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Introduction to Description Logics

Description Logics is the name of a family of languages for
knowledge representation
fragment of first order predicate logic
less expressive power than predicate logic, but decidable
inference problems
intuitive variable free syntax
basis of the ontology language OWL
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Modelling Knowledge in DLs

representation of knowledge using roles, concepts, and objects

objects
correspond to constants
examples: MARY, JOHN

concepts
correspond to unary predicates
sets of objects
examples: Student, Car, Country

roles
corresponds to binary predicates
describe connections between objects
examples: hasChild, isPartOf
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Example Knowledge Bases

A knowledge base has the following structure:

knowledge base

TBox T ("terminology")

, e.g.
Woman ≡ Human u Female
Mother ≡ Woman u ∃hasChild.>
HappyFather v Father u ∀hasChild.Female

ABox A ("assertions")

, e.g.
Woman(MONICA)
hasChild(MONICA, JESSICA)
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ALC Syntax and Semantics

construct syntax semantics
atomic concept A AI ⊆ ∆I

role r rI ⊆ ∆I ×∆I

top > ∆I

bottom ⊥ ∅
conjunction C u D (C u D)I = CI ∩ DI

disjunction C t D (C t D)I = CI ∪ DI

negation ¬C (¬C )I = ∆I \ CI

existential ∃r .C (∃r .C )I = {a |
∃b.(a, b) ∈ rI and b ∈ CI}

universal ∀r .C (∀r .C )I = {a |
∀b.(a, b) ∈ rI implies b ∈ CI}

Table: ALC syntax and semantics
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Reasoning

TBox:
subsumption between concepts: C vT D means, that D is
more general than C wrt. T , e.g. Mother vT Woman
equivalence: C ≡T D means that two concepts are
semantically equivalent
strict subsumption: C @T D iff C vT D and C 6≡T D
satisfiability of concepts: Male u Female unsatisfiable if T
contains Male ≡ ¬Female

ABox (and TBox):
consistency: ABox is consistent if there are no contradictions
instance check: tests whether an object belongs to a concept
retrieval: gets all objects belonging to a concept
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OWL

OWL is an acronym for Web Ontology Language
3 flavors: OWL-Lite, OWL-DL, OWL-Full
OWL-DL is based on the description language SHOIN (D)
(more expressive than ALC)
W3C recommendation since 2004
widely used standard for representing knowledge in the
Semantic Web (with application areas outside the Web)
many ontology editors (e.g. Protégé, Swoop, Semantic Works,
OntoWiki) and reasoners (e.g. KAON2, Pellet, Racer,
FACT++) available for OWL-DL
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Learning Problem

short version: ILP on DLs
goal: learn a concept definition from positive examples +
negative examples + background knowledge

we have a target concept name Target and a knowledge base
K as background knowledge
examples are of the form Target(a), where a is an object
let E+ be the set of positive examples and E− the set of
negative examples
we want to find a definition Def of the form Target ≡ C such
that for K′ = K ∪ {Def } we have K′ |= E+ and K′ 6|= E−
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Application Areas

Why is it useful to learn in DLs?
may have similar applications like ILP (Inductive Logic
Programming) approaches for learning horn clauses e.g. in
biology and medicine where ontologies are widely used
incremental ontology learning in context of OWL and the
Semantic Web – make it easier for users to build ontologies
from existing data
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Refinement Operators - Definitions

consider quasi-ordered space (S ,�), i.e. � is reflexive and
transitive
downward (upward) refinement operator ρ is a mapping from
S to 2S such that for any C ∈ S :

C ′ ∈ ρ(C ) implies C ′ � C (C � C ′)

refinement operator in the quasi-ordered space (L,vT ) is
called an L refinement operator
instead of D ∈ ρ(C ) we often write C  ρ D, e.g.
> ρ Male ρ Male u ∃hasChild.>
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Learning with Refinement Operators
refinement operator can be used to span up a search tree
refinement operator + search heuristic = learning algorithm

⊤
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Learning with Refinement Operators
refinement operator can be used to span up a search tree
refinement operator + search heuristic = learning algorithm

⊤

Person

. . .

Person ⊓ ∃takesPartIn.Conference

. . .

Car . . .
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Properties of Refinement Operators

An L refinement operator ρ is called
finite iff ρ(C ) is finite for any concept C .
redundant iff there exist two different refinement chains from a
concept C to a concept D.
proper iff for any concepts C and D, D ∈ ρ(C ) implies
C 6≡T D.

An L downward refinement operator is called
complete iff for any concepts C and D with C @T D we can
reach a concept E with E ≡T C from D by ρ.
weakly complete iff for any concept C with C @T > we can
reach a concept E with E ≡T C from > by ρ.
minimal iff for all C , ρ(C ) contains only downward covers and
all its elements are incomparable with respect to v
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Research Task

we researched the properties (completeness, properness,
redundancy, finiteness, minimality) of refinement operators
key question: Which properties can be combined?
obtained general results for any sufficiently expressive
description language L (i.e. L allows to express >, ⊥,
conjunction, disjunction, universal quantification, and
existential quantification)
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Minimality

Do covers exist in expressive DLs?

Yes. The following is a downward cover of the > concept:⊔
r∈NR

∃r .> t
⊔

A∈NC

A

however, minimality is unlikely to play a central role:
finding and constructing covers is hard and they probably do
not provide a sufficient generalisation leap
even in less expressive DL languages like AL minimal
operators cannot be weakly complete

Proposition
There exists no minimal and weakly complete AL downward
refinement operator.



Intro Learning Problem Refinement Operators DL-Learner Evaluation Conclusions

Minimality

Do covers exist in expressive DLs?
Yes. The following is a downward cover of the > concept:⊔

r∈NR

∃r .> t
⊔

A∈NC

A

however, minimality is unlikely to play a central role:
finding and constructing covers is hard and they probably do
not provide a sufficient generalisation leap
even in less expressive DL languages like AL minimal
operators cannot be weakly complete

Proposition
There exists no minimal and weakly complete AL downward
refinement operator.



Intro Learning Problem Refinement Operators DL-Learner Evaluation Conclusions

Minimality

Do covers exist in expressive DLs?
Yes. The following is a downward cover of the > concept:⊔

r∈NR

∃r .> t
⊔

A∈NC

A

however, minimality is unlikely to play a central role:
finding and constructing covers is hard and they probably do
not provide a sufficient generalisation leap
even in less expressive DL languages like AL minimal
operators cannot be weakly complete

Proposition
There exists no minimal and weakly complete AL downward
refinement operator.



Intro Learning Problem Refinement Operators DL-Learner Evaluation Conclusions

No Ideal Operators

Proposition

For any considered language L, there does not exist any ideal L
refinement operator.

Example
assume finite, proper downward refinement operator ρ with
ρ(>) = {C1, . . . , Cn} exists
let m be greater than the quantor depth of any concept in
ρ(>)

the following concept cannot be reached from >:

D = ∀r . . . . .∀r︸ ︷︷ ︸
m−times

.⊥ t ∃r . . . . .∃r︸ ︷︷ ︸
(m+1)−times

.>
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Positive Results

Proposition

For any considered language L, there exists a complete and finite L
refinement operator.

we have built a system integrating a complete and finite ALC
refinement operator in a Genetic Programming framework

Proposition
For any considered language L, there exists a complete and proper
L refinement operator.

will be used in the algorithm presented later on
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Redundancy

Proposition
For any considered language L, there exists a complete and
non-redundant L refinement operator.

but: this result is achieved by using the countable infiniteness
of the set of all concepts
a negative result can be shown under the following mild
assumption (for downward refinement):

Proposition
Let L be a considered language and ρ a refinement operator
satisfying the assumption above. Then ρ is not complete and
non-redundant.
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For any considered language L, there exists a complete and
non-redundant L refinement operator.

but: this result is achieved by using the countable infiniteness
of the set of all concepts
a negative result can be shown under the following mild
assumption (for downward refinement): ρ∗(C ) contains only
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Let L be a considered language and ρ a refinement operator
satisfying the assumption above. Then ρ is not complete and
non-redundant.
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Redundancy

Proposition
For any considered language L, there exists a complete and
non-redundant L refinement operator.

but: this result is achieved by using the countable infiniteness
of the set of all concepts
a negative result can be shown under the following mild
assumption (for downward refinement): concepts Cup, Cdown
with Cdown @ Cup, {C | C ∈ ρ∗(Cup), C ≡ Cdown} finite, and
an infinite set S of pairwise incomparable concepts strictly
subsumed by Cup and strictly subsuming Cdown exists

Proposition
Let L be a considered language and ρ a refinement operator
satisfying the assumption above. Then ρ is not complete and
non-redundant.
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Theorem about Properties of L Refinement Operators

Theorem (properties of L refinement operators)

Considering the analysed properties and languages L, the following
are maximal sets of properties of L refinement operators:

1 {weakly complete, complete, finite}
2 {weakly complete, complete, proper}
3 {weakly complete, non-redundant, finite}
4 {weakly complete, non-redundant, proper}
5 {non-redundant, finite, proper}
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Step 1: Define an Operator

ρ↓(C) =

(
{⊥} ∪ ρ′↓(C) if C = >
ρ′↓(C) otherwise

ρ′↓(C) =

8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

∅ if C = ⊥
{C1 t · · · t Cn | Ci ∈ M (1 ≤ i ≤ n)} if C = >
{A′ | A′ ∈ nb↓(A)} ∪ {A u D | D ∈ ρ′↓(>)} if C = A (A ∈ NC )

{¬A′ | A′ ∈ nb↑(A)} ∪ {¬A u D | D ∈ ρ′↓(>)} if C = ¬A (A ∈ NC )

{∃r .E | E ∈ ρ′↓(D)} ∪ {∃r .D u E | E ∈ ρ′↓(>)} if C = ∃r .D
{∀r .E | E ∈ ρ′↓(D)} ∪ {∀r .D u E | E ∈ ρ′↓(>)} if C = ∀r .D

∪ {∀r .⊥ | D = A ∈ NC and nb↓(A) = ∅}
{C1 u · · · u Ci−1 u D u Ci+1 u · · · u Cn | if C = C1 u · · · u Cn

D ∈ ρ′↓(Ci ), 1 ≤ i ≤ n} (n ≥ 2)

{C1 t · · · t Ci−1 t D t Ci+1 t · · · t Cn | if C = C1 t · · · t Cn

D ∈ ρ′↓(Ci ), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 t · · · t Cn) u D | D ∈ ρ′↓(>)}

(abbreviated representation: see paper for definition of nb↓, nb↑, and M)
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Completeness of ρ↓

Proposition (completeness of ρ↓)

ρ↓ is complete.

Proof Idea:
first show weak completeness:

a set S↓ of ALC concepts was defined (see article for the
definition of S↓)
for every ALC concept there exists an equivalent concept in S↓
all concepts in S↓ can be reached by ρ↓ from >

prove completeness using the weak completeness result
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Infiniteness of ρ↓

ρ↓ is infinite, e.g. there are infinitely many refinement steps of
the form:

> ρ↓ ∀hasChild. . . .∀hasChild︸ ︷︷ ︸
arbitrarily often

.Male

solution: we only consider refinements up to length n of
concepts (there are only finitely many of these)
n is initially set to 0 and increased by the learning algorithm as
needed
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Properness

ρ↓ is not proper: > ρ↓ ∃hasChild.> t ∀hasChild.Male
idea: consider the closure ρcl

↓ of ρ↓:
D ∈ ρcl

↓ (C ) iff there exists a refinement chain

C  ρ↓ C1  ρ↓ . . . ρ↓ Cn = D

such that C 6≡ D and Ci ≡ C for i ∈ {1, . . . , n − 1}

Proposition
For any concept C in negation normal form and any natural
number n the set

{D | D ∈ ρcl
↓ (C ), |D| ≤ n}

can be computed in finite time.
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Redundancy

ρcl
↓ is redundant:

∀r1.A1 t ∀r2.A1  ρ↓ ∀r1.(A1 u A2) t ∀r2.A1

 
ρ
↓

 
ρ
↓

∀r1.A1 t ∀r2.(A1 u A2) ρ↓ ∀r1.(A1 u A2) t ∀r2.(A1 u A2)

redundancies should be detected by the learning algorithm
result in paper: we can check whether an occurring concept is
redundant with respect to a search tree in polynomial time
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Step 2: DL-Learner Algorithm
Input: horizExpFactor in ]0,1]
ST (search tree) is set to the tree consisting only of the root node1
(>, 0, q(>), false)
minHorizExp = 02
while ST does not contain a correct concept do3

choose N = (C , n, q, b) with highest fitness in ST4
expand N up to length n + 1, i.e. :5
begin6

add all nodes (D, n,−, checkRed(ST ,D)) with7

D ∈ trans(ρcl
↓ (C )) and |D| = n + 1 as children of N

evaluate created non-redundant nodes8
change N to (C , n + 1, q, b)9

end10
minHorizExp = max(minHorizExp, dhorizExpFactor ∗ (n + 1))e)11
while there are nodes with defined quality and horiz. expansion12
smaller minHorizExp do

expand these nodes up to minHorizExp13

Return a correct concept in ST14
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Simple Example

Male ≡ ¬Female Male(MARC)
Male(STEPHEN)

hasChild(STEPHEN,MARC) Male(JASON)
hasChild(MARC,ANNA) Male(JOHN)
hasChild(JOHN,MARIA) Female(ANNA)
hasChild(ANNA,JASON) Female(MARIA)

Female(MICHELLE)

positive:{STEPHEN, MARC, JOHN}
negative:{JASON, ANNA, MARIA, MICHELLE}

possible solution: Male u ∃hasChild.>
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Simple Example
Initialisation (minimum horizontal expansion = 0):

-4 ⊤ (0)
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Simple Example
Step 1 (minimum horizontal expansion = 1):

-4 ⊤ (1)

tw ⊥ (0) -1 Ma (0) tw Fe (0)
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Simple Example
Step 2 (minimum horizontal expansion = 1):

-4 ⊤ (1)

-1 Ma (1)
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Simple Example
Step 3 (minimum horizontal expansion = 1):

-4 ⊤ (1)

-1 Ma (2)
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Simple Example
Step 4 (minimum horizontal expansion = 2):

-4 ⊤ (2)

-1 Ma (3)

tw Ma ⊓ Fe (3)

tw ¬Ma (2) -1 ¬Fe (2)
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Simple Example
Step x (minimum horizontal expansion = 2):

-4 ⊤ (2)

-1 Ma (5)

0 Ma ⊓ ∃h.⊤ (5) tw Ma ⊓ ∀h.Ma (5) tw Ma ⊓ ∀h.Fe (5)

. . .

solution: Male u ∃hasChild.>
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Evaluation

not much evaluation examples or benchmarks available for
concept learning from examples yet
examples had to be converted from existing ones e.g. in the
UCI Machine Learning Repositories
evaluation system: 1.4GHz, DIG 1.1 Interface, Pellet 1.4RC1
reasoner, horiz. expansion factor 0.6
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Poker Examples

Poker - Pair
∃hasCard.∃sameRank.>

Poker - Straight
∃hasCard.∃nextRank.∃nextRank.∃nextRank.∃nextRank.>



Intro Learning Problem Refinement Operators DL-Learner Evaluation Conclusions

Moral Reasoner and Arch Examples

Moral Reasoner
simple variant:
Guilty ≡ Blameworthy t Vicarious_blame

complex variant:
Guilty ≡¬Justified u (Vicarioust

(Negligent_c u Responsible))

Arches
Arch ≡∃hasPillar.(FreeStandingPillaru

∃leftOf.∃supports.>)
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Evaluation Table

problem axioms, concepts, roles DL-Learner
objects, examples runtime length correct

trains 252, 8, 5, 50, 10 1.1s 5 100%
arches 71, 6, 5, 19, 5 4.6s 9 100%
moral (simple) 2176, 43, 4, 45, 43 17.7s 3 100%
moral (complex) 2107, 40, 4, 45, 43 88.1s 8 100%
poker (pair) 1335, 2, 6, 311, 49 7.7s 5 100%
poker (straight) 1419, 2, 6, 347, 55 35.6s 11 100%

DL-Learner finds solutions for the given problems

examples cover different complexity and size of background
knowledge

. . . and different concept constructors in solutions

most of the time spend for reasoner requests



Intro Learning Problem Refinement Operators DL-Learner Evaluation Conclusions

Evaluation Table

problem DL-Learner YinYang
runtime length correct runtime length correct

trains 1.1s 5 100% 2.3s 8 100%
arches 4.6s 9 100% 1.5s 23 100%
moral (simple) 17.7s 3 100% 205.3s 69 67.4%
moral (complex) 88.1s 8 100% 181.4s 70 69.8%
poker (pair) 7.7s 5 100% 17.1s 43 100%
poker (straight) 35.6s 11 100% - - -

YinYang only available system to the best of our knowledge

DL-Learner tries to find shorter solutions (likely to be better
according to Occam’s Razor)
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Contributions to the State of the Art

full analysis of properties of refinement operators in DLs
a refinement operator conforming to the theoretical findings
an algorithm handling the unavoidable limitations of the
operator
provision of examples and a preliminary evaluation
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Future Work

more evaluation examples, e.g. asses performance on noisy or
inconsistent data
create (more) benchmarks to assess scalability and enable
easier comparison between different algorithms
tests on real world data, e.g. DBpedia
embed learning algorithm in ontology editor e.g. OntoWiki
extend algorithm to other description languages and OWL
(cardinality restrictions, datatype integer)
algorithm performance improvements: using domain/range
restrictions, subproperty relationships
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Thank you for your attention.

contact:
lehmann@informatik.uni-leipzig.de
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