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The vision of the Semantic Web is to make use of semantic representations on the largest
possible scale - the Web. Large knowledge bases such as DBpedia, OpenCyc, GovTrack, and
others are emerging and are freely available as Linked Data and SPARQL endpoints. Explor-
ing and analysing such knowledge bases is a significant hurdle for Semantic Web research
and practice. As one possible direction for tackling this problem, we present an approach
for obtaining complex class descriptions from objects in knowledge bases by using Machine
Learning techniques. We describe in detail how we leverage existing techniques to achieve
scalability on large knowledge bases available as SPARQL endpoints or Linked Data. Our
algorithms are made available in the open source DL-Learner project and we present several
real-life scenarios in which they can be used by Semantic Web applications.

Introduction

The vision of the Semantic Web is to make use of seman-
tic representations on the largest possible scale - the Web.
We currently experience that Semantic Web technologies
are gaining momentum and large knowledge bases such as
DBpedia (Auer m. fl., 2007), OpenCyc (Lenat, 1995), Gov-
Track (Tauberer, 2008) and others are freely available. These
knowledge bases are based on semantic knowledge represen-
tation standards like RDF and OWL. They contain hundred
thousands of properties as well as classes and an even larger
number of facts and relationships. These knowledge bases
and many more (ESWWiki, 2008) are available as Linked
Data (Berners-Lee, 2006; Bizer, Cyganiak, & Heath, 2007)
or SPARQL endpoints (Clark, Feigenbaum, & Torres, 2008).

Due to their sheer size, users of these knowledge bases,
however, are facing the problem, that they can hardly know
which identifiers are used and are available for the construc-
tion of queries. Furthermore, domain experts might not be
able to express their queries in a structured form at all, but
they often have a very precise imagination what kind of re-
sults they would like to retrieve. A historian, for example,
searching in DBpedia for ancient Greek law philosophers in-
fluenced by Plato can easily name some examples and if pre-
sented a selection of prospective results he will be able to
quickly identify false results. However, he might not be able
to efficiently construct a formal query adhering to the large
DBpedia knowledge base a priori.

The construction of queries asking for objects of a certain
kind contained in an ontology, such as in the previous ex-
ample, can be understood as a class construction problem:
We are searching for a class description which subsumes ex-
actly those objects adhering to our informal query (e.g. an-
cient Greek law philosophers influenced by Plato). Recently,
several methods have been proposed for constructing ontol-
ogy classes by means of Machine Learning techniques from
positive and negative examples (Lehmann & Hitzler, 2007a,
2007b). These techniques are tailored for small and medium

size knowledge bases, while they cannot be directly applied
to large knowledge bases (such as the initially mentioned
ones) due to their dependency on reasoning methods. In
this paper, we present an approach for leveraging Machine
Learning algorithms for learning of ontology class descrip-
tions in large knowledge bases, in particular those available
as SPARQL(Clark m. fl., 2008) endpoints or Linked Data.
The scalability of the algorithms is ensured by reasoning only
over ”interesting parts” of a knowledge base for a given task.
As a result users of large knowledge bases are empowered to
construct queries by iteratively providing positive and nega-
tive examples to be contained in the prospective result set.

Overall, we make the following contributions:
• development of a flexible method for extracting relevant

parts of very large and possibly interlinked knowledge bases
for a given learning task,
• thorough implementation, integration, and evaluation

of these methods in the DL-Learner framework (Lehmann,
2007)
• presentation of several application scenarios and exam-

ples employing some of the largest knowledge bases avail-
able on the Web.

In this article, we will first cover preliminaries, namely
a quick introduction in Description Logics, OWL, and the
learning problem we consider. We then briefly describe the
underlying learning algorithm and present in detail how it
can be applied on very large knowledge sources. We describe
and evaluate our approach in several application scenarios in
the following sections and, finally, conclude with some re-
lated work and an outlook on future work.

OWL, Description Logics
Description logics are a family of knowledge representa-

tion (KR) formalisms. They emerged from earlier KR for-
malisms like semantic networks and frames. Their origin
lies in the work of Brachmann on structured inheritance net-
works (Brachman, 1978). Since then, description logics have
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enjoyed increasing popularity. They can essentially be un-
derstood as fragments of first-order predicate logic. They
have less expressive power, but usually decidable inference
problems and a user-friendly variable free syntax.

Description logics represent knowledge in terms of ob-
jects, concepts, and roles. Concepts formally describe no-
tions in an application domain, e.g. we could define the con-
cept of being a father as “a man having a child” (Father ≡
Man u ∃hasChild.> in DL notation). Objects are members
of concepts in the application domain and roles are binary
relations between objects. Objects correspond to constants,
concepts to unary predicates, and roles to binary predicates
in first-order logic.

In description logic systems information is stored in a
knowledge base. It is divided in two parts: TBox and ABox.
The ABox contains assertions about objects. It relates ob-
jects to concepts and roles. The TBox describes the termi-
nology by relating concepts and roles. (For some expressive
description logics this clear separation does not exist.)

As mentioned before, DLs are a family of KR formalisms.
We will introduce the ALC description logic as a proto-
typical example. It should be noted that ALC is a proper
fragment of OWL (Horrocks, Patel-Schneider, & Harmelen,
2003) and is considered to be a prototypical description logic
for research investigations.
ALC stands for attributive language with complement. It

allows to construct complex concepts from simpler ones us-
ing various language constructs. The next definition shows
how such concepts can be built.

Definition 1 (syntax ofALC concepts) Let NR be a set of
role names and NC be a set of concept names (NR ∩ NC = ∅).
The elements of NC are also called atomic concepts. The set
ofALC concepts is inductively defined as follows:

1. Each atomic concept is a concept.
2. If C and D are ALC concepts and r ∈ NR a role, then

the following are alsoALC concepts:
• > (top), ⊥ (bottom)
• C t D (disjunction), C u D (conjunction), ¬C (negation)
• ∀r.C (value/universal restriction), ∃r.C (existential restric-
tion)

The semantics of ALC concepts is defined by means of
interpretations. See the following definition and Table 1 list-
ing allALC concept constructors. The corresponding OWL
terminology is also listed (according to (Bechhofer m. fl.,
2004))

Definition 2 (interpretation) An interpretation I consists
of a non-empty interpretation domain ∆I and an interpreta-
tion function ·I, which assigns to each A ∈ NC a set AI ⊆ ∆I

and to each r ∈ NR a binary relation rI ⊆ ∆I × ∆I.

In the most general case, terminological axioms are of the
form C v D or C ≡ D, where C and D are concepts. The
former axioms are called inclusions and the latter equiva-
lences. An equivalence whose left hand side is an atomic
concept is a concept definition. We can define the semantics

of terminological axioms in a straightforward way. An inter-
pretation I satisfies an inclusion C v D if CI ⊆ DI and it
satisfies the equivalence C ≡ D if CI = DI. I satisfies a
set of terminological axioms if it satisfies all axioms in the
set. An interpretation, which satisfies a (set of) terminologi-
cal axiom(s) is called a model of this (set of) axiom(s). Two
(sets of) axioms are equivalent if they have the same models.
A finite set T of terminological axioms is called a (general)
TBox. Let NI be the set of object names (disjoint with NR
and NC). An assertion has the form C(a) (concept assertion)
or r(a, b) (role assertion), where a, b are object names, C
is a concept, and r is a role. An ABox A is a finite set of
assertions.

Objects are also called individuals. To allow interpreting
ABoxes we extend the definition of an interpretation. Addi-
tionally to mapping concepts to subsets of our domain and
roles to binary relations, an interpretation has to assign to
each individual name a ∈ NI an element aI ∈ ∆I. An in-
terpretation I is a model of an ABox A (written I |= A)
if aI ∈ CI for all C(a) ∈ A and (aI, bI) ∈ rI for all
r(a, b) ∈ A. An interpretation I is a model of a knowledge
base K = (T ,A) (written I |= K) iff it is a model of T and
A .

A concept is in negation normal form if negation only oc-
curs in front of concept names. The length of a concept is
defined in a straightforward way, namely as the sum of the
numbers of concept names, role names, quantifier, and con-
nective symbols occurring in the concept. The depth of a
concept is the maximal number of nested concept construc-
tors. The role depth of a concept is the maximal number of
nested roles. For brevity we sometimes omit brackets. In this
case, constructors involving quantifiers have higher priority,
e.g. ∃r.> u A means (∃r.>) u A.

As we have described, a knowledge base can be used to
represent the information we have about an application do-
main. Besides this explicit knowledge, we can also deduce
implicit knowledge from a knowledge base. It is the aim
of inference algorithms to extract such implicit knowledge.
There are some standard reasoning tasks in description log-
ics, which we will briefly describe.

In terminological reasoning we reason about concepts.
The standard problems are satisfiability and subsumption. In-
tuitively, satisfiability determines if a concept can be satis-
fied, i.e. it is free of contradictions. Subsumption of two
concepts detects whether one of the concepts is more general
than the other.

Definition 3 (satisfiability) Let C be a concept and T a
TBox. C is satisfiable iff there is an interpretation I such
that CI , ∅. C is satisfiable with respect to T iff there is a
model I of T such that CI , ∅.

Definition 4 (subsumption, equivalence) Let C, D be con-
cepts and T a TBox. C is subsumed by D, denoted by C v D,
iff for any interpretation I we have CI ⊆ DI. C is subsumed
by D with respect toT , denoted by C vT D, iff for any model
I of T we have CI ⊆ DI.

C is equivalent to D (with respect toT ), denoted by C ≡ D
(C ≡T D), iff C v D (C vT D) and D v C (D vT C).
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OWL DL DL syntax semantics
named class atomic concept A AI ⊆ ∆I

object property abstract role r rI ⊆ ∆I × ∆I

Thing top concept > ∆I

Nothing bottom concept ⊥ ∅

intersectionOf conjunction C u D (C u D)I = CI ∩ DI

unionOf disjunction C t D (C t D)I = CI ∪ DI

complementOf negation ¬C (¬C)I = ∆I \CI

someValuesFrom exists restriction ∃r.C (∃r.C)I = {a | ∃b.(a, b) ∈ rI and b ∈ CI}
allValuesFrom universal restriction ∀r.C (∀r.C)I =

{
a | ∀b.(a, b) ∈ rI implies b ∈ CI

}
Table 1
ALC syntax and semantics along with corresponding OWL constructs

C is strictly subsumed by D (with respect to T ), denoted
by C < D (C <T D), iff C v D (C vT D) and not C ≡ D
(C ≡T D).

Subsumption allows to build a hierarchy of atomic con-
cepts, commonly called the subsumption hierarchy. Anal-
ogously, for more expressive description logics role hierar-
chies can be inferred.

In assertional reasoning we reason about objects. The in-
stance check problem is to find out whether an object is an
instance of a concept, i.e. belongs to it. Retrieval is the prob-
lem of finding all instances of a given concept.

Definition 5 (instance check) Let A be an ABox, T a
TBox, K = (T ,A) a knowledge base, C a concept, and
a ∈ NI an object. a is an instance of C with respect to A
, denoted by A |= C(a), iff in any model I of A we have
aI ∈ CI. a is an instance of C with respect to K , denoted by
K |= C(a), iff in any model I of K we have aI ∈ CI.

To denote that a is not an instance of C with respect to A
(K) we writeA 6|= C(a) (K 6|= C(a)).

We use the same notation for sets S of assertions of the
form C(a), e.g. K |= S means that every element in S fol-
lows from K .

Definition 6 (retrieval) LetA be an ABox, T a TBox,K =
(T ,A) a knowledge base, C a concept. The retrieval RA(C)
of a concept C with respect to A is the set of all instances
of C: RA(C) = {a | a ∈ NI andA |= C(a)}. Similarly
the retrieval RA(C) of a concept C with respect to K is:
RK (C) = {a | a ∈ NI and K |= C(a)}

Correspondence of OWL and Description Logics
As we move forward in the course of this article, from

theoretical foundations and algorithms to practical use cases
and real-world applications a shift in terminology is neces-
sary. Decades of research in Description Logics have entered
design decisions for OWL, which even results in the fact that
a DL knowledge base is ”nowadays often called ontology”
(as noted by Baader, Ganter, Sertkaya, och Sattler (2007, p.
3)). As we progress, we will use OWL terminology, where
appropriate, but keep some notations in Description Logics,

especially where the advantages of representation is obvious
(e.g.. complex class descriptions). Cf. Table 1 for the most
commonly used expressions. For a complete mapping from
OWL to Description Logics we refer the interested reader to
Horrocks och Patel-Schneider (2003). OWL is based on the
description language SHOIN and OWL 2 will probably be
based on SROIQ (Horrocks, Kutz, & Sattler, 2006).

The Learning Problem in OWL
and Description Logics

In this section, we will briefly describe the learning prob-
lem in Description Logics. The process of learning in logics,
i.e. finding logical explanations for given data, is also called
inductive reasoning. In a very general setting this means
that we have a logical formulation of background knowledge
and some observations. We are then looking for ways to ex-
tend the background knowledge such that we can explain the
observations, i.e. they can be deduced from the modified
knowledge.

For learning in Description Logics we can give a more
specific description of the learning problem. The background
knowledge is a knowledge base K . The goal is to find a
definition for a concept we want to call Target. Hence the
examples are of the form Target(a) where a is an example
instance. We are then looking for a concept definition of the
form Target ≡ C such that we can extend our knowledge
base by this definition. Let K′ = K ∪ {Target ≡ C} be this
extended knowledge base. Then we want that the positive
examples follow from it, i.e. K ′ |= E+, and the negative ex-
amples should not to follow, i.e. K ′ 6|= E−. Please note that
the description language of the background knowledge can
be more expressive than the language of the concept C we
want to learn.

When we speak about concepts as possible problem solu-
tions it is useful to introduce some shortcuts for the two main
criteria: covering all positive examples and not covering neg-
ative examples.

Definition 7 (complete, consistent, correct) Let C be a
concept,K the background knowledge base, Target the tar-
get concept, K ′ = K ∪ {Target ≡ C} the extended knowl-
edge base, and E+ and E− the positive and negative exam-
ples.



4 OLD VERSION, SEE WORD DOCUMENT

Figure 1. Generate and test approach used in DL-Learner.

C is complete with respect to E+ if for any e ∈ E+ we have
K ′ |= e. C is consistent with respect to E− if for any e ∈ E−
we have K ′ 6|= e. C is correct with respect to E+ and E− if C
is complete with respect to E+ and consistent with respect to
E−.

Figure 1 gives a brief overview of how the learning prob-
lem can be solved by means of a generate and test approach
common in Machine Learning. Several concepts are tested
during a learning process, each of which is evaluated using
an OWL reasoner. The reasoner performs instance checks on
the given concept and the examples. Smart algorithms will
take the results of those tests into account to suggest further
promising concepts. A brief description of the concrete al-
gorithm employed here can be found below.

We implemented the algorithm within the open source
framework DL-Learner(Lehmann, 2007), which employs
several Machine Learning algorithms for learning complex
class descriptions from objects. It uses a modular system,
which allows to define different types of components: knowl-
edge sources (e.g. OWL files), reasoners (e.g. DIG interface
based (Bechhofer, Mller, & Crowther, 2003)), learning prob-
lems, and learning algorithms. DL-Learner is easily exten-
sible by defining additional components. The component,
which will be presented in this paper, is the SPARQL and
Linked Data knowledge source component.

Learning Algorithm Description

In this section, we will describe the workings of the algo-
rithm for learning complex classes on large knowledge bases.

Before, we referred to Figure 1 for a general overview
on how the learning problem in Description Logics can be
solved. In Lehmann och Hitzler (2007b), we reported about
a concrete algorithm solving the task, which is inspired by
Inductive Logic Programming techniques (ILP) (Nienhuys-
Cheng & Wolf, 1997). We will give a brief overview of the

algorithm in this section to give the reader an intuition about
class description learning methods (although the algorithm
itself is not a scientific contribution made in this article).

The goal of learning is to find a correct concept with re-
spect to the examples. This can be seen as a search process
in the space of concepts. A natural idea is to impose an or-
dering on this search space and use operators to traverse it.
This strategy is well-known in ILP, where refinement oper-
ators are widely used to find hypotheses. Intuitively, down-
ward (upward) refinement operators construct specializations
(generalizations) of hypotheses.

Definition 8 (refinement operator) A quasi-ordering is a
reflexive and transitive relation. In a quasi-ordered space
(S ,�) a downward (upward) refinement operator ρ is a map-
ping from S to 2S , such that for any C ∈ S we have that
C′ ∈ ρ(C) implies C′ � C (C � C′). C′ is called a special-
ization (generalization) of C.

This idea can be used for searching in the space of con-
cepts. As ordering we can use subsumption. (Note that the
subsumption relation v is a quasi-ordering.) If a concept C
subsumes a concept D (D v C), then C will cover all ex-
amples, which are covered by D. This makes subsumption a
suitable order for searching in concepts as it allows to prune
parts of the search space without losing possible solutions.

The approach we used is a top-down refinement operator
based algorithm. This means that the first concept, which
will be tested is the most general concept (>), which is then
mapped to a set of more special concepts by means of a
downward refinement operator. Naturally, the refinement op-
erator can be applied to the obtained concepts again, thereby
spanning up a search tree. The search tree can be pruned
when we reach an incomplete concept, i.e. a concept which
does not cover all the positive examples. This can be done,
because the downward refinement operator guarantees that
all refinements of this concept will also not cover all positive
examples and therefore cannot be solutions of the learning
problem. One example for a path in a search tree spanned up
by a downward refinement operator is as follows:

> Person Person u ∃ participatesIn.Event

 Person u ∃ participatesIn.Conference

The heart of such a learning strategy is to define a suitable re-
finement operator. The refinement operator in the considered
algorithm can be found in Lehmann och Hitzler (2007b) and
is build on solid theoretical foundations (Lehmann & Hitzler,
2007a). It has been shown to be the best achievable opera-
tor with respect to a set of properties (not further described
here), which are used to assess the performance of refinement
operators. The used refinement operator can reach any OWL
class description, i.e. we are guaranteed to find a solution in
finite time if one exists.

While the refinement operator defines the search tree, a
heuristic decides on which node to apply the refinement oper-
ator. Heuristics can take several criteria into account, e.g. ac-
curacy of class description on positive and negative exam-
ples, accuracy gain compared to parent node, length of class



OLD VERSION, SEE WORD DOCUMENT 5

description, computational resources needed to apply refine-
ment operator. The heuristic we use combines those criteria.
Since the focus of this paper is the fragment selection pro-
cess, we refrain from a formal description. Going back to
Figure 1, the refinement operator is used as concept genera-
tor, whereas the heuristics is used to evaluate concept quality,
which the learning algorithm uses to decide which concept to
try next.

Selection of a Suitable
Knowledge Fragment

As detailed in the previous section, the used refinement
operator is well designed according to the possible properties
a refinement operator for DL can have. The used heuristic for
traversing the search space is also highly efficient. Neverthe-
less, both heavily depend on an OWL reasoner for standard
reasoning tasks such as subsumption, instance checks and
retrieval. The most commonly used reasoners such as Pellet
and Fact++ do not, although highly optimized and efficient,
have the ability to scale up to large knowledge bases. Thus, it
becomes impossible to use the presented learning algorithm
as soon as the target knowledge base reaches a certain size
and complexity, with two major problems being initializa-
tion time (i.e. to load the data into the reasoner) and the
time to answer queries involving complex classes (such as
retrieval). However, in order to solve the learning problem
it is not necessary to consider the complete knowledge base,
but only a fragment that holds enough information to produce
good results, while at the same time is small enough to allow
efficient reasoning.

Desired Fragment We are looking for a sufficiently small
fragment F of an ontology O (F ⊂ O), which contains the
example instances E and all relevant information to solve
a given learning problem LP. If we can successfully apply
the learning algorithm on the fragment yielding the concept
C, which satisfies the learning problem, then C should also
satisfy the learning problem in the large knowledge base O.

The following example shall briefly illustrate, what can be
achieved by our fragment selection approach, before we will
explain, in the next sections, in detail, how such a fragment
is selected and which parameters are used.

Example 1 (Manual example from Semantic Bible) Here
and also in later experiments, we choose the Semantic
Bible ontology(Boisen, 2006), because it is a medium sized
ontology, contains rich background knowledge and is still
manageable by a reasoner as a whole. This enables us to
directly compare the results of learning on the fragment to
results obtained on the whole knowledge base. We manually
choose Archelaus and HerodAntipas, two brothers from the
New Testament as positive examples, while we choose God,
Jesus, Michael and Gabriel (the archangels) as negative
examples. The learning algorithm was then executed twice,
once in normal mode, where the whole ontology was
loaded into the OWL reasoner (Pellet) and once where

Semantic Bible Normal Fragment
No. of classes 49 27
No. of instances 724 60
No. of object properties 29 20
No. of data properties 9 0
No. of subclass axioms 51 25
Time needed for extraction - 4.2s
Reasoner instantiation time 3.6s 1.3s
No. of reasoner queries 1480 313
Avg. time per query 120ms 2ms
Reasoning time 178.0s 0.8s
Learning time without reasoning 0.4s 0.1s
Total time 182.0s 6.4s

Table 2
Manual example to give a first glance at the presented
method. Note that not only are reasoner queries faster on av-
erage, but also the number of queries needed is significantly
smaller (due to the smaller search space.)

first a fragment was selected by our extraction method1,
which was then loaded into Pellet (see Figure 2 for an
overview). The 20 best learned classes from both runs (like
∃siblingOf.Man or ∃siblingOf.∃spouseOf.Human) are
with some exceptions identical and, even more important, all
20 classes learned from the fragment yield 100% accuracy
on the whole ontology. Table 2 provides details on the
Semantic Bible ontology and solving the learning problem
on it as a whole or on a fragment. This example is only
meant to illustrate the used methods and algorithms. For a
full quantitative evaluation the reader is referred to the later
sections of this article.

What properties should the fragment have?

In the previous section, we clearly stated what a desired
fragment is. It allows fast reasoning and the learned classes
achieve (approximately) the same accuracy, when validated
versus the original knowledge base. We now take a closer
look at what should be included in the fragment for the
learning algorithm to work efficiently while still achieving
good results. The first obvious inclusions are the example
instances themselves. Secondly, all classes of the example
instances and all related instances (via an object property)
are necessary. Note that the property between instances will
always be included implicitly, when we add related instances
to the fragment. Up to now, the fragment consists of the com-
bined Concise Bound Descriptions (CBD (Stickler, 2004)) of
the example instances. The information contained is clearly
not yet sufficient to learn complex classes. The most com-
plex class definitions derivable when using only CBDs are of
the form C t R or C u R, where C is any conjunction or in-
tersection of classes and R is a conjunction or intersection of
unqualified property restrictions of the form ∃ property.>.

1 The ontology was loaded into a local Joseki triple store and
queried with SPARQL.
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Figure 2. Process illustration: In a first step, a fragment is selected based on instances from a knowledge source and in a second step the
learning process is started on this fragment and the given examples.

While this is of course often not sufficient, it still represents
the smallest sensible fragment, where it is possible to learn
classes at all with the trade-off scale shifted away from high
learning accuracy towards efficient light-weight reasoning.
Beyond this point, selection and extraction of information
becomes more complicated. Our aim here is solely to show
that it is possible to produce class descriptions, which are
useful for the original knowledge base. One of the major
influences on the validity of learning results stands in direct
relation to the possible deductive inferences on the fragment.

Since reasoning in Description Logics is monotonic, the
inferences obtained on a fragment of an ontology are also
valid for the ontology as a whole (soundness). However, not
all possible inferences might be obtainable on the fragment
and reasoning thus can be viewed as being “incomplete”,
e.g. an instance check C(a) answered negatively on the frag-
ment (the reasoner cannot deduce that a is instance of C)
might be answered positively on the whole ontology.

As a consequence, the learning problem might be solved
incorrectly, because the learning algorithm implicitly as-
sumes that the underlying reasoning methods are complete.
So, if for a class description C the resulting answer set of
a retrieval will contain all positive example individuals and
none of the negatives, it will present C as a solution. Due
to the issues explained above, however, the previously not
covered negative example individuals might now be an in-
stance of C when the whole ontology is considered. Thus
a correctly learned class definition might turn out to be in-
consistent (cf. Def 7). We tackle this problem by trying to
avoid such cases through selection of an ontology fragment
containing all relevant information as described in detail be-
low. Furthermore, in most application scenarios the learned
class descriptions (and/or its implications) are reviewed by a
human expert. Because reasoning on large knowledge bases
remains impossible, it is hard to give exact measures of the
extend to which the negative example coverage problem oc-
curs on very large knowledge bases. However, we will later
perform benchmarks on the medium sized Semantic bible
ontology and can draw conclusions from those observations.

Extension of CBDs

In the following, we will give a list containing which in-
formation can be additionally extracted to learn more com-

plex classes than with CBDs. We assume that the CBDs of
all example individuals are already included in the fragment.
On this basis, the following list shows in detail, which infor-
mation can additionally be included to learn more complex
class descriptions:

1. Direct Classes Retrieving direct classes for all in-
stances in the fragment, that do not yet have any types, will
allow to learn qualified property restrictions of the form ∃
property.C.

2. Increased Property Depth A further extension of the
CDBs by instances, which are related to an instance, which
is again related to an example instance via an object prop-
erty etc., will enable to learn classes with nested property
restrictions of the form ∃ propertyA.∃ propertyB.>. This
extension can be continued such that it is possible to learn
even deeper nested property restrictions.

3. Hierarchy Retrieving all superclasses of all existing
classes in the fragment and the corresponding hierarchy, will
improve the efficiency of the learning algorithm, because it
1) optimizes the search tree with the help of the subsumption
hierarchy and 2) enables the usage of those classes in learned
descriptions.

4. Class Definitions and Axioms Extracting informa-
tion for all classes in the fragment like definitions via
owl:equivalentClass or disjointness, etc., will permit the
learning algorithm to make use of this valuable background
knowledge, e.g. knowing whether classes are disjoint speeds
up the reasoning and learning process. Other axioms are of
course necessary to draw conclusions. In general, extracting
class related axioms reduces the above mentioned negative
example coverage problem.

The items above directly influence how complex learned
classes can be. We continue this list and present in detail,
which information influences reasoning on the fragment.

5. Complex Descriptions All the points in the list men-
tioned above improve the ability of the reasoner to deduce
whether an object is instance of a complex class description,
which directly relates to the ability to learn those class de-
scriptions.

6. Explicit Property Information Retrieving characteris-
tics of object properties, such as owl:SymmetricProperty,
domain/range, and the property hierarchy allows more infer-
ences as the fragment is handed to the OWL reasoner.
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7. Inferred Property Information Because reasoning is
normally deactivated in SPARQL endpoints or Linked Data
sources, reasoning on the fragment could be improved by
also including instances that are related to the example in-
stances via a symmetric, inverse or transitive property. Nev-
ertheless to include such properties, which only become “vis-
ible” after inference, extensive and costly discovery methods
need to be used. Because we follow the general aim to im-
prove performance we accepted this trade-off in favor of a
faster extraction procedure.

8. Complete Class Definitions There also is the possibil-
ity that classes which are contained in the fragment might
occur somewhere in the ontology on the right hand side
of a class definition (e.g. S omeClass = AnotherClass t
ClassInFragment). As in the item above, the cost to find
such information can become quite large. To completely ex-
tract all such information all class axioms would need to be
evaluated. As above, such information requires an intensive
search, which is why we refrained from including it, although
it might become a parameter in future releases. .

Another requirement for the fragment is that it should be
in correct OWL-DL, so that it can be processed by OWL Rea-
soners.

Extraction Methods

Although the extraction algorithm, we are about to
present, was developed to fit the needs of the class learning
algorithm, it can basically be applied in any context, where
a set of individuals needs to be analyzed with respect to
given background knowledge (a circumstance often required
in Machine Learning). The size of the fragment can be con-
trolled in a flexible way to regulate the trade-off between
complete reasoning and performance. Especially the Linked
Data paradigm gives rise to questions concerning reasoning
and performance, which cannot merely be answered by op-
timizing existing reasoning algorithms and using more pow-
erful hardware. Linked Data connects facts across knowl-
edge bases. Due to limited computational resources, we
have to decide how far links into other knowledge bases or
within the knowledge base itself should be followed and how
we retrieve relevant data. In the course of this section, we
will describe the extraction algorithm independently from
the actual knowledge source, because it is not bound to a
certain formalism and works for several variations such as
Linked Data or SPARQL endpoints. The actual data pro-
visioning is merely a technical question of implementation.
After this section though, we will describe our implementa-
tion for SPARQL endpoints, which contains optimizations of
the method.

The algorithm traverses the RDF graph of the original
knowledge base recursively starting from the example in-
stances. The parameters of the algorithm allow to control
the size of the fragment, so that each point in the above
mentioned list (information necessary to learn more complex
classes) can be included or excluded. Additionally, filters are
used to gain even more flexibility during the extraction of the
fragment. The filters are applied to the lowest possible level

in the data acquisition and thus we will start with describing
the acquisition interface.

Definition 9 (Tuple acquisition interface) A tuple acquisi-
tion function of the form acquireKB (resource , predicate-
Filter, objectFilter, literals) takes as input a resource, a list of
unwanted namespaces or URIs for predicates, a list of pro-
hibited namespaces or URIs for objects and a boolean flag
literals, indicating whether datatype properties should be re-
trieved. According to its implementation it will retrieve all
triples from the knowledge base KB, whose subject is re-
source. The triples (s,p,o) will then be filtered, so that all
triples are removed, which contain a namespace or URI from
the predicateFilter list as a predicate (same accounts for ob-
jectFilter). If literals is false, all triples with datatype prop-
erties and literals will be removed. It returns a set of tuples
of the form (p,o), where (p,o) are the resources (properties
and objects) of the remaining triples. We will simply use
acquire(resource) when the context is clear.

The filters provide the possibility to create a fine-grained
selection of the extracted information. They are especially
useful for multi-domain knowledge bases such as DBpedia,
where retrieving information unfiltered will lead to an un-
necessary large fragment. In our case, we avoid retrieving
information, that is not important to the learning process. In
some cases, we do not want to use datatype properties, so
they can be omitted by the literal parameter shown above.
The predicate filter removes properties that are not important
(e.g. when working with DBpedia we can use this to filter
properties pointing to web pages and pictures). The same is
true for the object filter, i.e. it filters uninteresting objects in
triples.

The configuration of filter criteria is in most cases op-
tional and is clearly content-driven. While the parameters
of the extraction algorithm steer the structural selection of
knowledge, filters work at a lower abstraction level. The
configuration depends on the particularities of the knowl-
edge source and the intended task and can be optimized for
the application. The choice can, on the one hand, add an-
other edge to performance and, on the other hand, allow a
content-aware filtering. If the knowledge base makes use of
different structural hierarchies such as DBpedia, which uses
YAGO classes (Suchanek, Kasneci, & Weikum, 2007) and
also the SKOS vocabulary(Miles & Brickley, 2005) com-
bined with its own categories, one of the hierarchies can be
selected by excluding the other. Adding the SKOS names-
pace (http://www.w3.org/2004/02/skos/core) to the predicate
and object filter list will guarantee that the fragment will be
free of SKOS vocabulary. A Social Semantic Web applica-
tion for example might be especially interested in FOAF and
thus would filter other information.

After having defined the filters for the respective knowl-
edge source, a recursive algorithm (see Algorithm 1) extracts
relevant knowledge for each of the instances in the example
set using acquire(instance). The objects of the retrieved tu-
ples (p,o) are evaluated and manipulated and used to further
extract knowledge (acquire(o)) until a given recursion depth
is reached. The process is illustrated in Figure 3.
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Figure 3. Extraction with three starting example instances. The circles represent different recursion depths. The circles around the starting
instances signify recursion depth 0. The larger inner circle represents the fragment with recursion depth 1 and the largest outer circle with
recursion depth 2.

The algorithm remembers valuable information that is
later used to convert the fragment to OWL DL, which we
will describe later.

Parameters In the following, we will relate the influences
of the algorithm parameters to the list in the previous section.

The parameter recursion depth has the greatest influence
on the number of triples extracted and included in the frag-
ment. If set to 0 the fragment will only consist of the exam-
ple instances. A recursion depth of 1 means, that only the
directly related instances and classes are extracted, which
results in the combined CBDs of all example instances. A
recursion factor of 2 extracts all direct classes of the example
instances, their direct super classes and all directly related in-
stances and their direct classes and directly related instances.
This will enable the algorithm to learn nested property re-
strictions (2. Increased Property Depth), includes some hier-
archy information (3. Hierarchy), allows qualified property
restrictions for unnested properties (1. Direct Classes) and
includes definitions of classes directly connected to the start-
ing individuals (4. Class Definitions and Axioms).

We avoid following cycles, which often occur
when encountering inverse properties, owl:sameAs,
owl:equivalentClass etc., by storing all resources
already visited. If the object is a blank node, we will not
decrease the recursion counter until no further blank nodes
are retrieved.

If we use all existing instances of the original knowledge
base as starting seeds with a sufficient recursion depth, the
algorithm will extract the whole knowledge base with the ex-
ception of unconnected resources, which in most cases barely
contain useful information.

To cover other points on the list above, the algorithm

retrieves additional information in a post-processing step,
which can be switched on and off independently.

Close after recursion For each instance in the fragment
that does not yet have any classes assigned to it, classes
are retrieved and added to the fragment (cf list 1. Direct
Classes).

Get all super classes For all classes in the fragment, all
super classes are retrieved and the hierarchy is extracted (cf.
list 3. Hierarchy). Additionally all class definitions are in-
cluded (cf. list 4. Class Definitions and Axioms).

Get all property information For all object properties,
types, Domain, Range and the property hierarchy will be re-
trieved (cf. list 6. Explicit Property Information).

Depending on the expected complexity of class descrip-
tions (in particular their property depth) and the density of the
background knowledge, a recursion depth of 1 or 2 (with all
post-processing steps enabled, otherwise 2 or 3) represents a
good balance between the amount of useful information and
the possibility to reason efficiently.

The retrieved triples can be further manipulated by means
of user defined rules. For example, vocabularies that resem-
ble OWL class hierarchies but use different identifiers (such
as SKOS) can be mapped to OWL class hierarchies. We also
used this technique to embed tags or other structurally im-
portant individuals in a class hierarchy in order to enable
learning class descriptions. Additional information can be
easily inserted in this step of the extraction. The function
manipulate does not only allow for manipulation, but can
also be used to retrieve and include information from other
knowledge bases. Even a new extraction can be started based
on the current resource.
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Algorithm 1: Knowledge Extraction Algorithm
Function: extract1
Input: recursion counter, resource, predicateFilter,

objectFilter, literals
Output: set S of triples

2
if recursion counter equals 0 then3

return ∅4

S = empty set of triples;5
// for acquire see Definition 96
resultSet = acquire(resource, predicateFilter,7
objectFilter, literals);
newResultSet = ∅ ;8
foreach tuple (p,o) from resultSet do9

newResultSet = newResultSet ∪10
manipulate(typeOfResource,p,o);
// the function manipulate allows the alteration11
// based on the semantic information of the retrieved12
// URIs and evaluates the type of the newly13
// retrieved resources14

create triples of the form (resource,p,o) from the15
newResultSet ;
add triples of the form (resource,p,o) to S ;16
foreach tuple (p,o) from the newResultSet do17

if o is a blank node then18
S = S ∪ extract(recursion counter, o,19
predicateFilter, objectFilter, literals);

else20
S = S ∪ extract(recursion counter -1 ,o,21
predicateFilter, objectFilter, literals);

return S22

OWL DL Conversion of the Fragment

The extracted knowledge has to be altered to adhere to
OWL DL for processing, which means explicitly typing
classes, properties and instances. Since the knowledge base
might not provide (correct) typing information for all indi-
viduals, we infer typing information for newly retrieved re-
sources. We follow Bechhofer och Volz (2004), who men-
tion an approach, that is based on the idea that if the type of
a triple’s subject is known, we can infer the type of the ob-
ject by analyzing the predicate. Since we always start from
instances, we possess additional information and therefore
are able to extend the rules mentioned in Bechhofer och Volz
(2004, pp. 673-674). Given a triple (s, p, o) we can draw the
following conclusions:
• If s is an instance and p is rdf:type then o is a class.
• If s is an instance, p is not rdf:type, and o not a literal

then o is an instance.
• If s is a class then o is a class, unless the knowledge

source is in OWL Full, in which case we can configure DL-
Learner to either ignore such statements or map rdf:type
(between classes) to rdfs:subClassOf. All properties are

then ignored except those in the OWL vocabulary having
owl:Class as range.
• p is an object property if o is a resource and p is a

datatype property if o is a literal.
With the help of these observations, we can type all col-

lected resources iteratively, since we know that the starting
resources are instances. Thus, we presented a consistent way
to convert the knowledge fragment to OWL DL based on the
information collected during the extraction process. Due to
the comparatively small size, deductive reasoning can now
be applied efficiently, allowing the application of machine
learning techniques.

SPARQL implementation of Tuple Acquisition

In this section, we will briefly explain how the tuple acqui-
sition interface is implemented for SPARQL endpoints effi-
ciently. The basic pattern is of the form {<resource> ?p ?o}
according to the function acquire(resource), which returns
a tuple (p,o). The remaining parameters are appended us-
ing the FILTER keyword as in the example below. To dis-
burden the SPARQL endpoint, caching is used to remember
SPARQL query results which were already retrieved. The
extraction algorithm’s performance for non-local endpoints
is mainly determined by the latency for retrieving SPARQL
results via HTTP.

Example 2 (Example SPARQL query on DBpedia) In
this example we show how we filter out triples using
SKOS and DBpedia categories, but leave YAGO classes.
Furthermore, links to websites and literals are filtered out.

SELECT ?p ?o WHERE {
<http://dbpedia.org/resource/Angela_Merkel> ?p ?o.
FILTER (
!regex(str(?p),

’http://dbpedia.org/property/website’)
&& !regex(str(?p),

’http://www.w3.org/2004/02/skos/core’)
&& !regex(str(?o),

’http://dbpedia.org/resource/Category’)
&& !isLiteral(?o) ). }

More optimizations include nested queries according to
recursion depth in such a way that it is only necessary to ex-
ecute one query per example instance. When retrieving the
class hierarchy (Get all superclasses) already extracted sub-
class and other class axioms are remembered and not queried
a second time. Because blank nodes in SPARQL result sets
do often not relate to the internal blank nodes of knowledge
bases (they are iteratively numbered for each result set ac-
cording to the specification), we use a backtracking tech-
nique and assign internal blank node ids.

The implementation of other tuple acquisitors is far sim-
pler. Especially Linked Data can be extracted by just a HTTP
request, while the filters are applied after the request. The
great advantage of the Linked Data tuple acquisitor is that it
allows for cross-boundary acquisition of tuples from differ-
ent knowledge bases without further configuration and thus
enables cross knowledge base accumulation of knowledge.
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Usage Scenarios

Instance Data Analysis

The learning algorithm can be used to analyze instance
data. With more data on the web, the number of possible
applications will increase. We briefly describe two scenarios
using GovTrack (Tauberer, 2008) and MusicBrainz (Swartz,
2002).

Last.fm 2 is the worlds largest social music platform. For
a given username, we can get information about the last
songs a user listened to as RDF3. The songs contain ZitGist4
owl:sameAs links, which again refer to MusicBrainz. Mu-
sicBrainz is a very large open source music metadata base
with plenty of informations about musicians. We want to
obtain a description of the last artists a user has listened to.
We pick the MusicBrainz URIs of those artists as positive
examples and randomly selected artists as negative ones. To
improve the learning process, we converted the MusicBrainz
tag cloud into a class hierarchy on the fly by adding a prop-
erty mapping entry, executed in the manipulate function (see
Algorithm 1). With the positive examples ”Genesis”, ”Chil-
dren on Stun”, ”Robbie Williams”, and ”Dusty Springfield”,
and as negative ones ”Madonna”, ”Cher”, and ”Dreadzone”
we learned the description UK-Artist t (Rock-Genre u
∃bioEvent.Death). This gives the user feedback (when ex-
pressed in natural language) and allows the system to suggest
similar songs, e.g. UK-Rock in this case. As there is a va-
riety of existing media players with MusicBrainz support5, a
learning application could be integrated as plugin into those
and employ the Semantic Web to provide descriptions of a
users favorite artists, songs, etc.

A similar example for instance analysis can be given for
GovTrack, a data set about the US congress containing more
than 10 million facts. Amongst other uses, we can apply the
presented techniques to learn about the interests and work-
ing areas of politicians. To do so, we chose a US senator and
queried the GovTrack SPARQL endpoint to return all bills,
which were sponsored by him or her. We used this as positive
examples and applied DL-Learner. As before with the Mu-
sicBrainz tags we performed an enrichment step by convert-
ing the subject strings of the bills (financial matter, educa-
tion) to concepts. We queried the Cyc Foundation browser,
which uses OpenCyc(Cycorp, 2008) as background knowl-
edge, to find suitable concepts and integrated them in a hi-
erarchy. As a result, we could see which topics a senator is
most interested in and who are cosponsors in bills sponsored
by a senator. In this case, the advantage of DL-Learner is to
reduce the often considerable amount of information about a
senator to a concise approximate description.

Improving Data Quality

For large knowledge bases, in particular those developed
by an Internet community, it is often difficult to maintain
a proper classification scheme. A typical example are the
DBpedia classification schemata. There have been various
attempts to create a classification hierarchy for DBpedia us-
ing e.g. the Wikipedia category system as input. Even with

good extraction techniques, human errors cannot be com-
pletely eliminated and thus articles are assigned to wrong
categories or to superfluously many categories. Class learn-
ing can be useful in this scenario to learn a complex class C
as a possible definition of an existing class A and then ver-
ifying whether the instances of C coincide with those of A.
Also class descriptions can be used to spot data inconsisten-
cies in instance data and to make suggestions for missing
instances. In Example 3 we show how we can successfully
apply the algorithm on DBpedia in different ways to either
improve the class schemata, spot inconsistencies in existing
Categories or make suggestions to Wikipedia editors. Note
that a detailed evaluation of the used methods can be found
in the next section. Here we just evaluated the possibilities
for future applications.

Example 3 (Re-Learning Wikipedia Categories) We
choose 4 Wikipedia categories (Best Actor Academy
Award winners, Prime Ministers of the UK, Fluorescent
Dyes, Islands of Tonga), which are included in the DB-
pedia dataset. These categories as well as the belonging
individuals are currently manually maintained by the
Wikipedia community, who would benefit greatly from a
list of suggestions for missing instances or missing infobox
properties. To provide such suggestions a fully automated
process is required, when re-learning these categories.
While the choice of positive example instances is trivial (all
instances assigned to the categories via skos:subject), the
selection of negative examples is not. If the instances are
from a completely different domain or randomly chosen, the
correct class descriptions are likely to be quite simple. The
negative examples were thus obtained by retrieving instances
that share the same YAGO classes as the instances in the
category. We then randomly selected from this set, such that
the number of positive and negative examples were equal.
The learning process was then started. The assignment
of articles to categories in Wikipedia is done manually
by Wikipedia editors and are therefore inconsistent (some
categories seem to be confused with tags). The category of
British Prime Ministers, for example, also includes instances
like Anthony Eden hat (a typical hat form worn by Anthony
Eden) or Supermac (a comic strip about Harold Macmillan).
We therefore allowed 20% noise in the accuracy when
learning on the fragment. The learned class descriptions
were used to classify the positive examples in two groups:
correctly assigned to the category and incorrectly assigned.
We then manually checked these two sets as a Wikipedia
editor would do and compared the classification with the
information contained in the Wikipedia article.

The results, which are shown in Table 3, give a first glance
at how useful the generated sets can be for Wikipedia au-
thors. A retrieval of learned concepts (see below for expla-
nation) on DBpedia can further find missing instance.

2 http://www.last.fm/
3 via http://dbtune.org/last-fm/$username (description at

http://dbtune.org/last-fm)
4 http://www.zitgist.com/
5 see http://en.wikipedia.org/wiki/MusicBrainz
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Wikipedia Prime Min. Best Actors Dyes Tonga
Categories
Total number 71 75 56 50
Correct 53(1) 66(0) 34(0) 50(0)
Incorrect 18(0) 9(3) 22(7) 0(0)
Accuracy 98% 96% 88% 100%

Table 3
The table shows a probe of the automatic re-learning method
for classes. Sets were evaluated manually, falsely classified
individuals in brackets

Since the above described process is fully automated (au-
tomatic example choice and concept selection), it can be
used to conduct data mining automatically. The retrieved
lists could support Wikipedia users, when editing lists and
make suggestions about missing entries. Also the automati-
cally discovered inconsistencies in DBpedia could contribute
to future releases of DBpedia itself.

SPARQL based Retrieval To validate the results in the
described scenario above, we assume that we can retrieve
all instances of a learned concept. Usually this is a typical
reasoner task. However, as mentioned before, it would be
too time-consuming to load the complete knowledge base in
a reasoner and pose a retrieval query for the learned con-
cept. A way to solve this problem is to use one or more
SPARQL queries to obtain an approximation of the retrieval.
We can draw on other work in this area here. The open source
project SMART (Battista, Villanueva-Rosales, Palenychka,
& Dumontier, 2007) implemented a mapping, which they
call DL2SPARQL, to query large knowledge bases. It can be
easily tested via their online demonstrator6. Other work in
the area of efficient approximate inferences for Description
Logics is also applicable.

Usage for Navigation
Large knowledge bases are very difficult to navigate and

explore for end users, in particular in cases with large TBoxes
(schema) and large ABoxes (instance data). When users
search for interesting knowledge with respect to a certain
task, they are often able to find interesting objects by search-
ing, browsing or remembering certain objects. However,
users usually will not be able to use the full complexity of a
knowledge base for posing sophisticated queries correspond-
ing to their enquiries. In these situations class learning can
help to suggest high level concepts, thereby allowing the user
to gain new insights and explore other relevant objects, which
are otherwise hard to find. As an example we choose the DB-
pedia SPARQL endpoint again, as it is a multi-domain ontol-
ogy, which could typically be used for research on a certain
topic. A user may browse the knowledge through a user in-
terface, which implicitly or explicitly detects some articles,
which are relevant for the current enquiry and others which
are not. These can be fed into the DL-Learner system (pos-
sibly asynchronously called via AJAX in a web application

scenario) as positive and negative examples. An example is
given below:

Example 4 With the help of class navigation we try to re-
late certain ancient Greek mathematicians to mathematicians
throughout history, that have similarities. Interesting articles
are: Pythagoras, Philolaus, Archytas (positive examples)
Uninteresting articles: Socrates, Plato, Zeno of Elea (nega-
tive examples)
In this first run(a) we deduce the class yago:Mathematician
retrieving more than 2000 instances from DBpedia. Those
retrieved instances can further be ranked according to certain
keywords or rules. We add one of those instances (Democri-
tus) to the negative example set and learn the class descrip-
tion Theorist t (Mathematician u Physicist) in the next run
(b), with which we retrieve slightly above 1000 instances
from DBpedia. By adding Aristoxenus to the negative ex-
amples, the algorithm now (c) presents the class description
(among other similar alternatives, which we omitted here)
Believer t (Mathematician u Physicist). The number of re-
sulting instances from DBpedia shrank to the human man-
ageable size of 159. This list reveals a categorical similarity
between the now 8 chosen examples and the instances that
belong to the same learned class, containing Archimedes,
Aristotle, Blaise Pascal, Carl Friedrich Gauss, Christian
Doppler, Galileo Galilei, Gottfried Leibniz, Isaac Newton,
Leonhard Euler, Thales, just to mention a few famous per-
sons from this list (we might add, that the real value are the
not so famous and obvious instances on this list, which are
generally harder to identify in a large set of data.).

The obtained class descriptions mentioned in the example
can be converted into natural language and shown as navi-
gation links to the user. Hence, a user interface can present
related objects to a user and also tell why they are related.

Telling the difference

As we have seen in Auer och Lehmann (2007), DBpedia
can provide answers to questions such as ‘What Have Inns-
bruck and Leipzig in Common?’. With the algorithm we can
now provide answers to even more sophisticated questions
in a minimal use case scenario. We can ask the difference
between two instances using them as positive and negative
examples for the learning algorithm, thus enabling a user to
gain a quick insight without tedious manual searching. The
following example shows, how quick and precise answers
can be retrieved. Most of the classes are not directly related
to the instances and would normally require reasoning meth-
ods to be retrieved. The time for extraction, reasoning and
learning was slightly over one second for each example.

Example 5 (Hillary Clinton vs Angela Merkel)
We queried DBpedia and used a filter that only leaves

YAGO classes; we switched both instances for each learning
problem:

Classes that Angela Merkel belongs to, but Hillary
Clinton does not (a):

6 http://134.117.108.147:8181/smart/query.jsf
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GermanWomenInPolitics, Communicator, Negotiator, Rep-
resentative, HeadOfState, Chancellor, ChancellorsOfGer-
many, CurrentNationalLeaders, Head, CurrentFemale-
HeadsOfGovernment, FemaleHeadsOfGovernment, Leader-
sOfPoliticalParties, GermanChristianDemocratPoliticians,
PeopleFromHamburg, Scientist, GermanScientists

Classes that Hillary Clinton belongs to, but Angela
Merkel does not(b):
Achiever, FirstLady, FirstLadiesOfTheUnitedStates, Profes-
sional, Educator, Academician, AmericanLegalAcademics,
Lawyer, ArkansasLawyers, AmericanWomenInPolitics,
Advocate, Democrat, NewYorkDemocrats, Contestant,
Opposition, CongressionalOpponentsOfTheIraqWar, Intel-
lectual, Scholar, Alumnus, WellesleyCollegeAlumni

Evaluation

The evaluation is split into two parts. In the first part,
we evaluated the performance of the SPARQL retrieval com-
ponent and the learning algorithm. The results are depicted
in Figure 4. We randomly selected ten YAGO classes in
DBpedia and retrieved instances that belonged to the class
as positive examples and then selected the same number of
negative examples from a super class. We performed an ex-
traction with varying recursion depth, which is the most im-
portant factor influencing performance, and recorded the fol-
lowing values: number of triples extracted (left figure), time
needed for extraction (right figure, lower line of each color),
and total time needed for extraction and learning (right fig-
ure, upper line of each color). Please note that a recursion
depth of e.g. two includes all instances at distance smaller
or equal two plus the complete class hierarchy spawned by
these instances. The optional parameter Get all superclasses
and Close after recursion were enabled during the post-
processing. Each point in the figure is an average over 10
runs and was obtained using a Virtuoso DBpedia mirror on
our local network running on a 2.4 GHz dual core machine
with 4 GB memory.

We can see that the curves for the time of extraction and
learning in the right figure is equally or less steep than the
increase in number of extracted triples in the left figure. The
time for the learning process increases with more examples
used, not only because of the increased time needed for rea-
soning but also due to the fact that the learned class descrip-
tions tend to get more complex for a higher number of exam-
ples. Overall, we achieved typical total learning times on a
very large and dense (more than 8 properties associated to an
instance on average) DBpedia knowledge base of a couple of
seconds. Performance could be improved further by merging
several SPARQL queries into more complex ones such that
the triple store can make use of further internal optimization
routines.

In the second part of our evaluation we measured the va-
lidity of learned class descriptions on the fragment, when
compared to the whole ontology. As mentioned before, we
choose the Semantic Bible ontology (Boisen, 2006) as tar-
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Figure 5. Time vs. Accuracy for learning on the Semantic Bible
ontology. The two lines are for using only a fragment of the ontol-
ogy or using the complete ontology.

get, because it is a medium sized ontology, contains complex
background knowledge and is still manageable by a reasoner
as a whole. It consists of 49 classes, 724 instances, 29 object
properties and 9 data properties (4350 axioms total) and is
in OWL-DL (but not OWL-Lite). Also worth mentioning is
the large size of object and data property axioms (Domain:
35, Range: 35, Inverse: 17, Symmetric: 6, Subproperty:
12, Functional: 4). To objectively compare the fragment
selection approach with the normal approach we randomly
selected 100 different sets of learning problems with 10 in-
stances each (5 positive example instances and 5 negative
example instances)7 and conducted the experiments with the
same learning algorithm configuration and the same under-
lying reasoner (Pellet). In the first 4 experiments ( S 10s,
N 10s, S 100s, N 100s) the learning algorithm was stopped
after a fixed time period (10 seconds and 100 seconds) and
the best learned concept so far was validated versus the whole
ontology. In the remaining 4 experiments (S 1000, N 1000,
S 10000, N 10000 ) the algorithm was stopped after a fixed
number of concept test (cf. Figure 1, generate and test ap-
proach) independently of time needed. The fragment was
extracted with the following parameters: recursion depth 2,
close after recursion enabled, get all superclasses enabled,
get explicit property information, no filters, literals allowed.
The result can be viewed in Table 4.

The setup of the experiment is meant to answer two ques-
tions. First, we wanted to know how large the actual error
is, if the fragmentized approach returns a learned class and
analyze if we correctly predicted the type of error that can
occur and second, we wanted to compare speed performance
(fragment vs. whole).

Because the learning algorithm uses top-down refinement
and ignores all class descriptions that do not cover all positive
examples, the accuracy for positive examples only is always

7 Random selection is different from real life problems. How-
ever, it is sufficient to gain some insights w.r.t. scalability.
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Semantic Bible S 10s N 10s S 100s N 100s S 1000 N 1000 S 10000 N 10000
acc fragment(%) 67.8 (±15.5) 61.4 (±12.0) 73.7 (±13.7) 67.4 (±14.6) 65.3 (±14.7) 62.0 (±13.0) 67.9 (±15.5) 69.2 (±15.0)
acc whole (%) 67.6 (±15.4) 61.4 (±12.0) 73.5 (±13.7) 67.4 (±14.6) 65.1 (±14.6) 62.0 (±13.0) 67.7 (±15.4) 69.2 (±15.0)
acc pos (%) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0) 100.0 (±.0)
acc neg (%) 35.2 (±30.9) 22.8 (±24.0) 47.0 (±27.4) 34.8 (±29.2) 30.2 (±29.2) 24.0 (±26.1) 35.4 (±30.9) 38.4 (±30.0)
extraction time 1.2s (±.4s) .0s (±.0s) 1.3 (±.7) .0s (±.0s) 1.1s (±.3s) .0s (±.0s) 1.2s (±.4s) .0s (±.0s)
reasoner init time .1s (±.1s) .2s (±.0s) .0 (±.1) .3s (±.0s) .0s (±.0s) .3s (±.2s) .1s (±.0s) .3s (±.0s)
learning time 10.5s (±.7s) 27.1s (±7.1s) 102.3 (±4.7) 107.0s (±16.9s) 3.7s (±2.3s) 52.6s (±56.9s) 27.9s (±14.1s) 292.8s (±92.7s)
axiom number 726 (±221) 4350 726 (±221) 4350 726 (±221) 4350 726 (±221) 4350
desc. length 3.8 (±3.0) 2.2 (±1.6) 5.5 (±3.8) 3.6 (±2.7) 3.2 (±2.5) 2.4 (±1.8) 3.6 (±2.9) 4.1 (±2.8)
desc. depth 2.1 (±1.1) 1.6 (±.7) 2.8 (±1.5) 2.2 (±1.2) 1.9 (±1.0) 1.6 (±.8) 2.2 (±1.2) 2.3 (±1.2)

Table 4
The table shows the statistics for the fragment selection (S) approach compared to the “normal“(N) usage of the learning
algorithm. We tested fixed runtime (10 seconds and 100 seconds) and fixed number of concept tests (1000 and 10000). All
values are averaged over the same 100 example sets , standard deviation in brackets. A 2.4 GHz dual core machine with 4 GB
memory was used and the fragment was retrieved via SPARQL from a local Joseki endpoint.

stable at 100%. This is also true for the fragment because
of monotonicity of Description Logics. The small error of
0.2% occurred, as predicted, when previously not covered
negatives were covered in the whole ontology. We manually
checked the data and found that a part of the learned class
description (Ob ject t ∃locationO f .>) contained an inverse
functional property with only an inbound edge to the exam-
ple instance, which is not covered on purpose by our extrac-
tion method (cf. list 7. Inferred Property Information).

The low overall accuracy of the class descriptions (only
60% to 70%) is due to the schematic similarity between ran-
dom sampled individuals, which made it impossible to in-
duce sensible class descriptions. For about 10% of the learn-
ing problems all 8 experiments did not return a better class
description than > with accuracy of (50%). The high de-
scription depth, length and runtime are also a measure that
the sampled learning problems were not trivial in general and
are difficult to solve.

The speed gain of the fragmentized approach is obvious
and can be seen in Figure 5. We would like to note again
that we choose the Semantic Bible ontology for evaluation.

The real target of the fragment selection approach are even
larger knowledge bases, which currently only support mini-
mal reasoning mechanisms, if any. The experiments showed
an increase in speed by roughly the factor 10 without losing
quality. Even more so the highest accuracy (73.5%) in the set
time frame was achieved by the reasoning over the fragment.
The high description depth (2.8) and length (5.5) also reveals
that it is possible to construct complex class descriptions with
the information contained in the fragment. Since the extrac-
tion method is more syntactical than semantical in nature, it
is likely to scale well for larger knowledge bases in terms of
extraction time (as also shown in the previous experiment.)

Related Work

Related work can essentially be divided in ABox contrac-
tion and summary techniques on the one hand and learning
in Description Logics and OWL on the other hand. Re-
garding the first area, Fokoue, Kershenbaum, Ma, Schon-
berg, och Srinivas (2006) for example present an approach
how to compute a possibly much smaller summary of an
ABox obeying equivalent reasoning properties. Such ap-
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proaches are suitable for clean and homogeneous ontologies
with small TBoxes and large ABoxes, while our approach is
targeted at impure, heterogeneous multi-domain ontologies
with both components TBoxes and ABoxes being large. An-
other application, that is concerned with reasoning on large
ABoxes is instanceStore(Horrocks, Li, Turi, & Bechhofer,
2004), which as of now only works on role-free knowledge
bases. A project aiming to enable massive distributed in-
complete reasoning is LarKC(Fensel m. fl., 2008), which has
started recently.

Another related approach is described in Seidenberg och
Rector (2006), where fragments of the GALEN ontology are
extracted to enable efficient reasoning. The major difference
compared to our approach is that we focused on providing
a fragment extraction algorithm suitable for learning class
descriptions. We start from instances instead of classes and
do not need to extract subclasses of obtained classes. Our
approach was implemented with support for SPARQL and
Linked Data for querying knowledge bases. Furthermore,
we do not require the OWL ontology to be normalized and
can handle complex class descriptions as fillers of property
restrictions. Similarities between both approaches is the idea
of a (recursion) depth limit and the extraction of class and
property hierarchies.

Regarding learning in Description Logics, the authors of
Badea och Nienhuys-Cheng (2000), for example, design a
refinement operator for ALER to obtain a top-down learn-
ing algorithm for this language. Other approaches to concept
learning were presented in Iannone, Palmisano, och Fanizzi
(2007), where concept descriptions are learned based on ap-
proximated MSC’s (most specific concepts) of the starting
instances, which are then merged or refined. A problem of
this approach compared to our work is that the proposed
algorithm tends to produce very long concept descriptions,
which, although they achieve accurate results, can most of
the time not be comprehended easily by humans any more,
as it is the case in our examples.

Conclusions and Future Work

The focus of our work was to increase the scalability of
OWL learning algorithms through intelligent pre-processing.
We successfully showed how machine learning techniques
can be applied to very large knowledge bases. The creation
of background knowledge is a tedious and time consuming
process and we proposed a solution to ease this burden. By
shifting the necessity of ’inventing’ new concept descriptions
to the simplicity of selecting instances, we open the field of
ontology creation to a broader audience, which might add
further momentum to the Semantic Web. We presented meth-
ods, which can in the future provide semi-automatic tool
support for the enrichment of background knowledge and
also add a new dimension to navigation and semantic search.
The given examples allow a first glance at the usefulness
of the presented algorithms and what sort of results can be
achieved.

We plan to establish a DBpedia Navigator Web interface,
which will allow users to navigate through sets of instances

based on learned class descriptions. Although being devel-
oped for DBpedia, the navigator will also be usable with
other SPARQL endpoints and make heavy use of the methods
presented herein.

During our experiments, we experienced technical and en-
gineering hurdles such as non-standard behavior, lack of in-
terlinking and semantically rich structures or simply inacces-
sibility. Hence, working with very large knowledge bases is
still challenging from both - engineering and research - per-
spectives.
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