
Knowledge-Based Systems 163 (2019) 693–704

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

New label noise injection methods for the evaluation of noise filters
Luís P.F. Garcia a,b,∗, Jens Lehmann a,c, André C.P.L.F. de Carvalho b, Ana C. Lorena d,e

a Institute for Applied Informatics, Leipzig University, Hainstraße, 11, Leipzig, Saxony, Germany
b Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Trabalhador São-carlense Av. 400, São Carlos, São Paulo
13560-970, Brazil
c Computer Science Institute, University of Bonn, Römerstraße 164, Bonn, North Rhine-Westphalia, Germany
d Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Talim St. 330, São José dos Campos, São Paulo 12231-280, Brazil
e Divisão de Ciência da Computação, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50, São José dos Campos, São Paulo
12228-900, Brazil

a r t i c l e i n f o

Article history:
Received 5 February 2018
Received in revised form17 September 2018
Accepted 20 September 2018
Available online 25 September 2018

Keywords:
Label noise
Noise injection
Borderline noise
Noise filters

a b s t r a c t

Noise is often present in real datasets used for training Machine Learning classifiers. Their disruptive
effects in the learning process may include: increasing the complexity of the induced models, a higher
processing time and a reduced predictive power in the classification of new examples. Therefore, treating
noisy data in a preprocessing step is crucial for improving data quality and to reduce their harmful effects
in the learning process. There are various filters using different concepts for identifying noisy examples
in a dataset. Their ability in noise preprocessing is usually assessed in the identification of artificial noise
injected into one ormore datasets. This is performed to overcome the limitation that only a domain expert
can guarantee whether a real example is indeed noisy. The most frequently used label noise injection
method is the noise at random method, in which a percentage of the training examples have their labels
randomly exchanged. This is carried out regardless of the characteristics and example space positions
of the selected examples. This paper proposes two novel methods to inject label noise in classification
datasets. Thesemethods, based on complexitymeasures, can producemore challenging and realistic noisy
datasets by the disturbance of the labels of critical examples situated close to the decision borders and can
improve the noise filtering evaluation. An extensive experimental evaluation of different noise filters is
performedusing public datasetswith imputed label noise and the influence of the noise injectionmethods
are compared in both data preprocessing and classification steps.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Data from real world applications frequently present inconsis-
tencies that affect data quality, such as missing data or unknown
values, noise and faults in the data acquisition process [1,2]. Data
acquisition is inherently leaned to errors, even though growing
efforts are made to avoid them. It is also a resource-consuming
step, since at least 60% of the efforts in Data Mining are spent
on data preparation, which includes data preprocessing and data
transformation [3]. Some studies estimate that, even in controlled
environments, at least 5% of the examples in a dataset have prob-
lems [4,5].

Although many Machine Learning (ML) techniques have in-
ternal mechanisms to deal with noisy data, such as the pruning

∗ Corresponding author at: Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, Trabalhador São-carlense Av. 400, São Carlos, São Paulo
13560-970, Brazil.

E-mail addresses: lpgarcia@icmc.usp.br (L.P.F. Garcia),
jens.lehmann@cs.uni-bonn.de (J. Lehmann), andre@icmc.usp.br
(A.C.P.L.F. de Carvalho), aclorena@ita.br (A.C. Lorena).

process in Decision Trees Induction Algorithms (DTIA) [6] and the
use of slack variables in Support Vector Machines (SVM) [7], the
presence of noise in the training dataset can harm the induction of
accurateMLmodels. These impairments include an increase in pro-
cessing time, a higher complexity, overfitting of the inducedmodel
and a possible deterioration of its predictive performance for new
data [8].When thesemodels are used in critical environments, they
may also have security and reliability impacts [9].

There are usually two approaches to deal with noisy data that
may reduce the dependency of these standard ML internal mech-
anisms [10]: to employ a noise-tolerant classification algorithm
[11]; or to adopt a preprocessing step, also known as data cleansing
algorithm [10], to identify and remove noisy examples. The use of
noise-tolerant classification algorithms aims to induce robust clas-
sification models by using some information from the noisy data.
The preprocessing step, on the other hand, normally involves the
application of one or more Noise Filters (NF) to identify noisy data.
The identified inconsistencies can be corrected or,more frequently,
removed from the dataset [12]. The research carried out in this
paper follows the second approach, which is to deal with noise in
a preprocessing step using NF and focusing on label noise, which

https://doi.org/10.1016/j.knosys.2018.09.031
0950-7051/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2018.09.031
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.09.031&domain=pdf
mailto:lpgarcia@icmc.usp.br
mailto:jens.lehmann@cs.uni-bonn.de
mailto:andre@icmc.usp.br
mailto:aclorena@ita.br
https://doi.org/10.1016/j.knosys.2018.09.031

694 L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704

can be regarded as the most disruptive type of noise in supervised
learning.

An evident evaluation of the NFs concerns their ability to iden-
tify noisy examples. Nonetheless, it is usually impossible to guar-
anteewhether a given example is indeednoisywithout the support
of a domain expert [13,14]. The evaluation by an expert tends to
increase the cost and duration of the preprocessing step [15]. This
limitation is reduced when artificial datasets are used or when
simulated noise is systematically added into a real dataset for
NF evaluation [16–18]. In most noise identification studies, the
injection of simulated noise is preferred to the use of artificial
datasets [18–22].

The most frequently used noise injection method randomly
exchanges the labels of a percentage of the training examples.
However, thismethodmay produce unrealistic noisy cases [13,14].
Furthermore, since there is no criterion for choosing the examples
whose label will be disturbed, noisy cases easy to detect can be
produced. This may occur when examples located in the center
of a cluster from a given class or far from the decision bound-
ary are selected. This paper proposes two new methods for the
artificial addition of label noise into datasets. In these methods,
the examples whose labels will be disturbed are selected among
those next to the decision border (borderline noise). The difference
between the two methods is the criterion and bias adopted to
estimate which are the borderline examples to be disturbed. The
first method is based on the ratio of intra/inter class Nearest Neigh-
bor distance, which is used for assessing the apparent complexity
of a classification task in Ho and Basu [23]. The second method
is based on the distance between the examples and the decision
border induced by a radial kernel SVM classifier. It is based on
theminimized sum of error distance by linear programming measure
from Ho and Basu [23], but using a non-linear classifier instead.
While in the original work of Ho and Basu [23] these measures
are summed over all examples in the dataset, here the individual
complexity of each example is assessed. Thus, the two methods
evaluate the individual examples and choose those thatmay better
represent challenging noisy examples found in real data.

This study also compares the robustness of several NFs regard-
ing noise detection when different noise injections methods are
used, for a large number of datasets and different noise levels.
This allows the analysis of NF predictive performance for different
artificial label noise injection methods and how they are affected
by using the two proposed methods. An additional contribution is
the definition of a performance threshold that can be employed
to recommend when to use NFs. This threshold takes into account
whether the classification performance can be improved after the
dataset is preprocessed. Finally, all noise injection methods de-
tailed in this paper were assembled into an R package named born
(Borderline Noise). The born package is publicly available at https:
//github.com/lpfgarcia/born.

The rest of this paper is organized as follows. Section 2 presents
an overview of NFs, whereas Section 3 describes some existent
artificial label noise injection methods and details the two new
proposed noise injection methods. Section 4 presents the datasets
adopted and the methodology followed in the experiments, while
Section 5 presents and discusses the main experimental results.
Finally, Section 6 provides the main conclusions from this study
and points out directions for future work.

2. Noise filters

NFs [13,20–22,24,25] are preprocessing techniques that can be
applied to any given dataset to identify potentially noisy examples
[10]. According to previous studies, the use of filtered data can
improve the predictive performance and reduce the complexity

of classification models [13,19,20,22]. NFs can use different infor-
mation to detect noise, such as: neighborhood or density infor-
mation [24–26]; descriptors extracted from the data [12,13]; and
predictions from classification models [13,20–22,27]. Next, the NF
techniques considered in this study are presented.

2.1. Ensemble based noise filters

Previous studies have shown the benefits of using ensemble-
based NFs [20–22], which employ a set of classifiers for noise
detection. They are based on the premise that distinct classifiers,
when combined, generate a model with a lower bias and the
disagreement on their predictions can be an indicative of noise
presence. There are various aggregation strategies to combine the
predictions from multiple classifiers for noise identification [22].
The most common are the consensus and majority voting strate-
gies. In the first strategy, an example is considered noisy only if it
is misclassified by all classifiers in the ensemble. In the second, an
example is assumed noisy if it is misclassified by the majority of
the classifiers in the ensemble.

In Brodley and Friedl [22], for instance, the authors combine the
noise identification predictions from classifiers induced by differ-
ent classification algorithms. According to the authors, the cross-
validation predictions made by k-Nearest Neighbor (k-NN) [28],
Decision Trees (DT) [6] and linear SVM [7] classifiers, combined
through majority voting, presented the best predictive perfor-
mance in noise identification. This NFwill be referred here as Static
Ensemble Filter (SEF), because the set of classifiers that compose the
ensemble is previously fixed.

The robustness of SEF is increased by the Dynamic Ensemble
Filter (DEF) technique [20]. This increase is obtained by adapting,
for each dataset, the set of noise identification classifiers to be
combined. The classifiers are chosen according to a criterion that
considers their predictive classification performance on the train-
ing data. Afterwards, a majority voting (or consensus) aggregation
strategy is used to combine the predictions from the chosen clas-
sifiers and to assess whether an example is noisy. For choosing
the set of classifiers composing the ensemble, their individual
cross-validation predictive performance on the training data is
evaluated. The three classifiers with best predictive performance
are selected.

Another recent ensemble-based NF is High Agreement Random
Forest (HARF) [13,21], which uses RF classifiers for noise identifi-
cation. HARF considers the rate of disagreement in the predictions
from the individual trees in the forest to detect the noisy examples:
if this rate is relatively high (70% up to 90%), the example is
considered noisy; otherwise, it is labeled as clean.

The Cross-validated Committees Filter (CVCF) technique, pro-
posed in Verbaeten and Assche [27], induces multiple classifiers
using a single classification technique in a cross-validation strat-
egy. Misclassified training examples are regarded as potentially
noisy. The number of times an example is marked as noisy reflects
its reliability. If the example is marked as noisy in most of the
cross-validation rounds, CVCF classifies the example as noisy. In
Verbaeten [29], a DTIA is used in a similar scheme to propose
the Decision Tree Filter (DTF) filter. In this NF, a DT is induced
from the training datasets and the instances misclassified in the
corresponding test sets are removed. In Sáez et al. [19] a framework
for noise detection named IterativeNoise Filter based on the Fusion of
Classifiers (INFFC) is used to detect noisy examples. It is very similar
to what is presented in Sluban et al. [13], where the information
gathered from different classifiers are combined. The main differ-
ence between the papers is that the first uses an iterative process
with multiple classifiers. For both of them, first, a preliminary
filtering, based on predictive performance of multiple classifiers,
is performed. Afterwards, the clean examples are used to detect

https://github.com/lpfgarcia/born
https://github.com/lpfgarcia/born
https://github.com/lpfgarcia/born

L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704 695

the noisy examples in the full set of examples. Finally, the noisy
examples are only removed if they exceed a noise scoremetric. The
iterative process stops when the number of consecutive iterations
achieves a maximum number of executions or the number of
identified noisy examples are less than a given a fraction of the size
of the original training dataset. The classifiers used in the iterative
filtering process were induced by C4.5, a DT induction algorithm,
k-NN and Multilayer Perceptron (MLP).

2.2. Noise filters based on data descriptors

The Saturation Filter (SF) was initially proposed by Gamberger
and Lavrač [30] to explore the notion of training data saturation
and the Occam’s Razor theory. A saturated set is the smallest
dataset that allows the induction of a correct and simple hypoth-
esis able to capture all relevant information required for data
representation. Thereby, the algorithm searches for examples that
can be removed in order to transform an unsaturated dataset into a
saturated dataset. A measure named Complexity of the Least Correct
Hypothesis (CLCH) is used to identify these examples. SF removes
α examples per iteration (α is a parameter of the technique),
generating all possible combinations of saturated data. If the CLCH
value decreases when a subset of examples is removed, this subset
is considered noisy. In Sluban et al. [13], some efforts were made
to reduce the computational burden of SF. The proposed modifi-
cations included the use of a DTIA to prune the examples that are
most probably noisy before applying the SF iterations. Finally, the
difference between the sizes of a pruned and an unpruned DT gives
the CLCH estimate [13].

2.3. Distance based noise filters

Other popular NFs are based on the distance between examples
and employ the k-NN algorithm [25,26,31]. They consider an ex-
ample to be safe if it is next to other examples from its class, and
noisy otherwise. They also consider that small perturbations in a
borderline example can move it to the wrong side of the decision
border, making it unreliable. Therefore, the distance-based NFs
usually remove both noisy and borderline examples. This tends
to smooth the margin of separation between different classes.
The Edited Nearest Neighbor (ENN) [26] technique removes an
example if the label of its k nearest neighbors is different from
its own label. The All-k-ENN (AENN) technique applies the k-NN
classifier with several increasing values of k [25]. At each iteration,
examples that have the majority of their neighbors from other
classes are marked as noisy.

2.4. Other noise filters

There aremany other NFs in the literature [19,24,32,33]. Khosh-
goftaar and Rebours [32] proposed the Iterative Partitioning Filter
(IPF) technique, which induces DT models in an iterative process
using k-fold cross-validation. The iterative process finishes when
less than 1% of the data is not misclassified by the DT after the
third iteration. Sáez et al. [33] combined the Synthetic Minority
Over-sampling Technique (SMOTE) and the IPF in what was named
SMOTE-IPF searches for noisy examples in imbalanced datasets.
This study adopted the techniques ENN, AENN, PruneSF, CVCF,
HARF, DEF and SEF, which are well-known NFs that have distinct
characteristics and biases for noise identification. The R code of
these NFs can be found in Morales et al. [34].

3. Artificial noise

Ideally, noise identification should involve a validation step,
where the objects labeled as noisy are confirmed as such,

before they can be further processed [13]. Since the most common
approach is to eliminate noisy data, it is important to properly
distinguish these examples from the safe data, which should be
preserved.

In a real application, evaluatingwhether a given example is safe
usually has to rely on the judgment of a domain specialist, who is
not always available. Furthermore, the need to consult a specialist
tends to increase the cost and duration of the preprocessing step.
This problem is reduced when artificial datasets are used, or when
simulated noise is added to a dataset in a controlled way [18]. The
systematic addition of noise simplifies the validation of theNFs and
the study of the noise influence on the learning process.

Next, the main methods for label noise injection considered in
this study are presented according to the taxonomy suggested in
Frenay and Verleysen [10].

3.1. Noisy at random model

There are two main methods to inject noise in the class labels:
(i) Random,when each example has the same probability of having
its label exchanged by another label [16]; and (ii) Pairwise, when
a percentage x% of the majority class examples have their labels
flipped to the second majority class label [17]. Whatever the strat-
egy adopted to add noise to a dataset, it is necessary to corrupt the
exampleswithin a given rate. Inmost of the related studies, noise is
added according to rates that range from 5% to 40%, with intervals
of 5% [18]. There are also studies that choose the fixed rates as 2%,
5% and 10% [13]. Besides, due to its stochastic nature, this addition
is normally repeated a number of times for each noise level.

The artificial binary dataset shown in Fig. 1 illustrates the ran-
dom and pairwise methods. The original dataset has 2 classes (•
and▲), which are non linearly separable, with 21 and 35 examples,
respectively. Fig. 1(a) shows the same artificial dataset after the
injection of 10% of label noise by the Pairwise method (from the ◦
class), while Fig. 1(b) has 10% of noisy examples produced by the
Random method (from both ◦ and△ classes). The noisy examples
are highlighted in red.

It must be observed that these methods have some limitations.
Even adopting the same percentage of artificial noise, the number
of examples that have their label exchanged is different in both
methods. While the number of noisy cases in the Randommethod
is defined by the number of examples in the dataset, the Pair-
wise method uses the number of examples in the majority class.
Therefore, since they add different numbers of noisy examples
into the dataset, the methods cannot be directly compared. This
is illustrated by Fig. 1, in which 10% of noise is added for both
methods: while for the Pairwise method (Fig. 1(a)) four examples
are corrupted, the Random method changes the labels of seven
examples (Fig. 1(b)). To overcome this limitation, one has to en-
force that the same number of examples are corrupted by both
methods, leading to the use of different noise percentage rates for
the different methods. For instance, in the example from Fig. 1, the
noise rate for the Pairwise method would have to be increased to
20%.

Another limitation is that, by being highly random, thesemeth-
ods arbitrarily select the corrupted examples and their new labels.
Thus, a large number of executions is needed to reliably estimate
the predictive performance ofNFs. Furthermore, case studies based
on real datasets analyzed by domain experts [13,14] and previous
experimental studies for understanding the effects of label noise
in classification tasks [24,33,35] indicate that Random noise may
be easily detected. In the examples from Fig. 1, for instance, all NFs
from the previous section are able to recover the noisy examples
with a precision close to 90%.

A more realistic and challenging scenario should consider
adding label noise to critical examples, like those located in the

696 L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704

Fig. 1. Examples of the outputs of two artificial class label noise injection methods from the literature: (a) Pairwise; and (b) Random. A rate of 10% of noise is used in both
cases . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

decision boundaries. For instance, Sluban et al. [13] performed a
study on noise identification in a coronary heart disease (CHD)
classification dataset in which an expert analysis of the noisy ex-
amples revealed that most of themwere due to a poorly calibrated
equipment, generating values slightly away from the boundary
limits and leading to an incorrect labeling of the examples. In
Garcia et al. [14], a similar study using a real-world ecology-
related dataset revealed that most of the noisy examples detected
were related with stochastic events or disorders that introduced
small variations in the environmental characteristics, which in
turn enabled or disabled the species presence. These were also
borderline examples very difficult to detect without the analysis of
a domain expert. In the same line, Sáez et al. [36] studied the effect
of label noise in the domain of medical data classification. They
pointed out label noise introduced by humans are more frequent
in problems for which the labeling process is complex or for which
there is not a consensus among multiple labelers.

In Garcia et al. [24], an experimental study to understand the
effects of label noise in classification tasks also reinforce the im-
portance of borderline examples. In this study, a set of classification
complexitymeasures fromHoandBasu [23] and graph-basedmea-
sures from Kolaczyk [37] are monitored after label noise injection.
The main results indicate that measures that inspect examples
close to decision boundaries are the best to explain the complexity
induced by label noise imputation, reinforcing the importance of
the class label reliability of borderline examples.

3.2. Noisy not at random model

There are also other methods that use extra information to add
artificial label noise to the examples. In Niaf et al. [38], a label
noise injectionmethodbasedon thedistribution of the classes adds
uniform noise to the predictive attributes and changes the label
based on the highest class probability. In Chhikara and McKeon
[39], an exponential label noise injectionmethod uses the distance
from the examples to the classification boundary to calculate the
probability of mislabeling in binary classification tasks.

Twomethods for borderline noise injection are proposed in this
paper to add more challenging and yet realistic artificial noise to
classification datasets and to improve NF evaluation. Based on a
successful use of data complexity measures in the analysis of label
noisy data [24,40], the two label noise injectionmethods proposed

are based on concepts of two of the complexitymeasures originally
proposed by Ho and Basu [23]. The first method, named Neigh-
borwise, is based on the ratio of intra/inter class Nearest Neighbor
(NN) distance of each example. The second method measures the
distance to a non-linear boundary induced by a SVM classifier and
is named Non Linearwise.

The Neighborwise noise injection method uses the ratio of
the intra and inter class distances to analyze the spread of the
examples from distinct classes and to determine the borderline
examples. The intra-class distance is the distance between exam-
ples from same class, while the inter-class distance is the distance
between examples from distinct classes. In this method, Eq. (1) is
applied to each example from the training dataset T composed of
n tuples (xi, yi), where xi = (xi1, . . . , xim) is an example described
bym features and yi corresponds to its class label. In this equation,
d denotes the euclidean distance between an example and its NN.

dNN(xi) =
d(xi,NN(xi) ∈ yi)
d(xi,NN(xi) ̸∈ yi)

(1)

Eq. (1) gives the ratio of two distances: the euclidean distance
between an example and its NN from the same class and the
euclidean distance between an example and its nearest enemy,
which corresponds to its NN from another class. A high dNN value
is obtained for an example xi far from the other examples from its
class, whilst it is close to examples from another class. These are
probable borderline examples and are candidate to be corrupted by
the Neighborwisemethod. Algorithm 1 describes how thismethod
works.

Input: T (training data) with n labeled examples in the form
(xi, yi), and the percentage of noisy examples p

Output: N (set of examples to be corrupted)
N ← ∅
for i← 1, ..., n do

dNN(xi)← d(xi,NN(xi)∈yi)
d(xi,NN(xi)̸∈yi)

end for
Order T in descending order according to the dNN(xi) values
computed
N ← p% first examples from T
return N

Algorithm 1: Neighborwise noise injection method.

L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704 697

Fig. 2. Examples of the outputs of two artificial class noise injection methods proposed: (a) Non Linearwise; and (b) Neighborwise. A rate of 10% of noise is used in both
cases.

Fig. 3. Evaluation methodology followed in the experiments.

The Non Linearwise noise injection method quantifies the non
linearity of a dataset by computing the distance between each
example and a radial decision border separating the classes. An
SVM with a radial basis (RBF) kernel function [7] is used to induce
the decision border. Therefore, first a SVM classifier is induced
used the training data T . For each example xi, its distance dNL to
the decision border, as expressed by Eq. (2), is computed. In this
equation, f denotes the SVM decision function obtained, and f (xi)
corresponds to the SVM output value (before the application of a
signal function) for the example xi.

dNL(xi) = |f (xi)| (2)

Low dNL values indicate that the example xi is near the decision
border and that the model is highly uncertain about its label. On
the other hand, examples that can be easily classified and are far
from the decision borderwill show a high dNLi value. The examples
with the lowest dNL values are those considered to be corrupted,
as they are nearest to the decision border. Algorithm 2 shows the
pseudocode of this method.

The Non Linearwise method is limited to binary-classification
datasets. Multiclass classification tasks must first be decomposed
into a set of binary classification subtasks. For such, the one-vs-one

Input: T (training data) with n labeled examples in the form
(xi, yi), and the percentage of noisy examples p

Output: N (set of examples to be corrupted)
N ← ∅
f ← train SVM classifier with RBF Kernel function on T
for i← 1, ..., n do

dNL(xi)← |f (xi)|
end for
Order T in ascending order according to the dNLi values
computed
N ← p% first examples from T
return N
Algorithm 2: Non Linearwise label noise injection method.

approach is used, where one binary subtask is derived for each pair
of classes [41]. To combine the results of the subtasks, the distance
between the example and the nearest of the pairwise decision
borders is used.

Considering the same dataset used in Figs. 1, 2(a) shows the ar-
tificial dataset corruptedwith 10% of artificial Non Linearwise label
noise, while Fig. 2(b) has 10% of artificial Neighborwise label noise.

698 L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704

The noisy examples, highlighted in red, are, for bothmethods, close
to the decision boundary.

Comparing Figs. 1 and 2, it is possible to assert that the border-
linemethods producemore challengingdatasets.While for the first
methods a very high NF performance is expected, because some of
the noisy examples are close to safe areas, for the secondmethods,
a decrease of performance is expected, once the noisy examples
are close to the decision border. In the examples from Fig. 2, for
instance, the average precision of the NFs from Section 2 is lower
than 35%.

Itmust be observed that, for bothmethods, if T already contains
noisy examples, these examples can be selected and have their
labels eventually corrected. But this is expected to be a minor
problem that will not happen frequently. Other criteria could also
be used to evaluate the examples and for choosing those examples
to be corrupted. For instance, other complexity measures from Ho
andBasu [23]which also capture the separability of the classes (N1,
N3 and L2) could be employed instead. The fraction of points on class
boundary (N1), which builds a minimum spanning tree from the
data and counts the number of examples from opposing classes in
the tree, is one of them. However, the measures considered here
are simpler to compute and easier to adapt to allow an individual
evaluation of the examples, which can be used for ranking the
examples to have their labels modified. Previous studies also em-
ployed complexity measures to design more challenging artificial
datasets, as Maciá and Bernadó-Mansilla [42]. Although related to
this work, they were not concerned with neither the identification
of examples to be disturbed by label noise injection nor the evalu-
ation of the predictive performance of NFs.

It is worth noting that the Non Linearwise and Neighborwise
methods are different from the other label noise injectionmethods
found in the related literature. While in Teng [16] and Zhu et al.
[17] the methods inject label noise randomly, the method in Niaf
et al. [38] combines noise in both the predictive and the label
attributes, which can be more intricate to apply to a real dataset.
The exponential label noise method in Chhikara and McKeon [39]
uses a Linear Discriminant Analysis (LDA) classifier to obtain the
decision boundary from which the probabilities of mislabeling
are calculated. Although the concept of classifier boundary used
is similar to that of the methods proposed in this paper, in LDA
the probabilities of misclassification have a small overall effect;
moreover, the error rate of the LDA classifier is highly influenced
by the original noise level of the dataset.

4. Experimental framework

This section describes the experiments carried out to evaluate
the label noise imputation methods proposed in this study, for
different NFs. Section 4.1 presents the datasets employed in these
experiments and Section 4.2 describes the methodology followed
in the experiments.

4.1. Datasets

The experiments were carried out using 142 benchmark clas-
sification datasets selected from the UCI and OpenML repositories
[43,44]. Because they are benchmark datasets extracted from dif-
ferent application domains, it is not possible to assert that they
are noiseless. Nonetheless, as pointed out in Maciá and Bernadó-
Mansilla [42], most of the existent benchmark datasets used by
the ML community are very simple and many ML techniques are
able to attain a high predictive performance when applied to these
datasets. Table 1 summarizes the main characteristics extracted
from the datasets used, including dimensionality ratio [45,46],
imbalance ratio (IR) [47] and the error ratio of a Linear Classifier
(L2) from Ho and Basu [23]. The dimensionality ratio first applies

Principal Component Analysis (PCA) to a dataset and extracts the
number of components d′ necessary to represent 95% of the data
variability. Next, it takes the ratio d′

n , where n is the number of
examples in the dataset. It reflects data sparsity by considering a
minimized set of uncorrelated features. The IR measure divides
the number of examples in the majority class by the number of
examples in the minority class, providing an overview on the
imbalance present in the dataset. The third characteristic is the
error rate obtained when a linear classifier (a SVM classifier using
a linear Kernel) is applied to the dataset. It will be zero for linearly
separable datasets.

The 142 datasets were divided into groups according to their
values for the previous characteristics: from low (dr < 0.5) to a
medium/high dimensionality ratio (dr ≥ 1); from balanced (IR =
1), to imbalanced (IR ≥ 2); and finally from linear (L2 < 5%) to
probably non-linear classification datasets (L2 ≥ 20%).

4.2. Methodology adopted

Fig. 3 summarizes the methodology employed in the exper-
iments. Each dataset was first partitioned using 10-fold cross-
validation. Afterwards, label noisewas injected into examples from
the training folds obtained, using the following label noise impu-
tation methods: Random, Non Linearwise and Neighborwise, with
the 5%, 10%, 20% and 40% rates. As 10 different noisy versions were
generated for each method, each dataset and noise level, 17040
datasets with label noise were produced.

Noise injection was controlled to allow the recognition of the
noisy examples and to evaluate the predictive performance of the
NFs described in Section 2, namely HARF, SEF, DEF, CVCF, DTF,
PruneSF, ENN and AENN, to identify the artificial noise injected in
the noisy versions of the training datasets. Next, a filtered version
of the dataset was extracted (clean data in Fig. 3). Both the noisy
and filtered versions of the training datasets are used to induce
classification models. Their Area Under the ROC curve (AUC) per-
formance on the corresponding test data was then assessed.

The classifiers combined by SEF are 3-NN, DT and SVM with
linear kernel function, as suggested by Brodley and Friedl [22],with
outputs combined through majority voting. DEF used a majority
voting strategy to combine three classifiers. The classification al-
gorithms that can compose the DEF ensemble come from different
learning paradigms: SVM [7] with linear and RBF kernel functions,
Random Forest (RF) [48], k-NN [28], DT induced by the C4.5 al-
gorithm [6] and Naïve Bayes (NB) [49]. The HARF filter considers
an example as noisy if it is incorrectly classified by at least 70% of
the RF, which is composed by 500 DTs. CVCF and DTF use the C4.5
algorithm. PruneSF also uses the C4.5 [6] algorithm for estimating
the CLCH values. Finally, ENN uses k-NN with k = 5 and AENN
uses k-NN with k ranging from k = 1 to k = 9. For all NFs
that employ cross-validation in their internalmechanisms, 10 folds
were generated.

To evaluate the noise identification performance of the NFs, the
well-known precision, recall and Fβ-score measures are used. Pre-
cision is the percentage of noisy cases correctly identified among
those examples identified as noisy by the filter. Recall is the per-
centage of noisy cases correctly identified among the noisy cases
injected into the dataset (TP + FN). The Fβ-score metric combines
both precision and recall values. Considering β = 1, this measure
is an harmonic average, giving equal importance to both precision
and recall. All measure values range from 0 to 1 and the higher the
value, the better is the noise identification performance.

Filtered datasets are generated in a preprocessing step, for
each systematic method of noise imputation, noise level and NF.
Classifiers are induced using the preprocessed datasets in order
to verify if the preprocessing step can increase the predictive
performance achieved in comparison to the use of the original

L.P.F.Garcia
etal./Know

ledge-Based
System

s163
(2019)693–704

699

Table 1
Characteristics of the benchmark datasets used in the experiments.

dr IR L2
L2 < 5% 5% ≤ L2 < 20% L2 ≥ 20%

d < 0.5
IR = 1 movement-libras, mu284, seeds,

segmentation
aids, meta-data

1 < IR < 2 auto_price, badges2, cardiotocography,
collins, cpu, creditscore,
dbworld-subjects, flags, wdbc, wine

boston, engine1, machine_cpu,
wine-quality-red, australian,
heart-hungarian, horse-colic-surgical,
parkinsons, pollution,
statlog-australian-credit, statlog-heart

asbestos, blood-transfusion-service,
cloud, cpu_small, ilpd, no2,
plasma_retinol, pm10, schlvote,
space_ga, statlog-german-credit,
strikes, wildcat, witmer_census_1980

IR ≥ 2 climate-simulation

0.5 ≤ d < 1 IR = 1 crabs, prnn_crabs, vowel-reduced,
vowel

newton_hema, pollen

1 < IR < 2 acute-nephritis, acute-urinary,
breast-cancer-wisconsin, ecoli,
kr-vs-kp, leukemia-haslinger,
seropositive, thyroid-newthyroid,
transplant, voting, vsoil, zoo

bank8FM, chscase_vine1, glass,
ionosphere, vehicle, bodyfat,
hutsof99_logis, lowbwt,
mammographic-mass, mines-vs-rocks,
puma8NH, rmftsa_ladata, spectf-heart,
stock, vertebra-column-2c,
wholesale-customers

baskball, bupa, delta_ailerons,
diabetes, fruitfly, kidney, lupus,
mbagrade, pc1_req, planning-relax,
prnn_fglass, saheart, spect-heart, tae,
veteran, vhamster, wholesale-channel

IR ≥ 2 appendicitis, fertility-diagnosis,
thoracic-surgery

d ≥ 1
IR = 1 iris, molecular-promoters,

molecular-promotor
prnn_synth monks1

1 < IR < 2 banknote-authentication,
dermatology, japansolvent, led7digit,
qualitative-bankruptcy,
rmftsa_ctoarrivals, tic-tac-toe, vgalaxy

balance, boxing, elusage, flare, geyser1,
pwLinear, user-knowledge,
grub-damage, michiganacc, monks3,
vineyard, vinnie, yeast

banana, blogger, chscase_vine2, cmc,
diabetes_numeric, disclosure_z,
dresses-sales, habermans-survival,
hayes-roth, monks2, phoneme,
popularKids, quake, rmftsa_sleepdata,
sensory, titanic, venvironmental,
vethanol

IR ≥ 2 car backache

700 L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704

data. Here the following classification algorithms with different
bias are used: 3-NN [28], RF [48] and SVM [7] with a RBF kernel
function. The multiclass AUC measure was used to evaluate the
predictive performance of the classifiers. The difference between
the AUC values obtained in the filtered datasets and in their noisy
counterparts was also measured [50].

To evaluate the statistical significance of the experimental re-
sults, the Friedman and the Wilcoxon signed-rank statistical tests
[51] with 95% of confidence level were applied to compare the
predictive performances of the different NFs and classifiers. The
datasets used, togetherwith the experimental results, are available
at https://lpfgarcia.github.io/borderline/.

5. Experimental results

This section presents the results obtained in the experiments
carried out in this study. Section 5.1 reports the ranking, the
precision–recall space and the average F1 values for each NF. Sec-
tion 5.2 reports the predictive performance of the classifiers in the
preprocessed and original datasets.

5.1. NF performance per noise level

Fig. 4 summarizes the F1-based predictive performance of the
NFs for the three different methods of artificial noise imputation.
It shows the average ranking of each filter per noise level, regarding
its F1-based predictive performance for all datasets. The x-axis
represents the noise levels. The y-axis shows the ranking value.
The NF with the best F1 value in noise identification will have the
lowest average ranking value. HARF performance is shown by a
line with black circles, CVCF performance is represented by red
triangles, SEF by blue crosses, DEF by green multiplication signs,
DTF by purple lozenges, AENN by orange upside down triangles,
ENN by yellow hollow squares and PruneSF by brown asterisks.

As can be seen in Fig. 4, the ranking of the NFs regarding their
predictive performance changes according to the noise injection
method used. For the Random method, HARF was the NF with the
best performance for 5% of noise level, with statistical significance
according to the Friedman test and Nemenyi post-test at 95%
of confidence level. DEF was the best filter for 10% and 20% of
noise levels, except when statistically compared with HARF. SEF
was superior to all others for 40% of noise level, although its F1
values were statistically similar to those obtained by DEF. The Non
Linearwise method had SEF as the best NF for all noise levels,
except when statistically compared with DTF for all noise levels
and to DEF for low noise levels (5% and 10%). The NFs with the best
performance for the Neighborwise method were: (i) DEF, for 5%
and 10% of noise levels, except when statistically compared with
SEF for both noise levels and HARF for the lowest noise level; and
(ii) SEF for 20% and 40% of noise levels, exceptwhen comparedwith
DEF at 20% of noise level. The NFs with worst ranking positions
were: DTF and ENN, for the random method; CVCF and ENN for
the borderline methods. It is worth noting that, despite also being
used for filtering borderline cases, ENN had a low performance in
the identification of the borderline noisy examples.

Therefore, DEF and SEF obtained the best performance in bor-
derline noise identification. It must be observed that the ranking
position of these NFs is stable for the different noise levels intro-
duced, once they are always among the top-three best performing
NFs. DTF also performedwell in the borderline noise identification.
On the other hand, ENN, CVCF, AENN and PruneSF presented a
poor performance in the identification of borderline noise. The
results for the Random method presented a high variation. Whilst
HARF is very efficient for low Random noise levels, the same was
not true for the highest noise levels. DEF maintained a consistent
performance for Random noise. The NFs showed amixed behavior,

sometimes increasing, other times decreasing their noise detection
ability as higher levels of Random noise are injected. This may be
a consequence of the mixed presence of easy and difficult noisy
examples in the Random datasets.

Based on the previous observations, it is possible to state that
DEF was among the best performing NFs in different scenarios.
DEF is an heterogeneous ensemble that adapts the classifiers to be
combined through a simple strategy.

Fig. 5 plots the results of the best NF for all datasets in the
precision–recall space. Each plot compares two noise injection
methods. Each row of Fig. 5 corresponds to a particular noise level.
The results obtained in the datasets corrupted by the Random
method are shown by black circles, the Non Linearwise method
results are represented by red triangles and the Neighborwise
method results are represented by blue crosses. In each plot, the
x-axis represents the precision and the y-axis represents the recall.
The dashed lines show F1 isolines from 0.1 to 0.9 with intervals of
0.1, i.e., points for which the corresponding F1 values are attained.
The use of isolines in NF evaluation was introduced in Sluban et al.
[13]. The best results are situated near to the top-right of the plots.

It is possible to notice in Fig. 5 different patterns of spreading
of points in the precision–recall space. The Random method pre-
sented the lowest spreading. The results for the Random method
also tend to be closer to the top-right of the plots, evidencing that
the introduced noise may be easier to identify in this case. Besides,
when noise is added through the Random method, the recall of
the NFs tends to be higher than the precision (most of the noisy
examples introduced are correctly identified, but safe cases can
also be identified as noisy). Another interesting result about the
Randommethod is that, for all datasets, as the noise level increases,
the spreading of points decreases and concentrates when the F1
performance is higher than 0.4. This can be due to an increase of NF
evaluation performance in these cases. Both borderline methods
are able to obtain a more diverse spreading of precision–recall
values than the Randommethod.

Regarding the Neighborwise method, the precision and recall
had the same importance for low noise levels. For high noise
levels, precision was superior to recall. Thus, most of the correctly
identified noisy examples are indeed noisy, but the predictive
performance of the NFs in the identification of all noisy examples is
reduced. The spreading of the points also changed, becomingmore
concentrated for high noise levels.

The application of the Non Linearwise method also resulted in
a large spreading of the precision–recall values. However, the NFs
usually gave the same importance to precision and recall. For high
noise levels, the spreading of points is still large, but precision be-
comesmore important than recall, as in the Neighborwisemethod.

In a comparison of the results from borderline methods, the
Non Linearwise method results in a larger spreading of the points
than the Neighborwise method. The increase of noise level also
presented a lower impact in the Non Linearwise method. As con-
sequence, the Non Linearwise method was able to produce more
challenging noisy datasets.

5.2. Performance in the classification step

Fig. 6 summarizes the average differences of AUC performance
in the classification step using the preprocessed datasets in relation
with the AUC obtained for the noisy datasets. It presents the
AUC performance for the k-NN, RF and SVM algorithms for each
dataset. The Randommethod is shown in black, theNon Linearwise
method in red and the Neighborwise method in blue. The x-axis
shows the accumulated AUC values (for 40 executions, that is,
four noise levels x 10 cross-validation runs) and the y-axis shows
the datasets. The datasets are ordered according to the average F1
values obtained by the NFs. The horizontal dotted lines represent

https://lpfgarcia.github.io/borderline/

L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704 701

Fig. 4. Ranking of theNFs according to the F1-based predictive performance in noise identification. The position of eachNF in the ranking corresponds to the average obtained
for all datasets in the corresponding noise level.

Table 2
Average accumulated AUC differences between preprocessed and noisy datasets.
FFF 1 Classifier Random Nonlinearwise Neighborwise

0.9 < F1 ≤ 1.0
k-NN 15.25 15.6815.6815.68 6.08
SVM 5.705.705.70 1.90 5.17
RF 6.44 9.499.499.49 3.91

0.8 < F1 ≤ 0.9
k-NN 2.29∗ 6.406.406.40∗ 0.64
SVM 4.98∗ 6.196.196.19∗ 1.58∗
RF 4.03∗ 4.104.104.10∗ 3.27∗

0.7 < F1 ≤ 0.8
k-NN 16.5816.5816.58∗ −2.21 −0.71
SVM 5.955.955.95∗ −1.18 −0.68
RF 7.957.957.95∗ 1.01 0.77

0.6 < F1 ≤ 0.7
k-NN 19.4319.4319.43∗ 2.71 −0.83
SVM 2.512.512.51∗ 1.74 0.62
RF 7.527.527.52∗ 6.67∗ 1.88+

0.5 < F1 ≤ 0.6
k-NN 15.2515.2515.25∗ −1.90 −6.60∗
SVM 4.394.394.39+ 0.64 0.90
RF 6.406.406.40∗ 4.59 −1.40∗

limits on the F1 performance. Only datasets for which the average
F1 performance in noise identification was higher than 0.5 are
shown. In this figure, positive values (right handed bars) indicate
an increase of predictive performance when the datasets are pre-
processed compared to the use of the original datasets.

According to these results, k-NN and RF benefited more from
the use of NFs. The SVM classifier showed a small increase of per-
formance when NFs were used. This suggests that while k-NN and
RF may be favored by the filtering process, SVM has robust mech-
anisms that are already able to deal with Random, Non Linear-
wise or Neighborwise noise. For specific datasets, like creditscore,
cpu, seroposive, breast-cancer-wisconsin, auto_price, cpu_small and
machine_cpu, the predictive performance of the classifiers was
decreased for the Neighborwise method. For the cpu, seroposive,
breast-cancer-wisconsin, machine_cpu and movement-libras
datasets, the classification performancewas decreasedwhen using
the Non Linearwise method. Most of these datasets are linearly
separable, according to Table 1, and have an intermediate IR.
Therefore, the Non Linearwise noise addition may have a low
impact or has even been inadequate for these datasets.

Comparing the performance between the noise injectionmeth-
ods, the Random method presented the highest increase of per-
formance, mainly for the k-NN classifier. This was expected, once
its noise addition mechanism is naive and unable to evaluate the
NFs properly. Another explanation for these results is that k-NN is
a local classifier and the Random method spreads noisy examples
more uniformly in different neighborhoods. For the same reason,

the k-NN classifier presented a low performance for the Neigh-
borwise noise addition method. Most of the noise added in this
case directly impairs the k-NN decisions, since both are based on
neighborhood information. The use of the Non Linearwise method
decreased the predictive performance for few datasets. Most of the
decreaseswere observed for datasets with low F1 performance and
for the SVM classifier. It is important to note that this method has a
strong bias with the SVM classifier, once it uses the same classifier
to identify the borderline examples to be disturbed.

Table 2 summarizes Fig. 6, presenting the average difference
of AUC values for each F1 interval, classification algorithm and
noise injection method. Positive values represent a performance
increase in the classification step after a NF is applied. Negative
values indicate a decrease of classification performance after noise
filtering. The highest values are highlighted in boldface. Asterisks
and the plus signs represent statistically significance differences,
according to the Wilcoxon signed-rank statistical test at 95% and
90% of confidence levels, respectively.

When noise was added using the Random method, all classi-
fication algorithms benefited from the use of NFs. For the Non
Linearwise and Neighborwise methods, an increase of classifica-
tion performance is more evident when the NF shows a high noise
identification performance (F1 ≥ 0.8). Although the classification
performance increase was smaller for borderline methods, the
Non Linearwise method obtained the best results for almost all
classifiers. These results reinforce the findings that Random noise
may be simpler to identify and that NFs can be better evaluated by

702 L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704

Fig. 5. Performance of the best NF for all datasets in the precision–recall space. The F1 predictive performance is represented by isoline curves in the precision–recall space.

using borderline noise. In fact, the low performance presented by
the NFs in these situations reinforce the need of new approaches
in the design of NFs.

6. Conclusion

This paper proposed borderlinemethods to producemore chal-
lenging and realistic noisy datasets, aiming to improve NF evalua-
tion. Several benchmark public datasets, different NFs and varied
levels of noise were employed in experiments that evaluated the
influence of the noise injection methods in the preprocessing and
classification steps.

The experimental results show that the Random method was
not able to properly evaluate the NFs and that the borderline
methods produce more challenging and realistic noisy cases for
the investigated datasets. The borderline methods were able to
produce results spanning a larger area of the precision–recall space
when compared to the Randommethod. Another interesting result
was the change in the NF ranking. While HARF and DEF were the
best NFs for the Randommethod, SEF andDEFwere the best for the
borderline methods.

Particularly in the classification step, although the performance
increased after the removal of the noise injected by the Random
method, using the Non Linearwise method, the increase of classifi-
cation performance is higher when the NFs obtain high F1 scores in

L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704 703

Fig. 6. Difference of AUC values obtained by the classifiers on the preprocessed datasets in relation to the AUC values obtained for the noisy datasets. Only datasets for which
the NF F1 performance is higher than 0.5 are shown.

noise identification. Therefore, even though the noise injected by
borderline methods can be more complex, the preprocessing step
can still increase the predictive performance of the classification
models after removing this type of noise, mainly for the Non
Linearwise method. Good results were also obtained in the iden-
tification of the Neighborwise noise, but with a lower predictive
performance. This reinforces that the RBF function draws accurate
decision boundaries or gives more importance to specific areas of

the dataset, while the intra/inter distance function may result in
a poor predictive performance in the identification of the intrinsic
noise already present in a dataset.

As future work, the authors would like to evaluate other noise
injection methods based on different measures, such as the hard-
ness measures proposed by Smith et al. [11]. These measures
quantify instance hardness through the misclassification obtained
by a set of distinct classification algorithms. The authorswould also

704 L.P.F. Garcia et al. / Knowledge-Based Systems 163 (2019) 693–704

like to improve the predictive performance of theNFswith a proper
hyper-parameter tuning and to find out the influence of intrinsic
dataset noise level in the predictive performance of NFs.

Acknowledgments

The authors would like to thank CNPq, Brazil (processes
305291/2017-3 and 152098/2016-0), FAPESP, Brazil (processes
2016/18615-0, 2013/07375-0 and2012/22608-8) andCAPES, Brazil
for their financial support. The first and third authors would like
to thank CeMEAI-FAPESP for the computational resources and
Intel for the hardware and software server used in part of the
experiments.

References

[1] R.Y. Wang, V.C. Storey, C.P. Firth, A framework for analysis of data quality
research, IEEE Trans. Knowl. Data Eng. 7 (4) (1995) 623–640.

[2] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, Knowledge discovery and data
mining: towards a unifying framework, in: 2nd International Conference on
Knowledge Discovery and Data Mining, SIGKDD, 1996, pp. 82–88.

[3] D. Pyle, Data Preparation for Data Mining, Morgan Kaufmann, 1999.
[4] X. Wu, Knowledge Acquisition from Databases, in: Tutorial Monographs in

Artificial Intelligence, Greenwood, 1995.
[5] J.I. Maletic, A. Marcus, Data cleansing: beyond integrity analysis, in: Informa-

tion Quality, IQ, 2000, pp. 200–209.
[6] J.R. Quinlan, Induction of decision trees, Mach. Learn. 1 (1) (1986) 81–106.
[7] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 1995.
[8] A.C. Lorena, A.C.P.L.F. de Carvalho, Evaluation of noise reduction techniques in

the splice junction recognition problem, Genet. Mol. Biol. 27 (4) (2004) 665–
672.

[9] D.M. Strong, Y.W. Lee, R.Y. Wang, Data quality in context, Commun. ACM 40
(5) (1997) 103–110.

[10] B. Frenay, M. Verleysen, Classification in the presence of label noise: a survey,
Neural Netw. Learn. Syst. IEEE Trans. 25 (5) (2014) 845–869.

[11] M.R. Smith, T. Martinez, C. Giraud-Carrier, An instance level analysis of data
complexity, Mach. Learn. 95 (2) (2014) 225–256.

[12] D. Gamberger, N. Lavrač, C. Groselj, Experiments with noise filtering in a
medical domain, in: 16th International Conference on Machine Learning,
ICML, 1999, pp. 143–151.

[13] B. Sluban, D. Gamberger, N. Lavrač, Ensemble-based noise detection: noise
ranking and visual performance evaluation, Data Min. Knowl. Discov. 28 (2)
(2014) 265–303.

[14] L.P.F. Garcia, A.C. Lorena, A.C.P.L.F. de Carvalho, Ensembles of label noise
filters: a ranking approach, Data Min. Knowl. Discov. 30 (5) (2016) 1192–
1216.

[15] X. Wu, X. Zhu, Mining with noise knowledge: error-aware data mining, IEEE
Trans. Syst. Man Cybern. A 38 (4) (2008) 917–932.

[16] C.M. Teng, Correcting noisy data, in: 16th International Conference on Ma-
chine Learning, ICML, 1999, pp. 239–248.

[17] X. Zhu, X. Wu, Q. Chen, Eliminating class noise in large datasets, in: 20th
International Conference on Machine Learning, ICML, 2003, pp. 920–927.

[18] X. Zhu, X.Wu, Class noise vs. attribute noise: a quantitative study, Artif. Intell.
Rev. 22 (3) (2004) 177–210.

[19] J.A. Sáez, M. Galar, J. Luengo, F. Herrera, INFFC: An iterative class noise filter
based on the fusion of classifiers with noise sensitivity control, Inform. Fusion
27 (2016) 19–32.

[20] L.P.F. Garcia, A.C. Lorena, A.C.P.L.F. de Carvalho, A study on class noise de-
tection and elimination, in: Brazilian Symposium on Neural Networks, SBRN,
2012, pp. 13–18.

[21] B. Sluban, D. Gamberger, N. Lavrač, Advances in class noise detection, in: 19th
European Conference on Artificial Intelligence, ECAI, 2010, pp. 1105–1106.

[22] C.E. Brodley, M.A. Friedl, Identifying mislabeled training data, J. Artificial
Intelligence Res. 11 (1999) 131–167.

[23] T.K. Ho, M. Basu, Complexity measures of supervised classification problems,
IEEE Trans. Pattern Anal. Mach. Intell. 24 (3) (2002) 289–300.

[24] L.P.F. Garcia, A.C.P.L.F. de Carvalho, A.C. Lorena, Effect of label noise in the
complexity of classification problems, Neurocomputing 160 (2015) 108–119.

[25] I. Tomek, An experiment with the edited nearest-neighbor rule, IEEE Trans.
Syst. Sci. Cybern. 6 (6) (1976) 448–452.

[26] D.L. Wilson, Asymtoptic properties of nearest neighbor rules using edited
data, IEEE Trans. Syst. Sci. Cybern. 2 (3) (1972) 408–421.

[27] S. Verbaeten, A.V. Assche, Ensemble methods for noise elimination in classifi-
cation problems, in: 4th International Workshop Multiple Classifier Systems,
2003, pp. 317–325.

[28] T.M. Mitchell, Machine Learning, in: McGraw Hill Series in Computer Science,
McGraw Hill, 1997.

[29] S. Verbaeten, Identifying mislabeled training examples in ILP classification
problems, in: 12th Dutch-Belgian Conference onMachine Learning, 2002, pp.
1–8.

[30] D. Gamberger, N. Lavrač, Conditions for Occam’s razor applicability and noise
elimination, in: 9th European Conference on Machine Learning, ECML, 1997,
pp. 108–123.

[31] D.R. Wilson, T.R. Martinez, Reduction techniques for instance-based learning
algorithms, Mach. Learn. 38 (3) (2000) 257–286.

[32] T. Khoshgoftaar, P. Rebours, Generating multiple noise elimination filters
with the ensemble-partitioning filter, in: IEEE International Conference on
Information Reuse and Integration, 2004, pp. 369–375.

[33] J.A. Sáez, J. Luengo, J. Stefanowski, F. Herrera, SMOTE-IPF: Addressing the
noisy and borderline examples problem in imbalanced classification by a re-
sampling method with filtering, Inform. Sci. 291 (2015) 184–203.

[34] P. Morales, J. Luengo, L.P.F. Garcia, A.C. Lorena, A.C.P.L.F. de Carvalho, F. Her-
rera, NoiseFiltersR: Label Noise Filters for Data Preprocessing in Classification,
2016. URL https://CRAN.R-project.org/package=NoiseFiltersR.

[35] L.P.F. Garcia, J.A. Sáez, J. Luengo, A.C. Lorena, A.C.P.L.F. de Carvalho, F. Herrera,
Using the one-vs-one decomposition to improve the performance of class
noise filters via an aggregation strategy inmulti-class classification problems,
Knowl.-Based Syst. 90 (2015) 153–164.

[36] J.A. Sáez, B. Krawczyk, M. Woźniak, On the influence of class noise in medical
data classification: treatment using noise filteringmethods, Appl. Artif. Intell.
30 (6) (2016) 590–609.

[37] E.D. Kolaczyk, Statistical Analysis of Network Data: Methods and Models, in:
Springer Series in Statistics, Springer, 2009.

[38] E. Niaf, R. Flamary, C. Lartizien, S. Canu, Handling uncertainties in svm classi-
fication, in: IEEE Statistical Signal Processing Workshop, SSP, 2011, pp. 757–
760.

[39] R.S. Chhikara, J. McKeon, Linear discriminant analysis with misallocation in
training samples, J. Amer. Statist. Assoc. 79 (388) (1984) 899–906.

[40] L.P.F. Garcia, A.C.P.L.F. de Carvalho, A.C. Lorena, Noise detection in the meta-
learning level, Neurocomputing 176 (2016) 14–25.

[41] A.C. Lorena, A.C. De Carvalho, J.M. Gama, A review on the combination of
binary classifiers in multiclass problems, Artif. Intell. Rev. 30 (1–4) (2008) 19.

[42] N. Maciá, E. Bernadó-Mansilla, Towards uci+: A Mindful Repository Design,
Inform. Sci. 261 (2014) 237–262.

[43] M. Lichman, UCIMachine Learning Repository, University of California, Irvine,
School of Information and Computer Sciences, 2013. http://archive.ics.uci.
edu/ml.

[44] J. Vanschoren, J.N.V. Rijn, B. Bischl, L. Torgo, OpenML: Networked Science in
Machine Learning, ACM SIGKDD Explor. 15 (2) (2013) 49–60.

[45] C. Walt, E. Barnard, Measures for the characterisation of pattern-recognition
data sets, in: 18th Annual Symposium of the Pattern Recognition Association
of South Africa, PRASA, 2007, pp. 1–6.

[46] A.C. Lorena, I.G. Costa, N. Spolaôr, M.C.P. de Souto, Analysis of complexity
indices for classification problems: cancer gene expression data, Neurocom-
puting 75 (1) (2012) 33–42.

[47] A. Tanwani, M. Farooq, Classification potential vs. classification accuracy: a
comprehensive study of evolutionary algorithms with biomedical datasets,
in: Learning Classifier Systems, 2010, pp. 127–144.

[48] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[49] D.D. Lewis, Naive (bayes) at forty: the independence assumption in infor-

mation retrieval, in: 10th European Conference on Machine Learning, ECML,
1998, pp. 4–15.

[50] D.J. Hand, R.J. Till, A simple generalisation of the area under the roc curve for
multiple class classification problems, Mach. Learn. 45 (2) (2001) 171–186.

[51] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (2006) 1–30.

http://refhub.elsevier.com/S0950-7051(18)30482-9/sb1
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb1
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb1
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb2
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb2
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb2
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb2
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb2
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb3
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb4
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb4
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb4
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb5
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb5
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb5
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb6
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb7
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb8
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb8
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb8
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb8
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb8
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb9
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb9
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb9
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb10
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb10
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb10
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb11
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb11
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb11
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb12
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb12
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb12
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb12
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb12
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb13
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb13
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb13
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb13
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb13
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb14
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb14
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb14
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb14
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb14
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb15
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb15
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb15
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb16
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb16
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb16
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb17
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb17
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb17
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb18
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb18
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb18
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb19
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb19
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb19
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb19
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb19
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb20
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb20
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb20
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb20
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb20
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb21
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb21
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb21
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb22
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb22
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb22
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb23
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb23
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb23
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb24
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb24
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb24
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb25
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb25
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb25
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb26
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb26
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb26
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb27
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb27
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb27
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb27
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb27
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb28
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb28
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb28
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb29
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb29
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb29
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb29
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb29
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb30
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb30
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb30
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb30
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb30
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb31
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb31
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb31
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb32
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb32
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb32
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb32
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb32
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb33
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb33
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb33
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb33
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb33
https://CRAN.R-project.org/package=NoiseFiltersR
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb35
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb35
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb35
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb35
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb35
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb35
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb35
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb36
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb36
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb36
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb36
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb36
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb37
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb37
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb37
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb38
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb38
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb38
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb38
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb38
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb39
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb39
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb39
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb40
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb40
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb40
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb41
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb41
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb41
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb42
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb42
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb42
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb44
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb44
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb44
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb45
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb45
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb45
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb45
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb45
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb46
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb46
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb46
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb46
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb46
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb47
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb47
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb47
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb47
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb47
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb48
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb49
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb49
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb49
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb49
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb49
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb50
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb50
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb50
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb51
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb51
http://refhub.elsevier.com/S0950-7051(18)30482-9/sb51

	New label noise injection methods for the evaluation of noise filters
	Introduction
	Noise Filters
	Ensemble Based Noise Filters
	Noise Filters Based on Data Descriptors
	Distance Based Noise Filters
	Other Noise Filters

	Artificial Noise
	Noisy at Random Model
	Noisy Not at Random Model

	Experimental Framework
	Datasets
	Methodology Adopted

	Experimental Results
	NF performance per noise level
	Performance in the classification step

	Conclusion
	Acknowledgments
	References

