in Bio2RDF [Belleau et al., 2008] as
well as knowledge bases extracted from unstructured or semi-structured sources
such as DBpedia [Lehmann et al., 2009, Morsey et al., 2012b] or LinkedGeoData
[Auer et al., 2009, Stadler et al., 2012]. For instance, DBpedia contains thousands
of classes and properties. DBpedia (version 3.6) for example contains 289,016
classes of which 275 classes belong to the DBpedia ontology. Moreover, it contains
42,016 properties, of which 1335 are in the DBpedia ontology. Also, various data
types and object references of different types are used in property values. Such
knowledge bases cannot be easily represented according to the relational data
model and hence performance characteristics for loading, querying and updating
these knowledge bases might potentially be fundamentally different from knowledge
bases resembling relational data structures.

87

7. Related Work

LUBM SP2Bench BSBM V2 BSBM V3 DBPSB

RDF stores DLDB-OWL, ARQ, Redland, Virtuoso,
Sesame,

Virtuoso, 4store, Virtuoso,

tested Sesame, SDB, Sesame, Jena-TDB, BigData Jena-TDB,
OWL-JessKB Virtuoso Jena-SDB Jena-TDB BigOWLIM

BigOwlim Sesame
Test data Synthetic Synthetic Synthetic Synthetic Real
Test queries Synthetic Synthetic Synthetic Synthetic Real
Size of tested 0.1M, 0.6M, 10k, 50k, 250k, 1M, 25M, 100M, 200M 14M, 75M,
datasets 1.3M, 2.8M, 1M, 100M, 5M, 150M, 300M

6.9M 25M
Dist. queries 14 12 12 12 25
Multi-client – – x x –
Use case Universities DBLP E-commerce E-commerce DBpedia
Classes 43 8 8 8 239 (internal)

+300K(YAGO)
Properties 32 22 51 51 1200

Table 7.1.: Comparison of different RDF benchmarks.

7.2.2. Comparison between DBPSB and The Other
Benchmarks

In contrast to other benchmarks, DBPSB performs measurements on real queries
that were issued by humans or Data Web applications against existing RDF data.
In order to obtain a representative set of prototypical queries reflecting the typical
workload of a SPARQL endpoint, we perform a query analysis and clustering
on queries that were sent to the official DBpedia SPARQL endpoint. From the
highest-ranked query clusters (in terms of aggregated query frequency), we derive
a set of SPARQL query templates, which cover most commonly used SPARQL
feature combinations and are used to generate the actual benchmark queries
by parametrization. The benchmark methodology and results are also available
online2. Although we apply this methodology to the DBpedia dataset and its
SPARQL query log in this case, the same methodology can be used to obtain
application-specific benchmarks for other knowledge bases and query workloads.
Since DBPSB changes with the data and queries in DBpedia, we envision to update
it in yearly increments and publish results on the aforementioned website. In
general, our methodology follows the four key requirements for domain specific
benchmarks as postulated in the Benchmark Handbook [Gray, 1991], i.e. it is (1)
relevant, thus testing typical operations within the specific domain, (2) portable,
i.e. executable on different platforms, (3) scalable, e.g. it is possible to run the
benchmark on both small and very large data sets, and (4) it is understandable.

A comparison between benchmarks is shown in Table 7.1. The main difference
between previous benchmarks and ours is that we rely on real data and real user
queries, while most of the previous approaches rely on synthetic data. LUBM’s main
drawback is that is solely relies on plain queries without SPARQL features such as
FILTER or REGEX. In addition, its querying strategy (10 repeats of the same query)

2http://aksw.org/Projects/DBPSB

88

http://aksw.org/Projects/DBPSB

7.3. Data Quality Assessment

allows for caching. SP2Bench relies on synthetic data and a small (25M triples)
synthetic dataset for querying. The benchmark described in [Owens et al., 2008a]
does not allow for testing the scalability of the stores, as the size of the data set is
fixed. Finally, the BSBM data and queries are artificial and the data schema is
very homogeneous and resembles a relational database.

In addition to general purpose RDF benchmarks it is reasonable to develop
benchmarks for specific RDF data management aspects. One particular important
feature in practical RDF triplestore usage scenarios (as was also confirmed by
DBPSB) is full-text search on RDF literals. In [Minack et al., 2009] the LUBM
benchmark is extended with synthetic scalable fulltext data and corresponding
queries for fulltext-related query performance evaluation. RDF stores are bench-
marked for basic fulltext queries (classic IR queries) as well as hybrid queries
(structured and fulltext queries).

7.3. Data Quality Assessment

Web data quality assessment frameworks. There are a number of data quality
assessment dimensions that have already been identified relevant to Linked Data,
namely, accuracy, timeliness, completeness, relevancy, conciseness, consistency,
to name a few [Bizer, 2007]. Additional quality criteria such as uniformity, ver-
satility, comprehensibility, amount of data, validity, licensing, accessibility and
performance were also introduced to be additional means of assessing the quality of
LOD [Zaveri et al., 2013b]. Additionally, there are several efforts in developing data
quality assessment frameworks in order to assess the data quality of LOD. These ef-
forts are either semi-automated [Flemming, 2010], automated [Guéret et al., 2012]
or manual [Bizer and Cyganiak, 2009, Mendes P.N., 2012].

Even though these frameworks introduce useful methodologies to assess the
quality of a dataset, either the results are difficult to interpret, do not allow a user
to choose the input dataset or require a considerable amount of user involvement.

Concrete Web Data quality assessments An effort to assess the quality of web
data was undertaken in 2008 [Cafarella et al., 2008], where 14.1 billion HTML
tables from Google’s general-purpose web crawl were analyzed in order to re-
trieve those tables that have high-quality relations. Additionally, there have been
studies focused on assessing the quality of RDF data [Hogan et al., 2010] to re-
port the errors occurring while publishing RDF data and the effects and means
to improve the quality of structured data on the web. As part of an empirical
study [Hogan et al., 2012] 4 million RDF/XML documents were analyzed, which
provided insights into the level of conformance in these documents with respect to
the Linked Data guidelines. Even though these studies accessed a vast amount of
web or RDF/XML data, most of the analysis was performed automatically and
therefore the problems arising due to contextual discrepancies were overlooked.
Another study aimed to develop a framework for the DBpedia quality assess-
ment [Kreis, 2011]. In this study, particular problems of the DBpedia extraction

89

7. Related Work

framework were taken into account and integrated in the framework. However,
only a small sample (75 resources) were assessed in this case and an older DBpedia
version (2010) was analyzed.

Crowdsourcing-based tasks There are already a number of efforts which use
crowdsourcing focused on a specific type of task. For example, crowdsourcing
is used for entity linking or resolution [Demartini et al., 2012], quality assurance
and resource management [Wang et al., 2012] or for enhancement of ontology
alignments [Sarasua et al., 2012] especially in Linked Data. However, in our case,
we did not submit tasks to the popular Internet marketplaces such as Amazon
Mechanical Turk or CrowdFlower3. Instead, we used the intelligence of a large
number of researchers who were particularly conversant with RDF to help assess
the quality of one of the most important and interlinked dataset, DBpedia.

It is worth mentioning that the Linked Data life-cycle with the LOD2 stack
[Auer et al., 2012] incorporates a Quality Analysis step. This step aims at develop-
ing techniques (components) for evaluating the quality based on concrete quality
metric, such as provenance and context. Sieve component has a module called
”Quality Assessment” module which relies on user-selected metadata as quality
indicators in order to produce quality scores.

7.4. Fact Validation

There are three main areas related to the problem of fact validation research:
The representation of provenance information in the Web of Data as well as work
on trustworthiness and relation extraction. The problem of data provenance
is a crucial issue in the Web of Data. While data extracted by the means of
tools such as Hazy4 and KnowItAll5 can be easily mapped to primary provenance
information, most knowledge sources were extracted by non-textual source and
are more difficult to link with provenance information. In the work described
in [Hartig and Zhao, 2010], Olaf Hartig and Jun Zhao developed a framework
for provenance tracking. This framework provides the vocabulary required for
representing and accessing provenance information on the web. It keeps track of
who created a web entity, e.g. a webpage, when it was last modified etc. Recently, a
W3C working group has been formed and released a set of specifications on sharing
and representing provenance information6. Dividino et al. [Dividino et al., 2011]
introduced an approach for managing several provenance dimensions, e.g. source,
and timestamp. In their approach, they described an extension to the RDF
called RDF+, which can efficiently work with provenance data. They provided
a method to extend SPARQL query processing in a manner such that a specific
SPARQL query can request meta knowledge without modifying the query itself.

3http://crowdflower.com/
4http://hazy.cs.wisc.edu/hazy/
5http://www.cs.washington.edu/research/knowitall/
6http://www.w3.org/2011/prov/wiki/

90

http://crowdflower.com/
http://hazy.cs.wisc.edu/hazy/
http://www.cs.washington.edu/research/knowitall/
http://www.w3.org/2011/prov/wiki/

7.4. Fact Validation

Theoharis et al. [Theoharis et al., 2011] argued how the implicit provenance data
contained in a SPARQL query results can be used to acquire annotations for several
dimensions of data quality. They detailed the abstract provenance models and
how they are used in relational data, and how they can be used in semantic data
as well. Their model requires the existence of provenance data in the underlying
semantic data source. DeFacto uses the W3C provenance group standard for
representing provenance information. Yet, unlike previous work, it directly tries
to find provenance information by searching for confirming facts in trustworthy
webpages.

The second research area related to fact validation is trustworthiness. Nakamura
et al. [Nakamura et al., 2007] developed an efficient prototype for enhancing the
search results provided by a search engine based on trustworthiness analysis for
those results. They conducted a survey in order to determine the frequency at which
the users accesses search engines and how much they trust the content and ranking
of search results. They defined several criteria for trustworthiness calculation of
search results returned by the search engine, such as topic majority. We adapted
their approach for DeFacto and included it as one of the features for our machine
learning techniques. [Pasternack and Roth, 2011a, Pasternack and Roth, 2011b]
present an approach for computing the trustworthiness of web pages. To achieve
this goal, the authors rely on a model based on hubs and authorities. This model
allows to compute the trustworthiness of facts and websites by generating a k-
partite network of pages and facts and propagating trustworthiness information
across it. The approach returns a score for the trustworthiness of each fact.
An older yet similar approach is that presented in [Yin et al., 2007]. Here, the
idea is to create a 3-partite network of webpages, facts and objects and apply a
propagation algorithm to compute weights for facts as well as webpages. The use of
trustworthiness and uncertainty information on RDF data has been the subject of
recent research (see e.g., [Hartig, 2008, Meiser et al., 2011]). Our approach differs
from these approaches as it does not aim to evaluate the trustworthiness of facts
expressed in natural language. In addition, it can deal with the broad spectrum of
relations found on the Data Web.

Our fact validation approach is also related to relation extraction. Most tools that
address this task rely on pattern-based approaches. Some early work on pattern
extraction relied on supervised machine learning [Grishman and Yangarber, 1998].
Yet, such approaches demanded large amounts of training data, making them
difficult to adapt to new relations. The subsequent generation of approaches to RE
aimed at bootstrapping patterns based on a small number of input patterns and
instances. For example, [Brin, 1999] presents the Dual Iterative Pattern Relation
Expansion (DIPRE) and applies it to the detection of relations between authors and
titles of books. This approach relies on a small set of seed patterns to maximize the
precision of the patterns for a given relation while minimizing their error rate of the
same patterns. Snowball [Agichtein and Gravano, 2000] extends DIPRE by a new
approach to the generation of seed tuples. Newer approaches aim to either collect
redundancy information (see e.g., [Yan et al., 2009] in an unsupervised manner

91

7. Related Work

or to use linguistic analysis [Nguyen et al., 2007] to harvest generic patterns for
relations.

92

8. Conclusions and Future Work

This chapter summarizes our research work, highlights our main contributions,
and gives the general conclusion over the work. It then pinpoints the future
directions in which we can move further to extend and broaden the research
conducted in those areas.

8.1. Conclusions

Each direction of our research work has its own value and benefits. In each of
the following subsections, we discuss the significance of each research direction in
detail.

8.1.1. DBpedia Live Extraction

Due to the permanent update of Wikipedia articles, we also aim to update
DBpedia accordingly. We proposed a framework for instantly retrieving updates
from Wikipedia, extracting RDF data from them, and storing this data in a
triplestore. Our new revision of the DBpedia Live extraction framework adds a
number of features and particularly solves the following issues:

� MediaWiki templates in article abstracts are now rendered properly.

� Changes of mappings in the DBpedia mappings wiki are now retrospectively
applied to all potentially affected articles.

� Updates can now be propagated easily, i.e. DBpedia Live mirrors can now
get recent updates from our framework, in order to be kept in sync.

Many users can benefit from DBpedia, not only computer scientists. We have
pointed out some directions how librarians and libraries can make use of DBpedia
and how they can become part of the emerging Web of Data. We see a great
potential for libraries to become centers of excellence in knowledge management on
the Web of Data. As libraries supported the knowledge exchange through books in
previous centuries, they now have the opportunity to extend their scope towards
supporting the knowledge exchange through structured data and ontologies on the
Web of Data. Due to the wealth and diversity of structured knowledge already
available in DBpedia and other datasets on the Web of Data many other scientists,
e.g. in life sciences, humanities, or engineering, would benefit a lot from such a
development.

93

8. Conclusions and Future Work

8.1.2. DBPSB

We proposed the DBPSB benchmark for evaluating the performance of triple-
stores based on non-artificial data and queries. Our solution was implemented
for the DBpedia dataset and tested with 4 different triplestores, namely Virtuoso,
Sesame, Jena-TDB, and BigOWLIM. The main advantage of our benchmark over
previous work is that it uses real RDF data with typical graph characteristics
including a large and heterogeneous schema part. Furthermore, by basing the
benchmark on queries asked to DBpedia, we intend to spur innovation in triplestore
performance optimization towards scenarios, which are actually important for end
users and applications. We applied query analysis and clustering techniques to
obtain a diverse set of queries corresponding to feature combinations of SPARQL
queries. Query variability was introduced to render simple caching techniques of
triplestores ineffective.

The benchmarking results we obtained reveal that real-world usage scenarios
can have substantially different characteristics than the scenarios assumed by prior
RDF benchmarks. Our results are more diverse and indicate less homogeneity
than what is suggested by other benchmarks. The creativity and inaptness of real
users while constructing SPARQL queries is reflected by DBPSB and unveils for a
certain triplestore and dataset size the most costly SPARQL feature combinations.

8.1.3. DeFacto

DeFacto enables checking the validity of a given RDF triple. When given a
test statement, it returns a confidence value for it as well as possible evidence
for that statement. The evidence consists of a set of webpages, textual excerpts
from those pages and meta-information on the pages. These text excerpts and the
associated meta information allow the user to quickly get an overview over possible
credible sources for the input statement. Instead of having to use search engines,
browsing several webpages and looking for the relevant pieces of information in
each webpage, using DeFacto the user can more efficiently review the presented
information.

8.2. Future Work

Each research area has its own direction(s), in which we can go move further,
and expand the work.

8.2.1. DBpedia Live Extraction

There are several directions in which we aim to extend the DBpedia Live
framework:

94

8.2. Future Work

Support of other languages: Currently, the framework supports only the En-
glish Wikipedia edition, and recently the Dutch DBpedia Live1 has also been
developed. We plan to extend our framework to include other languages as well.
The main advantage of such a multi-lingual extension is that infoboxes within
different Wikipedia editions cover different aspects of an entity at varying degrees
of completeness. For instance, the Italian Wikipedia contains more knowledge
about Italian cities and villages than the English one, while the German Wikipedia
contains more structured information about people than the English edition. This
leads to an increase of the quality of extracted data compared to knowledge bases
that are derived from single Wikipedia editions. Moreover, this also helps in
detecting inconsistencies across different Wikipedia and DBpedia editions.

Wikipedia article augmentation: Interlinking DBpedia with other data sources
makes it possible to develop a MediaWiki extension that augments Wikipedia
articles with additional information as well as media items (e.g. pictures and audio)
from these sources. For instance, a Wikipedia page about a geographic location
such as a city or a monument can be augmented with additional pictures from Web
data sources such as Flickr or with additional facts from statistical data sources
such as Eurostat or the CIA Factbook.

Wikipedia consistency checking: The extraction of different Wikipedia editions
along with interlinking DBpedia with external Web knowledge builds the base for
detecting inconsistencies in Wikipedia content. For instance, whenever a Wikipedia
author edits an infobox within a Wikipedia article, the new content of the infobox
could be checked against external data sources and information extracted from
other language editions. Inconsistencies could be pointed out along with proposals
on how to solve these inconsistencies. In this way, DBpedia can provide feedback
to Wikipedia maintainers in order to keep Wikipedia data more consistent, which
eventually may also lead to an increase of the quality of data in Wikipedia.

8.2.2. DBPSB

Several improvements can be envisioned in future work to cover a wider spectrum
of features in DBPSB:

� Coverage of more SPARQL 1.1 features, e.g. reasoning and subqueries.

� Inclusion of further triplestores and continuous usage of the most recent
DBpedia query logs.

� Testing of SPARQL update performance via DBpedia Live, which is modified
several thousand times each day. In particular, an analysis of the dependency
of query performance on the dataset update rate could be performed.

1http://live.nl.dbpedia.org/

95

http://live.nl.dbpedia.org/

8. Conclusions and Future Work

8.2.3. DeFacto

DeFacto can be extended in manifold ways. First, BOA is able to detect natural-
language representations of predicates in several languages. Thus, we could have
the user choose the languages he/she understands and provide facts in several
languages, therewith also increasing the portion of the Web that we search through.
Furthermore, we could extend our approach to support data type properties.
Moreover, DeFacto can be extended with adding the temporal dimension to it, i.e.
DeFacto can be used to check if a statement was true during certain time span.
On a grander scale, we aim to provide even lay users of knowledge bases with the
means to check the quality of their data by using natural language input. This
would support the transition from the Document Web to the Semantic Web by
providing a further means to connect data and documents.

96

A. DBpedia SPARQL Benchmark
(DBPSB) Queries

A.1. DBPSB Version 1

1 PREFIX rdf: <http ://www.w3.org /1999/02/22 -rdf -syntax -ns#>

2 PREFIX rdfs: <http ://www.w3.org /2000/01/rdf -schema#>

3 PREFIX owl: <http ://www.w3.org /2002/07/ owl#>

4 PREFIX xsd: <http ://www.w3.org /2001/ XMLSchema#>

5 PREFIX foaf: <http :// xmlns.com/foaf /0.1/>

6 PREFIX dc: <http :// purl.org/dc/elements /1.1/>

7 PREFIX skos: <http ://www.w3.org /2004/02/ skos/core#>

8 PREFIX dbpprop: <http :// dbpedia.org/property/>

9 PREFIX dbpedia -owl: <http :// dbpedia.org/ontology/>

10 PREFIX dbpedia2: <http :// dbpedia.org/property/>

11 PREFIX yago: <http :// dbpedia.org/class/yago/>

12 PREFIX umbelBus: <http :// umbel.org/umbel/sc/>

13 PREFIX umbelCountry: <http :// umbel.org/umbel/sc/>

14 PREFIX georss: <http ://www.georss.org/georss/>

16 SELECT DISTINCT ?var1 WHERE { %%var%% rdf:type ?var1 . }

18 SELECT * WHERE { %%var%% ?var2 ?var1. f i l t e r (?var2 = dbp -prop:redirect ?var2 =

dbp -prop:redirect) }

20 SELECT ?var0 ?var1 ?var2 WHERE { ?var5 dbpedia -owl:thumbnail ?var0 . ?var3 rdf:

type dbpedia -owl:Person . ?var3 rdfs:label %%var%% . ?var3 foaf:page ?var1 .

OPTIONAL { ?var3 foaf:homepage ?var2 .} . }

22 SELECT ?var0 ?var1 ?var2 ?var3 ?var4 WHERE { { %%var%% ?var0 ?var1 . ?var1 foaf:

name ?var3 . } UNION { ?var2 ?var0 %%var%% ; foaf:name ?var4 . } }

24 SELECT DISTINCT ?var0 ?var1 ?var2 WHERE { { ?var0 dbp -prop:series %%var1%% ; foaf

:name ?var1 ; rdfs:comment ?var2 ; rdf:type %%var0%% . } UNION { ?var0 dbp -prop:

series ?var3 . ?var3 dbp -prop:redirect %%var1%% . ?var0 foaf:name ?var1 ; rdfs:

comment ?var2 ; rdf:type %%var0%% . } }

26 SELECT DISTINCT ?var0 ?var1 ?var2 WHERE { ?var0 rdf:type <http :// dbpedia.org/

class/yago/Company108058098 > . ?var0 dbp -prop:numEmployees ?var1 FILTER (xsd:

integer (?var1) >= %%var%%) . ?var0 foaf:homepage ?var2 . }

28 SELECT DISTINCT ?var0 ?var1 ?var2 ?var3 ?var5 ?var6 ?var7 ?var10 WHERE { ?var0

rdfs:comment ?var1. ?var0 foaf:page %%var%% OPTIONAL{?var0 skos:subject ?var6}

OPTIONAL {?var0 dbp -prop:industry ?var5} OPTIONAL {?var0 dbpedia2:location ?var2}

OPTIONAL {?var0 dbpedia2:locationCountry ?var3} OPTIONAL {?var0 dbpedia2:

locationCity ?var9; dbp -prop:manufacturer ?var0} OPTIONAL {?var0 dbpedia2:

products ?var11; dbp -prop:model ?var0} OPTIONAL {?var0 <http ://www.georss.org/

georss/point > ?var10} OPTIONAL {?var0 rdf:type ?var7}}

30 SELECT ?var0 ?var1 WHERE { { ?var0 rdf:type %%var1 %%. ?var0 dbpedia2:population ?

var1. FILTER (xsd: integer (?var1) > %%var0 %%) } UNION { ?var0 rdf:type %%var1 %%. ?

var0 dbpedia2:populationUrban ?var1. FILTER (xsd: integer (?var1) > %%var0 %%) } }

97

A. DBpedia SPARQL Benchmark (DBPSB) Queries

32 SELECT * WHERE { ?var0 a dbp -owl:Settlement; rdfs:label %%var%% . ?var1 a dbp -owl

:Airport. {?var1 dbp -owl:city ?var0} UNION {?var1 dbp -owl:location ?var0} {?var1

dbp -prop:iata ?var2.} UNION {?var1 dbp -owl:iataLocationIdentifier ?var2. }

OPTIONAL { ?var1 foaf:homepage ?var1_home. } OPTIONAL { ?var1 dbp -prop:nativename

?var1_name .} }

34 SELECT DISTINCT ?var0 { ?var1 foaf:page ?var0. ?var1 rdf:type dbp -owl:

SoccerPlayer . ?var1 dbp -prop:position ?var2 . ?var1 dbp -prop ?var3 . ?var3 dbp -

owl:capacity ?var4 . ?var1 <http :// dbpedia.org/ontology/birthPlace > ?var5 . ?var5

?var6 ?var7. OPTIONAL {?var1 dbp -owl:number ?var8.} Filter (?var6 = dbp -prop:

populationEstimate ?var6 = dbp -prop:populationCensus ?var6 = dbp -prop:statPop)

Filter (xsd: integer (?var7) > %%var1%%) . Filter (xsd: integer (?var4) < %%var0%%

) . Filter (?var2 = ’Goalkeeper ’@en ?var2 = <http :// dbpedia.org/resource/

Goalkeeper_ %28 association_football %29> ?var2 = <http :// dbpedia.org/resource/

Goalkeeper_ %28 football %29>) }

36 SELECT distinct ?var0 ?var1 ?var2 WHERE { {%%var%% dbp -prop:subsid ?var0 OPTIONAL
{?var2 %%var%% dbp -prop:parent} OPTIONAL{%% var%% dbp -prop:divisions ?var1}} UNION
{?var2 %%var%% dbp -prop:parent OPTIONAL{%% var%% dbp -prop:subsid ?var0} OPTIONAL

{%% var%% dbp -prop:divisions ?var1}} UNION {%% var%% dbp -prop:divisions ?var1

OPTIONAL{%% var%% dbp -prop:subsid ?var0} OPTIONAL{?var2 %%var%% dbp -prop:parent }}

}

38 SELECT DISTINCT ?var0 WHERE { ?var1 rdf:type dbp -owl:Person . ?var1 dbp -owl:

nationality ?var2 . ?var2 rdfs:label ?var0 . ?var1 rdfs:label %%var%% . FILTER (

LANG(?var0) = ’en’) }

40 SELECT * WHERE {{ %%var%% rdfs:comment ?var0. FILTER (LANG(?var0) = ’en’)} UNION
{%% var%% foaf:depiction ?var1} UNION {%% var%% foaf:homepage ?var2}}

42 SELECT ?var0 ?var1 ?var2 ?var3 WHERE { ?var3 skos:subject %%var%% . ?var3 foaf:

name ?var0 . OPTIONAL { ?var3 rdfs:comment ?var1 . FILTER (LANG(?var1) = ’en’) .

} OPTIONAL { ?var3 rdfs:comment ?var2 . FILTER (LANG(?var2) = ’de’) . } }

44 SELECT DISTINCT ?var0 ?var1 WHERE { ?var0 rdf:type %%var%% ; rdfs:label ?var1 .

FILTER regex(str (?var1), ’pes’, ’i’) }

46 SELECT DISTINCT ?var0 ?var1 ?var2 ?var3 WHERE { %%var%% ?var1 ?var3 . OPTIONAL {?

var3 rdfs:label ?var2} . FILTER(langMatches(LANG(?var2),’EN’)(! langMatches(LANG
(?var2),’*’))) . FILTER(langMatches(LANG(?var3),’EN’)(! langMatches(LANG(?var3),’

*’))) . OPTIONAL {?var1 rdfs:label ?var0}}

48 SELECT DISTINCT ?var0 ?var1 { {?var0 skos:subject %%var %%.} UNION {?var0 skos:

subject <http :// dbpedia.org/resource/Category:Prefectures_in_France >.} UNION {?

var0 skos:subject <http :// dbpedia.org/resource/Category:German_state_capitals >.}

?var0 rdfs:label ?var1. FILTER (LANG(?var1)=’fr’) }

50 SELECT ?var0 ?var1 ?var2 WHERE { { %%var%% ?var0 ?var1. FILTER ((STR(?var0) = ’

http ://www.w3.org /2000/01/rdf -schema#label’ && LANG(?var1) = ’en’) (STR(?var0) =

’http :// dbpedia.org/ontology/abstract ’ && LANG(?var1) = ’en’) (STR(?var0) = ’

http ://www.w3.org /2000/01/rdf -schema#comment ’ && LANG(?var1) = ’en’) (STR(?var0)

!= ’http :// dbpedia.org/ontology/abstract ’ && STR(?var0) != ’http :// www.w3.org

/2000/01/rdf -schema#comment ’ && STR(?var0) != ’http ://www.w3.org /2000/01/ rdf -

schema#label’)) } UNION { ?var2 ?var0 %%var%% FILTER (STR(?var0) = ’http ://

dbpedia.org/ontology/owner’ STR(?var0) = ’http :// dbpedia.org/property/redirect ’

) } }

52 SELECT ?var1 WHERE { { ?var1 rdfs:label %%var%% } UNION { ?var1 rdfs:label %%var

%% }. FILTER(regex(str (?var1),’http :// dbpedia.org/resource/’) regex(str (?var1),’
http :// dbpedia.org/ontology/’) regex(str (?var1),’http ://www.w3.org /2002/07/ owl’)

regex(str (?var1),’http ://www.w3.org /2001/ XMLSchema ’) regex(str (?var1),’http ://
www.w3.org /2000/01/rdf -schema ’) regex(str (?var1),’http ://www.w3.org /1999/02/22 -
rdf -syntax -ns’)) }

54 SELECT * WHERE { ?var0 a dbp -owl:PopulatedPlace; dbp -owl:abstract ?var1; rdfs:

label ?var2; geo:lat ?var3; geo:long ?var4. {?var0 rdfs:label %%var %%.} UNION { ?

98

A.2. DBPSB Version 2

var5 dbp -prop:redirect ?var0; rdfs:label %%var %%. } OPTIONAL { ?var0 foaf:

depiction ?var6 } OPTIONAL { ?var0 foaf:homepage ?var7 } OPTIONAL { ?var0 dbp -owl

:populationTotal ?var8 } OPTIONAL { ?var0 dbp -owl:thumbnail ?var9 } FILTER (

LANGMatches(LANG(?var1), ’de’) && langMatches(LANG(?var2), ’de’))}

56 SELECT * WHERE { %%var%% dbp -prop:redirect ?var0 . }

58 SELECT ?var0 WHERE { ?var1 <http :// xmlns.com/foaf /0.1/ homepage > ?var0 . ?var1 <

http ://www.w3.org /1999/02/22 -rdf -syntax -ns#type > %%var%% . }

60 SELECT ?var0 WHERE { ?var1 rdf:type dbp -owl:Person . ?var1 rdfs:label %%var%% . ?

var1 foaf:page ?var0 . }

62 SELECT * WHERE { ?var1 a dbp -owl:Organisation . ?var2 dbp -owl:foundationPlace %%

var0%% . ?var4 dbp -owl:developer ?var2 . ?var4 a %%var1%% . }

64 SELECT ?var0 ?var1 ?var2 ?var3 WHERE { ?var6 rdf:type %%var%%. ?var6 dbp -prop:

name ?var0. ?var6 dbp -prop:pages ?var1. ?var6 db-pprop:isbn ?var2. ?var6 dbp -prop

:author ?var3.}

A.2. DBPSB Version 2

1 SELECT DISTINCT ?var0 where { %%var%% skos:subject ?var0 .}

3 SELECT DISTINCT ?var0 WHERE { %%var%% dbpprop:redirect ?var0 . }

5 SELECT ?var0 ?var1 ?var2 WHERE { ?var3 dbpedia -owl:thumbnail ?var0 . ?var3 rdf:

type dbpedia -owl:Person . ?var3 rdfs:label %%var%% . ?var3 foaf:page ?var1 .

OPTIONAL { ?var3 foaf:homepage ?var2 .} . }

7 SELECT ?var0 ?var1 WHERE { { %%var%% skos:subject ?var1 . } UNION { %%var%% skos:

subject ?var0 . ?var3 skos:broader ?var1 . } UNION { %%var%% skos:subject ?var2 .

?var1 skos:broader ?var0 . } }

9 SELECT ?var0 ?var1 ?var2 ?var3 WHERE { ?var4 dbpedia2:birthPlace %%var%% . ?var3

dbpedia -owl:birthDate ?var1 . ?var3 foaf:name ?var0 . ?var3 dbpedia -owl:deathDate

?var2 FILTER (?var1 < ’1900 -01 -01’^^xsd:date) . }

11 SELECT * WHERE { %%var%% ?var0 ?var1. f i l t e r (?var0 = dbpedia2:redirect) }

13 SELECT DISTINCT ?var0 WHERE { { %%var%% dbpprop:writer ?var0 . } UNION { %%var%%

dbpprop:executiveProducer ?var0 . } UNION { %%var%% dbpprop:creator ?var0 . }

UNION { %%var%% dbpprop:starring ?var0 . } UNION { %%var%% dbpprop:

executiveProducer ?var0 . } UNION { %%var%% dbpprop:guest ?var0 . } UNION { %%var

%% dbpprop:director ?var0 . } UNION { %%var%% dbpprop:producer ?var0 . } UNION {

%%var%% dbpprop:series ?var0 . } }

15 SELECT ?var0 WHERE { %%var%% dbpedia -owl:abstract ?var0. FILTER langMatches(LANG
(?var0), ’en’) }

17 SELECT ?var0 ?var1 WHERE { ?var2 rdfs:label %%var%% . ?var0 skos:broader ?var2 .

?var0 rdfs:label ?var1 . FILTER langMatches(LANG(?var1), ’EN’) }

19 SELECT * WHERE { ?var0 a %%var%% . ?var0 foaf:givenName ?var1 FILTER regex(?var1 ,

’^A’). }

21 SELECT ?var0 WHERE { %%var%% a ?var1 . OPTIONAL { ?var1 rdfs:subClassOf ?var0 } .

FILTER (!bound(?var1)) . FILTER (?var0 != <http :// dbpedia.org/ontology/Resource

>) . }

23 SELECT ?var0 ?var1 ?var2 ?var3 WHERE { ?var3 skos:subject %%var%% . ?var3 foaf:

name ?var0 . OPTIONAL { ?var3 rdfs:comment ?var1 . FILTER (LANG(?var1) = ’en’) .

} OPTIONAL { ?var3 rdfs:comment ?var2 . FILTER (LANG(?var2) = ’de’) . } }

99

A. DBpedia SPARQL Benchmark (DBPSB) Queries

25 SELECT DISTINCT ?var0 ?var1 WHERE { ?var2 dbpedia -owl:influenced %%var%% . ?var2

foaf:page ?var0 . ?var2 rdfs:label ?var1 f i l t e r (LANG(?var1)=’en’) }

27 SELECT DISTINCT ?var0 WHERE { %%var%% dbpedia2:instrument ?var0 FILTER (

langMatches(LANG(?var0), ’EN’)) }

29 SELECT * WHERE {{ %%var%% rdfs:comment ?var0. FILTER (LANG(?var0) = ’en’)} UNION
{%% var%% foaf:depiction ?var1} UNION {%% var%% foaf:homepage ?var2}}

31 SELECT DISTINCT ?var0 ?var1 WHERE { ?var2 rdf:type %%var%% OPTIONAL { ?var0 rdfs:

label ?var1 . FILTER(LANG(?var1) = ’en’) . } }

33 SELECT ?var0 ?var1 ?var2 WHERE { { %%var%% ?var0 ?var1. FILTER ((STR(?var0) = ’

http ://www.w3.org /2000/01/rdf -schema#label’ && LANG(?var1) = ’en’) (STR(?var0) =

’http :// dbpedia.org/ontology/abstract ’ && LANG(?var1) = ’en’) (STR(?var0) = ’

http ://www.w3.org /2000/01/rdf -schema#comment ’ && LANG(?var1) = ’en’) (STR(?var0)

!= ’http :// dbpedia.org/ontology/abstract ’ && STR(?var0) != ’http :// www.w3.org

/2000/01/rdf -schema#comment ’ && STR(?var0) != ’http ://www.w3.org /2000/01/ rdf -

schema#label’)) } UNION { ?var2 ?var0 %%var%% FILTER (STR(?var0) = ’http ://

dbpedia.org/ontology/owner’ STR(?var0) = ’http :// dbpedia.org/property/redirect ’

) } }

35 SELECT ?var1 WHERE { %%var%% rdfs:label ?var1 .}

37 SELECT * WHERE { ?var0 rdfs:label %%var%% ; rdf:type ?var1 . }

39 SELECT ?var0 WHERE { ?var1 rdf:type dbpedia -owl:Person . ?var1 rdfs:label %%var%%

. ?var1 foaf:page ?var0 . }

100

B. Curriculum Vitae

Personal Data
Birth date: November 15th, 1980
Birth place: Cairo, Egypt
Nationality: Egyptian
Marital status: Married

Education
2010 – Present Leipzig University Leipzig, Germany
Ph.D., Faculty of Mathematics and Computer Science, Department of Computer
Science.
Thesis title: Efficient Extraction and Query Benchmarking of Wikipedia
Data

2002 – 2006 Ain Shams University Cairo, Egypt
M.Sc., Faculty of Computer and Information Sciences, Computer Science Depart-
ment.
Thesis title: Intelligent Technique for Computer Virus Detection.

1997 – 2001 Ain Shams University Cairo, Egypt
B.Sc., Faculty of Computer and Information Sciences, Computer Science Depart-
ment.
Grade: Excellent with honor degree.

1994 – 1997 El Tawfekeya secondary school Cairo, Egypt
General secondary school certificate.
Grade: 98.25%.

Awards and Honors

� Best research paper award at The 10th International Semantic
Web Conference (ISWC2011), for paper ”DBpedia SPARQL Benchmark
– Performance Assessment with Real Queries on Real Data”.

� Spotlight paper at The 11th International Semantic Web Confer-
ence (ISWC2012), for paper ”DeFacto - Deep Fact Validation”.

101

B. Curriculum Vitae

� Outstanding paper award at The Electronic Library and Informa-
tion Systems Journal, for paper ”DBpedia and the Live Extraction of
Structured Data from Wikipedia”.

� DAAD scholarship, for obtaining the Ph.D. Degree from Germany.

Research Interests

� Semantic Web.

� Linked Data.

� Ontology Engineering.

� Object Oriented Analysis and Design.

Publications

1. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick
van Kleef, Sören Auer, Christian Bizer. DBpedia - A Large-scale, Multilin-
gual Knowledge Base Extracted from Wikipedia. Submitted to Semantic
Web Journal.

2. Amrapali Zaveri, Dimitris Kontokostas, Mohamed A. Sherif, Lorenz Bühmann,
Mohamed Morsey, Sören Auer, and Jens Lehmann. User-driven quality
evaluation of dbpedia. To appear in Proceedings of 9th International Confer-
ence on Semantic Systems, I-SEMANTICS ’13, Graz, Austria, September
4-6, 2013. ACM, 2013.

3. Jens Lehmann and Daniel Gerber and Mohamed Morsey, Axel-Cyrille
Ngonga Ngomo.
”DeFacto - Deep Fact Validation”. In The 11th International Semantic Web
Conference (ISWC2012), 2012.

4. Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga
Ngomo.
”Usage-Centric Benchmarking of RDF Triple Stores”. In the 26th AAAI
Conference on Artificial Intelligence (AAAI 2012), 2012.

5. Mohamed Morsey, Jens Lehmann, Sören Auer, Claus Stadler, and Sebas-
tian Hellmann.
”DBpedia and the Live Extraction of Structured Data from Wikipedia”. At
The Electronic Library and Information Systems Journal, 2012.

102

6. Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga
Ngomo.
”DBpedia SPARQL Benchmark – Performance Assessment with Real Queries
on Real Data”. In The 10th International Semantic Web Conference (ISWC2011),
2011.

7. M. Mabrouk, M. Siam, M. Hashem, and S. Arafat.
”Mobile Agents for Computer Virus Detection”, 2nd International Conference
on Intelligent Computing and Information Systems (ICICIS’2005), Egypt,
2005.

8. M. Mabrouk, M. Siam, M. Hashem, and S. Arafat.
”Data Mining for Computer Virus Detection”, 2nd International Conference
on Intelligent Computing and Information Systems (ICICIS’2005), Egypt,
2005.

9. M. Mabrouk, M. Siam, M. Hashem, and S. Arafat.
”Neural Networks for Computer Virus Detection”, 4th WSEAS International
Conference on Neural Networks and Applications (WSEAS NNA 2003),
Greece, 2003.

Relevant Experience

� 2001 – Present Teaching assistant, Faculty of Computer and Information
Sciences, Ain Shams University, Cairo, Egypt.

� 2002 – 2004 Teaching assistant, National Institute for Civil Aviation,
Cairo, Egypt.

� 2002 – 2004 Teaching assistant, Higher Institute for Specialized Techno-
logical Studies, Cairo, Egypt.

Languages Skills

� English: TOEFL iBT test with score of 94.

� German: DSH test grade 1.

� Arabic: Mother tongue.

Technical and Programming Skills

� Programming Languages Skills:

103

B. Curriculum Vitae

– .NET frameworks 4.0, 3.5, 3.0, 2.0, 1.1, and 1.0, level is excellent, 10
years of experience.

– Visual C#, level is excellent, 9 years of experience.

– Visual C++ and Visual C++. Net, level is excellent, 9 years of experi-
ence.

– Java, level is excellent, 5 years of experience.

– Assembly Language, level is good, 2 years of experience.

– Delphi, level is moderate, 1 year of experience.

� Web Programming:

– ASP.NET 4.0.

– ASP.NET 3.5.

– ASP.NET 3.0.

– ASP.NET 2.0.

– ASP.NET 1.1.

– ASP.NET 1.0.

– JSP.

– ASP.

– AJAX.

– Java Script.

– VB script.

� Database Systems:

– Microsoft SQL Server 2008.

– Microsoft SQL Server 2005.

– Microsoft SQL Server 2000.

– MySQL.

– ORACLE 8.0i.

� Other Programming Skills:

– WPF.

– WWF.

– WCF.

– MFC.

– DotNetNuke Programming.

– Database programming using ADO, ADO.NET.

104

– ATL Programming.

– COM Programming.

– DirectX 9.0 Programming.

– ActiveX Programming.

– SDK Programming.

� Programming Certificates:

– MCAD using C#.

– Microsoft certificate of ”Web Application Development Using Microsoft
Visual InterDev 6.0” using ASP.

Projects

� DBpedia Live:
DBpedia project aims at extracting structured knowledge from Wikipedia,
and making it free available on the Web. The main objective of DBpedia Live
is to keep DBpedia always in synchronization with Wikipedia. It reads a con-
tinuous steam-of-updates from Wikipedia, containing the changed Wikipedia
articles,process it on-the-fly and reprocesses those pages, in order to keep the
DBpedia data always up to date. It is available here http://live.dbpedia.org.
Implemented in Java, and Scala.

� DBpedia SPARQL Benchmark (DBPSB):
DBPSB is a general SPARQL benchmark procedure, which we apply to the
DBpedia knowledge base. The benchmark is based on query-log mining,
clustering and SPARQL feature analysis. In contrast to other benchmarks,
we perform measurements on actually posed queries against existing RDF
data. It is available here http://aksw.org/Projects/DBPSB. Implemented in
Java.

� Deep Fact Validation (DeFacto):
DeFacto (Deep Fact Validation) is an algorithm for validating statements by
finding confirming sources for it on the web. It takes a statement (such as
“Jamaica Inn was directed by Alfred Hitchcock”) as input and then tries to
find evidence for the truth of that statement by searching for information
in the web. It is available here http://aksw.org/Projects/DeFacto.html.
Implemented in Java.

� eVoucher System:
Building and developing a system for managing and delivering vouchers to
the user. I have worked in this system while I was in Technowireless software
company. Implemented in C#, and ASP.NET.

105

B. Curriculum Vitae

� Web Site Builder:
Building and developing a system for constructing web sites on the fly, i.e.
the user determines his/her the requirements of the website and the system
builds the HTML files for him/her. I have worked in this system while I was
in ILD online software company. Implemented using classic ASP.

� Speaker Recognition System (Graduation Project):
Building and developing a system that is able to identify the speaker, i.e.
voice print system. Implemented in Visual C++.

� Speech Recognition System):
Developing a package to accept a wave sound and apply to it several prepro-
cessing techniques. Implemented in Visual C++.

� Image Processing Package:
Developing a package to process an image including filtering, edge detection,
and mathematical and logical operations. Implemented in Visual C++.

� Graphics Package:
Developing a package that enables the user to draw different shapes such
as lines and circles, and applying different graphics operations on them like
translation and rotation. Implemented in Visual C++.

� Students Affairs System:
Building a system to accept student details and applying the different op-
erations on them like calculating the total marks of each student, and
determining the failed students. Implemented in Visual Prolog.

106

List of Tables

2.1. Sample RDF statements. 10

3.1. Overview of DBpedia extractors. 21
3.2. Datasets linked from DBpedia . 30
3.3. Top 10 datasets in Sindice ordered by the number of links to DBpedia. 32
3.4. Sindice summary statistics for incoming links to DBpedia. 32
3.5. Top 10 datasets by incoming links in Sindice. 32

5.1. Data quality dimensions, categories and sub-categories identified
in the DBpedia resources. Detectable (column D) means problem
detection can be automated. Fixable (column F) means the issue
is solvable by amending either the extraction framework (E), the
mappings wiki (M) or Wikipedia (W). The last column marks the
dataset specific subcategories. 48

5.2. Overview of the manual quality evaluation. 53
5.3. Detected number of problem for each of the defined quality problems.

IT = Incorrect triples, DR = Distinct resources, AT = Affected
triples. 54

5.4. Results of the semi-automatic evaluation. The table shows the total
number of properties that have been suggested to have the given
characteristic by Step I of the semi-automatic methodology, the
number of properties that would lead to at least one violation when
applying the characteristic, the number of properties where the
characteristic is meaningful (manually evaluated) and some metrics
for the number of violations. 55

5.5. Classification results for trainings sets domain and range. 62
5.6. Classification results for trainings sets domain-range and property. 62
5.7. Classification results for trainings sets random and 20%mix. . . . 62

6.1. Statistical analysis of DBPSB datasets. 67
6.2. Queries per second (QpS), geometric mean of query runtime in

milliseconds (GM), and standard deviation of query runtime in
milliseconds (SD), for the 10% dataset, and 50% dataset respectively
of DBPSB version 1. 78

107

List of Tables

6.3. Queries per second (QpS), geometric mean of query runtime in
milliseconds (GM), and standard deviation of query runtime in
milliseconds (SD), for the 100% dataset, and 200% dataset of DBPSB
version 1. 79

6.4. Queries per second (QpS), geometric mean of query runtime in
milliseconds (GM), and standard deviation of query runtime in
milliseconds (SD), for the 10% dataset, and 50% dataset of DBPSB
version 2. 83

6.5. Queries per second (QpS), geometric mean of query runtime in
milliseconds (GM), and standard deviation of query runtime in
milliseconds (SD), for the 100% dataset of DBPSB version 2. . . . 84

7.1. Comparison of different RDF benchmarks. 88

108

List of Figures

2.1. RDF statements represented as a directed graph. 8
2.2. Small knowledge base about William Shakespeare represented as a

graph. 10
2.3. Sample N-Triples format. 11
2.4. Sample RDF/XML format. 11
2.5. Sample N3 format. 12
2.6. Sample ontology snapshot taken from DBpedia ontology. 13
2.7. OWL representation of a part our ontology in N-Triples format. . 15
2.8. SPARQL query to get the spouse of Shakespeare’s child. 15

3.1. Mediawiki infobox syntax for Algarve (left) and rendered infobox
(right). 18

3.2. Overview of DBpedia extraction framework. 19
3.3. Depiction of the mapping from the Greek and English Wikipedia

templates about books to the same DBpedia Ontology class [Kontokostas et al., 2012].
. 25

3.4. Snapshot of a part of the DBpedia ontology. 28
3.5. Growth of the DBpedia ontology 28
3.6. SPARQL query to compare funding per year (from FTS) and country

with the gross domestic product of that country. 29

4.1. General DBpedia Live system architecture. 34
4.2. Mapping for infobox of a book. 36
4.3. Number of daily requests sent to the DBpedia Live for a) SPARQL

queries and b) synchronization requests from August 2012 until
January 2013 . 42

5.1. Workflow of the data quality assessment methodology. 45
5.2. Overview of Deep Fact Validation. 55
5.3. Input data for Defacto.. 56

6.1. Sample query with placeholder. 71
6.2. Sample auxiliary query returning potential values a placeholder can

assume. 71
6.3. QMpH for all triplestores of DBPSB version 1. 73
6.4. Geometric mean of QpS of DBPSB version 1. 74
6.5. QMpH for all triplestores of DBPSB version 2. 74

109

List of Figures

6.6. Geometric mean of QpS of DBPSB version 2. 74
6.7. Queries per Second (QpS) of DBPSB version 1 for all triplestores

for 10%, 50%, 100%, and 200%. 75
6.8. Queries per Second (QpS) of DBPSB version 2 for all triplestores

for 10%, 50% and 100%. 76
6.9. Comparison of triple store scalability between BSBM V2, BSBM

V3, DBPSB. 81

110

Bibliography

[Agichtein and Gravano, 2000] Agichtein, E. and Gravano, L. (2000). Snowball:
Extracting relations from large plain-text collections. In In Proceedings of the
5th ACM International Conference on Digital Libraries, pages 85–94.

[Auer et al., 2012] Auer, S., Bühmann, L., Dirschl, C., Erling, O., Hausenblas, M.,
Isele, R., Lehmann, J., Martin, M., Mendes, P. N., van Nuffelen, B., Stadler,
C., Tramp, S., and Williams, H. (2012). Managing the life-cycle of linked data
with the lod2 stack. In Proceedings of International Semantic Web Conference
(ISWC 2012). 22

[Auer and Lehmann, 2007] Auer, S. and Lehmann, J. (2007). What have Innsbruck
and Leipzig in common? extracting semantics from wiki content. In Proceedings
of the 4th European conference on The Semantic Web: Research and Applications,
volume 4519 of Lecture Notes in Computer Science, pages 503–517, Berlin /
Heidelberg. Springer.

[Auer et al., 2009] Auer, S., Lehmann, J., and Hellmann, S. (2009). LinkedGeo-
Data - adding a spatial dimension to the web of data. In Proc. of 8th International
Semantic Web Conference (ISWC).

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D. L., Patel-Schneider, P. F., and Stein, L. A. (2004). OWL Web On-
tology Language Reference. Technical report, W3C, http://www.w3.org/TR/owl-
ref/.

[Beckett, 2004] Beckett, D. (2004). RDF/XML syntax specification (revised).
W3C recommendation, W3C.

[Belleau et al., 2008] Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., and
Morissette, J. (2008). Bio2rdf: Towards a mashup to build bioinformatics
knowledge systems. Journal of Biomedical Informatics, 41(5):706–716.

[Berners-Lee and Connolly, 2011] Berners-Lee, T. and Connolly, D. (2011). Nota-
tion3 (N3): A readable RDF syntax. Technical report, W3C.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):34–43.

111

Bibliography

[Bishop et al., 2011] Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev,
Z., and Velkov, R. (2011). OWLIM: A family of scalable semantic repositories.
Semantic Web, 2(1):1–10.

[Bizer, 2007] Bizer, C. (2007). Quality-Driven Information Filtering in the Context
of Web-Based Information Systems. PhD thesis, Freie Universität.

[Bizer and Cyganiak, 2009] Bizer, C. and Cyganiak, R. (2009). Quality-driven
information filtering using the wiqa policy framework. Web Semantics, 7(1):1 –
10.

[Bizer and Schultz, 2009] Bizer, C. and Schultz, A. (2009). The Berlin SPARQL
Benchmark. Int. J. Semantic Web Inf. Syst., 5(2):1–24.

[Bollacker et al., 2008] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and Tay-
lor, J. (2008). Freebase: a collaboratively created graph database for structuring
human knowledge. In SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages 1247–1250, New York,
NY, USA. ACM.

[Brickley and Guha, 2004] Brickley, D. and Guha, R. V. (2004). RDF Vocabulary
Description Language 1.0: RDF Schema. Technical report, W3C.

[Brin, 1999] Brin, S. (1999). Extracting patterns and relations from the world
wide web. In Selected papers from the International Workshop on The World
Wide Web and Databases, pages 172–183, London, UK. Springer-Verlag.

[Broekstra et al., 2002] Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A generic architecture for storing and querying RDF and RDF schema.
In Proceedings of the 2nd International Semantic Web Conference (ISWC2002),
number 2342 in Lecture Notes in Computer Science (LNCS) 7603, pages 54–68.
Springer.

[Bühmann and Lehmann, 2012] Bühmann, L. and Lehmann, J. (2012). Universal
OWL axiom enrichment for large knowledge bases. In Proceedings of the 18th
international conference on Knowledge Engineering and Knowledge Management,
EKAW’12.

[Cafarella et al., 2008] Cafarella, M. J., Halevy, A. Y., Wang, D. Z., Wu, E., and
Zhang, Y. (2008). Webtables: exploring the power of tables on the web. Proc.
VLDB Endow., 1(1):538–549.

[Clark et al., 2008] Clark, K. G., Feigenbaum, L., and Torres, E. (2008). SPARQL
Protocol for RDF. World Wide Web Consortium, Recommendation REC-rdf-
sparql-protocol-20080115.

[Dave and Berners-Lee, 2011] Dave, D. and Berners-Lee, T. (2011). Turtle - Terse
RDF Triple Language. Technical report, W3C.

112

Bibliography

[Demartini et al., 2012] Demartini, G., Difallah, D., and Cudré-Mauroux, P.
(2012). Zencrowd: Leveraging probabilistic reasoning and crowdsourcing tech-
niques for large-scale entity linking. In 21st International Conference on World
Wide Web WWW 2012, pages 469 – 478.

[Dividino et al., 2011] Dividino, R., Sizov, S., Staab, S., and Schueler, B. (2011).
Querying for provenance, trust, uncertainty and other meta knowledge in rdf.
Web Semantics: Science, Services and Agents on the World Wide Web, 7(3).

[Erling and Mikhailov, 2007] Erling, O. and Mikhailov, I. (2007). RDF support
in the virtuoso DBMS. In Auer, S., Bizer, C., Müller, C., and Zhdanova, A. V.,
editors, Proceedings of the 1st Conference on Social Semantic Web, volume 113
of LNI, pages 59–68. GI.

[Flemming, 2010] Flemming, A. (2010). Quality characteristics of linked data
publishing datasources. Master’s thesis, Humboldt-Universität of Berlin.

[Gerber and Ngomo, 2012] Gerber, D. and Ngomo, A.-C. N. (2012). Extracting
multilingual natural-language patterns for rdf predicates. In Proceedings of
the 18th international conference on Knowledge Engineering and Knowledge
Management, EKAW’12, pages 87–96, Berlin, Heidelberg. Springer-Verlag.

[Gerber and Ngonga Ngomo, 2011] Gerber, D. and Ngonga Ngomo, A.-C. (2011).
Bootstrapping the linked data web. In 1st Workshop on Web Scale Knowledge
Extraction @ ISWC 2011.

[Grant and Beckett, 2004] Grant, J. and Beckett, D. (2004). RDF test cases. W3C
recommendation, World Wide Web Consortium.

[Gray, 1991] Gray, J., editor (1991). The Benchmark Handbook for Database and
Transaction Systems (1st Edition). Morgan Kaufmann.

[Grishman and Yangarber, 1998] Grishman, R. and Yangarber, R. (1998). Nyu:
Description of the Proteus/Pet system as used for MUC-7 ST. In In Proceedings
of the Seventh Message Understanding Conference (MUC-7). Morgan Kaufmann.

[Guéret et al., 2012] Guéret, C., Groth, P. T., Stadler, C., and Lehmann, J. (2012).
Assessing linked data mappings using network measures. In Proceedings of the 9th
Extended Semantic Web Conference, volume 7295 of Lecture Notes in Computer
Science, pages 87–102. Springer.

[Hartig, 2008] Hartig, O. (2008). Trustworthiness of data on the web. In Proceed-
ings of the STI Berlin & CSW PhD Workshop.

[Hartig, 2009] Hartig, O. (2009). Provenance information in the web of data. In
In Proceedings of the Linked Data on the Web (LDOW) Workshop at WWW.

113

Bibliography

[Hartig and Zhao, 2010] Hartig, O. and Zhao, J. (2010). Publishing and consum-
ing provenance metadata on the web of linked data. In Proceedings of 3rd
International Provenance and Annotation Workshop, pages 78–90.

[Heflin, 2004] Heflin, J. (2004). OWL Web Ontology Language Use Cases and
Requirements. Technical report, W3C.

[Hellmann et al., 2009] Hellmann, S., Lehmann, J., and Auer, S. (2009). Learning
of OWL class descriptions on very large knowledge bases. International Journal
on Semantic Web and Information Systems, 5(2):25–48.

[Hellmann et al., 2011] Hellmann, S., Lehmann, J., and Auer, S. (2011). Learning
of owl class expressions on very large knowledge bases and its applications. In
Semantic Services, I. and Concepts, W. A. E., editors, Learning of OWL Class
Expressions on Very Large Knowledge Bases and its Applications, chapter 5,
pages 104–130. IGI Global.

[Hoffart et al., 2010] Hoffart, J., Suchanek, F. M., Berberich, K., and Weikum,
G. (2010). YAGO2: a spatially and temporally enhanced knowledge base
from Wikipedia. Research Report MPI-I-2010-5-007, Max-Planck-Institut für
Informatik, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany.

[Hogan et al., 2010] Hogan, A., Harth, A., Passant, A., Decker, S., and Polleres,
A. (2010). Weaving the pedantic web. In Linked Data on the Web Workshop
(LDOW2010) at WWW’2010.

[Hogan et al., 2012] Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A.,
and Decker, S. (2012). An empirical survey of linked data conformance. Journal
of Web Semantics, 14:14–44.

[Iglesias and Lehmann, 2011] Iglesias, J. and Lehmann, J. (2011). Towards inte-
grating fuzzy logic capabilities into an ontology-based inductive logic program-
ming framework. In Proc. of the 11th International Conference on Intelligent
Systems Design and Applications (ISDA).

[Knuth et al., 2012] Knuth, M., Hercher, J., and Sack, H. (2012). Collabora-
tively patching linked data. Proceedings of 2nd International Workshop on
Usage Analysis and the Web of Data (USEWOD 2012), co-located with the 21st
International World Wide Web Conference 2012 (WWW 2012).

[Kontokostas et al., 2012] Kontokostas, D., Bratsas, C., Auer, S., Hellmann, S.,
Antoniou, I., and Metakides, G. (2012). Internationalization of linked data: The
case of the greek dbpedia edition. Web Semantics: Science, Services and Agents
on the World Wide Web, 15(0):51 – 61.

[Kreis, 2011] Kreis, P. (2011). Design of a quality assessment framework for the
dbpedia knowledge base. Master’s thesis, Freie Universität Berlin.

114

Bibliography

[Krejcie and Morgan, 1970] Krejcie and Morgan (1970). Determining sample size
for research activities. Educational and Psycholoigcal Measurement, 30:607–610.

[Lagoze et al., 2008] Lagoze, C., de Sompel, H. V., Nelson, M., and Warner, S.
(2008). The open archives initiative protocol for metadata harvesting. http:

//www.openarchives.org/OAI/openarchivesprotocol.html.

[Lehmann, 2007] Lehmann, J. (2007). Hybrid learning of ontology classes. In
Perner, P., editor, Machine Learning and Data Mining in Pattern Recognition,
5th International Conference, MLDM 2007, Leipzig, Germany, July 18-20, 2007,
Proceedings, volume 4571 of Lecture Notes in Computer Science, pages 883–898.
Springer.

[Lehmann, 2009] Lehmann, J. (2009). DL-Learner: learning concepts in description
logics. Journal of Machine Learning Research (JMLR), 10:2639–2642.

[Lehmann, 2010] Lehmann, J. (2010). Learning OWL Class Expressions. PhD
thesis, University of Leipzig. PhD in Computer Science.

[Lehmann et al., 2011] Lehmann, J., Auer, S., Bühmann, L., and Tramp, S. (2011).
Class expression learning for ontology engineering. Journal of Web Semantics,
9:71 – 81.

[Lehmann et al., 2009] Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker,
C., Cyganiak, R., and Hellmann, S. (2009). DBpedia - a crystallization point
for the web of data. Journal of Web Semantics, 7(3):154–165.

[Lehmann and Bühmann, 2010] Lehmann, J. and Bühmann, L. (2010). Ore -
a tool for repairing and enriching knowledge bases. In Proceedings of the
9th International Semantic Web Conference (ISWC2010), Lecture Notes in
Computer Science, Berlin / Heidelberg. Springer.

[Lehmann et al., 2012] Lehmann, J., Gerber, D., Morsey, M., and Ngonga Ngomo,
A.-C. (2012). Defacto - deep fact validation. In Proceedings of the 11th Interna-
tional Semantic Web Conference (ISWC2012).

[Lehmann and Haase, 2009] Lehmann, J. and Haase, C. (2009). Ideal downward
refinement in the EL description logic. In Inductive Logic Programming, 19th
International Conference, ILP 2009, Leuven, Belgium.

[Lehmann and Hitzler, 2007a] Lehmann, J. and Hitzler, P. (2007a). Foundations
of refinement operators for description logics. In Blockeel, H., Ramon, J.,
Shavlik, J. W., and Tadepalli, P., editors, Inductive Logic Programming, 17th
International Conference, ILP 2007, Corvallis, OR, USA, June 19-21, 2007,
volume 4894 of Lecture Notes in Computer Science, pages 161–174. Springer.
Best Student Paper Award.

115

http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.openarchives.org/OAI/openarchivesprotocol.html

Bibliography

[Lehmann and Hitzler, 2007b] Lehmann, J. and Hitzler, P. (2007b). A refinement
operator based learning algorithm for the ALC description logic. In Blockeel,
H., Ramon, J., Shavlik, J. W., and Tadepalli, P., editors, Inductive Logic
Programming, 17th International Conference, ILP 2007, Corvallis, OR, USA,
June 19-21, 2007, volume 4894 of Lecture Notes in Computer Science, pages
147–160. Springer. Best Student Paper Award.

[Lehmann and Hitzler, 2010] Lehmann, J. and Hitzler, P. (2010). Concept learning
in description logics using refinement operators. Machine Learning journal, 78(1-
2):203–250.

[Lehmann et al., 2013] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kon-
tokostas, D., Mendes, P. N., Hellmann, S., Morsey, M., Sahnwaldt, J. C., Stadler,
C., van Kleef, P., Auer, S., Bizer, C., and Idehen, K. (2013). DBpedia - A
Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic
Web Journal.

[Lehmann et al., 2007] Lehmann, J., Schüppel, J., and Auer, S. (2007). Discovering
unknown connections - the DBpedia relationship finder. In Proceedings of 1st
Conference on Social Semantic Web. Leipzig (CSSW’07), 24.-28. September,
volume P-113 of GI-Edition of Lecture Notes in Informatics (LNI). Bonner
Köllen Verlag.

[Martin et al., 2013] Martin, M., Stadler, C., Frischmuth, P., and Lehmann, J.
(2013). Increasing the financial transparency of european commission project
funding. Semantic Web Journal, Special Call for Linked Dataset descriptions.

[Meiser et al., 2011] Meiser, T., Dylla, M., and Theobald, M. (2011). Interactive
reasoning in uncertain RDF knowledge bases. In Berendt, B., de Vries, A., Fan,
W., and Macdonald, C., editors, Proceedings of the 20th ACM international
conference on Information and knowledge management, pages 2557–2560.

[Mendes P.N., 2012] Mendes P.N., Mühleisen H., B. C. (2012). Sieve: Linked data
quality assessment and fusion. In Proceedings of the 2012 Joint EDBT/ICDT
Workshops.

[Minack et al., 2009] Minack, E., Siberski, W., and Nejdl, W. (2009). Benchmark-
ing fulltext search performance of RDF stores. In Proceedings of the 6th European
Semantic Web Conference on The Semantic Web: Research and Applications,
pages 81–95.

[Morsey et al., 2011] Morsey, M., Lehmann, J., Auer, S., and Ngonga Ngomo,
A.-C. (2011). DBpedia SPARQL Benchmark – Performance Assessment with
Real Queries on Real Data. In Proceedings of the 10th international conference
on The semantic web - Volume Part I.

116

Bibliography

[Morsey et al., 2012a] Morsey, M., Lehmann, J., Auer, S., and Ngonga Ngomo, A.-
C. (2012a). Usage-Centric Benchmarking of RDF Triple Stores. In Proceedings
of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012).

[Morsey et al., 2012b] Morsey, M., Lehmann, J., Auer, S., Stadler, C., and Hell-
mann, S. (2012b). DBpedia and the Live Extraction of Structured Data from
Wikipedia. Program: electronic library and information systems, 46:27.

[Nakamura et al., 2007] Nakamura, S., Konishi, S., Jatowt, A., Ohshima, H.,
Kondo, H., Tezuka, T., Oyama, S., and Tanaka, K. (2007). Trustworthiness
analysis of web search results. In Research and Advanced Technology for Digital
Libraries, 11th European Conference, volume 4675, pages 38–49.

[Ngonga Ngomo and Auer, 2011] Ngonga Ngomo, A.-C. and Auer, S. (2011).
Limes - a time-efficient approach for large-scale link discovery on the web
of data. In Proceedings of the Twenty-Second international joint conference on
Artificial Intelligence - Volume Volume Three.

[Ngonga Ngomo and Schumacher, 2009] Ngonga Ngomo, A.-C. and Schumacher,
F. (2009). Border flow – a local graph clustering algorithm for natural language
processing. In Proceedings of the 10th International Conference on Intelligent
Text Processing and Computational Linguistics (CICLING 2009), pages 547–558.
Best Presentation Award.

[Nguyen et al., 2007] Nguyen, D. P. T., Matsuo, Y., and Ishizuka, M. (2007).
Relation extraction from wikipedia using subtree mining. In Proceedings of the
22nd national conference on Artificial intelligence - Volume 2, pages 1414–1420.

[Oren et al., 2008] Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H.,
and Tummarello, G. (2008). Sindice.com: a document-oriented lookup index for
open linked data. Int. J. of Metadata and Semantics and Ontologies, 3:37–52.

[Owens et al., 2008a] Owens, A., Gibbins, N., and mc schraefel (2008a). Effective
Benchmarking for RDF Stores Using Synthetic Data.

[Owens et al., 2008b] Owens, A., Seaborne, A., Gibbins, N., and mc schraefel
(2008b). Clustered TDB: A clustered triple store for jena. Technical report,
Electronics and Computer Science, University of Southampton.

[Pan et al., 2005] Pan, Z., Guo, Y., , and Heflin, J. (2005). LUBM: A benchmark
for OWL knowledge base systems. In Journal of Web Semantics, volume 3,
pages 158–182.

[Pasternack and Roth, 2011a] Pasternack, J. and Roth, D. (2011a). Generalized
fact-finding. In Proceedings of the 20th international conference companion on
World wide web, WWW ’11, pages 99–100, New York, NY, USA. ACM.

117

Bibliography

[Pasternack and Roth, 2011b] Pasternack, J. and Roth, D. (2011b). Making better
informed trust decisions with generalized fact-finding. In Proceedings of the
Twenty-Second international joint conference on Artificial Intelligence - Volume
Volume Three, IJCAI’11, pages 2324–2329. AAAI Press.

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A.
(2008). SPARQL query language for RDF. W3C recommendation, W3C.

[Sarasua et al., 2012] Sarasua, C., Simperl, E., and Noy, N. (2012). Crowdmap:
Crowdsourcing ontology alignment with microtasks. In Proceedings of the
11th International Semantic Web Conference (ISWC2012), Lecture Notes in
Computer Science, pages 525–541. Springer Berlin Heidelberg.

[Schmidt et al., 2009] Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C. (2009).
SP2Bench: A SPARQL Performance Benchmark. In Proceedings of the 25th
International Conference on Data Engineering, ICDE 2009, pages 222–233.
IEEE.

[Stadler et al., 2012] Stadler, C., Lehmann, J., Höffner, K., and Auer, S. (2012).
Linkedgeodata: A core for a web of spatial open data. Semantic Web Journal,
3(4):333–354.

[Stadler et al., 2010] Stadler, C., Martin, M., Lehmann, J., and Hellmann, S.
(2010). Update Strategies for DBpedia Live. In 6th Workshop on Scripting and
Development for the Semantic Web Colocated with ESWC 2010 30th or 31st
May, 2010 Crete, Greece.

[Stickler, 2005] Stickler, P. (2005). CBD - concise bounded description. Retrieved
February 15, 2011, from http://www.w3.org/Submission/CBD/.

[Suchanek et al., 2008] Suchanek, F. M., Kasneci, G., and Weikum, G. (2008).
Yago: A large ontology from wikipedia and wordnet. Journal of Web Semantics,
6(3):203–217.

[Tacchini et al., 2009] Tacchini, E., Schultz, A., and Bizer, C. (2009). Experiments
with wikipedia cross-language data fusion. In Proceedings of the 5th Workshop
on Scripting and Development for the Semantic Web, ESWC. Citeseer.

[Theoharis et al., 2011] Theoharis, Y., Fundulaki, I., Karvounarakis, G., and
Christophides, V. (2011). On provenance of queries on semantic web data.
IEEE Internet Computing, 15:31–39.

[TPC, 2012] TPC (2012). Transaction processing performance council website
(TPC). http://www.tpc.org.

[W3C, 2004] W3C (2004). Resource description framework (rdf). http://www.w3.
org/RDF/.

118

http://www.w3.org/Submission/CBD/
http://www.tpc.org
http://www.w3.org/RDF/
http://www.w3.org/RDF/

Bibliography

[W3C, 2009] W3C (2009). W3C semantic web activity. Última visita 8/6/2010.

[Wang et al., 2012] Wang, J., Kraska, T., Franklin, M. J., and Feng, J. (2012).
Crowder: crowdsourcing entity resolution. Proc. VLDB Endow., 5:1483–1494.

[Wikipedia, 2012] Wikipedia (2012). Benchmark — Wikipedia, the free ency-
clopedia. http://en.wikipedia.org/wiki/Benchmark_(computing). [Online;
accessed 12-September-2012].

[Wikipedia, 2013] Wikipedia (2013). SPARQL — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 31-March-2013].

[Wu and Weld, 2007] Wu, F. and Weld, D. S. (2007). Autonomously semantifying
wikipedia. In CIKM ’07: Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, pages 41–50, New York,
NY, USA. ACM.

[Yan et al., 2009] Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., and Ishizuka,
M. (2009). Unsupervised relation extraction by mining wikipedia texts using
information from the web. In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL ’09,
pages 1021–1029.

[Yin et al., 2007] Yin, X., Han, J., and Yu, P. S. (2007). Truth discovery with
multiple conflicting information providers on the web. In Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 1048–1052.

[Yu, 2007] Yu, L. (2007). Introduction to Semantic Web and Semantic Web services.
Chapman & Hall/CRC, Boca Raton, FL.

[Zaveri et al., 2013a] Zaveri, A., Kontokostas, D., Sherif, M. A., Bühmann, L.,
Morsey, M., Auer, S., and Lehmann, J. (2013a). User-driven quality evaluation
of dbpedia. In To appear in Proceedings of 9th International Conference on
Semantic Systems, I-SEMANTICS ’13, Graz, Austria, September 4-6, 2013.
ACM.

[Zaveri et al., 2013b] Zaveri, A., Rula, A., Maurino, A., Petrobon, R., Lehmann,
J., and Auer, S. (2013b). Quality assessment methodologies for linked open data.
Semantic Web journal.

[Zaveri et al., 2013c] Zaveri, A., Rula, A., Maurino, A., Pietrobon, R.,
Lehmann, J., and Auer, S. (2013c). Quality assessment methodologies for
linked open data. Under review, available at http://www.semantic-web-
journal.net/content/quality-assessment-methodologies-linked-open-data.

119

http://en.wikipedia.org/wiki/Benchmark_(computing)

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sin-
ngemäß aus veröffentlichten oder unveröffentlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien
oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 13.4.2014

Mohamed Mabrouk Mawed Morsey

120

	Introduction
	Motivation
	Contributions
	Chapter Overview

	Semantic Web Technologies
	Semantic Web Definition
	Resource Description Framework - RDF
	RDF Resource
	RDF Property
	RDF Statement
	RDF Serialization Formats
	N-Triples
	RDF/XML
	N3
	Turtle

	Ontology
	Ontology Languages
	RDFS
	OWL

	SPARQL Query Language
	Triplestore

	Overview on the DBpedia Project
	Introduction to DBpedia
	DBpedia Extraction Framework
	General Architecture
	Extractors
	Raw Infobox Extraction
	Mapping-Based Infobox Extraction
	URI Schemes
	Summary of Recent Developments

	DBpedia Ontology
	Interlinking
	Outgoing Links
	Incoming Links

	DBpedia Live Extraction
	Live Extraction Framework
	General System Architecture
	Extraction Manager

	New Features
	Abstract Extraction
	Mapping-Affected Pages
	Unmodified Pages
	Changesets
	Synchronization Tool
	New Extractors
	Delta Calculation
	Important Pointers

	DBpedia Live Usage

	Data Quality
	Crowdsourcing for Data Quality
	Assessment Methodology
	Quality Problem Taxonomy
	Accuracy
	Relevancy
	Representational-Consistency
	Interlinking

	A Crowdsourcing Quality Assessment Tool
	Evaluation of DBpedia Data Quality
	Evaluation Methodology
	Manual Methodology
	Semi-automatic Methodology

	Evaluation Results
	Manual Methodology
	Semi-automatic Methodology

	Fact Validation
	Trustworthiness Analysis of Webpages
	Features for Deep Fact Validation
	Evaluation
	Training DeFacto
	Experimental Setup
	Results and Discussion

	DBpedia SPARQL Benchmark
	Overview on Benchmarking
	Objectives of Benchmarking

	Dataset Generation
	Query Analysis and Clustering
	SPARQL Feature Selection and Query Variability
	Experimental Setup
	Benchmark Phases

	Benchmarking Results
	DBPSB Version 1
	DBPSB1 Results Discussion
	DBPSB Version 2

	Related Work
	Semantic Data Extraction from Wikipedia
	RDF Benchmarks
	Existing Benchmarks
	Comparison between DBPSB and The Other Benchmarks

	Data Quality Assessment
	Fact Validation

	Conclusions and Future Work
	Conclusions
	DBpedia Live Extraction
	DBPSB
	DeFacto

	Future Work
	DBpedia Live Extraction
	DBPSB
	DeFacto

	DBpedia SPARQL Benchmark (DBPSB) Queries
	DBPSB Version 1
	DBPSB Version 2

	Curriculum Vitae
	List of Tables
	List of Figures
	Selbständigkeitserklärung

