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Definition: Ontology Learning

“Ontology Learning is a subtask of information extraction. The goal
of ontology learning is to (semi-)automatically extract relevant
concepts and relations from a given corpus or other kinds of data sets
to form an ontology.” (Wikipedia, today)

“Ontology Learning is a mechanism for semi-automatically supporting
the ontology engineer in engineering ontologies.”
A. D. Mädche. Ontology Learning for the Semantic Web.
Dissertation. Universität Karlsruhe, 2001
“Ontology Learning aims at the integration of a multitude of
disciplines in order to facilitate the construction of ontologies, in
particular ontology engineering and machine learning.”
A. D. Mädche, S. Staab. Ontology Learning. Handbook of Ontologies
in Information Systems, 2004
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Classification of Ontology Learning Data

sometimes heterogeneous sources of evidence (e.g., hyponymy [Snow et al. 2006],
subsumption [Cimiano et al. 2005], [Manzano-Macho et al. 2008], [Buitelaar et
al. 2008], disjointness [Völker et al. 2007])

Lehmann, Völker (Leipzig+Mannheim) Ontology Learning 2010-09-02 5 / 63



Lehmann, Völker (Leipzig+Mannheim) Ontology Learning 2010-09-02 6 / 63



Outline

1 Motivation and Definition

2 Overview of Ontology Learning Approaches

3 In Detail: Learning Definitions with Refinement Operators

4 Conclusions

Lehmann, Völker (Leipzig+Mannheim) Ontology Learning 2010-09-02 7 / 63



Ontology Learning Layer Cake [Cimiano 2006]
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Patterns [Hearst 1992] for Class Subsumption

NP such as {NP,}* {or|and} NP
„games such as baseball and cricket“

NP {,NP}* {,} {and|or} other NP
„rabbits and other animals“
but: „rabbits and other pets“

NP {,} including {NP,}* {or|and} NP
„fruits including apples and pears“

NP {,} especially {NP,}* {or|and} NP
„Europeans, especially Italians“
but: „US presidents, especially democrats“
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Patterns [Ogata and Collier 2004]

NP is a NP
“A kangaroo is an animal living in Australia.“

a NP named|called NP
”Japanese people like to play a game called Go.“

NP, NP
“Sencha, the most popular tea in Japan, ...“

NP. The NP
”John loves his Ferrari. The car ...“

Among NP, NP
“Among all musical instruments, violins are ...“

NP except for|other than NP
”Employees except for managers suffer from ...“
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JAPE Rule

GATE = General Architecture for Text Engineering
written in Java
mature, used worldwide
JAPE = language for rapid prototyping and efficient implementation
of shallow analysis methods
can be used e.g. for domain specific patterns (financial blogs etc.)
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JAPE Rule

rule: Hearst_1
(
(NounPhrase):superconcept
{SpaceToken.kind == space}
{Token.string=="such"}
{SpaceToken.kind == space}
{Token.string=="as"}
{SpaceToken.kind == space}
(NounPhrase):subconcept
):hearst1
-->
:hearst1.SubclassOfRelation = { rule = "Hearst1" },
:subconcept.Domain = { rule = "Hearst1" },
:superconcept.Range = { rule = "Hearst1" }
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Lexical Context Similarity
(e.g. [Cimiano and Völker 2005])

“Columbus is the capital of the state of Ohio. Columbus has a
population of about 700,000 inhabitants.”

Columbus (capital (1), state (1), Ohio (1), population (1),
inhabitant (1) )
City (country (2), state (1), inhabitant (2), mayor (1), attraction (1) )
Explorer (ship (1), sailor (2), discovery (1) )

„most probably“: City(Columbus)
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Subcategorization Frames

“Tina drives a Ford.”
Person(Tina). Vehicle(Ford).

“Her father drives a bus.”
Father subclass-of Person
Bus subclass-of Vehicle

subcat: drive( subj: person, obj: vehicle )
Person v ∀ drive.Vehicle
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[Faure and Nédellec 1998], [Schutz and Buitelaar 2005], [Cimiano et al. 2006]
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Suchanek et al. 2009

Learning from text and background knowledge via reasoning:
“Washington is the capital of the US. (...) New York is the US capital of
fashion.”

extracted: hasCapital(US, New York); hasCapital(US, Washington)
background knowledge: hasCapital is a functional property
possible inferences:

New York = Washington
inconsistency (unique names assumption)

logical contradictions can help to detect errors in automatically
extracted information
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Other Approaches

Association rules and co-occurrence statistics
WordNet: hyponymy ≈ subsumption

hyponym( bank]1‚ institution]1 )
Bank subclass-of Institution

Noun phrase heuristics
„image processing software“

Instance clustering (e.g. Columbus and Washington)
Hierarchical clustering of context vectors

Knowledge Base Completion / Formal Concept Analysis (FCA)
asks knowledge engineer questions to complete a knowledge base
tool: OntoComp [Sertkaya et al.]
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Tools and Frameworks

Name Institute Authors
ASIUM INRIA, Jouy-en-Josas Faure and Nedellec 1999
TextToOnto AIFB, University of Karlsruhe Mädche and Volz 2001
HASTI Amir Kabir University, Teheran Shamsfard, Barforoush 2004
OntoLT DFKI, Saarbrücken Buitelaar et al. 2004
DOODLE Shizuoka University Morita et al. 2004
Text2Onto AIFB, University of Karlsruhe Cimiano and Völker 2005
OntoLearn University of Rome Velardi et al. 2005
OLE Brno University of Technology Novacek and Smrz 2005
OntoGen Institute Jozef Stefan, Ljubljana Fortuna et al., 2007
GALeOn Technical University of Madrid Manzano-Macho et al. 2008
DINO DERI, Galway Novacek et al. 2008
OntoLancs Lancester University Gacitua et al. 2008

Table: Lexical ontology learning: informal or semi-formal data (e.g. texts)
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Tools and Frameworks

Name Institute Authors
YINGYANG University of Bari Iannone 2006
DL-Learner University of Leipzig Lehmann 2006
RELExO AIFB, University of Karlsruhe Völker and Rudolph 2008
RoLExO AIFB, University of Karlsruhe Völker and Rudolph 2008
OntoComp University of Dresden Sertkaya 2008

Table: Logical Ontology Learning

Name Institute Authors
LeDA AIFB, University of Karlsruhe Völker et al. 2007
SOFIE MPI, Saarbrücken Suchanek et al. 2009

Table: Hybrid implementations
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Problems and Challenges

Homonymy and polysemy e.g. [Ovchinnikova et al. 2006]
“Peter is sitting on the bank in front of the bank.”
“An interesting book is lying on the table.”

Semantics of adjectives
“red flower”, “false friend”

Empty heads e.g. [Völker et al. 2005], [Cimiano and Wenderoth
2005]

“Tuna is a kind of fish. The Southern Bluefin is one of the most
endangered types of Tuna.”

Ellipsis and underspecification
“Mary started the book.”

Anaphora (e.g. pronouns) e.g. [Cimiano and Völker 2005]
“There is an apple on the table. It is red.”
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Problems and Challenges (ctd.)

Metaphors and analogies e.g. [Gust et al. 2007]
“Live is a journey.”

Opinions, quotations and reported speech
“Tom thinks that dolphins are mammals.”

What should be represented as an individual? e.g. [Zirn et al. 2008]
“The kangaroo is an animal living in Australia.”

Class, relation (object property) or attribute (datatype property)?
“All elephants are grey.”
“Easter monday is a national holiday.”

Knowledge is changing e.g. [Stojanovic 2004], [Zablith et al. 2009]
“Pluto is a planet.”
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Learning OWL Class Expressions

given:
background knowledge (particularly OWL/DL knowledge base)
positive and negative examples (particulary individuals in knowledge
base)

goal:
logical formula (particularly OWL Class Expression) covering positive
examples and not covering negative examples

Prof. Baader
Prof. Schröder

Tim Berners-Lee
Richard Wagner

background knowledge

      Researcher and livedIn hasValue Dresden
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ILP and Semantic Web
Machine Learning
Problem

KR Language

First Order Language

Horn
Logics

Description Logics

RDFS

supervised

unsupervised

symbolic non-symbolic

Induction

Concept
Learning

DL Concept Learning

Inductive Logic Programming

OWL

since early 90s Inductive Logic Programming
only few approaches based on description logics
Web Ontology Language (OWL) becomes W3C standard in 2004
increasing number of RDF/OWL knowlegde bases, but ILP still
mainly focuses on logic programs  research gap
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Why ILP in the Semantic Web?

Ontology Learning:
given class A in K
instances of A as positive examples
non-instances as negative examples
definitions can be learned if ABox data is
available

improvement of existing ML problem
solutions
direct usage of knowledge in the Semantic
Web instead of conversion in e.g. horn
clauses to apply ML methods

ontology network

ML problems
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Refinement Operators - Definitions

given a DL L, consider the quasi-ordered space 〈C(L),vT 〉 over
concepts of L
ρ : C(L)→ 2C(L) is a downward L refinement operator if for any
C ∈ C(L):

D ∈ ρ(C) implies D vT C

notation: Write C  ρ D instead of D ∈ ρ(C)
example refinement chain in 〈C(EL),vT 〉:

> ρ Male ρ Male u ∃hasChild.>
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Learning with Refinement Operators

> start with most
general concept
(top)
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Learning with Refinement Operators

>

Car . . .Person

start with most
general concept
(top)
operator specialises
concept
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Learning with Refinement Operators

>

Car . . .Person

0,45

too weak 0,73

start with most
general concept
(top)
operator specialises
concept
heuristic assigns
score using pos/neg
examples
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Learning with Refinement Operators

>

Car . . .Person

Person u ∃ visits.> . . .

0,45

too weak 0,73

0,78

start with most
general concept
(top)
operator specialises
concept
heuristic assigns
score using pos/neg
examples
continue until
termination
criterion is met
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Learning with Refinement Operators

>

Car . . .Person

Person u ∃ visits.>

. . .

. . .

Person u ∃ visits.SummerSchool

0,45

too weak 0,73

0,78

0,97

start with most
general concept
(top)
operator specialises
concept
heuristic assigns
score using pos/neg
examples
continue until
termination
criterion is met

=
learning algorithm
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Properties of Refinement Operators
An L downward refinement operator ρ is called

finite iff ρ(C) is finite for any concept C ∈ C(L)

redundant iff there exist two different ρ refinement chains from a
concept C to a concept D.
proper iff for C ,D ∈ C(L), C  ρ D implies C 6≡T D
complete iff for C ,D ∈ C(L) with D @T C there is a concept E with
E ≡T D and a refinement chain C  ρ · · · ρ E
weakly complete iff for any concept C with C @T > we can reach a
concept E with E ≡T C from > by ρ.
ideal = complete + proper + finite
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Properties of Refinement Operators

Properties indicate how suitable a refinement operator is for solving
the learning problem:

Incomplete operators may miss solutions
Redundant operators may lead to duplicate concepts in the search tree
Improper operators may produce equivalent concepts (which cover the
same examples)
For infinite operators it may not be possible to compute all refinements
of a given concept

We researched properties of refinement operators in Description
Logics
Key question: Which properties can be combined?
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Refinement Operator Property Theorem

Theorem

Maximal sets of properties of L refinement operators which can be
combined for L ∈ {ALC,ALCN ,SHOIN ,SROIQ}:

1 {weakly complete, complete, finite}
2 {weakly complete, complete, proper}
3 {weakly complete, non-redundant, finite}
4 {weakly complete, non-redundant, proper}
5 {non-redundant, finite, proper}
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“Foundations of Refinement Operators for Description Logics”,
J. Lehmann, P. Hitzler, ILP conference, 2008
“Concept Learning in Description Logics Using Refinement Operators”,
J. Lehmann, P. Hitzler, Machine Learning journal, 2010



Refinement Operator Property Theorem

no ideal refinement in OWL and many description logics
indicates that learning in DLs is hard
algorithms need to counteract disadvantages
goal: develop operators close to theoretical limits
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Definition of ρ

ρ(C) =

{
{⊥} ∪ ρ>(C) if C = >
ρ>(C) otherwise

ρB (C) =



∅ if C = ⊥
{C1 t · · · t Cn | Ci ∈ MB (1 ≤ i ≤ n)} if C = >
{A′ | A′ ∈ sh↓(A)} if C = A (A ∈ NC )

∪{A u D | D ∈ ρB (>)}
{¬A′ | A′ ∈ sh↑(A)} if C = ¬A (A ∈ NC )

∪{¬A u D | D ∈ ρB (>)}
{∃r.E | A = ar(r), E ∈ ρA(D)} if C = ∃r.D
∪ {∃r.D u E | E ∈ ρB (>)}
∪ {∃s.D | s ∈ sh↓(r)}

{∀r.E | A = ar(r), E ∈ ρA(D)} if C = ∀r.D
∪ {∀r.D u E | E ∈ ρB (>)}
∪ {∀r.⊥ |

D = A ∈ NC and sh↓(A) = ∅}
∪ {∀s.D | s ∈ sh↓(r)}

{C1 u · · · u Ci−1 u D u Ci+1 u · · · u Cn | if C = C1 u · · · u Cn
D ∈ ρB (Ci ), 1 ≤ i ≤ n} (n ≥ 2)

{C1 t · · · t Ci−1 t D t Ci+1 t · · · t Cn | if C = C1 t · · · t Cn
D ∈ ρB (Ci ), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 t · · · t Cn) u D |
D ∈ ρB (>)}

Base Operator (excerpt)
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Definition of ρ

{∃r .E | A = ar(r),E ∈ ρA(D)} if C = ∃r .D
∪ {∃r .D u E | E ∈ ρB(>)}

∪ {∃s.D | s ∈ sh↓(r)}

Examples:

∃takesPartIn.SocialGathering 

∃takesPartIn.Meeting

Student u ∃takesPartIn.SocialGathering

∃leads.SocialGathering
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ρ Properties

ρ↓ is complete
ρ↓ is infinite, e.g. there are infinitely many refinement steps of the
form:

> ρ↓ C1 t C2 t C3 t . . .

ρ↓ not proper, but can be extended to a proper operator ρcl
↓

(refinements more expensive to compute)
ρ↓ is redundant: ∀r1.A1 t ∀r2.A1  ρ↓ ∀r1.(A1 u A2) t ∀r2.A1

 
ρ
↓

 
ρ
↓

∀r1.A1 t ∀r2.(A1 u A2) ρ↓ ∀r1.(A1 u A2) t ∀r2.(A1 u A2)
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“A Refinement Operator Based Learning Algorithm for the ALC Description
Logic”, J. Lehmann, P. Hitzler, ILP conference, 2008
“Concept Learning in Description Logics Using Refinement Operators”,
J. Lehmann, P. Hitzler, Machine Learning journal, 2010



OCEL

uses ρ for top down search
OCEL is complete - it always find a solution if one exists
highly configurable, e.g. flexible target language, termination criteria
and heuristics
implements redundancy elimination technique with polynomial
complexity wrt. search tree size based on ordered negation normal
form
can handle infinite refinement operators by stepwise length-limited
horizontal expansion
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Stepwise Node Expansion

>
0,47 [0] length of child

concepts limited by
horesuchtizontal
expansion (he)
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Stepwise Node Expansion

>

Car . . .Person

0,45 [1]

too weak 0,79 [0]

length of child
concepts limited by
horizontal
expansion (he)
ρ (infinite) is
applicable

Lehmann, Völker (Leipzig+Mannheim) Ontology Learning 2010-09-02 42 / 63



Stepwise Node Expansion
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0,45 [1]

too weak 0,78 [1]

length of child
concepts limited by
horizontal
expansion (he)
ρ (infinite) is
applicable
he influences
heuristic (Bias
towards short
concepts - Occam’s
Razor, higher
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Stepwise Node Expansion

>

Car . . .Person

. . .

0,45 [1]

too weak 0,77 [2]

length of child
concepts limited by
horizontal
expansion (he)
ρ (infinite) is
applicable
he influences
heuristic (Bias
towards short
concepts - Occam’s
Razor, higher
diversity)
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Stepwise Node Expansion

>

Car . . .Person

. . .

0,45 [1]

too weak 0,75 [3]

length of child
concepts limited by
horizontal
expansion (he)
ρ (infinite) is
applicable
he influences
heuristic (Bias
towards short
concepts - Occam’s
Razor, higher
diversity)
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Stepwise Node Expansion

>

Car . . .Person

. . .

0,45 [1]

too weak 0,74 [4]

length of child
concepts limited by
horizontal
expansion (he)
ρ (infinite) is
applicable
he influences
heuristic (Bias
towards short
concepts - Occam’s
Razor, higher
diversity)
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Stepwise Node Expansion

>

Car . . .Person

Person u ∃ visits.> . . .

0,45 [1]

too weak 0,73 [5]

0,79 [4]

length of child
concepts limited by
horizontal
expansion (he)
ρ (infinite) is
applicable
he influences
heuristic (Bias
towards short
concepts - Occam’s
Razor, higher
diversity)
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Stepwise Node Expansion

>

Car . . .Person

Person u ∃ visits.>

. . .

. . .

Person u ∃ visits.SummerSchool

0,45 [1]

too weak 0,73 [5]

0,78 [5]

0,97 [4]

length of child
concepts limited by
horizontal
expansion (he)
ρ (infinite) is
applicable
he influences
heuristic (Bias
towards short
concepts - Occam’s
Razor, higher
diversity)
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Scalability: Reasoning

K = {Male v Person,

OnlyMaleChildren(a),
Person(a), Male(a1), Male(a2),

hasChild(a, a1), hasChild(a, a2)}

given K, we want to learn a description of OnlyMaleChildren
C = Person u ∀hasChild.Male appears to be a good solution, but a
is not an instance of C under OWA
idea: dematerialise K using standard (OWA) DL reasoner, but
perform instance checks using CWA
closer to intuition and provides order of magnitude performance
improvements
optimised for thousands of instance checks on a static knowledge base
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Scalability: Stochastic Coverage Computation

Heuristics often require expensive instance checks or retrieval, e.g.:

1
2 ·
(
|R(A) ∩ R(C)|
|R(A)| +

√
|R(A) ∩ R(C)|
|R(C)|

)
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Scalability: Stochastic Coverage Computation

Heuristics often require expensive instance checks or retrieval, e.g.:

1
2 ·
( a
|R(A)| +

√a
b

)

replace |R(A) ∩ R(C)| und |R(C)| by variables a and b we want to
estimate
Wald-Method for computing the 95% confidence interval
first estimate a, then the whole expressions
method can be applied to various heuristics

in tests on real ontologies up to 99% less instance checks and
algorithm up to 30 times faster
low influence on learning results empirically shown in 380 learning
problems on 7 real ontologies (differs by ca. 0, 2%± 0, 4%)
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Scalability: Fragment Extraction

Extraction of Fragments from SPARQL Endpoints / Linked Data:

get all super classes

class

instance

starting instance

owl:equivalentClass, 
  owl:disjointWith, etc.

rdfs:subClassOf

rdf:type

property
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“Learning of OWL Class Descriptions on Very Large Knowledge Bases”,
Hellmann, Lehmann, Auer, Int. Journal Semantic Web Inf. Syst, 2009



Evaluation Setup

lack of evaluation standards in OWL/DL learning
procedure: convert existing benchmarks to OWL (time consuming,
requires domain knowledge)
measure predictive accuracy in ten fold cross validation
part 1: evaluation against other OWL/DL learning systems
part 2: evaluation against other ML systems (carcinogenesis problem)
part 3: evaluation of ontology enginering
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Evaluation: Accuracy

80 85 90 95 100

cross validation accuracy in % (Durchschnitt über 6 Benchmarks)

OCEL

ELTL Base

ELTL

Hybrid GP

GP

YinYang

Collection of 6 Benchmarks
OCEL often stat. significantly better than other algorithms for most
benchmarks
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Evaluation: Readability

0 10 20 30 40 50

Länge gelernter Beschreibungen (Durchschnitt)

OCEL

ELTL Base

ELTL

Hybrid GP

GP

YinYang

YinYang generates significantly longer solutions
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Evaluation: Runtime

0,1 1 10 100 1000

Laufzeit in Sekunden (logarithmisch)

OCEL

ELTL Base

ELTL

Hybrid GP

GP

YinYang
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Carcinogenesis

goal: predict whether chemical compounds cause cancer
Why?

more than 1000 new substances each year
substances can often only be tested via long and expensive experiments
on rats and mice

background knowledge:
database of US National Toxicology Program (NTP)
converted from Prolog to OWL

“Obtaining accurate structural alerts for the causes of chemical cancers is
a problem of great scientific and humanitarian value.” (A. Srinivasan, R.D.
King, S.H. Muggleton, M.J.E. Sternberg 1997)
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Carcinogenesis

very challenging problem: low accuracy, high standard deviation
OCEL stat. sign. better than most other approaches

Lehmann, Völker (Leipzig+Mannheim) Ontology Learning 2010-09-02 58 / 63



Ontology Learning Evaluation

5 PhD studens
5 real ontologies in different domains
998 decision of each test person for 92 classes
in 35% of the cases accepted suggestions for ontology enhancements
problem: ontology quality, modelling errors (unsatisfiable classes,
disjunction and conjunction confused etc.)
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DL-Learner Project

DL-Learner Open-Source-Projekt: http://dl-learner.org,
http://sf.net/projects/dl-learner

extensible platform for different learning problems and algorithms
Interfaces: command line, GUI, Web-Service
supports common OWL formats
allows different reasoners (via OWL API, DIG, OWLLink)
sourceforge.net (Open Source Portal): 4000 Downloads
mloss.org (ML & Open Source Software): 1600 Downloads
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“DL-Learner: Learning Concepts in Description Logics”,
Jens Lehmann, Journal of Machine Learning Research (JMLR), 2009

http://dl-learner.org
http://sf.net/projects/dl-learner


Applications

“classical“ ML problems
carcinogenesis
other biomedical tasks

Ontology Learning

Protégé Plugin
OntoWiki Plugin
ORE

Recommendation/Navigation

moosique.net
DBpedia Navigator

other/external:

ISS (Gerken et al.)
Learning in Probabilistic DLs
(Ochoa Luna et al.)
TIGER Corpus Navigator
(Hellmann et al.)
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Conclusions

Ontology Learning is a diverse research area
involving several research disciplines (NLP,
Machine Learning, Ontology Engineering)
approaches vary in used data sources and
the expressiveness of the created ontologies
refinement operator based learning as one
method for learning definitions (with
applications outside of learning ontologies)
new Wiki (under construction):
http://ontology-learning.net

new ontology learning book in 2011
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