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Abstract

Performing link prediction using knowledge graph embedding
models has become a popular approach for knowledge graph
completion. Such models employ a transformation function
that maps nodes via edges into a vector space in order to mea-
sure the likelihood of the links. While mapping the individual
nodes, the structure of subgraphs is also transformed. Most
of the embedding models designed in Euclidean geometry
usually support a single transformation type – often trans-
lation or rotation, which is suitable for learning on graphs
with small differences in neighboring subgraphs. However,
multi-relational knowledge graphs often include multiple sub-
graph structures in a neighborhood (e.g. combinations of path
and loop structures), which current embedding models do
not capture well. To tackle this problem, we propose a novel
KGE model (5FE) in projective geometry, which supports
multiple simultaneous transformations – specifically inversion,
reflection, translation, rotation, and homothety. The model
has several favorable theoretical properties and subsumes the
existing approaches. It outperforms them on most widely used
link prediction benchmarks.

Introduction
Knowledge graphs (KGs) with their graph-based knowledge
representation in the form of (head,relation,tail) triples, have
become a leading technology of recent years in AI-based
tasks including question answering, data integration, and rec-
ommender systems (Ji et al. 2020). However, KGs are incom-
plete and the performance of any algorithm consuming them
is affected by this problem. Knowledge graph embeddings
(KGEs) are a prominent approach used for KG completion by
predicting missing links. Every KGE model uses a transfor-
mation function to map entities (nodes) of the graph through
relations in a vector space to score the plausibility of triples
via a score function. The performance of KGE models heav-
ily relies on the design of their score function that in turn
defines the type of transformation they support. Such trans-
formations distinguish the extent to which a model is able to
learn complex motifs and patterns formed by combinations
of the nodes and edges.

Most of the existing KGEs have been designed in Eu-
clidean geometry and usually support a single transformation
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type – often translation or rotation. This limits their ability in
embedding KGs with complexities in subgraphs, especially
when multiple structures exist in a neighborhood. An exam-
ple of this situation is the presence of a path structure for a
group of nodes close to a loop structure of another group in
a KG (illustrated in Figure 1). The upper part of the figure
shows examples of four different subgraphs containing com-
binations of path structures (a group of nodes connected via
a relation) and loop structures (a group of nodes forming a
loop via a relation). The lower part of the figure shows an
exemplary visualisation of the embeddings of the entities
depicted in the upper part of the figure. Let us focus on the
left most example in the figure, i.e. the path to loop subgraph.
In this example subgraph, a relation r1 (e.g. hypernym) forms
a path structure, a relation r3 (e.g. similar_to) forms a loop
structure and nodes in both structures are connected via a
relation r2. A loop in the graph presentation can be preserved
as a circle in a vector space, and a path as a line. Existing
KGE models, such as TransE, RotatE, ComplEx and QuatE
partially capture those structures in the embedding space.
The lower part of the figure shows the possible embeddings
of the given subgraphs preserved by the existing models.
Let the nodes in the path be h1, . . . , h6, the nodes in the
loop be t1, . . . , t6 and (hi, r2, ti), i = 1, . . . , 6, be the triples
connecting those structures. When we consider the TransE
model specifically, the embeddings of the tails t1, . . . , t6 can-
not be transferred to the shape of a circle in the embedding
space. This is because the following equations need to (ap-
proximately) hold according to the TransE score functions:
t1 +r3 ≈ t2, t2 +r3 ≈ t3, . . . , t6 +r3 ≈ t1. However, this
results in r3 = 0. Therefore, t1 = t2 = . . . = t6 i.e. all enti-
ties are embedded into the same point in the embedding space
rather than a circle (with positive radius). Similar derivations
apply to more recent and complex models. Those limitations
are due to the limited set of transformations supported by
those models, which do not go beyond translation, rotation
and homothethy operations. Therefore, they cannot map line
structures to circle structures and vice versa.

This type of limitation stems from the underlying geom-
etry. While major existing models cover at most two trans-
formation types, we propose a model based on projective
geometry that provides a uniform way for simultaneously
representing five transformation types namely translation, ro-
tation, homothety, inversion, and reflection. The combination
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Figure 1: Graph and vector representation of path/loop.

of such transformation types results in various transforma-
tion functions (parabolic, circular, elliptic, hyperbolic, and
loxodromic) subsumed by projective transformations. As a
consequence, the embeddings can preserve the structure in
the previous example and many other scenarios in which
different structures exist in a neighbourhood of the KG.

Our core contribution is a new five-star embedding model,
i.e. a model that simultaneously employs five transformation
types and consequently can preserve various-shaped struc-
tures in the embedding space. The model subsumes several
existing state-of-the-art KGE models , i.e. their score func-
tions can be expressed as special cases of 5FE. Overall, our
model, dubbed 5FE, is (a) capable of preserving a wider
range of structures than existing models (including the path
and loop combinations in Figure 1), (b) fully expressive (as
defined in (Wang, Gemulla, and Li 2018)), (c) subsumes the
KGE models DistMult, RotatE, pRotatE, TransE, and Com-
plEx (d) allows to learn composition, inverse, reflexive and
symmetric relation patterns. Our evaluation shows that 5FE
outperforms existing models on standard benchmarks.

Preliminaries and Background
Knowledge Graph Embeddings
A KG is a multi-relational directed graph KG = (E ,R, T )
where E ,R are the set of nodes (entities) and edges (relations
between entities) respectively. The set T = {(h, r, t)} ⊆
E × R × E contains all triples as (head, relation, tail),
e.g. (smartPhone, hypernym, iPhone). In order to apply learn-
ing methods on KGs, a KGE learns vector representations
of entities (E) and relations (R). A vector representation de-
noted by (h, r, t) is learned by the model per triple (h, r, t),
where h, t ∈ Vde , r ∈ Vdr (Vd is a d-dimensional vector
space). TransE (Bordes et al. 2013) considers V = R while
ComplEx (Trouillon et al. 2016) and RotatE use V = C
(complex space) and QuatE (Zhang et al. 2019) considers
V = H (quaternion space). In this paper, we choose a pro-
jective space to embed the graph i.e. V = CP1 (a complex
projective line which is introduced later). Most KGE models
are defined via a relation-specific transformation function
gr : Vde → Vde which maps head entities to tail entities,

i.e. gr(h) = t. On top of such a transformation function,
the score function f : Vde × Vdr × Vde → R is defined to
measure the plausibility for triples: f(h, r, t) = p(gr(h), t).
Generally, the formulation of any score function can be either
p(gr(h), t) = −‖gr(h)− t‖ or p(gr(h), t) = 〈gr(h), t〉.

Projective Geometry
Projective geometry uses homogeneous coordinates which
represent N -dimensional coordinates with N + 1 numbers
(i.e. use one additional parameter). For example, a point
in 2D Cartesian coordinates, [X,Y ] becomes [x, y, k] in
homogeneous coordinates where X = x/k, Y = y/k
(in 1-dimensional real numbers, [X] becomes [x, y] where
X = x/y). The key elements of projective geometry are as
follows:

A Projective Line is a space in which a projective geom-
etry is defined. A projective geometry requires a point at
infinity to satisfy the axiom of “two parallel lines intersect
in infinity”. Therefore, an extended line P1(K) (K is a real
line) is realized with K and a point at infinity (which topolog-
ically is a circle). More concretely, the projective line is a set
{[x, 1] ∈ P1(K)|x ∈ K} with an additional member [1 : 0]
denoting the point at infinity. When K = C, the projective
line is complex (complex projective line denoted by CP1).

The Riemann Sphere (illustrated in Figure 2) is an ex-
tended complex plane with a point at infinity. Precisely, it
is built on a plane of complex numbers wrapped around a
Sphere where poles denote 0 and∞. In projective geometry,
a complex projective line is a Riemann Sphere which used as
a tool for projective transformations.

A Projective Transformation is the mapping of the Rie-
mann Sphere to itself. Let [x : y] be the homogeneous co-
ordinates of a point in CP1. A projective transformation in
CP1 is expressed by a matrix multiplication (Richter-Gebert
2011; Salomon 2007) as τ : CP1 → CP1:

τ([x, y]) = =
[
x
y

]
, = =

[
a b
c d

]
, (1)

where the matrix =must be invertible (det(=) 6= 0). By iden-
tifying CP1 with Ĉ = C ∪ {∞}, a projective transformation
is represented by a fractional expression through a sequence
of homogenization, transformation, and dehomogenization
as

x→
[
x
1

]
→

[
a b
c d

] [
x
1

]
→

[
ax+ b
cx+ d

]
→ ax+ b

cx+ d
, (2)

where the mapping ϑ : Ĉ→ Ĉ is defined as

ϑ(x) = ax+ b

cx+ d
, ad− bc 6= 0. (3)

The resulted mapping in Equation 3 describes all Möbius
transformations.

The Möbius Group is the set of all Möbius transforma-
tions which is a projective linear group PGL(2,C), i.e. the
group of all 2× 2 invertible matrices with the operation of
matrix multiplication on a projective space. This group is the
automorphism group Aut(Ĉ) of the Riemann Sphere Ĉ or
equivalently CP1.
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Figure 2: Transformation functions illustrated (Tim Hutton 2020) from left to right as circular, elliptic, hyperbolic, loxodromic,
and parabolic. It shows a Riemann Sphere on a complex plane with one or two fix points for each function.

Variants of Möbius Transformations
Every Möbius transformation has at most two fixed points
γ1, γ2 on the Riemann Sphere obtained by solving ϑ(γ) = γ,

(Richter-Gebert 2011) which gives γ1,2 = (a−d)±
√

∆
2c . De-

pending on the number of fixed points, Möbius transforma-
tions form parabolic or circular (one fixed point), elliptic
as well as hyperbolic, and loxodromic (two fixed points)
transformation functions illustrated in Figure 2. A Möbius
transformation is performed on a grid by (a) a stereographic
projection from complex plane to Riemann Sphere, (b) mov-
ing the Sphere, (c) stereographic projection from Sphere to
plane. Each transformation has a constant k = eα+iβ which
determines sparsity/density of the transformation. β is an ex-
pansion factor indicating the extent to which the fixed point
γ1 is repulsive (γ2 is attractive). α is a rotation factor, deter-
mining the degree to which a transformation rotates the plane
counter-clockwise around γ1 (clockwise around γ2).

Related Work
KGE models can be classified according to their embedding
space. We discuss KGEs in Euclidean space and then describe
related work for other geometries.

Euclidean Embedding Models A large number of KGE
models such as TransE (Bordes et al. 2013) and its vari-
ants (Ji et al. 2015; Lin et al. 2015; Wang et al. 2014) as
well as RotatE (Sun et al. 2019) are designed using transla-
tional or rotational (Hadamard product) score functions in
Euclidean space. The score and loss functions of these mod-
els optimize the embedding vectors in a way that maximise
the plausibility of triples, which is measured by the distance
between rotated/translated head and tail vectors. Some em-
bedding models such as DisMult (Yang et al. 2015), Com-
plEx (Trouillon et al. 2016), QuatE (Zhang et al. 2019), and
RESCAL (Nickel, Tresp, and Kriegel 2011), including our
proposed model, are designed based on element-wise mul-
tiplication of transformed head and tail. In this case, the
plausibility of triples is measured based on the angle of trans-
formed head and tail. A third category of KGE models are
those designed on top of Neural Networks (NN) as score func-
tion such as ConvE (Dettmers et al. 2018) and NTN (Socher
et al. 2013).

Non-Euclidean Embedding Models The aforementioned
KGE models are limited to Euclidean space, which limits
their ability to embed complex structures. Some recent ef-
forts (Weber and Nickel 2018; Chami et al. 2020) inves-

tigated other spaces for embeddings of structures - often
simpler structures than KGs. For example, the hyperbolic
space has been extensively studied in scale-free networks. In
recent work, learning continuous hierarchies from unstruc-
tured similarity scores using the Lorentz model was inves-
tigated (Nickel and Kiela 2018). In (Balazevic, Allen, and
Hospedales 2019a), an embedding model dubbed MuRP is
proposed that embeds multi-relational KGs on a Poincaré
ball (Ji et al. 2016). MuRP only focuses on resolving the
problem of embedding on KGs with multiple simultaneous
hierarchies. Overall, while the advantages of projective ge-
ometry are eminent in a wide variety of application domains,
including computer vision and robotics, to our knowledge no
investigation has focused on it within the context of knowl-
edge graph embeddings.

Method
Our method 5FE inherits the five main pillars of projective
transformation, namely translation, rotation, homothety, in-
version and reflection. The transformations are performed in
the following steps: (1) element-wise stereographic projec-
tion to map the head entity from a complex plane into a point
on a Riemann Sphere; (2) relation-specific transformation
to move the Riemann Sphere into a new position and/or di-
rection; (3) stereographic projection to project the mapped
head from the Riemann Sphere to a complex plane (1-3 in
Equations 4 and 5), (4) selection of complex inner product
between the transformed head and the tail (Equation 6).

Model Formulation
Embedding on a Complex Projective Line Given a triple
(h, r, t), the head and tail entities h, t ∈ E are embedded into
a d dimensional complex projective line i.e. h, t ∈ CPd. A
relation r ∈ R is embedded into a d dimensional vector r
where each element is a 2×2 matrix. r contains four complex
vectors ra, rb, rc and rd ∈ Cd. With rai, rbi, rci, rdi,hi, ti,
we refer to the ith element of ra, rb, rc, rd,h, t respectively.

Relation-specific Transformation Based on preliminar-
ies a projective transformation on a complex projective line
has an equivalent transformation on the Riemann Sphere.
Therefore, we use both of these perspectives in our model
formulation.

Möbius Representation of Transformation: We use a
relation-specific Möbius transformation to map the head en-
tity (hri) from a source to a target complex plane (Ĉ). The

9066



transformation is performed using stereographic projection
and transformation (ϑ) on/from the Riemann Sphere. To do
so, we compute hri to specify the element-wise transforma-
tion:

hri = gri(hi) = ϑ(hi, ri) = raihi + rbi
rcihi + rdi

,

rairdi − rbirci 6= 0, i = 1, . . . , d.
(4)

This results in the relation-specific transformed head entity
hr = [hr1, . . . ,hrd].

Projective Representation of Transformation: Using homo-
geneous coordinates, we can also represent Equation 4 as a
projective transformation:

hri
.= [gr(hi), 1]T = =ri[hi, 1]T , i = 1, . . . , d, (5)

where .= shows dehomogenization, =ri =
[
rai rbi
rci rdi

]
and

det=ri 6= 0 i.e. =ris are invertible. The matrix represen-
tation of Equation 5 is hr = Rr[h : 1], where Rr =
diag(=r1 . . . ,=rd) and 1 is a vector with all the elements
being 1.

Score Function The correctness of triples in a KG is the
similarity 〈hr, t〉 between the relation-specific transformed
head hr and tail t. The model aims to minimize the angle
between hr and tail t, i.e. their product (〈hr, t〉) is maxi-
mized for positive triples. For sampled negative triples, it is
conversely minimized. Overall, the score function for 5FE is

f(h, r, t) = Re(〈hr, t̄〉), (6)

where Re(x) is the real part of the complex number x.

Theoretical Analysis
We first show that 5FE covers the five transformations. We
then discuss the capability of 5FE in preserving graph struc-
tures. We also prove 5FE is fully expressive and subsumes
various state-of-the-art KGE models.

Möbius – Composition of Transformations The
Möbius transformation in Equation 4 is a composi-
tion of a series of five subsequent transformations
ϑ1, ϑ2(two transformations in one), ϑ3 and ϑ4 as shown in
(Kisil 2012): hri = ϑ(hi, ri) = ϑ4 ◦ ϑ3 ◦ ϑ2 ◦ ϑ1(hi, ri),
where ϑ1(x, ri) = x + rdi

rci
(translation by rdi

rci
), ϑ2(x) =

1
x (inversion and reflection w.r.t. real axis), ϑ3(x, ri) =
rbirci−rairdi

r2
ci

x (homothety and rotation) and ϑ4(x, ri) =
x + rai

rci
(translation by rai

rci
). This shows that 5FE is capable

of performing 5 transformations simultaneously.
Capturing Structures in a Neighborhood 5FE inherits

various important properties of projective transformation as
well as Möbius transformations. Because the projective linear
group PGL(2,C) is isomorphic to the Möbius group, i.e.,
PGL(2,C) ∼= Aut(Ĉ) (Kisil 2012), the properties which
are mentioned for Equation 5 are also valid for Equation 4.
We investigate the inherited properties of 5FE on clustering
similar nodes of a neighborhood and Capturing Sub-graph
Structures.

Clustering. The similarity of nodes in a KG is local,
i.e. nodes within a close neighborhood are more likely to be

semantically similar (Faerman et al. 2018; Hamilton, Ying,
and Leskovec 2017) than nodes at a higher distance. A pro-
jective transformation is a bijective conformal mapping, i.e. it
preserves angle locally but not necessarily the length. It also
preserves orientation after mapping (Kisil 2012). Therefore,
5FE is capable of capturing similarity by preserving angle
locally via a relation-specific transformation.

Furthermore, the map π : GL(2,C) → Aut(Ĉ) is a
group homomorphism, where GL(2,C) is a generalized lin-
ear group, which transfers the matrix = into a Möbius trans-
formation ϑ. If det= = 1, then π : SL(2,C) → Aut(Ĉ)
becomes limited to only perform a mapping from the spe-
cial linear group SL(2,C) to a Möbius group that preserves
volume and orientation.

In the context of KGs, after a relation-specific transforma-
tion (Equation 5 or equivalently Equation 4) of nodes in the
head position to nodes in tail position, the relative distance
of nodes can be preserved. From this ability, we expect that
5FE is able to propagate the structural similarity from one
group of nodes to another.

Capturing Sub-graph Structures. Going beyond SL(2,C)
by changing the determinant to det= 6= 1, the volume and
orientation of the graph sub-structures are changed after
transformation. Therefore, 5FE is more flexible than current
KGEs as those are not able to change volume and orientation
of subgraphs. This is visible in Figure 1 when the graph in-
cludes a group of nodes in a path structure besides another
group of nodes with a loop structure. In the vector space,
other KGEs encounter a problem in preserving this type of
graph structure due to the limited transformation abilities (not
supporting inversion and reflection), whereas they work fine
for homogeneous structures (e.g. only lines or only circles).
In contrast to this, 5FE is capable of transforming hetero-
geneous structures due to the characteristics of a projective
transformation (Kisil 2012).

Subsumption of Other Models We show that 5FE sub-
sumes other models and inherits their favorable characteris-
tics in learning various graph patterns.

Definition 1. A model M1 subsumes M2 when any scoring
over triples of a KG measured by model M2 can also be
obtained by M1 (Wang, Gemulla, and Li 2018).
Proposition 1. 5FE with variants of its score function sub-
sumes DistMult, pRotatE, RotatE, TransE and ComplEx.
Specifically, 5FE subsumes DistMult, ComplEx and pRo-
tatE with f(h, r, t) = Re(〈hr, t̄〉) and subsumes RotatE and
TransE with score function f(h, r, t) = −‖hr − t‖ (changed
inner product to distance).

Definition 2 (from (Kazemi and Poole 2018)). A modelM is
fully expressive if there exist assignments to the embeddings
of the entities and relations, that accurately separate correct
triples for any given ground truth.

Corollary 1. The 5FE model is fully expressive.

Inference of Patterns For relations which exhibit patterns
in the form of premise→ conclusion, where premise can be
a conjunction of several triples, a model is said to be able
to infer those if the implication holds for the score function,
i.e. if the score of all triples in the premise is positive then
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(a) Original Grid (b) hasPart relation (c) partOf relation (d) hypernym (e) hyponym

Figure 3: Learned 5FE embeddings for a selected relations in WordNet. (b)-(e) show how the lines in (a) are transformed for a
particular dimension (the 12th dimension in this case) of the embedding of the mentioned relations.

(a) 12-dim-hypernym (b) 12-dim-hyponym (c) 39-dim-haspart (d) 39-dim-partof

Figure 4: Embeddings for different relations usign the same dimension.

the score for the conclusion must be positive. 5FE is able to
infer reflexive, symmetric, inverse relation patterns as well
as composition.
Proposition 2. Let r1, r2, r3 ∈ R be relations and r3
(e.g. UncleOf) be a composition of r1(e.g. BrotherOf) and
r2(e.g. FatherOf). 5FE infers composition with =r1=r2 =
=r3 .

Proposition 3. Let r1 ∈ R be the inverse of r2 ∈ R. 5FE
infers this pattern with =r1 = =r−1

2
.

Proposition 4. Let r ∈ R be symmetric. 5FE infers the
symmetric pattern if =r = =−1

r .

Proposition 5. Let r ∈ R be a reflexive relation. In di-
mension d, 5FE infers reflexive patterns with O(2d) distinct
representations of entities if the fixed points are non-identical.

TransE only infers composition and inverse patterns. Ro-
tatE is capable of inferring more patterns but is not fully
expressive. ComplEx infers these patterns and is fully ex-
pressive. However, it has less flexibility than our model in
learning complex structures due to using only rotation and
homothety. Therefore, it is only capable of preserving homo-
geneous structures (see Figure 5).

Experiments and Results
Experimental Setup Following the best practices of evalu-
ations for embedding models, we consider the most-used
metrics (Mean) Reciprocal Rank (MRR) and Hits@n (n
= 1, 3, 10). We evaluated our model on four widely
used benchmark datasets namely FB15k-237 (Toutanova
and Chen 2015), WN18RR (Dettmers et al. 2018) , and
NELL (four different versions as NELL-995-h25, NELL-
995-h50, NELL-995-h75 and NELL-995-h100) (Xiong,

Hoang, and Wang 2017; Balazevic, Allen, and Hospedales
2019a). The FB15k-237 and WN18RR datasets both in-
clude several relational patterns such as composition
(e.g. awardnominee/ . . . /nominatedfor), symmetry (e.g
derivationally_related_form in WN18RR), and anti-
symmetry (e.g has_part in WN18RR). The WN18RR
dataset includes hierarchical relations such as hypernym
and has_part, which are typical examples for shaping a path
structure, and relations such as also_see, similar_to, which
are candidates for loop structures. The different variants of
the NELL dataset include several relations that contain loops
(hassibling, competeswith, synonymfor) as well as rela-
tions forming hierarchical paths (subpartof ).

We compare the best performing models namely
TransE (Bordes et al. 2013), RotatE (Sun et al. 2019),
TuckEr (Balazevic, Allen, and Hospedales 2019b), Com-
plEx (Trouillon et al. 2016), QuatE (Zhang et al.
2019), MuRP (Balazevic, Allen, and Hospedales 2019a),
ConvE (Dettmers et al. 2018) and SimplE (Kazemi and Poole
2018). Our model is implemented in Pytorch1 and the code
is available online2. Similar to QuatE and ComplEx, we de-
veloped our model on top of a standard framework (Lacroix,
Usunier, and Obozinski 2018), applied 1-N scoring loss with
N3 regularization, and added reverse counterparts of each
triple to the train set.

Results. The results of comparing 5FE to other models on
FB15k-237 and WN18RR are shown in Table 1 (d = 100 and
500) and on NELL in Table 2 (d = 100 and 200). Our model
outperforms all other models across all metrics on WN18RR,
which is a dataset with many hierarchical relations as well
as relations forming loops such as similar − to. Although

1https://pytorch.org/
2https://bit.ly/2NXplO1
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Model FB15k237 WN18RR
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

TransE 0.29 - - 0.47 0.23 - - 0.50
RotatE 0.34 0.24 0.38 0.53 0.48 0.43 0.49 0.57
TuckEr 0.36 0.27 0.39 0.54 0.47 0.44 0.48 0.53
ComplEx 0.36 0.27 0.40 0.56. 0.49 0.44 0.50 0.58
QuatE 0.37 0.27 0.40 0.56 0.48 0.44 0.50 0.57
ConvE 0.33 0.24 0.36 0.50 0.43 0.40 0.44 0.52
MuRP 0.34 0.24 0.37 0.52 0.48 0.44 0.50 0.57
5FE d = 500 0.37 0.28 0.40 0.56 0.50 0.45 0.51 0.59
5FE d = 100 0.35 0.26 0.38 0.53 0.47 0.41 0.50 0.58

Table 1: Link prediction results on d FB15k-237, and WN18RR. The Results of TransE, QuatE, RotatE, and ConvE are taken
from (Zhang et al. 2019), TuckER from (Balazevic, Allen, and Hospedales 2019b) and MuRP from (Balazevic, Allen, and
Hospedales 2019a), and ComplEx has been experimented.

Model NELL-995-h100 NELL-995-h75
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

MuRE 0.36 0.27 0.40 0.53 0.36 0.27 0.40 0.53
MuRP 0.36 0.27 0.40 0.53 0.36 0.28 0.40 0.52
ComplEx 0.35 0.27 0.40 0.52 0.35 0.27 0.39 0.51
QuatE 0.35 0.26 0.40 0.53 0.36 0.27 0.41 0.52
5FE d = 200 0.37 0.28 0.42 0.54 0.37 0.28 0.41 0.53
5FE d = 100 0.36 0.28 0.40 0.53 0.36 0.27 0.39 0.53
Model NELL-995-h50 NELL-995-h25

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
MuRE 0.37 0.28 0.42 0.54 0.37 0.29 0.40 0.52
MuRP 0.37 0.28 0.42 0.54 0.36 0.28 0.40 0.51
ComplEx 0.37 0.29 0.41 0.52 0.37 0.30 0.40 0.51
QuatE 0.36 0.27 0.40 0.53 0.36 0.28 0.40 0.51
5FE d = 200 0.38 0.30 0.43 0.54 0.39 0.31 0.43 0.53
5FE d = 100 0.38 0.29 0.43 0.54 0.37 0.30 0.41 0.52

Table 2: Link prediction results on KGs with various percentages of hierarchical relations including NELL-995-h25 (25%
hierarchical relation) and NELL-995-h50 (50%) as well as NELL-995-h75 (75%) and NELL-995-h100 (100%). The results for
ComplEx, QuatE, and 5FE are from own experiments - all others are taken from their original works.

MuRP is specifically designed for hierarchical data, 5FE still
achieves a better performance. Generally, we can observe
that 5FE obtains competitive results with a low dimension
(d = 100) on WN18RR for the Hits@3 and Hits@10 metrics.

The evaluation shows that rotation-based models (Ro-
tatE, QuatE, and ComplEx) obtain state-of-the-art results
on the FB15k-237 dataset (with fewer hierarchical paths than
WN18RR). Our model, which covers rotation and transforma-
tion, obtains similar results to those models. On this dataset,
there is no evident benefit of supporting further transforma-
tions. We additionally used different versions of the NELL
dataset, which are specifically designed to have a particular
percentage of hierarchical relations. 5FE outperforms other
models in all NELL dataset versions.

Overall, the competitive results of 5FE show that addi-
tional transformations have a positive effect for the link pre-
diction task. They also indicate that the additional transfor-
mations do not lead to over-fitting problems compared to

single-transformation models (or at least the positive effects
outweigh potential overfitting).

Learned Transformation Types Each relation in the KG
is represented as d projective transformations in 5FE (one
projective transformation per dimension). Figure 3 shows
the transformation types learned by 5FE for the relations
of WordNet. The original plain view of the grid is given in
sub-graph (a) for comparisons of the changes after the trans-
formations, and (b) to (e) show specific relations in WordNet.
The mapping of the lines (same-color points) in the original
grid to circle or curve in sub-graph (b)-(e) indicates an ap-
plication of an inversion transformation for relation-specific
transformations (hasPart, partOf, hypernym and hyponym).
By comparing the direction of the lines with the same color
(e.g., red) in the original grid and in all examples of the trans-
formed grids, we can observe that the learned transformations
cover rotation (hypernym, and hyponym). We can also inter-
pret the results for the hasPart relation as counter-clockwise
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(a) Circle-to-circle (b) line-to-line (c) Circle-to-circle (d) line-to-line

Figure 5: Types of transformations that RotatE (a,b) and ComplEx (c,d) learned on relation "hypernym" in WordNet. Each pair
of images visualises one dimension of the relation embedding. The top images show the embeddings of head entities of this
relation in the KG at this dimension. Each entity embedding is visualised as a colored dot. The bottom images show the results
of applying the relation specific transformation (the entity colors are preserved).

(a) Circle-to-circle (b) circle-to-line (c) line-to-circle (d) line-to-line

Figure 6: Types of transformations that 5FE learned on relation "hypernym" in WordNet. Each pair of images visualises one
dimension of the relation embedding. The top images show the embeddings of head entities of this relation in the KG at this
dimension. Each entity embedding is visualised as a colored dot. The bottom images show the results of applying the relation
specific transformation (the entity colors are preserved).

rotation and then reflection w.r.t. the real axis. In sub-graph
(b), there is a movement in the real and imaginary axis of the
grid towards down and slightly right for the hasPart relation,
which represents translation. However, this is not the case
for the hypernym relation. Semantically, the pairs (hypernym,
hyponym) and (hasPart partOf ) form inverse patterns (see
Corollary 3). We see that the transformed grids of hypernym
and hyponym are different only w.r.t. rotation. The scale is not
changed, so the determinants of the two projective matrices
are 1 (no homothety). For the hasPart and partOf grids, we
can observe that the scale is changed, so the determinant of

those two projection matrices should not be equal to one. This
shows that both of those transformations cover homothety.

Moreover, each of the five transformation functions per-
formed in Figure 2 are also learned by 5FE which con-
firms the flexibility of the model as well as diversity in
density/sparsity of flows. Figure 4 shows the analysis on
the example of hyponym and hypernym as well as has-
Part and partOf relations which are mutually inverse of
each other. Based on their inverse characteristic, we have
=Hypernym = =̄−1

Hyponym. As the representing matrices (=) are
normalized, their determinant is equal to one. Consequently,
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(a) Clustering by ComplEx (b) Clustering by QuatE (c) Clustering by 5FE

Figure 7: Comparison of clustering results between ComplEx, QuatE, and 5FE (left to right). Each color shows a class of
entities and each point is one instance entity of the corresponding class.

we have tr(=Hypernym) = tr(=̄−1
Hyponym) when the learned

transformation function is elliptic. We conclude that in our
experiments for a pair of inverse relations, the learned trans-
formation functions are in the same category (elliptic) for
the i-th element of the relation embedding. In Figure 4, sub-
figures (a) and (b) illustrate that the learned functions fall
into the elliptic category for the same embedding dimension
(i = 12) of hyponym and hypernym. The difference between
the embeddings for this pair of inverse relations is their rota-
tion. The same pattern is notable for the hasPart and partOf
relations in sub-figures (c) and (d) for i = 39. Figure 5 shows
the mapping of lines and circles by other KGEs. When ob-
serving each dimension of each relation, there was not a
single case where a shape has been mapped to a different one,
which empirically confirms our theoretical finding that exist-
ing models can only perform homogeneous transformations.
In contrast, Figure 6 shows a relation-specific mapping of
line to circle and circle to line performed by 5FE model.

Entity Clustering As mentioned in theoretical analysis, our
model uses a bijective conformal mapping in the projective
geometry which consequently preserves angle locally. In
Figure 7, we provide an evaluation for the performance of the
models in terms of clustering. More precisely, Figures 7a, 7b
and 7c show the clustering of nodes in Freebase KG (Moon,
Jones, and Samatova 2017) and illustrate comparisons to
QuatE, ComplEx and 5FE. In this visualization, we can see
that entities of the same type are closer in 5FE as compared
to the competitors. Moreover, the distance between cluster
centers in 5FE is higher than in the other models. Therefore,
it is visible that 5FE provides a more suitable clustering for
this dataset than other competitors.

Conclusion
In this paper, we introduce a new KGE model which operates
on the complete set of projective transformations. We build
the model on well researched generic mathematical foun-
dations and showed that it subsumes other state-of-the-art

embedding models. Furthermore, we prove that the model
is fully expressive. By supporting a wider range of trans-
formations than previous models, it can embed KGs with
more complex structures and supports a wide range of re-
lational patterns. We empirically studied and visualised the
effects using the example of loop and path combinations. Our
experimental evaluation on six benchmark datasets using es-
tablished metrics shows that the model outperforms previous
approaches of knowledge graph embedding models.
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