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Abstract. Over the last two decades, the amount of data which has
been created, published and managed using Semantic Web standards
and especially via Resource Description Framework (RDF) has been in-
creasing. As a result, efficient processing of such big RDF datasets has
become challenging. Indeed, these processes require, both efficient stor-
age strategies and query-processing engines, to be able to scale in terms
of data size. In this study, we propose a scalable approach to evaluate
SPARQL queries over distributed RDF datasets using a semantic-based
partition and is implemented inside the state-of-the-art RDF processing
framework: SANSA. An evaluation of the performance of our approach
in processing large-scale RDF datasets is also presented. The preliminary
results of the conducted experiments show that our approach can scale
horizontally and perform well as compared with the previous Hadoop-
based system. It is also comparable with the in-memory SPARQL query
evaluators when there is less shuffling involved.

1 Introduction

Recently, significant amounts of data have been created, published and managed
using the Semantic Web standards. Currently, the Linked Open Data (LOD)
cloud comprises more than 10 000 datasets available online1 using the Semantic
Web standards. RDF is a standard that represents data linked as a graph of
resources following the idea of the linking structure of the Web and using URIs
for representation.

To facilitate better maintenance and faster access to this scale of data, effi-
cient data partitioning is needed. One of such partitioned strategies is semantic-
based partitioning. It groups the facts based on the subject and its associated
triples. We want to explore and evaluate the effect of semantic-based partitioning
on query performance when dealing with such a volume of RDF datasets.

SPARQL is a W3C standard query language for querying data modeled as
RDF. Querying RDF data efficiently becomes challenging when the size of the
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data increases. This has motivated a considerable amount of work on designing
distributed RDF systems able to efficiently evaluate SPARQL queries ([20,6,21]).
Being able to query a large amount of data in an efficient and faster way is one
of the key requirements for every SPARQL engine.

To address these challenges, in this paper, we propose a scalable semantic-
based distributed approach2 for efficient evaluation of SPARQL queries over
distributed RDF datasets. The main component of the system is the data par-
titioning and query evaluation over this data representation.

Our contributions are:

– A scalable approach for semantic-based partitioning using the distributed
computing framework, Apache Spark.

– A scalable semantic-based query engine (SANSA.Semantic) on top of Apache
Spark (under the Apache Licence 2.0 ).

– Comparison with state-of-the-art engines and demonstrate the performance
empirically.

– Integration with the SANSA [13]3 framework.

The rest of the paper is structured as follows: Our approach for data model-
ing, data partitioning, and query translation using a distributed framework are
detailed in section 3 and evaluated in section 4. Related work on the SPARQL
query engines is discussed in section 5. Finally, we conclude and suggest planned
extensions of our approach in section 6.

2 Preliminaries

Here, we first introduce the basic notions used throughout the paper.

Apache Hadoop and MapReduce Apache Hadoop is a distributed frame-
work that allows for the distributed processing of large data sets across a cluster
of computers using the MapReduce paradigm. Beside its computing system, it
contains a distributed file system: the Hadoop Distributed File System (HDFS),
which is a popular file system capable of handling the distribution of the data
across multiple nodes in the cluster.

Apache Spark Apache Spark is a fast and generic-purpose cluster computing
engine which is built over the Hadoop ecosystem. Its core data structure is Re-
silient Distributed Dataset (RDD) [25] which are a fault-tolerant and immutable
collections of records that can be operated in a parallel setting. Apache Spark
provides a rich set of APIs for faster, in-memory processing of RDDs.

Data Partitioning Partitioning the RDF data is the process of dividing
datasets in a specific logical and/or physical representation in order to ease faster

2
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access and better maintenance. Often, this process is performed for improving
the system availability, load balancing and query processing time. There are
many different data partitioning techniques proposed in the literature. We choose
to investigate the so-called semantic-based partitioning behaviors when dealing
with large-scale RDF datasets. This partitioned technique was proposed in the
SHARD [17] system. We have implemented this technique using in-memory pro-
cessing engine, Apache Spark for better performance. A semantically partitioned
fact is a tuple (S,R) containing pieces of information R ∈ (P,O) about the same
S where S is a unique subject on the RDF graph and R represents all its asso-
ciated facts i.e predicates P and objects O.

3 Approach

In this section, we present the system architecture of our proposed approach, the
semantic-based partitioning, and mapping SPARQL to Spark Scala-compliant
code.

3.1 System Architecture Overview

The system architecture overview is shown in the Figure 1.
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Fig. 1. System Architecture Overview.

It consists of three main facets: Data Storage Model, SPARQL Query Frag-
ments Translator, and Query Evaluator. Below, each facet is discussed in more
details.



Data Storage Model We model the RDF data following the concept of RDDs.
RDDs are immutable collections of records, which represent the basic building
blocks of the Spark framework. RDDs can be kept in-memory and are able to
operate in parallel throughout the Spark cluster. We make use of SANSA [13]’s
data representation and distribution layer for such representation.

First, the RDF data (see Step 1 as an example) needs to be loaded into a
large-scale distributed storage (Step 2 ). We use Hadoop Distributed File-System
(HDFS)4. We choose HDFS as Spark is capable of performing operations based
on data locality in order to choose the nearest data for faster and efficient com-
putation over the cluster. Second, we partition (Step 3 ) the data using semantic-
based partitioning (see Step 4 as an example of such partition). Instead of work-
ing with table-wise representation where the triples are kept in the format of
RDD < Triple >, data is partitioned into subject-based grouping (e.g. all en-
tities which are associated with a unique subject). Consider the example in the
Figure 1 (Step 2, first line), which represents two triples associated with the
entity Joy:

Joy :owns Car1 :livesIn Bonn

This line represents that the entity Joy owns a car entity Car1, and that Joy

lives in Bonn.
Often flattening data is considered immature with respect to other data rep-

resentation, we want to explore and investigate if it improves the performance
of the query evaluation. We choose this representation for the reason of easy-
storage and reuse while designing a query engine. Although, it slightly degrades
the performance when it comes to multiple scans over the table when there are
multiple predicates involved in the query. However, this is minimal, as Spark
uses in-memory, caching operations. We will discuss this on the section 4 into
more detail.

SPARQL Query Fragments Translation This process generates the Scala
code in the format of Spark RDD operations using the key-value pairs mech-
anism. With Spark pairRDD, one can manipulate the data by splitting it into
key-value pairs and group all associated values with the same keys. It walks
through the SPARQL query (Step 4 ) using the Jena ARQ5 and iterate through
clauses in the SPARQL query and bind the variables into the RDF data while
fulfilling the clause conditions. Such iteration corresponds to a single clause with
one of the Spark operations (e.g. map, filter, reduce). Often this operation needs
to be materialized i.e the result set of the next iteration depends on the previ-
ous clauses and therefore a join operation is needed. This is a bottleneck since
scanning and shuffling is required. In order to keep these joins as small as pos-
sible, we leverage the caching techniques of the Spark framework by keeping
the intermediate results in-memory while the next iteration is performed. Fi-
nally, the Spark-Scala executable code is generated (Step 5 ) using the bindings

4
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Algorithm 1: Spark parallel semantic-based query engine.

input : q: a SPARQL query, input: an RDF dataset
output: result an RDD – list of result set
/* Loading the graph */

1 graph = spark.rdf(lang)(input)
/* Partitioning the graph. See algorithm 2 for more details. */

2 partitionGraph← graph.partitonAsSemanticGraph()
/* Querying the graph. See algorithm 3 for more details. */

3 result← partitionGraph.sparql(q)
4 return result

corresponding the query. Besides simple BGP translation, our system supports
UNION, LIMIT and FILTER clauses.

Query Evaluator The mappings created as shown in the previous section can
now be evaluated directly into the Spark RDD executable code. The result set
of these operations is distributed data structure of Spark (e.g. RDD)(Step 6 ).
The result set can be used for further processing and visualization using the
SANSA-Notebooks (Step 7 ) [5].

3.2 Distributed Algorithm Description

We implement our approach using the Apache Spark framework (see algorithm 1).
It constructs the graph (line 1) while reading RDF data and converts it into an
RDD of triples. Later, it partitions the data (line 2, for more details see al-
gorithm 2) using the semantic-based partitioning strategy. Finally, the query
evaluator is constructed (line 3) which is detailed in algorithm 3.

The partition algorithm (see algorithm 2) transforms the RDF graph into a
convenient SP (line 2). For each unique triple in the graph in a distributed fash-
ion, it does the following: It gets the values about subjects and objects (line 3)
and local name of the predicate (line 4). It generates the key-value pairs of the
subject and its associated triples with predicate and object separated with the
space in between (line 5). After the mapping is done, the data is grouped by key
(in our case subject) (line 6). Afterward, when this information is collected, the
block is partitioned using the map transformation function of Spark to refactor
the format of the lines based on the above information (line 7).

This SPARQL query rewriter includes multiple Spark operations. First, par-
titioned data is mapped to a list of variable bindings satisfying the first basic
graph pattern (BGP) of the query (line 2). During this process, the duplicates
are removed and the intermediate result is kept in-memory (RDD) with the vari-
able bindings as a key. The consequent step is to iterate through other variables
and bind them by processing the upcoming query clauses and/or filtering the
other ones unseen on the new clause. These intermediate steps perform Spark
operations over both, the partitioned data and the previously bound variables
which were kept on Spark RDDs.



Algorithm 2: partitonAsSemanticGraph: Semantic-based partition al-
gorithm.

input : graph: an RDD of triples
output: partionedData: an RDD of partitions

1 partitonedData← ∅
2 foreach ∀!triple ∈ graph && triple.getSubject 6= ∅ do
3 s← triple.getSubject; o← triple.getObject
4 p← triple.getPredicate.getLocalName
5 partitonedData + = (s, p + ” ” + o + ” ”)

6 partitonedData.reduceByKey( + )
7 .map(f → (f. 1 + ” ” + f. 2))
8 return partitonedData

Algorithm 3: sparql: Semantic-based query algorithm.

input : partitonedData: an RDD of partitions
output: result an RDD of result set

1 foreach p ∈ partitionedData do
2 1stV ariable← assignV ariablesFor1stClaues()
3 foreach i ∈ getClauses() do
4 iV ariable← assignV ariablesForiClaues()
5 mapResult← mapByKey(getCommonV ariables())
6 joinResult← join(mapResult)

7 joinResult.filter(getSelectV ariables())
8 result← result.join(joinResult)

9 return result

The ith step discovers all variables in the partitioned data which satisfy the
ith clause appeared and keep this intermediate result in-memory with the key
being any variable in the ith step which has been introduced on the previous
step. During this iteration, the intermediate results are reconstructed in the
way that the variables not seen in this iteration are mapped (line 5) with the
variables of the previous clause and generate a key-value pair of variable bindings.
Afterward, the join operation is performed over the intermediate results from the
previous clause and the new ones with the same key. This process iterates until all
clauses are seen and variables are assigned. Finally, the variable binding (line 7)
to fulfill the SELECT clause of the SPARQL query happens and returns the
result (line 8) of only those variables which are present in the SELECT clause.

4 Evaluation

In our evaluation, we observe the impact of semantic-based partitioning and
analyze the scalability of our approach when the size of the dataset increases.

In the following subsections, we present the benchmarks used along with the
server configuration setting, and finally, we discuss our findings.



4.1 Experimental Setup

We make use of two well-known SPARQL benchmarks for our experiments: the
Waterloo SPARQL Diversity Test Suite (WatDiv) v0.6 [3] and Lehigh Univer-
sity Benchmark (LUBM) v3.1 [8]. The dataset characteristics of the considered
benchmarks are given in Table 1.

WatDiv comes with a test suite with different query shapes which allows us
to compare the performance of our approach and the other approaches. In par-
ticular, it comes with a predefined set of 20 query templates which are grouped
into four categories, based on the query shape: star-shaped queries, linear-shaped
queries, snowflake-shaped queries, and complex-shaped queries. We have used
WatDiv datasets with 10M to 100M triples with scale factors 10 and 100, re-
spectively. In addition, we have generated the SPARQL queries using WatDiv
Query Generator.

LUBM comes with a Data Generator (UBA) which generates synthetic data
over the Univ-Bench ontology in the unit of a university. LUBM provides Test
Queries, more specifically 14 test queries. Our LUBM datasets consist of 1000,
2000, and 3000 universities. The number of triples varies from 138M for 1000
universities, to 414M triples for 3000 universities.

LUBM Watdiv

1K 2K 3K 10M 100M

#nr. of triples 138,280,374 276,349,040 414,493,296 10,916,457 108,997,714

size (GB) 24 49 70 1.5 15

Table 1. Dataset characteristics (nt format).

We implemented our approach using Spark-2.4.0, Scala 2.11.11, Java 8, and
all the data were stored on the HDFS cluster using Hadoop 2.8.0. All experi-
ments were carried out on a commodity cluster of 6 nodes (1 master, 5 workers):
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz (32 Cores), 128 GB RAM, 12
TB SATA RAID-5. We executed each experiment three times and the average
query execution time has been reported.

4.2 Preliminary Results

We run experiments on the same cluster and evaluate our approach using the
above benchmarks. In addition, we compare our proposed approach with selected
state-of-the-art distributed SPARQL query evaluators. In particular, we compare
our approach with SHARD [17] – the original approach implemented on Hadoop
MapReduce, SPARQLGX [6]’s direct evaluator SDE, and Sparklify [21] and
report the query execution time (cf. Table 2). We have selected these approaches
as they do not include any pre-processing steps (e.g. statistics) while evaluating
the SPARQL query, similar to our approach.



Runtime (s) (mean)

Queries SHARD SPARQLGX-SDE SANSA.Sparklify SANSA.Semantic
W

a
t
d
iv

-1
0
M

C3 n/a 38.79 72.94 90.48

F3 n/a 38.41 74.69 n/a

L3 n/a 21.05 73.16 72.84

S3 n/a 26.27 70.1 79.7

W
a
t
d
iv

-1
0
0
M

C3 n/a 181.51 96.59 300.82

F3 n/a 162.86 91.2 n/a

L3 n/a 84.09 82.17 189.89

S3 n/a 123.6 93.02 176.2

L
U
B
M

-1
K

Q1 774.93 103.74 103.57 226.21

Q2 fail fail 3348.51 329.69

Q3 772.55 126.31 107.25 235.31

Q4 988.28 182.52 111.89 294.8

Q5 771.69 101.05 100.37 226.21

Q6 fail 73.05 100.72 207.06

Q7 fail 160.94 113.03 277.08

Q8 fail 179.56 114.83 309.39

Q9 fail 204.62 114.25 326.29

Q10 780.05 106.26 110.18 232.72

Q11 783.2 112.23 105.13 231.36

Q12 fail 159.65 105.86 283.53

Q13 778.16 100.06 90.87 220.28

Q14 688.44 74.64 100.58 204.43

Table 2. Performance analysis on large-scale RDF datasets.

Our evaluation results for performance analysis, sizeup analysis, node scala-
bility, and breakdown analysis by SPARQL queries are shown in Table 2, Fig-
ure 2, Figure 3, and Figure 4 respectively. In Table 2 we use “fail” whenever the
system fails to complete the task and “n/a” when the task could not be com-
pleted due to a parser error (e.g. not able to translate some of the basic patterns
to RDDs operations).

In order to evaluate our approach with respect to the speedup, we analyze
and compare it with other approaches. This set of experiments was run on three
datasets, Watdiv-10M, Watdiv-100M and LUBM-1K.

Table 2 presents the performance analysis of the systems on three different
datasets. We can see that our approach evaluates most of the queries as opposed
to SHARD. SHARD system fails to evaluate most of the LUBM queries and its
parser does not support Watdiv queries. On the other hand, SPARQLGX-SDE
performs better than both Sparklify and our approach, when the size of the
dataset is considerably small (e.g. less than 25GB). This behavior is due to the
large partitioning overhead for Sparklify and our approach. However, Sparklify
performs better compared to SPARQLGX-SDE when the size of the dataset



increases (see Watdiv-100M results in the Table 2) and the queries involve more
joins (see LUBM-1K results in the Table 2). This is due to the Spark SQL
optimizer and Sparqlify self-joins optimizers. Both SHARD and SPARQLGX-
SDE fail to evaluate query Q2 in the LUBM-1K dataset. Sparklify can evaluate
the query but takes longer as compared to our approach. This is due to the fact
that our approach uses Spark’s lazy evaluation and join optimization by keeping
the intermediate results in memory.
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Fig. 2. Sizeup analysis (on LUBM dataset).

Scalability analysis In order to evaluate the scalability of our approach, we
conducted two sets of experiments. First, we measure the data scalability (e.g.
size-up) of our approach and position it with other approaches. As SHARD fails
for most of the LUBM queries, we omit other queries on this set of experiments
and choose only Q1, Q5, and Q14. Q1 has been chosen due to its complexity while
bringing large inputs of the data and high selectivity, Q5 since it has considerably
larger intermediate results due to the triangular pattern in the query, and Q14
mainly for its simplicity. We run experiments on three different sizes of LUBM
(see Figure 2). We keep the number of nodes constant i.e. 5 worker nodes and
increase the size of the datasets to measure whether our approach deals with
larger datasets.

We see that the query execution time for our approach grows linearly when
the size of the datasets increases. This shows the scalability of our approach as
compared to SHARD, in context of the sizeup. SHARD suffers from the expen-



sive overhead of MapReduce joins which impact its performance, as a result, it
is significantly worse than other systems.

Second, in order to measure the node scalability of our approach, we increase
the number of worker nodes and keep the size of the dataset constant. We vary
them from 1, 3 to 5 worker nodes.
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Fig. 3. Node scalability (on LUBM-1K).

Figure 3 shows the performance of systems on LUBM-1K dataset when
the number of worker nodes varies. We see that as the number of nodes in-
creases, the runtime cost of our query engine decreases linearly as compared
with the SHARD, which keeps staying constant. SHARD performance stays
constant (high) even when more worker nodes are added. This trend is due to
the communication overhead SHARD needs to perform between map and re-
duce steps. The execution time of our approach decreases about 1.7 times (from
1,821.75 seconds down to 656.85 seconds) as the worker nodes increase from one
to five nodes. SPARQLGX-SDE and Sparklify perform better when the number
of nodes increases compared to our approach and SHARD.

Our main observation here is that our approach can achieve linear scalability
in the performance.

Correctness In order to assess the correctness of the result set, we computed
the count of the result set for the given queries and compare it with other
approaches. As a result of it, we conclude that all approaches return exactly the
same result set. This implies the correctness of the results.



Breakdown by SPARQL queries Here we analyze some of the LUBM queries
(Q1, Q5, Q14) run on a LUBM-1K dataset in a cluster mode on all the systems.

LUBM queries
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Fig. 4. Overall analysis of queries on LUBM-1K dataset (cluser mode).

We can see from Figure 4 that our approach performs better compared to
Hadoop-based system, SHARD. This is due to the use of the Spark framework
which leverages the in-memory computation for faster performance. However,
the performance declines as compared to other approaches which use vertical
partitioning (e.g., SPARQLGX-SDE on RDD and Sparklify on Spark SQL).
This is due to the fact that our approach performs de-duplication of triples
that involves shuffling and incurs network overhead. The results show that the
performance of SPARQLGX-SDE decreases as the number of triple patterns
involved in the query increases (see Q5 ) when compared to Sparklify. However,
SPARQLGX-SDE performs better when there are simple queries (see Q14 ).
This occurs because SPARQLGX-SDE must read the whole RDF graph each
time when there is a triple pattern involved. In contrast to SPARQLGX-SDE,
Sparklify performs better when there are more triple patterns involved (see Q5 )
but slightly worse when linear queries (see Q14 ) are evaluated.

Based on our findings and the evaluation study carried out in this paper, we
show that our approach can scale up with the increasing size of the dataset.



5 Related Work

Partitioning of RDF Data Centralized RDF stores use relational (e.g.,
Sesame [4]), property (e.g., Jena [23]), or binary tables (e.g., SW-Store [1])
for storing RDF triples or maintain the graph structure of the RDF data (e.g.,
gStore [26]). For dealing with big RDF datasets, vertical partitioning and exhaus-
tive indexing are commonly employed techniques. For instance, Abadi et al. [2]
introduce a vertical partitioning approach in which each predicate is mapped to
a two-column table containing the subject and object. This approach has been
extended in Hexastore [22] to include all six permutations of subject, predicate,
and object (s, p, o). To improve the efficiency of SPARQL queries RDF-3X [14]
has adopted exhaustive indices not only for all (s, p, o) permutations but also
for their binary and unary projections. While some of these techniques can be
used in distributed configurations as well, storing and querying RDF datasets in
distributed environments pose new challenges such as the scalability. In our ap-
proach, we tackle partitioning and querying of big RDF datasets in a distributed
manner.

Partitioning-based approaches for distributed RDF systems propose to par-
tition an RDF graph in fragments which are hosted in centralized RDF stores
at different sites. Such approaches use either standard partitioning algorithms
like METIS [9] or introduce their own partitioning strategies. For instance, Lee
et al. [12] define a partition unit as a vertex with its closest neighbors based
on heuristic rules while DiploCloud [24] and AdPart [10] use physiological RDF
partitioning based on RDF molecules. In our proposal, we use a semantic-based
partitioning approach.
Hadoop-based systems Cloud-based approaches for managing large-scale
RDF mainly use NoSQL distributed data stores or employ various partitioning
approaches on top of Hadoop infrastructure, i.e., the Hadoop Distributed File
System (HDFS) and its MapReduce implementation, in order to leverage com-
putational resources of multiple nodes. For instance, Sempala [19] is a Hadoop-
based approach which serves as SPARQL-to-SQL approach on top of Hadoop.
It uses Impala6 as a distributed SQL processing engine. Sempala uses unified
vertical partitioning based on a single property table to improve the runtime of
the star-shaped queries by excluding the joins. The limitation of Sempala is that
it was designed only for that particular shape of the queries. PigSPARQL [18]
uses Hadoop based implementation of vertical partitioning for data represen-
tation. It translates SPARQL queries into Pig7 LATIN queries and runs them
using the Pig engine. A most recent approach based on MapReduce is RYA [16].
It is a Hadoop based scalable RDF store which uses Accumulo8 as a distributed
key-value store for indexing the RDF triples. One of RYA’s advantages is the
power of performing join reorder. The main drawback of RYA is that it relies on
disk-based processing increasing query execution times. Other RDF systems like
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JenaHBase [11] and H2RDF+ [15] use the Hadoop database HBase for storing
triple and property tables.

SHARD [17] is one approach which groups RDF data into a dedicated par-
tition so-called semantic-based partition. It groups these RDF data by subject
and implements a query engine which iterates through each of the clauses used
on the query and performs a query processing. A MapReduce job is created while
scanning each of the triple patterns and generates a single plan for each of the
triple pattern which leads to a larger query plan, therefore, it contains too many
Map and Reduces jobs. Our partitioning algorithm is based on SHARD, but
instead of creating MapReduce jobs we employ the Spark framework in order to
increase scalability.
In-Memory systems S2RDF [20] is a distributed query engine which trans-
lates SPARQL queries into SQL ones while running them on Spark-SQL. It
introduces a data partitioning strategy that extends vertical partitioning with
additional statistics, containing pre-computed semi-joins for query optimization.
SPARQLGX [6] is similar to S2RDF, but instead of translating SPARQL to SQL,
it maps SPARQL into direct Spark RDD operations. It is a scalable query engine
which is capable of evaluating efficiently the SPARQL queries over distributed
RDF datasets [7]. It uses a simplified VP approach, where each predicate is
assigned to a specific parquet file. As an addition, it is able to assign RDF
statistics for further query optimization while also providing the possibility of
directly query files on the HDFS using SDE. Recently, Sparklify [21] – a scalable
software component for efficient evaluation of SPARQL queries over distributed
RDF datasets has been proposed. The approach uses Sparqify9 as a SPARQL
to SQL rewriter for translating SPARQL queries into Spark executable code.
In our approach, intermediate results are kept in-memory in order to accelerate
query execution over big RDF data.

6 Conclusions and Future Work

In this paper, we propose a scalable semantic-based query engine for efficient
evaluation of SPARQL queries over distributed RDF datasets. It uses a semantic-
based partitioning strategy as the data distribution and converts SPARQL to
Spark executable code. By doing so, it leverages the advantages of the Spark
framework’s rich APIs. We have shown empirically that our approach can scale
horizontally and perform well as compared with the previous Hadoop-based
system: the SHARD triple store. It is also comparable with other in-memory
SPARQL query evaluators when there is less shuffling involved i.e. less duplicate
values.

Our next steps include expanding our parser to support more SPARQL frag-
ments and adding statistics to the query engine while evaluating queries. We
want to analyze the query performance in the large-scale RDF datasets and ex-
plore prospects for the improvement. For example, we intend to investigate the
re-ordering of the BGPs and evaluate the effects on query execution time.
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