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Abstract. One of the key traits of Big Data is its complexity in terms
of representation, structure, or formats. One existing way to deal with
it is offered by Semantic Web standards. Among them, RDF –which
proposes to model data with triples representing edges in a graph– has
received a large success and the semantically annotated data has grown
steadily towards a massive scale. Therefore, there is a need for scalable
and efficient query engines capable of retrieving such information. In this
paper, we propose Sparklify : a scalable software component for efficient
evaluation of SPARQL queries over distributed RDF datasets. It uses
Sparqlify as a SPARQL-to-SQL rewriter for translating SPARQL queries
into Spark executable code. Our preliminary results demonstrate that
our approach is more extensible, efficient, and scalable as compared to
state-of-the-art approaches. Sparklify is integrated into a larger SANSA
framework and it serves as a default query engine and has been used by
at least three external use scenarios.

1 Introduction

In the recent years, our information society has reached the stage where it pro-
duces billions of data records, amounting to multiple quintillion of bytes1, on a
daily basis. Extraction, cleansing, enrichment and refinement of information are
key to fuel value-adding processes, such as analytics as a premise for decision
making. Devising appropriate (ideally uniform) representations and facilitating
efficient querying of data, metadata and provenance arising from such phases
constantly poses challenges, especially when data volumes are vast. The most

1
https://www.domo.com/learn/data-never-sleeps-5
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prominent and promising effort is the W3C consortium with encouraging Re-
source Description Framework (RDF)2 as a common data representation and
vocabularies (e.g. RDFS, OWL) as a way to include meta-information about the
data. These data and meta-data can be further processed and analyzed using
the de-facto query language for RDF data, SPARQL3.

SPARQL serves as a standard query language for manipulating and retriev-
ing RDF data. Querying RDF data becomes challenging when the size of the
data increases. Recently, many distributed RDF systems capable of evaluating
SPARQL queries have been proposed and developed ([17], [7]). Nevertheless,
these engines lack one important information derived from the knowledge, RDF
terms. RDF terms includes information about a statement such as language,
typed literals and blank nodes which are omitted from most of the engines.

To cover this spectrum requires a specialized system which is capable of
constructing an efficient SPARQL query engine. Doing so comes with several
challenges. First and foremost, recently the RDF data is increasing drastically.
Just as a record, today we count more than 10,0000 datasets4 available online
represented using the Semantic Web standards. This number is increasing daily
including many other (e.g Ethereum5 dataset) datasets available at the organi-
zation premises. In addition, being able to query this large amount of data in an
efficient and faster way is a requirement from most of the SPARQL evaluators.

To overcome these challenges, in this paper, we propose Sparklify6: a scalable
software component for efficient evaluation of SPARQL queries over distributed
RDF datasets. The conceptual foundation is the application of ontology-based
data access (OBDA) tooling, specifically SPARQL-to-SQL rewriting, for trans-
lating SPARQL queries into Spark executable code. We demonstrate our ap-
proach using Sparqlify, which has been used in the LinkedGeoData7 community
project to serve more than 30 billion triples on-the-fly from a relational Open-
StreetMap database. Our contributions are:

– We present a novel approach for vertical partitioning including RDF terms
using the distributed computing framework, Apache Spark.

– We developed a scalable query engine using Sparqlify – a SPARQL-to-SQL
rewriter on top of Apache Spark (under the Apache Licence 2.0 ).

– We evaluate our approach with state-of-the-art engines and demonstrate it
empirically.

– We integrated the approach into the SANSA [11]8 larger framework. Spark-
lify serves as a default query engine in SANSA. SANSA is an active project
and maintained, including issue tracker, mailing list, changelogs, website,
etc.

2
https://www.w3.org/TR/rdf11-primer/

3
https://www.w3.org/TR/sparql11-overview/

4
http://lodstats.aksw.org/

5
https://goo.gl/mJTkPp

6
https://github.com/SANSA-Stack/SANSA-Query/tree/develop/sansa-query-spark/src/main/scala/
net/sansa_stack/query/spark/sparqlify

7
http://linkedgeodata.org

8
http://sansa-stack.net/
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The paper is structured as follows: Our approach for data modeling and query
translation using a distributed framework is detailed in section 3 and evaluated
in section 4. Related work on the SPARQL query engines is discussed in section 6.
Finally, we conclude and suggest planned extensions of our approach in section 7.

2 Preliminaries

In this section, we first introduce the basic notions used in throughout the paper.

2.1 Sparqlify

Sparqlify9 is a SPARQL-to-SQL rewriter that enables answering SPARQL queries
on relational databases via a set of view definitions. R2RML10 and the more in-
tuitive Sparqlification Mapping Language(SML)11 [18] are supported. In general,
the rewriter compiles every SPARQL query into two related artifacts: A SQL
query and set of SPARQL result variable definitions by means of expressions
over the SQL query’s result set. Sparqlify first converts the query into an al-
gebra expression. Subsequently, algebraic optimizations and normalizations are
applied, such as filter placement and constant folding. Given a query pattern, the
view selection component identifies for every triple pattern the set of candidate
view definitions together with the renaming of their variables to those of the
requesting pattern. This is the base for obtaining the final algebra expression.
In general, this involves a cartesian product between triple patterns and views
definitions, which leads to a union of joins between the candidate views. Prun-
ing is performed based on RDF term types and IRI prefixes: Choosing a view
that binds variables to certain term types or prefixes will constrain subsequent
loops only to those candidates with compatible bindings for these variables. Fi-
nally, this algebra expression are transformed into an SQL algebra expression
using the general relational algebra for RDB-to-RDF mappings. The SQL query,
which has been obtained, is used further (e.g. in our case for executing it over
Spark SQL engine).

2.2 Apache Spark

Apache Spark is a fast and generic-purpose cluster computing engine which is
built over Hadoop ecosystem. Its core data structure are Resilient Distributed
Dataset (RDD) [19] which are a fault-tolerant and immutable collections of
records that can be operated in a parallel setting. Spark also provides high-
level APIs, and tools, including Spark SQL [2] for SQL and structured data
processing which allows querying structured data inside Spark programs. In this
work, we make use of the above libraries from the Apache Spark stack.

9
https://github.com/SmartDataAnalytics/Sparqlify

10
https://www.w3.org/TR/r2rml/

11
http://sml.aksw.org/

https://github.com/SmartDataAnalytics/Sparqlify
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Fig. 1. Sparklify Architecture Overview.

3 Sparklify

In this section, we present the overall architecture of our proposed approach, the
SPARQL-to-SQL rewriter, and mapping to Spark Scala-compliant code.

3.1 System Architecture

The overall system architecture is shown in Figure 1. It consists of four main
components: Data Model, Mappings, Query Translator and Query Evaluator. In
the following, each component is discussed in details.

Data Model SANSA [11] comes with different data structures and different
partitioning strategies. We model and store RDF graph following the concept of
RDDs – a basic building blocks of the Spark Framework. RDDs are in-memory
collections of records which are capable of operating in parallel overall larger
cluster. Sparklify makes use of SANSA bottom layer which corresponds with the
extended vertical partitioning (VP) including RDF terms. This partition model
is the most convenient storage model for fast processing of RDF datasets on top
of HDFS.

Data Ingestion (step 1) RDF data first needs to be loaded into a large-scale stor-
age that Spark can efficiently read from. We use Hadoop Distributed File-System
(HDFS)12. Spark employ different data locality scheme in order to accomplish
computations nearest to the desired data in HDFS, as a result avoiding i/o
overhead.

12
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
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Data Partition (step 2) VP approach in SANSA is designed to support exten-
sible partitioning of RDF data. Instead of dealing with a single three-column
table (s, p, o), data is partitioned into multiple tables based on the used RDF
predicates, RDF term types and literal datatypes. The first column of these
tables is always a string representing the subject. The second column always
represents the literal value as a Scala/Java datatype. Tables for storing literals
with language tags have an additional third string column for the language tag.

Mappings/Views After the RDF data has been partitioned using the exten-
sible VP (as it has been described on step 2 ) the relational-to-RDF mapping
is performed. Sparqlify supports both the W3C standard R2RML sparqlifica-
tion [18].

The main entities defined with SML are view definitions. See step 5 in the
Figure 1 as an example. The actual view definition is declared by the Create
View . . . As in the first line. The remainder of the view contains these parts:
(1) the From directive defines the logical table based on the partitioned table
(see step 2 ). (2) an RDF template is defined in the Construct block containing,
URI, blank node or literals constants (e.g. ex:worksAt) and variables (e.g. ?emp,
?institute). The With block defines the variables used in the template by means
of RDF term constructor expressions whose arguments refer to columns of the
logical table.

Query Translation This process generates a SQL query from the SPARQL
query using the bindings determined in the mapping/view construction phases.
It walks through the SPARQL query (step 4 ) using Jena ARQ13 and generates
the SPARQL Algebra Expression Tree (AET). Essentially, rewriting SPARQL
basic graph patterns and filters over views yields AETs that are UNIONS of
JOINS. Further, these AETs are normalized and pruned in order to remove
UNION members that are known to yield empty results, such as joins based
on IRIs with disjoint sets of known namespaces, or joins between different RDF
term types (e.g. literal and IRI). Finally, the SQL is generated (step 6 ) using
the bindings corresponding to the views (step 5 ).

Query Evaluator The SQL query created as described in the previous section
can now be evaluated directly into the Spark SQL engine. The result set of this
SQL query is distributed data structure of Spark (e.g. DataFrame)(step 7 ) which
then is mapped into a SPARQL bindings. The result set can further used for
analysis and visualization using the SANSA-Notebooks (step 8 ) [5].

3.2 Algorithm Description

The algorithm described in this paper has been implemented using the Apache
Spark framework (see algorithm 1). It constructs the graph (line 1) while reading

13
https://jena.apache.org/documentation/query/

https://jena.apache.org/documentation/query/
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Algorithm 1: Sparklify algorithm.

input : q: a SPARQL query, input: an RDF dataset
output: df list of result set

1 graph = spark.rdf(lang)(input)
2 graph.persist()
3 partitionGraph← graph.partitionGraph()
4 result← partitionGraph.sparql(q)
5 return result

Algorithm 2: PartitionGraph algorithm.

input : graph: an RDD[Triple] dataset
output: views a mapped views

1 foreach triple ∈ graph do
2 s← triple.getSubject; o← triple.getObject
3 subjectType← getRDFTermType(s); objectType← getRDFTermType(o)

4 predicate← triple.getPredicate.getURI
5 if o.isLiteral then
6 if isPlainLiteral(o) then
7 datatype← XSD.xstring.getURI
8 else
9 datatype← o.getLiteralDatatypeURI

10 else
11 datatype← string.Empty

12 langTagPresent← isP lainLiteral(o)
13 views.add(partitioner(subjectType, predicate, objectType, datatype,
14 langTagPresent))

15 return views

RDF data and converts it into RDD of triples. After, it partitions the data (line 3,
for more details see algorithm 2) using the vertical partitioning (VP) strategy.
Finally, the query evaluator is constructed (line 4) which is described into more
details in algorithm 3 for consistency.

Partitioning the Graph The partitioning algorithm (see algorithm 2) trans-
forms the RDF graph into a convenient VP including RDF terms (line 13). For
each triple in the graph in a distributed fashion, it does the following: It gets
the RDF terms about subjects and objects (line 3). In case of a literal it assigns
the data type for a given column while partitioning the data to: String (line 7)
when is plain literal, otherwise gets the data type of a given literal (e.g. Integer,
Double) (line 9). The remaining block is the language tag (line 12) which is re-
quired for an extra column on the partitioned table containing the language tag
value. After all this information is populated, the partitioned block is performed
using the map transformation function of Spark splitting the tables based on the
above information.
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Algorithm 3: sparql algorithm.

input : views: a Map[partition, RDD[Row]] views, q: a SPARQL query
output: df a data frame with the rewritten SPARQL query’s result set

1 vds← emptyList()
2 foreach (v, rdd) ∈ views do
3 vd← Sparqlify.createV iewDefinition(v)
4 tableName← vd.logicalTableName
5 scalaSchema← v.layout.schema
6 sparkSchema← ScalaReflection.schemaFor(scalaSchema).dataType
7 df ← spark.createDataFrame(rdd, sparkSchema)
8 df.createOrReplaceTempV iew(vd.logicalTableName)
9 vds.add(vd)

10 rewriter ← Sparkqlify.createDefaultSparqlSqlStringRewriter(vds)
11 rewrite← rewriter.rewrite(q)
12 sqlQueryStr ← rewrite.sqlQueryString
13 df ← spark.sql(sqlQueryStr)
14 return df

Querying the Graph Given a SPARQL query and a set of partitions together
with associated RDDs, Sparklify first has to create OBDA view definitions from
the partitions (line 3) and register their corresponding RDDs with names that
can be referenced from Spark SQL (line 8). Hence, the algorithm collects the
schema (line 6) and constructs a logical table name (line 4) based on the par-
titions. The final step is to create a Spark data frame (line 13) from the SQL
query that is part of the rewrite object generated by Sparqlify (line 12).

4 Evaluation

The goal of our evaluation is to observe the impact of the extensible VP as well as
analyzing its scalability when the size of the datset increases. At the same time,
we also want to measure the effect of using Sparqlify optimizer for improving
the query performance. Especially, we want to verify and answer the following
questions:

Q1) : Is the runtime affected when more nodes are added in the cluster?
Q2) : Does it scale to a larger dataset?
Q3) : How does it scale when adding a larger number of datasets?

In the following, we present our experiments setting including the benchmarks
used and server configurations. Afterword, we elaborate on our findings.

4.1 Experimental Setup

We used two well-known SPARQL benchmarks for our evaluation. The Lehight
University Benchmak (LUBM) v3.1 [9] and Waterloo SPARQL Diversity Test
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Suite (WatDiv) v0.6 [1]. Characteristics of the considered datasets are given in
Table 1.

LUBM comes with a Data Generator (UBA) which generates synthetic data
over the Univ-Bench ontology in the unit of a university. Our LUBM datasets
consist of 1000, 5000, and 10000 universities. The number of triples varies from
138M for 1000 universities, to 1.4B triples for 10000 universities. LUBM ’s test
suite is comprised of 14 queries.

We have used WatDiv datasets with approximate 10K to 1B triples with
scale factors 10, 100 and 1000, respectively. WatDiv provides a test suite with
different query shapes, therefore, it allows us to compare the performance of
Sparklify and the other approach we compare with in a more compact way. We
have generated these queries using the WatDiv Query Generator and report the
average mean runtime in the overall results presented below. It comes with a
set of 20 predefined query templates so-called Basic Testing Use Case which is
grouped into four categories, based on the query shape : star (QS), linear (QL),
snowflake (QF), and complex (QC).

−→ LUBM Watdiv

1K 5K 10K 10M 100M 1B

#nr. of triples 138,280,374 690,895,862 1,381,692,508 10,916,457 108,997,714 1,099,208,068

size (GB) 24 116 232 1.5 15 149

Table 1. Summary information of used datasets (nt format).

We implemented Sparklify using Spark-2.4.0, Scala 2.11.11, Java 8, and Spar-
qlify 0.8.3 and all the data were stored on the HDFS cluster using Hadoop 2.8.0.
All experiments were carried out on a commodity cluster of 7 nodes (1 master,
6 workers): Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz (32 Cores), 128 GB
RAM, 12 TB SATA RAID-5, connected via a Gigabit network. The experiments
have been executed three times and the average runtime has been reported into
the results.

4.2 Results

We evaluate Sparklify using the above datasets and compare it with the chosen
state-of-the-art distributed SPARQL query evaluator. Since our approach does
not involve any pre-processing of the RDF data before being able to evaluate
SPARQL queries on it, Sparklify is thereby closer to the so-called direct eval-
uators. Indeed, Sparklify only needs to virtually partition the data prior. As a
consequence, we omit other distributed evaluators (such as e.g. S2RDF [17]) and
compare it with SPARQGX [7] as it outperforms other approaches as noted by
Graux et.al [7]. We compare our approach with SPARQLGX ’s direct evaluator
named SDE and report the loading time for partitioning and query execution
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Runtime (s) (mean)

−→ SPARQLGX-SDE Sparklify

a) total b) paritioning c) querying d) total

W
a
t
d
iv

-1
0
M

QC 103.24 134.81 61 195.84

QF 157.8 241.24 107.33 349.51

QL 102.51 236.06 134 370.3

QS 131.16 237.12 108.56 346

W
a
t
d
iv

-1
B

QC partial fail 778.62 2043.66 2829.56

QF 6734.68 1295.31 2576.52 3871.97

QL 2575.72 1275.22 610.66 1886.73

QS 4841.85 1290.72 1552.05 2845.3

L
U
B
M

-1
0
K

Q1 1056.83 627.72 718.11 1346.8

Q2 fail 595.76 fail n/a

Q3 1038.62 615.95 648.63 1267.37

Q4 2761.11 632.93 1670.18 2303.18

Q5 1026.94 641.53 564.13 1206.67

Q6 537.65 695.74 267.48 963.62

Q7 2080.67 630.44 1331.13 1967.25

Q8 2636.12 639.93 1647.57 2288.48

Q9 3124.52 583.86 2126.03 2711.24

Q10 1002.56 593.68 693.73 1287.71

Q11 1023.32 594.41 522.24 1118.58

Q12 2027.59 576.31 1088.25 1665.87

Q13 1007.39 626.57 6.66 633.26

Q14 526.15 633.39 258.32 891.89

Table 2. Performance analysis on large-scale RDF datasets.

time, see Table 2. We specify “fail” whenever the system fails to complete the
task and “n/a” when the task could not be completed due to a failure in one of
the intermediate phase. In some cases e.g. in Table 2, QC in Watdiv-1B dataset,
we define ”partial fail” due to the failure of one of the queries, therefore the
sum-up is not possible.

Findings of the experiments are depicted in Table 2, Figure 2, Figure 3, and
Figure 4.

To verify Q1, we analyze the speedup and compare it with SPARQLGX. We
run the experiments on three datasets, Watdiv-10M, Watdiv-1B and LUBM-
10K.

Table 2 shows the performance analysis of two approaches run on three
different datasets. Column SPARQLGX-SDEa reports on the performance of
SPARQLGX-SDE considering the total runtime to evaluate the given queries.
Column Sparklifyb lists the times required for Sparklify to perform the VP and
then the query execution time is reported on the Sparklifyc. Total runtime for
Sparklify is shown in the last column, Sparklifyd.
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We observe that the execution of both approaches fails for the Q2 in the
LUBM-10K dataset while evaluating the query. We believe that it is due to
the reason that LUBM Q2 involves a triangular pattern which is often resource
consuming. As a consequence, in both cases, Spark performs the shuffling (e.g.
data scanning) while reducing the result set. It is interesting to note that for
the Watdiv-1B dataset, SPARQLGX-SDE fails for the query C3 when data
scanning is performed. Sparklify is capable of evaluating it successfully. Due to
the Spark SQL optimizer in conjunction with Sparqlify’s approach of rewriting
a SPARQL query typically into only a single SQL query – effectively offloading
all query planning to Spark – Sparklify performs better than SPARQLGX-SDE
when the size of the dataset increases (see Watdiv-1B results in the Table 2) and
when there are more joins involved (see Watdiv-1B and LUBM-10K results in
the Table 2). SPARQLGX-SDE evaluates the queries faster when the size of the
datasets is smaller, but it degrades when the size of the dataset increases. The
likely reason for Sparklify’s worse performance on smaller datasets is its higher
partitioning overhead. Figure 2 shows that Sparklify starts outperforming when
the size of the datasets grows (e.g. Watdiv-100M ).

1065.81 1363.08

8604

391.47

1673.79

14152.25

Watdiv dataset / (size in GB)

Ru
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im
e 

(s
)
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Sparklify SAPRQLGX-SDE

Fig. 2. Sizeup analysis (on Watdiv dataset).

Size-up scalability analysis To measure the performance of the data
scalability (e.g. size-up) of both approaches, we run experiments on three dif-
ferent sizes of Watdiv (see Figure 2). We keep the number of nodes constant
i.e 6 worker nodes and grow the size of the datasets to measure whether both
approaches can deal with larger datasets. We see that the execution time for
Sparklify grows linearly compared with SPARQLGX-SDE, which keeps staying
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as near-linear when the size of the datasets increases. The results presented show
scalability of Sparklify in context of the sizeup, which addresses the question Q2.

Node scalability analysis To measure the node scalability of Sparklify,
we vary the number of worker nodes. We vary them from 1, 3 to 6 worker nodes.
Figure 3 depict the speedup performance of both approaches run on Watdiv-
100M datasaet when the number of worker nodes varies. We can see that as the
number of nodes increases, the runtime cost for the Sparklify decrease linearly.
The execution time for Sparklify decreases about 0.6 times (from 2547.26 seconds
down to 1588.4 seconds) as worker nodes increase from one to three nodes.
We see that the speedup stays constant when more worker nodes are added
since the size of the data is not that large and the network overhead increases
a little the runtime when it runs over six worker nodes. This imply that our
approach is efficient up to three worker nodes for the Watdiv-100M (15GB)
dataset. In another hand, SPARQLGX-SDE takes longer to evaluate the queries
when running on one worker node but it improves when the number of worker
nodes increases.

Result presented here shows that Sparklify can achieve linear scalability in
the performance, which addresses Q3.

2547.26

1588.4

1654.14

8323.04

2848.11
2210.02

# of worker nodes

Ru
nt

im
e 

(s
)

0

2500

5000

7500

10000

1 3 6

Sparklify SAPRQLGX-SDE

Fig. 3. Node scalability (on Watdiv-100M).

Correctness of the result set In order to assess the correctness of the
result set, we computed the count of the result set for the given queries and
compare it within both approaches. We conclude that both approaches return
exactly the same result set which implies the correctness of the results.
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Overall analysis by SPARQL queries Here we analyze Watdiv queries
run on Watdiv-100M dataset in a cluster mode on both approaches.
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446.29 451.11 465.68
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Sparklify SAPRQLGX-SDE

Fig. 4. Overall analysis of queries on Watdiv-100M dataset (cluser mode).

According to Figure 4, SPARQLGX-SDE performance decreases as the num-
ber of triple patterns involved in the query increase. This might be due to the fact
that SPARQLGX-SDE has to read the whole triple file each time. In contrast to
SPARQLGX-SDE, Sparklify seems to perform well when there are more triple
pattern involved (see queries QC, QF and QS in the Figure 4) but slightly worst
when there are linear queries (see QL) evaluated. This may be due to the reason
that Sparqlify typically rewrites a SPARQL query into a single SQL query, thus
maximizing the opportunities given to the Spark SQL optimizer. Conversely,
SPARQLGX-SDE constructs the workflow by chaining Scala API calls, which
may restrict the possibilities e.g. in regard to join ordering. Based on our find-
ings and the evaluation study carried out in this paper, we show that Sparklify
is scalable and the execution time ends in a reasonable time given the size of the
dataset.

5 Use Cases

Sparklify, as a default query engine for SANSA has been used in different major
use cases. Below, we list some of them that we are aware of using Sparklify:
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Blockchain – Alethio Use Case Alethio14 try to present the big picture
of the whole Ethereum ecosystem. It is a powerful blockchain data, analytics, and
visualisation platform. It contains more than 18 Billion triples datasets “rdfized”
using the structure of the Ethereum ontology15. They are taking advantage of
the SANSA stack by querying this amount of data at scale e.g. analyzing the
Hubs & Authorities in the Ethereum Transaction Network16 and other analytics.

SPECIAL – A Semantic Transparency and Compliance Use Case
SPECIAL17 is a Scalable Policy-aware Linked Data platform for privacy, trans-
parency, and compliance. Within the project, they introduce SPIRIT – a trans-
parency and compliance checking implementation of the SANSA stack. SPE-
CIAL uses SANSA engine in order to analyze the log information concerning
personal data processing and sharing that as an output from line of business
applications on a continuous basis, and to present the information to the user
via the SPIRIT dashboard. The SPIRIT transaction log processing allows users
to: (1) define the set of policies rules, (2) initialize the query engine with the log
and schema/ontology data, here is where Sparklify is used in specific, (3) create
a reasoner set reasoning profile, and (4) apply these rules to the given query in
order be compliant with the policy rules.

SLIPO – Categorizing Areas of Interests (AOI) Use Case SLIPO18

take advantage of the Semantic Web Technologies for the scalable and efficient
integration of Big Point of Interest (POI) datasets. In particular, the project
focuses on designing efficient pipelines dealing with large semantic datasets of
POIs: a wide range of features are available inter alia fusion & cleaning distinct
datasets or detection of future “hot” AOIs where businesses should be created.
In this project, Sparklify is used through the SANSA query layer to refine, filter
and select the relevant POIs which are needed by the pipelines.

6 Related Work

As our main focus is on the area of distributed computing, we omit the cen-
tralized systems e.g. RDF-3X [12] or Virtuoso [4] (see [6] for a survey) and we
review the distributed ones only (see [10] for a recent survey). Further, this set
of tools is divided into: MapReduce-based systems and In-Memory systems e.g.
on top of Apache Spark.

MapReduce systems – SHARD [14] is one approach which groups RDF data
into a dedicated partition so-called semantic-based partition. It groups these
RDF data by subject and implements a query engine which iterates through each
of the clauses used on the query and performs a query processing. A MapReduce
job is created while scanning each of the triple patterns and generates a single
plan for each of the triple pattern which leads to a larger query plan, therefore,

14
https://aleth.io/

15
https://github.com/ConsenSys/EthOn

16
https://bit.ly/2YX7CXG

17
https://www.specialprivacy.eu

18
http://slipo.eu/

https://aleth.io/
https://github.com/ConsenSys/EthOn
https://bit.ly/2YX7CXG
https://www.specialprivacy.eu
http://slipo.eu/
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it contains too many Map and Reduces jobs. PigSPARQL [15] is yet another
approach which uses Hadoop based implementation of vertical partitioning for
data representation. It translated the SPARQL queries into Pig19 LATIN queries
and uses Pig as an intermediate engine. Another approach which is based on the
MapReduce is Sempala [16] – as SPARQL-to-SQL approach on top of Hadoop. It
uses Impala20 as a distributed SQL processing engine. Sempala uses a so-called
unified vertical partitioning (single property table) in order to boost the star-
shaped queries by excluding the joins. Hence, its limitation is that it is designed
only to that particular shape of the queries. RYA [13] is a Hadoop based scalable
RDF store that uses Accumulo21 as a distributed key-value store for indexing
the RDF triples. RYA indexes triples into three tables and replicate them across
the cluster for leveraging the indexes over all the possible records. It has the
mechanism of performing join reorder, but it lacks of the in-memory computa-
tion, which makes it not comparable with other systems. While the MapReduce
paradigm has been realized for disk-based as well as in-memory processing, the
concept is not concerned with controlling aspects of general distributed work-
flows, such as which intermediate results to cache. As a consequence, high level
frameworks were devised which may use MapReduce as a building block.Apache
Spark is one of them [19]. Below, we will list some of the approaches which make
use of the Apache Spark (in-memory computation) framework.

In-Memory systems – SPARQLGX [7] and S2RDF [17] approaches are con-
sidered the most recent distributed SPARQL evaluators over large-scale RDF
datasets. SPARQLGX is a scalable query engine which is capable of evaluating
efficiently the SPARQL queries over distributed RDF datasets [8]. It provides
a mechanism for translating SPARQL queries into Spark executable code for
better leveraging the advantage of the Spark framework. It uses a simplified
VP approach, where each predicate is assigned with a specific parquet file. As
an addition, it is able to assign RDF statistics for further query optimization
while also providing the possibility of directly query files on the HDFS using
SDE. S2RDF is similar to SPARQLGX, but instead of dealing with direct Spark
code (aka RDDs), it translates SPARQL queries into SQL ones run by Spark-
SQL. It introduces a data partitioning strategy that extends VP with additional
statistics, containing pre-computed semi-joins for query optimization.

7 Conclusions and Future Work

Querying RDF data becomes challenging when the size of the data increases.
Existing Spark-based SPARQL systems mostly do not retain all RDF term in-
formation consistently while transforming them to a dedicated storage model
such as using vertical partitioning. Often, this process is both data and com-
puting intensive and raises the need for a scalable, efficient and comprehensive
query engine which can handle large scale RDF datasets.

19
https://pig.apache.org/

20
https://impala.apache.org/

21
https://accumulo.apache.org

https://pig.apache.org/
https://impala.apache.org/
https://accumulo.apache.org
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In this paper, we propose Sparklify : a scalable software component for efficient
evaluation of SPARQL queries over distributed RDF datasets. It uses Sparqify
as a SPARQL-to-SQL rewriter for translating SPARQL queries into Spark exe-
cutable code. By doing so, it leverages the advantages of the Spark framework.
SANSA features methods to execute SPARQL queries directly as part of Spark
workflows instead of writing the code corresponding to those queries (sorting,
filtering, etc.). It also provides a command-line interface and a W3C standard
compliant SPARQL endpoint for externally querying data that has been loaded
using the SANSA framework. We have shown empirically that our approach can
scale horizontally and perform well w.r.t to the state-of-the-art approaches.

With this work, we showed that the application of OBDA tooling to Big
Data frameworks achieves promising results in terms of scalability. We present
a working prototype implementation that can serve as a baseline for further
research. Our next steps include evaluating other tools, such as Ontop [3], and
analyze how their performance in the Big Data setting can be improved further.
For example, we intend to investigate how OBDA tools can be combined with
dictionary encoding of RDF terms as integers and evaluate the effects.
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