ALC Concept Learning with Refinement Operators

Jens Lehmann Pascal Hitzler

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

June 17, 2007

Conclusions

Outline

- Introduction to Description Logics and OWL
- 2 The Learning Problem
- **③** Refinement Operators and Their Properties
- The DL-Learner System
- Preliminary Evaluation
- Onclusions & Future Work

Conclusions

Outline

Introduction to Description Logics and OWL

- 2 The Learning Problem
- **③** Refinement Operators and Their Properties
- The DL-Learner System
- Preliminary Evaluation
- Onclusions & Future Work

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Introduction to Description Logics

- Description Logics is the name of a family of languages for knowledge representation
- fragment of first order predicate logic
- less expressive power than predicate logic, but decidable inference problems
- intuitive variable free syntax
- basis of the ontology language OWL

Modelling Knowledge in DLs

• representation of knowledge using roles, concepts, and objects

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Modelling Knowledge in DLs

- representation of knowledge using roles, concepts, and objects
- objects
 - correspond to constants
 - examples: MARY, JOHN

Modelling Knowledge in DLs

- representation of knowledge using roles, concepts, and objects
- objects
 - correspond to constants
 - examples: MARY, JOHN
- concepts
 - correspond to unary predicates
 - sets of objects
 - examples: Student, Car, Country

ション ふゆ く 山 マ チャット しょうくしゃ

Modelling Knowledge in DLs

- representation of knowledge using roles, concepts, and objects
- objects
 - correspond to constants
 - examples: MARY, JOHN
- concepts
 - correspond to unary predicates
 - sets of objects
 - examples: Student, Car, Country
- roles
 - corresponds to binary predicates
 - describe connections between objects
 - examples: hasChild, isPartOf

Example Knowledge Bases

A knowledge base has the following structure:

```
      knowledge base

      TBox \mathcal{T} ("terminology")

      ABox \mathcal{A} ("assertions")
```

ション ふゆ く 山 マ チャット しょうくしゃ

Example Knowledge Bases

A knowledge base has the following structure:

```
knowledge base

TBox \mathcal{T} ("terminology"), e.g.

Woman \equiv Human \sqcap Female

Mother \equiv Woman \sqcap \existshasChild.\top

HappyFather \sqsubseteq Father \sqcap \forallhasChild.Female

ABox \mathcal{A} ("assertions")
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example Knowledge Bases

A knowledge base has the following structure:

```
knowledge base
TBox T ("terminology"), e.g.
Woman ≡ Human □ Female
Mother ≡ Woman □ ∃hasChild.⊤
HappyFather ⊑ Father □ ∀hasChild.Female
ABox A ("assertions"), e.g.
Woman(MONICA)
hasChild(MONICA, JESSICA)
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ALC Syntax and Semantics

construct	syntax	semantics
atomic concept	Α	$\mathcal{A}^\mathcal{I} \subseteq \Delta^\mathcal{I}$
role	r	$r^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$
top	Т	$\Delta^{\mathcal{I}}$
bottom	\perp	Ø
conjunction	$C \sqcap D$	$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
disjunction	$C \sqcup D$	$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
negation	$\neg C$	$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
existential	$\exists r.C$	$(\exists r. C)^{\mathcal{I}} = \{a \mid$
		$\exists b.(a,b) \in r^\mathcal{I}$ and $b \in C^\mathcal{I} \}$
universal	$\forall r.C$	$(\forall r.C)^{\mathcal{I}} = \{a \mid$
		$\forall b.(a, b) \in r^{\mathcal{I}} \text{ implies } b \in C^{\mathcal{I}} \}$

 $\mathit{Table:}~\mathcal{ALC}$ syntax and semantics

ション ふゆ く 山 マ チャット しょうくしゃ

Reasoning

- TBox:
 - subsumption between concepts: $C \sqsubseteq_T D$ means, that D is more general than C wrt. T, e.g. Mother \sqsubseteq_T Woman
 - equivalence: $C \equiv_T D$ means that two concepts are semantically equivalent
 - strict subsumption: $C \sqsubset_T D$ iff $C \sqsubseteq_T D$ and $C \not\equiv_T D$
 - satisfiability of concepts: Male □ Female unsatisfiable if T contains Male ≡ ¬Female
- ABox (and TBox):
 - consistency: ABox is consistent if there are no contradictions
 - instance check: tests whether an object belongs to a concept
 - retrieval: gets all objects belonging to a concept

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

OWL

- OWL is an acronym for Web Ontology Language
- 3 flavors: OWL-Lite, OWL-DL, OWL-Full
- OWL-DL is based on the description language SHOIN(D) (more expressive than ALC)
- W3C recommendation since 2004
- widely used standard for representing knowledge in the Semantic Web (with application areas outside the Web)
- many ontology editors (e.g. Protégé, Swoop, Semantic Works, OntoWiki) and reasoners (e.g. KAON2, Pellet, Racer, FACT++) available for OWL-DL

Conclusions

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline

- Introduction to Description Logics and OWL
- The Learning Problem
- **③** Refinement Operators and Their Properties
- The DL-Learner System
- Preliminary Evaluation
- Onclusions & Future Work

Learning Problem

- short version: ILP on DLs
- goal: learn a concept definition from positive examples + negative examples + background knowledge

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Learning Problem

- short version: ILP on DLs
- goal: learn a concept definition from positive examples + negative examples + background knowledge
- \bullet we have a target concept name Target and a knowledge base ${\cal K}$ as background knowledge
- examples are of the form Target(a), where a is an object
- let E^+ be the set of positive examples and E^- the set of negative examples
- we want to find a definition *Def* of the form $\text{Target} \equiv C$ such that for $\mathcal{K}' = \mathcal{K} \cup \{Def\}$ we have $\mathcal{K}' \models E^+$ and $\mathcal{K}' \not\models E^-$

ション ふゆ く 山 マ チャット しょうくしゃ

Application Areas

Why is it useful to learn in DLs?

- may have similar applications like ILP (Inductive Logic Programming) approaches for learning horn clauses e.g. in biology and medicine where ontologies are widely used
- incremental ontology learning in context of OWL and the Semantic Web – make it easier for users to build ontologies from existing data

Conclusions

Outline

- Introduction to Description Logics and OWL
- 2 The Learning Problem
- **③** Refinement Operators and Their Properties
- The DL-Learner System
- Preliminary Evaluation
- Onclusions & Future Work

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Refinement Operators - Definitions

- consider quasi-ordered space (S, \preceq), i.e. \preceq is reflexive and transitive
- downward (upward) refinement operator ρ is a mapping from S to 2^{S} such that for any $C \in S$:

$$C' \in \rho(C)$$
 implies $C' \preceq C$ $(C \preceq C')$

- refinement operator in the quasi-ordered space $(\mathcal{L}, \sqsubseteq_{\mathcal{T}})$ is called an \mathcal{L} refinement operator
- instead of $D \in \rho(C)$ we often write $C \rightsquigarrow_{\rho} D$, e.g. $\top \rightsquigarrow_{\rho} Male \rightsquigarrow_{\rho} Male \sqcap \exists hasChild. \top$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Learning with Refinement Operators

- refinement operator can be used to span up a search tree
- refinement operator + search heuristic = learning algorithm

Learning with Refinement Operators

- refinement operator can be used to span up a search tree
- refinement operator + search heuristic = learning algorithm

Learning with Refinement Operators

- refinement operator can be used to span up a search tree
- refinement operator + search heuristic = learning algorithm

・ロト ・ 日 ・ ・ 田 ト ・ 田 ・ うらぐ

Properties of Refinement Operators

An ${\mathcal L}$ refinement operator ρ is called

- finite iff $\rho(C)$ is finite for any concept C.
- redundant iff there exist two different refinement chains from a concept *C* to a concept *D*.
- proper iff for any concepts C and D, $D \in \rho(C)$ implies $C \not\equiv_T D$.

An $\ensuremath{\mathcal{L}}$ downward refinement operator is called

- complete iff for any concepts C and D with $C \sqsubset_T D$ we can reach a concept E with $E \equiv_T C$ from D by ρ .
- weakly complete iff for any concept C with $C \sqsubset_T \top$ we can reach a concept E with $E \equiv_T C$ from \top by ρ .
- minimal iff for all C, $\rho(C)$ contains only downward covers and all its elements are incomparable with respect to \sqsubseteq

ション ふゆ く 山 マ チャット しょうくしゃ

Research Task

- we researched the properties (completeness, properness, redundancy, finiteness, minimality) of refinement operators
- key question: Which properties can be combined?
- obtained general results for any sufficiently expressive description language *L* (i.e. *L* allows to express *⊤*, *⊥*, conjunction, disjunction, universal quantification, and existential quantification)

Conclusion

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Minimality

• Do covers exist in expressive DLs?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Minimality

- Do covers exist in expressive DLs?
- \bullet Yes. The following is a downward cover of the \top concept:

$$\bigsqcup_{r\in N_R} \exists r.\top \sqcup \bigsqcup_{A\in N_C} A$$

Minimality

- Do covers exist in expressive DLs?
- \bullet Yes. The following is a downward cover of the \top concept:

$$\bigsqcup_{r\in N_R} \exists r.\top \sqcup \bigsqcup_{A\in N_C} A$$

• however, minimality is unlikely to play a central role:

- finding and constructing covers is hard and they probably do not provide a sufficient generalisation leap
- even in less expressive DL languages like *AL* minimal operators cannot be weakly complete

Proposition

There exists no minimal and weakly complete \mathcal{AL} downward refinement operator.

No Ideal Operators

Proposition

For any considered language \mathcal{L} , there does not exist any ideal \mathcal{L} refinement operator.

Example

- assume finite, proper downward refinement operator ρ with $\rho(\top) = \{C_1, \ldots, C_n\}$ exists
- let *m* be greater than the quantor depth of any concept in $\rho(\top)$
- \bullet the following concept cannot be reached from $\top:$

$$D = \underbrace{\forall r \dots \forall r}_{m-\text{times}} \bot \sqcup \underbrace{\exists r \dots \exists r}_{(m+1)-\text{times}} . \top$$

- 日本 本語 本 本 田 本 田 本 田 本

Positive Results

Proposition

For any considered language \mathcal{L} , there exists a complete and finite \mathcal{L} refinement operator.

• we have built a system integrating a complete and finite *ALC* refinement operator in a Genetic Programming framework

Positive Results

Proposition

For any considered language \mathcal{L} , there exists a complete and finite \mathcal{L} refinement operator.

• we have built a system integrating a complete and finite *ALC* refinement operator in a Genetic Programming framework

Proposition

For any considered language \mathcal{L} , there exists a complete and proper \mathcal{L} refinement operator.

• will be used in the algorithm presented later on

<ロ> (四) (四) (三) (三) (三)

Redundancy

Proposition

For any considered language \mathcal{L} , there exists a complete and non-redundant \mathcal{L} refinement operator.

Redundancy

Proposition

For any considered language \mathcal{L} , there exists a complete and non-redundant \mathcal{L} refinement operator.

- but: this result is achieved by using the countable infiniteness of the set of all concepts
- a negative result can be shown under the following mild assumption (for downward refinement): $\bot \in \rho^*(C)$ for any concept C

Proposition

Let \mathcal{L} be a considered language and ρ a refinement operator satisfying the assumption above. Then ρ is not complete and non-redundant.

Redundancy

Proposition

For any considered language \mathcal{L} , there exists a complete and non-redundant \mathcal{L} refinement operator.

- but: this result is achieved by using the countable infiniteness of the set of all concepts
- a negative result can be shown under the following mild assumption (for downward refinement): $\rho^*(C)$ contains only finitely many different concepts equivalent to \bot

Proposition

Let \mathcal{L} be a considered language and ρ a refinement operator satisfying the assumption above. Then ρ is not complete and non-redundant.

Redundancy

Proposition

For any considered language \mathcal{L} , there exists a complete and non-redundant \mathcal{L} refinement operator.

- but: this result is achieved by using the countable infiniteness of the set of all concepts
- a negative result can be shown under the following mild assumption (for downward refinement): concepts C_{up} , C_{down} with $C_{down} \sqsubset C_{up}$, $\{C \mid C \in \rho^*(C_{up}), C \equiv C_{down}\}$ finite, and an infinite set S of pairwise incomparable concepts strictly subsumed by C_{up} and strictly subsuming C_{down} exists

Proposition

Let \mathcal{L} be a considered language and ρ a refinement operator satisfying the assumption above. Then ρ is not complete and non-redundant.

Theorem about Properties of *L* Refinement Operators

Theorem (properties of \mathcal{L} refinement operators)

Considering the analysed properties and languages \mathcal{L} , the following are maximal sets of properties of \mathcal{L} refinement operators:

- (weakly complete, complete, finite)
- { weakly complete, complete, proper }
- § {weakly complete, non-redundant, finite}
- (weakly complete, non-redundant, proper)
- { non-redundant, finite, proper}

Conclusions

Outline

- Introduction to Description Logics and OWL
- 2 The Learning Problem
- **③** Refinement Operators and Their Properties
- The DL-Learner System
- Preliminary Evaluation
- Onclusions & Future Work

Step 1: Define an Operator

$$\rho_{\downarrow}(C) = \begin{cases} \{\bot\} \cup \rho'_{\downarrow}(C) & \text{if } C = \top \\ \rho'_{\downarrow}(C) & \text{otherwise} \end{cases}$$

$$\rho_{\downarrow}(C) = \begin{cases} \emptyset & \text{if } C = \bot \\ \{C_1 \sqcup \cdots \sqcup C_n \mid C_i \in M \ (1 \le i \le n)\} & \text{if } C = \top \\ \{A' \mid A' \in \operatorname{nb}_{\downarrow}(A)\} \cup \{A \sqcap D \mid D \in \rho'_{\downarrow}(\top)\} & \text{if } C = A \ (A \in N_C) \\ \{\neg A' \mid A' \in \operatorname{nb}_{\uparrow}(A)\} \cup \{\neg A \sqcap D \mid D \in \rho'_{\downarrow}(\top)\} & \text{if } C = \neg A \ (A \in N_C) \end{cases}$$

$$\{\exists r.E \mid E \in \rho'_{\downarrow}(D)\} \cup \{\exists r.D \sqcap E \mid E \in \rho'_{\downarrow}(\top)\} & \text{if } C = \exists r.D \\ \{\forall r.E \mid E \in \rho'_{\downarrow}(D)\} \cup \{\forall r.D \sqcap E \mid E \in \rho'_{\downarrow}(\top)\} & \text{if } C = \forall r.D \\ \cup \{\forall r.\bot \mid D = A \in N_C \ \text{and } \operatorname{nb}_{\downarrow}(A) = \emptyset\} \\ \{C_1 \sqcap \cdots \sqcap C_{i-1} \sqcap D \sqcap C_{i+1} \sqcap \cdots \sqcap C_n \mid & \text{if } C = C_1 \sqcap \cdots \sqcap C_n \\ D \in \rho'_{\downarrow}(C_i), 1 \le i \le n\} & (n \ge 2) \\ \{C_1 \sqcup \cdots \sqcup C_{i-1} \sqcup D \sqcup C_{i+1} \sqcup \cdots \sqcup C_n \mid & \text{if } C = C_1 \sqcup \cdots \sqcup C_n \\ D \in \rho'_{\downarrow}(C_i), 1 \le i \le n\} & (n \ge 2) \\ \cup \{(C_1 \sqcup \cdots \sqcup C_n) \sqcap D \mid D \in \rho'_{\downarrow}(\top)\} \end{cases}$$

(abbreviated representation: see paper for definition of nb_{\downarrow} , nb_{\uparrow} , and M)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Completeness of ρ_{\downarrow}

Proposition (completeness of ρ_{\downarrow})

 ho_{\downarrow} is complete.

Proof Idea:

- first show weak completeness:
 - a set S_↓ of ALC concepts was defined (see article for the definition of S_↓)
 - for every \mathcal{ALC} concept there exists an equivalent concept in S_{\downarrow}
 - all concepts in S_{\downarrow} can be reached by ρ_{\downarrow} from op
- prove completeness using the weak completeness result

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Infiniteness of ρ_{\perp}

• ρ_{\perp} is infinite, e.g. there are infinitely many refinement steps of the form:

$$\top \rightsquigarrow_{\rho_{\downarrow}} \underbrace{\forall \texttt{hasChild....} \forall \texttt{hasChild}}_{\texttt{arbitrarily often}}.\texttt{Male}$$

- solution: we only consider refinements up to length *n* of concepts (there are only finitely many of these)
- *n* is initially set to 0 and increased by the learning algorithm as needed

Properness

- ρ_{\downarrow} is not proper: $\top \leadsto_{\rho_{\downarrow}} \exists \texttt{hasChild}. \top \sqcup \forall \texttt{hasChild}. \texttt{Male}$
- idea: consider the closure ρ_{\downarrow}^{cl} of ρ_{\downarrow} : $D \in \rho_{\downarrow}^{cl}(C)$ iff there exists a refinement chain

$$C \rightsquigarrow_{\rho_{\downarrow}} C_1 \rightsquigarrow_{\rho_{\downarrow}} \ldots \rightsquigarrow_{\rho_{\downarrow}} C_n = D$$

such that
$$C \not\equiv D$$
 and $C_i \equiv C$ for $i \in \{1, \dots, n-1\}$

Proposition

For any concept C in negation normal form and any natural number n the set

$$\{D \mid D \in \rho_{\downarrow}^{cl}(C), |D| \le n\}$$

can be computed in finite time.

- 日本 - 4 日本 - 4 日本 - 日本

Conclusions

Redundancy

 $\rho_{\downarrow}^{\textit{cl}}$ is redundant:

- redundancies should be detected by the learning algorithm
- result in paper: we can check whether an occurring concept is redundant with respect to a search tree in polynomial time

Step 2: DL-Learner Algorithm

Input: *horizExpFactor* in [0,1]

- 1 ST (search tree) is set to the tree consisting only of the root node $(\top, 0, q(\top), false)$
- 2 minHorizExp = 0

3 while ST does not contain a correct concept do

```
choose N = (C, n, q, b) with highest fitness in ST
4
```

```
expand N up to length n + 1, i.e. :
```

```
begin
```

5 6

7

8

9 10

11

12

13

```
add all nodes (D, n, -, checkRed(ST, D)) with
D \in trans(\rho_{\perp}^{cl}(C)) and |D| = n + 1 as children of N
evaluate created non-redundant nodes
change N to (C, n+1, q, b)
```

end

```
minHorizExp = max(minHorizExp, \lceil horizExpFactor * (n + 1)) \rceil)
while there are nodes with defined quality and horiz. expansion
smaller minHorizExp do
    expand these nodes up to minHorizExp
```

Return a correct concept in ST14

ション ふゆ く 山 マ チャット しょうくしゃ

Simple Example

$\texttt{Male}\equiv \neg \texttt{Female}$	Male(MARC)
	Male(STEPHEN)
hasChild(STEPHEN,MARC)	Male(JASON)
hasChild(MARC,ANNA)	Male(JOHN)
hasChild(JOHN, MARIA)	Female(ANNA)
hasChild(ANNA, JASON)	female(MARIA)
	Female(MICHELLE)

```
positive:{STEPHEN, MARC, JOHN}
negative:{JASON, ANNA, MARIA, MICHELLE}
```

possible solution: Male $\sqcap \exists hasChild. \top$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Conclusions

Simple Example

Initialisation (minimum horizontal expansion = 0):

・ロト ・個ト ・ヨト ・ヨト

æ.

Conclusions

Simple Example

Step 1 (minimum horizontal expansion = 1):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusions

Simple Example

Step 2 (minimum horizontal expansion = 1):

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conclusions

Simple Example

Step 3 (minimum horizontal expansion = 1):

◆□▶ ◆圖▶ ◆厘▶ ◆厘▶

Conclusions

æ.

Simple Example

Step 4 (minimum horizontal expansion = 2):

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Simple Example

Step x (minimum horizontal expansion = 2):

solution: Male $\sqcap \exists hasChild. \top$

Outline

- Introduction to Description Logics and OWL
- 2 The Learning Problem
- **③** Refinement Operators and Their Properties
- The DL-Learner System
- Preliminary Evaluation
- Onclusions & Future Work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Evaluation

- not much evaluation examples or benchmarks available for concept learning from examples yet
- examples had to be converted from existing ones e.g. in the UCI Machine Learning Repositories
- evaluation system: 1.4GHz, DIG 1.1 Interface, Pellet 1.4RC1 reasoner, horiz. expansion factor 0.6

Conclusions

Poker Examples

Poker - Pair ∃hasCard.∃sameRank.⊤

Poker - Straight

 $\exists \texttt{hasCard}. \exists \texttt{nextRank}. \exists \texttt{n$

Moral Reasoner and Arch Examples

Moral Reasoner simple variant: Guilty ≡ Blameworthy □ Vicarious_blame complex variant: Guilty ≡¬Justified □ (Vicarious□

 $(Negligent_c \sqcap Responsible))$

Arches

Arch ≡∃hasPillar.(FreeStandingPillar⊓ ∃leftOf.∃supports.⊤)

Evaluation Table

problem	axioms, concepts, roles				les	DL-Learner		
	objects, examples					runtime	length	correct
trains	252,	8,	5,	50,	10	1.1s	5	100%
arches	71,	6,	5,	19,	5	4.6s	9	100%
moral (simple)	2176,	43,	4,	45,	43	17.7s	3	100%
moral (complex)	2107,	40,	4,	45,	43	88.1s	8	100%
poker (pair)	1335,	2,	6,	311,	49	7.7s	5	100%
poker (straight)	1419,	2,	6,	347,	55	35.6s	11	100%

- DL-Learner finds solutions for the given problems
- examples cover different complexity and size of background knowledge
- \bullet \ldots and different concept constructors in solutions
- most of the time spend for reasoner requests

Evaluation Table

problem	D	L-Learne	r	YinYang		
	runtime	length	correct	runtime	length	correct
trains	1.1s	5	100%	2.3s	8	100%
arches	4.6s	9	100%	1.5s	23	100%
moral (simple)	17.7s	3	100%	205.3s	69	67.4%
moral (complex)	88.1s	8	100%	181.4s	70	69.8%
poker (pair)	7.7s	5	100%	17.1s	43	100%
poker (straight)	35.6s	11	100%	-	-	-

- YinYang only available system to the best of our knowledge
- DL-Learner tries to find shorter solutions (likely to be better according to Occam's Razor)

Evaluation Table

problem	D	L-Learne	r	YinYang			
	runtime	length	correct	runtime	length	correct	
trains	1.1s	5	100%	2.3s	8	100%	
arches	4.6s	9	100%	1.5s	23	100%	
moral (simple)	17.7s	3	100%	205.3s	69	67.4%	
moral (complex)	88.1s	8	100%	181.4s	70	69.8%	
poker (pair)	7.7s	5	100%	17.1s	43	100%	
poker (straight)	35.6s	11	100%	-	-	-	

- YinYang only available system to the best of our knowledge
- DL-Learner tries to find shorter solutions (likely to be better according to Occam's Razor)

Evaluation

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

CONCLUSIONS

Outline

- Introduction to Description Logics and OWL
- 2 The Learning Problem
- **③** Refinement Operators and Their Properties
- The DL-Learner System
- Preliminary Evaluation
- Onclusions & Future Work

(ロ) (型) (E) (E) (E) (O)

Contributions to the State of the Art

- full analysis of properties of refinement operators in DLs
- a refinement operator conforming to the theoretical findings
- an algorithm handling the unavoidable limitations of the operator
- provision of examples and a preliminary evaluation

ション ふゆ く 山 マ チャット しょうくしゃ

Future Work

- more evaluation examples, e.g. asses performance on noisy or inconsistent data
- create (more) benchmarks to assess scalability and enable easier comparison between different algorithms
- tests on real world data, e.g. DBpedia
- embed learning algorithm in ontology editor e.g. OntoWiki
- extend algorithm to other description languages and OWL (cardinality restrictions, datatype integer)
- algorithm performance improvements: using domain/range restrictions, subproperty relationships

Thank you for your attention.

contact: lehmann@informatik.uni-leipzig.de