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Abstract. Question answering systems have often a pipeline architec-
ture that consists of multiple components. A key component in the
pipeline is the query generator, which aims to generate a formal query
that corresponds to the input natural language question. Even if the
linked entities and relations to an underlying knowledge graph are given,
finding the corresponding query that captures the true intention of the
input question still remains a challenging task, due to the complexity of
sentence structure or the features that need to be extracted. In this work,
we focus on the query generation component and introduce techniques
to support a wider range of questions that are currently less represented
in the community of question answering.

Keywords: Question Answering · Knowledge Graphs · Query Augmen-
tation

1 Introduction

Question answering (QA) has been an active field of research for many decades
in different areas such as information retrieval, natural language processing and
machine learning. It provides users with a convenient interface to ask their ques-
tion in a natural way.

As semantic web technologies developed in recent years, vast sources of struc-
tured data became available, for instance, domain-specific Knowledge Graphs
(KGs) (such as UMLS [17], GeoNames [30], WordNet [20], etc.) and open-domain
KGs (e.g DBpedia [16], Freebase [5], etc.). Given these well-structured sources
of information, QA over KG is able to provide concise answers not only to sim-
ple but also to more complicated questions, including the traversal of multiple
relevant (triple) patterns in the KG.

Often Semantic parsing approaches are employed to build QA over KG, in
which multiple components can be orchestrated in a pipeline architecture. This
pipeline transfers the input question into a formal query representation of the
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question, which captures the intention of the user. As opposed to end-to-end
methods [18] that work as a black-box, semantic parsing approaches provide
a modular solution, which enables researchers to find out the reasons for the
success and failure cases by investigating the components individually. Hence,
it is also easier to improve and re-use the existing work as well. Furthermore,
end-to-end methods, in general, are not applicable in cases where the training
dataset is not large enough.

Semantic parsing approaches mostly consist of five components that are re-
sponsible for the following tasks [25]: Shallow parsing (a.k.a chunking), Entity
linking, Relation linking, Query generation and Ranking. The first component
analyzes the input question in order to partition it into entity and relation spans.
These spans are the main clues for the entity and relation linking components to
find the corresponding items in the knowledge graph. Given all the linked items,
the query generator searches for the possible valid combinations of the linked
items, which later would be compared to the input question in order to arrange
them according to their similarity to the intention of the user.

Although these components are necessary to build a QA system, researchers
mostly focus on earlier steps and limited attention is paid to the query gener-
ation and ranking modules, due to the fact that most of Question/Answering
(Q/A) datasets contain mostly questions with a simple corresponding formal
query. Therefore, most of the existing approaches fail to correctly comprehend
the challenging questions, in which the query generation task is more demand-
ing. The performance of the query generator depends on the complexity of the
input question and the distinct features from the underlying formal query lan-
guage, which should be supported by the query generator. Nevertheless, given
the fact that it is burdensome to define a concrete metric to measure the level
of complexity of a natural language question, we establish the complexity of a
question based on two features from its corresponding formal query: Type of the
formal query (enumerated in Table 1) and the number of linked items used in
formal query, where the queries that use more linked items, correspond to more
complex questions.

In the simplest case, a question can be answered using one entity and one
relation from the underlying knowledge graph. In this case, the number of can-
didate formal queries are limited. For instance, consider the question Who are

the children of Barak Obama, where the only entity is Barak Obama and the
relation is children. In this example, there are just two possible formal queries
that can be built: SELECT ?c WHERE{?c dbo:Children dbr:Barak Obama} and
SELECT ?c WHERE{dbr:Barak Obama dbp:children ?c} where the first one is
the latter interpretation of the question. However, as the number of linked items
increases, the search space might explode and it would be challenging to explore
the search space in order to find the candidate queries. SimpleQuestions [7] and
WebQuestions [3] are the de facto standard Q/A datasets based on Freebase [5] as
they are used in many of QA over Freebase systems [4,6,31,32]. All the questions
in SimpleQuestions and more than 80% of WebQuestions can be answered using
a single relation in the underlying knowledge graph. Furthermore, there are only
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Table 1. Various types of Queries and their corresponding sample question

Type Description/Example/SPARQL

List
The question is a factoid question (single or multiple relations)
Example: Who are the children of Barack Obama?
SELECT ?child where { dbr:Barack Obama dbp:children ?child}

Boolean
The question is a yes or no question
Example: Is Paris the capital of France?
ASK WHERE { dbr:France dbo:capital dbr:Paris ; rdf:type dbo:Place }

Count
The intention of the question is to count the number of the possible results
Example: How many cities are in Germany?
SELECT COUNT(?city) WHERE {?city dbo:country dbr:Germany ; rdf:type
dbo:City}

Ordinal
The question requires ordering of the results over a certain criteria
Example: What is the most populated city in Italy?
SELECT ?city WHERE{?city dbo:country dbr:Italy ; dbo:populationTotal
?population ; rdf:type dbo:City } ORDER BY DESC(?population) LIMIT1

Filter
The question requires the results to be restricted using a certain criteria
Example: List all cities with more than a million population in Egypt?
SELECT ?city WHERE{?city dbo:country dbr:Egypt ; dbo:populationTotal
?p ; rdf:type dbo:City. FILTER (?p > 1000000)}

3% Ordinal questions and no Boolean question in WebQuestions. Consequently,
most of the introduced approaches mainly focus on the first type (see List in
Table 1). However, LC-QuAD dataset filled the gap to some extent by providing
7% Boolean and 12% Count questions out of a total 5,000 questions. As a re-
sult, more researchers concentrate on these two types as well [8,19,33]. Yet, very
limited effort has been spent on the last two categories, in spite of the fact that
the number of Ordinal/Filter questions is increasing in QA datasets. Given that
there are already advanced approaches to deal with the first three groups, we aim
to enhance an existing query generator in order to not reinvent the wheel and
benefit from the existing infrastructures. Among others, SQG [33] reports sig-
nificantly better accuracy in comparison to other query generator components
on various datasets. Thus, in this work we concentrate on extending SQG to
support more complex queries, namely Ordinal and Filter.

The remainder of the paper is structured as follows: Section 2 briefly discusses
the related works on various techniques, which have been employed to support
complex features such as Ordinal and Filter. We then introduce the overall
architecture as well as the details of the approach in Section 3 and present the
evaluation results in Section 4. Section 5 concludes our findings.
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2 Related Work

The main-stream question answering systems over knowledge graphs can be di-
vided into two categories: Semantic parsing methods and End-to-end approaches.
62 semantic parsing question answering systems from 2010 till 2015 are analyzed
Hoffner et al. [14]. They discuss the main challenges in question answering sys-
tems as well as the common solutions. Chakraborty et al. [22] provide a more
recent overview of neural networks based question answering.

Although end-to-end QA system achieved state-of-the-art results, they mostly
focus on simple/compound question, and either neglect other types [22] or use
simple pattern matching techniques to address Ordinal or Filter types. Hence,
we mostly study semantic parsing methods.

Walter et al. [29] introduce BELA - a QA system that consists of a 5-step
pipeline: question parsing, template generation, string similarity computation,
synonym-finding, and semantic similarity computation. The main idea of the
system is that the system decides, which steps should be applied, depending
on the complexity of the input question. The system is evaluated on QALD-24,
however it is not capable of answering questions that require sorting or filtering
of the results.

Unger et al. [28] propose TBSL, a QA system that parses the input question
to extract syntactic information from the question using predefined lexicons, then
it uses this information to generate a logical expression similar to the question.
Using this expression, the system chooses the candidate query templates. Finally,
TBNSL attempts to fill in the empty slots in the candidate templates through
the entities and relations mentioned in the given question. Moreover, it uses
ranking techniques to select the best candidate query. Considering that the query
templates are manually created based on the dataset at hand, it is considered
to be over-fitted for the dataset.

CASIA [26] and SINA [24] are two more examples of QA systems based
on a pipeline architecture. The pipeline of such systems includes tasks such as
question processing, entity and relation recognition and disambiguation, and
SPARQL query generation. These systems are benchmarked on the QALD-35

challenge dataset. Similarly, there is no support for questions where complicated
features such as Filter, Ordinal, etc. are required.

Hakimov et al. [12] develop a QA system that uses a semantic approach based
on Zettlemoyer et al. [34]. They investigate the use of handcrafted lexicons to
minimize the lexical gap between the vocabulary used in natural language ques-
tions and the one of the training data. The system is benchmarked on QALD-46,
however, the systems has no support for Ordinal or Filter questions.

POMELO [13] is another pipelined QA system, which resembles the architec-
ture of CASIA [26] and SINA [24]. In addition to the pre-processing steps in the
pipeline, POMELO scans the question for certain terms such as numbers, mean,

4 http://qald.aksw.org/index.php?x=task1&q=2
5 http://qald.aksw.org/index.php?x=task1&q=3
6 http://qald.aksw.org/index.php?x=task1&q=4

http://qald.aksw.org/index.php?x=task1&q=2
http://qald.aksw.org/index.php?x=task1&q=3
http://qald.aksw.org/index.php?x=task1&q=4
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higher, etc. in order to construct the SPARQL query. This step helps POMELO
to support more query types than CASIA [26] and SINA [24]. However, it fails to
handle compound questions. Moreover, its support for Filter and Ordinal types
is limited due to the fact that it is based on a hand-crafted list of patterns.

The AskNow approach as described in [11] is a QA framework by M. Dubey
et al. that takes a natural language question as its input, then transforms the
question into an intermediate logical form called Normalized Query Structure,
which later will be changed into a SPARQL query. AskNow defines three types
of queries: Simple, complex and compound. As a result, it is able to support
compound questions. Nevertheless, the support for Filter and Ordinal is limited
to the pre-defined patterns. Much like the system proposed by Unger et al. [28],
Abujabal et al. [1] use a similar approach with the main difference that the
system is able to learn SPARQL templates from question-query pairs. Given
a question, it tries to match the question to an empty candidate template(s)
that corresponds to the given question. In addition, it benefits from ranking
methodologies for selecting the best candidate queries.

The aforementioned QA systems are either based on templates/patterns or
use and ad-hoc methods to support complex queries. While, we base our solution
on extending a well structured, modular, standalone SPARQL query generator
that is capable of generating target SPARQL queries for input questions, pro-
vided the entities and relations mentioned in the question.

3 Approach

Given a question in natural language and the correct linked items (entities and
relations), SQG [33] goes into the details of generating a SPARQL query that
corresponds to the input question. By using this generated SPARQL query and
augmenting it with necessary constraints, we are able to obtain a SPARQL query
that supports new, previously unsupported, types.

In order to extend SQG [33] to support the two new types, we model these
types as extra constraints that need to be applied on the list of all possible an-
swers. For the Ordinal class, to get the correct answer for the example question
Q1:"What is the most populated city in Italy?", we first need to get a
list of all the cities in Italy, then sort them in descending order with respect to
the population of each city and then return the top city as the most populated
city in Italy. The same idea applies to the type Filter, where the list of possible
answers should conform to a certain constraint. For example, given the ques-
tion Q2:"What are the cities with more than a million population in

Egypt?", we need to get all the cities in Egypt and only return those with the
population more than a million as the answer. This unified view of modeling
the new types as constraints enables us to extend SQG by adding an extra layer
over the existing architecture.

To support the aforementioned types, we divide the overall task into three
sub-tasks. First, we need to classify the given questions in order to recognize
those questions that belong to the new types. Second, we parse the given question
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to extract special keywords that would help us to select a KG property, which
would act as the constraint for the intended SPARQL query. The last task is
to set any parameters needed for the SPARQL query in order to capture the
intention of the given question.

Fig. 1. Proposed ExSQG Architecture. Components highlighted in red are modi-
fied/added components

Figure 1 shows the architecture of ExSQG. It extends SQG [33] with two new
components – Question Classifier and Query Augmentation. The new question
classifier replaces the original question classifier from the SQG [33] as it does
not support the new question types. The original question classifier is built as a
flat classifier using Naive Bayes and SVM and supports only List, Boolean and
Count questions.

In SQG [33], the ranking model was the last step in the query generation
pipeline. However, in the ExSQG architecture, the query augmentation compo-
nent resides at the end of the pipeline. The augmentation component is respon-
sible for complementing the SPARQL query, which is selected by the ranking
model, by adding the necessary constraints and parameters in order to generate
the final query that corresponds to the input question.

Intuitively each question is of List, Boolean or Count type. However it may
belong either to Ordinal or Filter, or both. We call the first three categories
primary classes and Ordinal and Filter secondary classes. Accordingly, we
build a hierarchical question classifier, which consists of a multi-class classifier
for primary classes and a binary classifier for each of the secondary classes.
Figure 2 shows the architecture of the Questions Classifier. When a question is
passed through the classifier module, it is first classified by the primary classifier
to find out its primary class. Given the primary class, it passes through all the
secondary binary classifiers to check if the question belongs to one or more of the
secondary classes. As shown in Figure 3, both Q1 and Q2 are identified as List
by the primary classifier, however, Q1 is classified as Ordinal as the secondary
class, while the second class of Q2 is established as Filter.
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Fig. 2. Architecture of the Hierarchical Question Classifier

After the question is classified, it passes through the rest of the pipeline.
If the question is classified to have only a primary class and no further sec-
ondary classes, then the query is returned by the ranking model as the result of
SQG [33]. On the other hand, when the question is classified to be one of the
secondary classes, it passes through the query augmentation component with its
corresponding SPARQL query chosen by the ranking model.

The first task of the query augmentation is to select a KG property that acts
as the constraint in the SPARQL query. First, the natural language question is
cleaned by removing stop words and any entity mentions. The result of this pro-
cess is called a base-form and is used in the Parameters Settings step. By parsing
the base-form according to the class of the question provided by the question
classifier, we are able to further clean it, which would result in having single or
multiple words. This sequence of words is called keyword or keywords. For ex-
ample, the base-form for the Q1 is "most populated city" and the keywords
are "most populated".

In parallel with the keyword extraction task, the SPARQL query provided
by the ranking model is used to capture the list of KG relations in the one-
hop distance of the subgraph containing the answer. Empirically, by analyzing
Filter and Order questions and their corresponding gold SPARQL queries. We
found that the relations used as constraints are always in the one-hop space
distance from the subgraph that contains the answer. Thus, we operate under the
assumption that the KG property that acts as the constraint is contained within
this list. These extracted relations are then filtered retaining only those, which
are comparable (e.g. Numbers, Dates, etc.). For instance, the candidate relations
for Q1 are dbo:areaTotal, dbo:Country, dbo:populationTotal, etc. .

In order to select the correct KG relation from the list of possible relations,
we capture the semantic closeness of the keywords and each of those relations
by computing the cosine similarity between their word embeddings. The KG
relation and keywords, which form the closest pair, are selected as the final KG
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relation, which acts as the constraint in the final SPARQL query. Note that since
both the keywords and KG relations might consist of more than a single word, we
use Word Mover Distance [15] to measure the similarity between the keywords
and the KG relations. For example, from the list of candidate relations for Q1,
dbo:populationTotal is the most similar one in comparison to the keywords
most populated. It’s worth noting that before checking the similarity between
the KG relations and the keywords. The KG relation is transformed into a correct
English form, from populationTotal into population total. This is done by
simply splitting the KG relation at each capital letter, since they are always
written in a camel case form.

Fig. 3. ExSQG pipeline for Ordinal and Filter examples
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The final step is to set any parameters for the given query. This parameter
setting depends on the type of the query. For queries of type Ordinal, there are
three parameters to be considered; the direction of sort, offset and limit. In order
to set the direction of sort, we train a classifier that predicts the sorting direction
given the keywords. On the other hand, the offset is set by parsing the base-form
provided by the components responsible for the keyword extraction. If the base-
form contains an ordinal mention (e.g first, second, third, etc.), it is used to set
the offset in the SPARQL query. Otherwise, the offset is set to zero. The last
parameter in the Ordinal queries is the limit. To set the limit of the query, we
use Part Of Speech(POS) tags to check if the keyword or keywords refer to a
singular or plural noun to set the limit accordingly. For our running example
question Q1, the limit would be set to one as the keywords most populated

refers to city, which is singular. Otherwise, it is set to negative one, which
means all possible answers.

If the query belongs to the Filter class, there is only one parameter to be set,
which is the comparison operator (e.g. less than, more than, same as, etc.). In
order to be able to set the correct operator, we train a classifier that predicts the
operator given the keyword. The keywords are prepared by running the keyword
identification component on the training sets. The classifier is trained on such
keywords and their corresponding operator extracted from each SPARQL query.
For instance, the operator greater with operand 1000000 would be extracted for
the example question Q2.

Finally, after the KG property is selected and the values of the parameters
are set, these results are used to augment the SPARQL query provided by the
ranking model. This augmentation is done as follows i) first, we syntactically
parse the query returned from the ranking model ; ii) we prepare the SPARQL
equivalent for any of the parameters and/or constraints; iii) we append these
additions to the query returned by the ranking model.

Figure 3 illustrates the flow of ExSQG with the example questions Q1 and
Q2. It shows each component in the pipeline with its inputs and its output when
the system is given an Ordinal or Filter question.

4 Empirical Study

In this section, we introduce the datasets used in this work and provide statistical
information about them. In addition, we present the results of ExSQG on the
benchmarking datasets.

4.1 Datasets

Q/A datasets commonly contain triples of i) natural language question, ii) the
equivalent formal query, and iii) the answer set. Since many of the Q/A datasets
only contain List questions with no extra features such as Ordinal and Filter,
we hand-picked the ones that include such questions from multiple datasets, so
that we could build a robust and general query generator. In order to have a
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unified dataset, we aim to collect the datasets with the same underlying KG.
Among others, DBpedia [2] is an ongoing community-based knowledge base that
is in a constant process of development and we would use the datasets, which
are based on DBpedia.

First, we use LC-QuAD[27], which contains 5,000 manually crafted questions
and their corresponding SPARQL query. Although LC-QuAD does not contain
any questions that belong to the new types, we include it in order to provide
performance comparison with the baseline system (SQG). Second, we use all the
datasets from the QALD 7 challenge (QALD 1-9). As these datasets where part
of a Q/A campaign over multiple years, many of the questions are used more
than once in these datasets (out of more than 5,000 questions in these datasets,
only 1400 are unique). However, these datasets are particularly important since
they contain all of the types of questions, and they are carefully designed to chal-
lenge different aspect of the QA systems. The last dataset we use is DBNQA [21],
which is a template-based dataset containing about 800,000 automatically cre-
ated question and SPARQL query pairs. This dataset is especially useful, since
it provides a vast number of questions from the Filter and Ordinal types.

Although DBNQA contains the target question types, it is generated using a
set of pre-defined templates. Thus, if we train the classifiers on DBNQA, it would
be biased towards the underlying templates. On the other hand, considering the
number of unique question/query pairs in the QALD 1-9 challenge, it is not
sufficient to train the classifiers. Therefore, we combine training and testing sets
from all the available datasets.

The idea behind these combinations is to compare the performance of the
models trained on each of the combinations with each other. These combinations
are as follows:

– LC-QuAD: Using only LC-QuAD
– LC-QuAD + QALD: Combined data from both datasets
– LC-Quad + QALD + DBNQA: Combined data from all the datasets

Since DBNQA has over 800,000 questions-query pairs, while LC-QuAD and
QALD contain about 10,000 questions combined, we do not include DBNQA
entirely but rather use a subset of the dataset in order to avoid the classifiers’
overfitting over questions from DBNQA. We used random different subsets with
different sizes that varied between 1%, 5%, 10%, and 25% from the available
questions in the dataset.

Using these multiple subsets gives us a better idea when the model gives the
best performance, while decreasing the chance of overfitting over DBNQA. The
combined datasets are named as follows:

– LC-QuAD + QALD + 1% DBNQA: Combined 1
– LC-QuAD + QALD + 5% DBNQA: Combined 5
– LC-QuAD + QALD + 10% DBNQA: Combined 10
– LC-QuAD + QALD + 25% DBNQA: Combined 25

7 http://qald.aksw.org/
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For the secondary classifiers, we prepare the training and testing sets using
all the available data from all the available datasets. Since the amount of the
available data for the secondary classes is not as much as the data available for
the primary classes.

Table 2. Datasets Statistics

Dataset # of Questions Unique Questions List Boolean Count Ordinal Filter

QALD (1-9) 5,237 1,396 1,056 98 79 94 75
LC-QuAD 5,000 4,998 3,967 368 658 0 0
DBNQA 894,499 871,166 688,689 76,835 98,372 3,893 1,797

Table 2 shows the total number of question and query pairs per dataset.
In addition, it shows the total number of questions available for each type per
dataset.

4.2 Experiment Settings

For the training process for any of the aforementioned classifiers, we prepared a
train/test set from all the available data. We split each dataset as 70% for the
training set and 30% for the test set. Furthermore, we use 10-fold cross-validation
during the evaluation process. In addition, we use scikit-learn8 implementations
for all the classifiers used.

Moreover, for the cleaning process of questions, we use Spacey9 and NLTK10.
Finally, to prepare the embedding matrix, which contains the vector representa-
tion for all the words in our vocabulary, we use the pre-trained word vectors by
Global Vectors for Word Representation (GloVe)11 [23].

4.3 Evaluation Metrics

Since the proposed system architecture consists of a pipeline of components, in
order to evaluate the performance of such a system, we first evaluate the perfor-
mance of each component individually. Then we assess the overall performance
of the system.

We evaluate the performance of the classifiers trained in terms of accuracy.
In addition, we use precision, recall, and F1-score to measure the performance
of the KG property selection component.

8 https://scikit-learn.org/stable/
9 https://spacy.io/

10 https://www.nltk.org/
11 https://nlp.stanford.edu/projects/glove/
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4.4 Empirical Results

The selection process of the best classifier consists of two parts. First, we select
the best classifier with the best set of features. Then, we experiment with the
best performing classifier with the best set of features against different datasets
with various sizes.

Table 3. Accuracy for the question classifier under different features

Feature NB SVM MaxEnt

1-gram 91.0% 96.7% 98.5%
(1+2)-grams 95.3% 96.9% 98.9%
(1+2+3)-grams 95.7% 96.7% 98.9%
+TF-IDF 94.5% 92.4% 99.0%
+Normalized Numbers 95.7% 96.9% 99.0%
+POS 95.9% 96.4% 99.1%
First N-words N=3 93.6% 94.2% 96.2%
First Last N-words N=3 93.3% 95.3% 97.4%

Table 3 shows the accuracy of the question classifier under a different set
of features. This experiment is done on the combined dataset 5. In order to
select the best set of features, we show the accuracy of the classifier at each row
for the current feature, combined with the best set of features selected so far.
As the table shows, we end up using the MaxEnt classifier as it out-performed
the other classifiers.

Table 4. MaxEnt Classifier Performance against multiple datasets of different sizes

Dataset MaxEnt

LC-QuAD 90.1%
LC-QuAD + QALD 89.7%
Combined 1 95.9%
Combined 5 99.3%
Combined 10 99.5%

Table 4 shows the performance of the classifier when it is trained on different
datasets. In this experiment, we use the combined dataset 25 as the test for
all the classifiers. We can see from the table that the performance of the question
classifier increases with the size of the dataset. However, this increase could also
be due to the classifiers overfitting over questions from DBNQA.

For the following experiments, we mainly focus on the QALD datasets to
show the performance of the system as they are very popular and used a lot in
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benchmarking QA over KG systems [9]. Thus, we are able to have a reference
point to compare our approach with other systems.

Table 5. Accuracy of the question classifier on QALD (4, 5, 6, 7)

Dataset No. Questions Accuracy

QALD-4 67 51 (76%)
QALD-5 33 28 (84%)
QALD-6 99 87 (87%)
QALD-7 30 25 (83%)

Table 5 shows the accuracy of the hierarchical question classifier on QALD
(4, 5, 6, 7). It also shows the total number of questions available per dataset. The
accuracy of the proposed question classifier in Table 5 is less than the reported
accuracy for the question classifier for SQG [33], because of the complex nature
of the questions that belong to secondary classes.

Table 6. Performance of Ordinal Questions Pipeline

Dataset Precision Recall F1

QALD-4 0.40 0.33 0.36
QALD-5 0.83 0.83 0.66
QALD-6 0.80 0.66 0.72
QALD-7 0.33 0.50 0.40

Table 6 shows the precision, recall, and F1 score for ExSQG for questions of
type Ordinal. A generated SPARQL query is considered correct if it yields the
same answer as the target SPARQL query, this means that the system is able
to correctly classify the question and successfully generate the correct SPARQL
query. The performance of the ExSQG is lower than the performance on QALD-
5, and 6 for two reasons. First, by inspecting the questions that lead to an
incorrect answer, we found out that the number of miss-classified questions from
QALD-4 is higher than those of QALD-5, and 6. Second, most of the questions
that belong to the Ordinal class from QALD-4 were generally more complex
than those that belonged to QALD-6. Not in terms of linked items, rather in the
queries that correspond to the question and the constraints used in such queries.
For example, some query constraints are not simply KG relations but a count
over such relations.

Table 7 shows the precision, recall, and F1 score of ExSQG for questions of
type Filter. It also shows that the ExSQG system does not provide the same per-
formance as it does for questions of the type Ordinal. This is due to the fact that
there are much fewer questions of the type Filter that we support in the datasets
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Table 7. Performance of Filter Questions Pipeline

Dataset Precision Recall F1

QALD-4 0.11 1.00 0.20
QALD-6 0.14 0.33 0.20

than questions of type Ordinal. The current system is able to correctly generate
the SPARQL for questions that require filtration over the value of a KB Rela-
tion (e.g. ”Cities in Germany with area larger than 30000 KM”), or questions
that compare two KB resources over a certain KB relation (e.g. ”Does Game of
Thrones have more episodes than Breaking Bad”). In the first question the con-
straint is the dbo:areaTotal and in the second one – dbo:numberOfEpisodes.
On the other hand, questions that require a string matching filter query, date
matching, or filtration based on a count are not yet supported. Therefore, any
miss-classification or incorrect query generation would significantly impact the
overall performance. The results for QALD-5,7 are not shown as well in this ta-
ble, because there were only 3 filter questions and our system was not successful
to correctly predict and answer them.

Table 8. Absolute increase percentage in performance between the SQG [33] and
ExSQG

Dataset No. of Questions Performance Increase

QALD 4 67 8.0%
QALD 5 33 18.0%
QALD 6 99 5.0%
QALD 7 30 3.0%

Table 8 shows the absolute difference in performance between SQG [33] and
the ExSQG. For this experiment, we assume an ideal scenario for the question
classifier for both systems – SQG [33] and ExSQG. We also assume that we
always get an intermediate SPARQL query from the ranking model for questions
that belong to the new types. These conditions are assumed to mitigate any
error propagation from SQG [33] and to be able to measure the performance
of the ExSQG on questions that belong to the new types. The variation of the
performance of ExSQG on QALD (4, 5, 6 and7) as shown in Table 8 is due to the
fact that there is only a limited number of questions that belong to secondary
classes in these datasets. However, there are more questions that have secondary
classes in QALD-5 in comparison to the other datasets.
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5 Conclusions

Encouraged by the existing efforts on query generation in the QA community,
we presented ExSQG as an extension to an available query generator component
(SQG [33]) in order to support Filter and Ordinal questions. We provided a hi-
erarchical architecture for a question classifier, which yields high accuracy in dif-
ferent benchmarking datasets. Furthermore, ExSQG augments the query using
identified keywords from the question and match them to the linked items from
the KG based on word embedding techniques. Finally, we empirically showed
that ExSQG achieves state-of-the-art accuracy on the benchmarking datasets.

Considering the upcoming Q/A datasets such as LC-QuAD 2.0 [10], which
not only contains Ordinal and Filter in about 17% out of 50k questions, but
also includes new types such as aggregation, which appears in more than 4% of
all questions, we aim to expand our work to also cover aggregation.
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