Scalable Distributed Genetic Algorithm using
Apache Spark (S-GA)

Fahad Maqgbool! Saad Razzaq' Jens Lehmann? and Hajira Jabeen?

! University of Sargodha, Pakistan fahad.magbool@uos.edu.pk,
saad.razzaq@uos.edu.pk
2 Bonn University, Germany, jabeen@cs.uni-bonn.de, lehmann@cs.uni-bonn.de

Abstract. In the era of big data with real-time data acquisition tools,
the solutions to large-scale optimization problems are strongly desired.
Genetic Algorithms are an efficient optimization algorithms that have
been successfully applied to solve a multitude of optimization problems.
The growing need for large-scale optimization and inherent parallel evo-
lutionary nature of the algorithm, calls for exploring them for parallel
processing using existing parallel, in-memory, computing frameworks like
Apache Spark. In this paper, we present a framework for Scalable Ge-
netic Algorithms on Apache Spark (S-GA). The S-GA makes liberal use
of Sparks RDDs for parallel, distributed processing. We have tested S-GA
on several benchmark functions for large-scale continuous optimization
ranging up to 2000 dimensions, 10,000 population, and 40 million gener-
ations. We have tested and compared our results with the Sequential Ge-
netic Algorithm (SeqGA) and the results of our proposed parallel model
have been found better, in addition to scaling to large-scale optimization
problems.

Keywords: Apache Spark - Parallel Genetic Algorithms - Function Op-
timization - Hadoop Map Reduce.

1 INTRODUCTION

Owing to the inherently decentralized nature of Genetic Algorithms (GA), a
multitude of variants of parallel GA (PGA) have been introduced to date [1,
2]. However, their application has been limited to moderately sized optimization
problems and focus mostly remained on speeding up the performance of other-
wise time-consuming and inherently iterative algorithms. To deal with large-scale
optimization problems, a number of architectures ranging from; multi-core sys-
tems to standalone clusters, making use of distributed storage file system or
distributed processing frameworks like Apache Hadoop, have been proposed to
achieve scalability in PGA [3-6].Hadoop Map Reduce [7] is a reliable, scalable
and fault tolerant framework. However, Hadoop requires writing data to HDFS
after each iteration to achieve this fault tolerance. In case of CPU bound iterative
processing, e.g. Genetic Algorithms, this I/O overhead is undesirable and sub-
stantially dominates the processing time. PGA has been explored for numerous
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interesting applications like software fault prediction [8], test suite generation
[9], sensor placement [10] assignment scheduling [11-13], dynamic optimization
[23], adapting offspring population size and number of islands [24]. Most of the
above-mentioned works have used distributed frameworks and they evaluate the
effectiveness of PGAs in term of execution time, computation effort, solution
quality, and compare the results with SeqGA. However, they have experimented
with simpler problems which can be solved using limited population size and less
number of generations overlooking the scalability that can be achieved by these
frameworks to solve large-scale optimization problems. Apache Spark is an open
source distributed cluster computing framework that has gained fame in recent
years. It performs well for large-scale distributed operations due to its faster
in-memory operations. It performs well for iterative operations besides its high
memory requirement [14].Contrary to Hadoop, Spark keeps data in memory and
uses lineage graphs to achieve resilience and fault tolerance. This makes the com-
puting faster and eliminates the I/O overhead incurred in case of map-reduce.
Spark provides API for SQL like processing, stream processing using concepts
of mini-batches, iterative machine learning algorithms and Graphs processing
library [15].Sparks efficient data processing has proven to 100 times faster for in-
memory operations and 10 times faster for disk operations compared to Hadoop
Map Reduce. Moreover, it is designed to have a high frequency of in-memory
operations as compared to disk operations. A comparison of Hadoop Map Re-
duce based parallel implementations of the three main parallel models of GA
i.e. global single-population master-slave GAs (global model), single-population
fine-grained (grid model), multiple-population coarse-grained (island model) is
discussed by F. Ferrucci et.al [8]. Their study reveals that overheads of Hadoop
distributed file system make Global and Grid models less attractive as compared
to Island model for parallelizing GA in term of HDFS access, communication
and execution time, since Island model performs less HDFS operations, resulting
in optimized resource utilization and efficient execution time. However, they re-
ported experimental results of Global, Grid, and Island models on 200 population
size, with a run of maximum 300 generations on smaller problems with a limited
number of dimensions (up to 18).They concluded that distributed frameworks
provide efficient support for data distribution, parallel processing, and mem-
ory management. But they incur the overhead of communication delays. In this
paper, we propose a scalable GA, S-GA. The proposed algorithm is evaluated
for scalability with the SeqGA and found to be time efficient. S-GA tries to
reduce the communication between master and worker nodes of Apache Spark
for efficient resource utilization. In the traditional Island model, the commu-
nication among different islands is directly proportional to the population and
solution size. This directly translates to communication overhead in large-scale
optimization problems making this model less suitable for scalability. In S-GA,
the communication is independent of the population size and is limited by the
migration rate and problem size, hence, reducing a significant amount of data
transfer between parallel computations making it a suitable choice for scalable
problems. S-GA is available as open source, freely available software. The pa-
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per is structured as follows: In section 2, related work is discussed. Background
knowledge section is explored in section 3. The proposed S-GA is detailed in
section 4. Experiments and evaluation are shown in section 5. Conclusion and
future work are presented in section 6.

2 RELATED WORK

The island model was initially proposed by D. Whitley et.al [16]. It was expected
that Island model would outperform SeqGA, because of the diversity of chro-
mosomes and migration of individuals among several islands. However, results
revealed that Island model may perform better only if increasing the population
size does not help in solving the problem and migration transfer information
among sub-populations is handled carefully. Island model uses a large popula-
tion divided among different subpopulations, preserving genetic diversity among
these subpopulations, while SeqGA uses single large population pool. Map Re-
duce framework is used to make GA scalable [17]. Experiments performed on
OneMax problem addressed the scalability and convergence in terms of decreased
time per iteration. This was achieved by increasing the number of resources while
keeping problem size fixed. Convergence and scalability were discussed up to 105
and 108 variable problems for counting and maximizing 1s in a bit string. D. Keo
and A. Subasi [18] discussed PGA using Hadoop map-reduce framework. Their
focus was to improve final solution quality and cloud resource utilization. They
obtained improved performance in term of convergence but couldnt improved in
term of solution quality. Edgar et.al [19] proposed the speed up to multi-objective
optimization using EA. Experiments were performed on various objective func-
tions including Simple Evolutionary Multi-objective Optimizer (SEMO), global
SEMO for OneMinMax, and Lots bi-objective function. The speedup was gained
by optimizing in fewer generations compared to other classical parent selection
methods with diversity based parent selection. The technique focused on indi-
viduals having high diversity but located in poorly explored areas. Wanru et.al
[20] contributed theoretical aspect of maximizing the diversity of a population
in EA that contains several high-quality solutions. They worked on OneMax and
Leading One’s problems. Results revealed that algorithm efficiently maximizes
the diversity of a population. Technique lacks in the experimental framework
and didnt address how diversity in solutions helps in large-scale optimization
problems. GA and PGA are widely used as an application area. Amaro B. et.al
[21] applied parallel biased random-key GA with multiple populations on irreg-
ular strip packing problem. In this problem set, items of variable length and
fixed width should be placed in a container. Their focus is to reduce the area
required to fulfill the given demand. For an efficient layout scheme, they have
used the collision-free region as a partition method along with a meta-heuristic
and a placement algorithm. Computations performed on datasets show com-
petitive results with other relevant techniques. F. Gronwald et.al [22] presented
determining a source of air dispersion. A concentration profile was compiled by
considering the readings from different points in an area. They used Backward
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Parallel Genetic Algorithm (BPGA) that utilizes multiple guesses in a genera-
tion, and the best one is determined by a fitness function. This best guess is used
in the reproduction of next generation. After several generations, BPGA finds
the location and amount of pollutant source in air. Experimental results were
not compared with any other model. PGA using Spark framework was proposed
for the pairwise test suite generation. Parallelization was achieved in term of
fitness evaluation and genetic operations. Results were compared with SeqGA
on synthetic and real-world datasets. PGA performs better than SeqGA in term
of test suite size generation [9]. In this paper, we proposed scalable PGAs for
large-scale optimization problems using Apache Spark S-GA. Inbuilt features
of Apache Spark and independence of S-GA from migration overhead with an
increase in population size, makes S-GA scalable. We have compared S-GA re-
sults with SeqGA for several different parameters. Details have been discussed
in experiment section.

3 BACKGROUND

3.1 Apache Spark

A group at the University of California, Berkeley started Apache Spark Project
in 2009 for distributed data processing. Apache Spark provides data sharing ab-
straction using Resilient Distributed Datasets (RDD). While running on a clus-
ter, the master node is responsible for the creation of RDD while each worker
node can process a portion of the distributed RDD. Each RDD is divided into
logical partitions and each worker node can process one or more partitions. RDD
supports two types of operations: i.) Transformations, ii.) Actions. Transforma-
tions are lazy operations that create a new dataset from existing data in RDD.
By lazy evaluation we means that transformations are not applied until an ac-
tion is encountered. The actions are aggregate operations that transfer data from
worker node to master node.

RDD is an immutable data structure, once created cant be modified. The
only way to update RDD data is to create a new RDD. Creation is always
done at the master node and then it is distributed among the worker nodes in
the form of logical units called Partitions (Pti). Each worker node can con-
tain one or more partitions. Reducing the number of RDD creations massively
reduces the communication overhead as each RDD creation results in data com-
munication between master and worker nodes. Creation of a new RDD results
in network communication between master and worker nodes. Hence avoiding
aforementioned transformation results in significant reduction of communication
overhead

3.2 Sequential Genetic Algorithm (SeqGA)

SeqGA also known as Canonical GA is a stochastic search method that is used
to find the optimal solution for optimization problem. It consists of a single
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pool of population (panmixia) and applies stochastic operators (i.e. Selection,
Crossover, Mutation, and Survival Selection) to create a new evolved popula-
tion. For large scale problems, SeqGA may require more computational efforts
including more memory and long execution time. Table 1. explains the evolution
process of SeqGA.

Table 1. Sequential Genetic Algorithm.

P < —Generate Initial Population
while ( Stopping Criteria Not Met )
P < — Select Parents (P)

P< — Crossover (P)

P < — Mutate (P)

P< — Survival-Selection (P U P)
end while

Parent Selection specifies how individuals will be selected for reproduction.
Crossover helps to explore the search space by generating new solutions while
mutation exploits the solutions for improvement. Finally, Survival-Selection scheme
decides the number of individuals to be selected from parents and offspring for
the next generation. For experiments, we have used roulette wheel, uniform,
interchange, and weak parent as selection, crossover, mutation, and survival
techniques respectively.

3.3 Parallel Genetic Algorithm (PGA)

Generally, there are three main models to parallelize GA i.e. global single-
population master-slave GAs (global model), single-population fine-grained (grid
model), multiple-population coarse-grained (island model) [1]. The Global Model
works like SeqGA with one population. The master is responsible for handling
the population by applying GA operators while slave manage the fitness eval-
uation of individuals. In Grid Model, GA operators are applied within each
subpopulation and each individual is assigned to only one sub-population. This
helps in improving the diversity but it has a problem of getting stuck in local
optima. This model has high communication overhead due to frequent communi-
cation between subpopulations. In Island, Model, the population is subdivided
into islands/groups.GA operates on these islands independently with the abil-
ity to exchange/migrate some of the individuals later. This helps in increasing
the diversity of chromosome and avoiding to get stuck in local optima.Mostly,
PGA divides a population into multiple sub-populations. Each population inde-
pendently searches for an optimal solution using stochastic search operators like
crossover and mutation. Although this parallelization is intrinsic in nature to GA,
this parallelization comes at the cost of significant communication overhead. This
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overhead is a major hurdle to the ideal speed-up that we may achieve using paral-
lel /distributed techniques. A parallel approach to evolutionary algorithm should
make optimal resource utilization and reduce communication overhead to gain
speedup. Previously proposed PGA implementations majorly differ how they
structure their population. This structure majorly affects PGA execution time.
The topology of PGA determines how subpopulations can share their solutions,
i.e. a sub-population can send the solution to which other sub-population(s) or a
sub-population can receive solution from which other sub-population(s). PGA,
when executed using distributed frameworks like Apache Spark is not affected
by the topology being used. This is due to the reason that migrant solutions
are broadcasted to all the partitions independent of the topology. Based on the
topology, each partition/structure will select the solutions to replace its weakest
solutions.

4 SCALABLE DISTRIBUTED GENETIC
ALGORITHM USING APACHE SPARK (S-GA)

S-GA creates an initial random population of solutions and distributes them
on different partitions using RDD. Each partition performs GA operations and
fitness evaluation independent of other partitions. For experiments, we have
used roulette wheel, uniform, interchange, and weak parent as selection criteria,
crossover, mutation, for generating new solutions, and survival selection for de-
ciding offsprings selection for next generation. Based on the selection scheme,
individuals from each partition are selected for crossover and mutation. The
crossover and mutation rate decides number of individuals to be selected for evo-
lution. In S-GA each partition replaces its weakest solution by the fittest solution
broadcasted by each partition. Migration Rate (Mr) specifies the number of
solutions to be broadcasted in each migration. This rate is inversely proportional
to the execution time of PGA. S-GA significantly reduces the communication
overhead by creating a single RDD, throughout the execution.

Migration Interval/Gap (Mi) defines the number of generations after
which S-GA broadcasts fittest individual(s) of each partition to other partitions.
Afterwards, S-GA replaces its weakest solutions at each partition by broad-
casting the best solutions. S-GA evolves the individual(s)/solution(s) at each
partition for Mi number of generations. S-GA avoids transformation of existing
Population RDD to a new evolved population RDD after migration interval.
Afterwards, S-GA migrates best solution of each partition to all the partitions.
Fig. 2 explains the idea with an example. Lets assume value of Mi = 2 and

n

fitness function as a sphere (i.e. f(z;) = fo Initial at first generation ran-

dom population is generated. New soluti(Z)né are explored using crossover and
mutation operators.After every 2 generations, best solutions from each partition
are migrated to the very next generation. As the solution migrates, the next
generation at each partition picks all the migrated solutions and replace them
with weakest initial randomly assigned subpopulation. The pseudo code of S-GA
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Fig. 1. Figure 2: Evolution process of S-GA

Table 2. Pseudo code of S-GA.

N : Population Size

P : Population

Pj: Sub-Population at partition
D: Dimensions

G: Generations

Pti: Partition i, where i =1,, m
Mi:Migration Interval / Gap

f : Fitness Function

Mr: Migration Rate

1 P Randomly initialize population
2 Distribute P among m partitions
3G=1

4 while ( stoppingcriteria,otmet)

5 atecachpartitionpti

6 PiPick —Pi—-(Mr*m) best solutions from Pi (Mr*m) Migrated solutions
7 for k: 1 to Mi

8 Pi Select Parents (Pi)

9 Pi Crossover (Pi)

10 Pi Mutate (Pi)

11 Pi Survival-Selection (Pi Pi)
12 end for

13 Migrate S individuals from Pti
14 end atcachpartitionpti

15 G=G + Mi

16 end while
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has been described in Fig. 3. In start variable are defined. Random population is
initialized at line (1) and distributed among partitions (m) at line (2). Genera-
tion is initialized at line (3). While stopping criteria not reached from line (4-11)
best solutions are selected from each partition (Pi) and migrate them to next
generation according to migration rate (Mr). New solutions are explored in line
(7-9) and best are selected for next generation using survival-selection scheme.

Table 3. Experimental configurations for SeqGA and S-GA.

S-GA Parameters SeqGA Parameters

Population Size N: 5000, 10000 Population Size N: 5000, 10000
Crossover scheme: Uniform Crossover scheme: Uniform
Mutation: Interchange Mutation: Interchange

Survival Selection: Weak Parent  |Survival Selection: Weak Parent
Selection Scheme: Roulette Wheel |Selection Scheme: Roulette Wheel
Crossover Probability: 0.3 Crossover Probability: 0.3
Mutation Probability: 0.05 Mutation Probability: 0.05

No of Partitions pti: 12, 24, 36
Migration Rate Mr: 1, 5, 10
Migration Interval Mi: 5000, 10000

5 EXPERIMENTS

5.1 Experimental Setup

Experiments are performed on three nodes cluster: DELL PowerEdge R815,
2x AMD Opteron 6376 (64 Cores), 256 GB .RAM, 3 TB SATA RAID-5 with
spark-2.1.0° and ‘Scala 2.11.8. The configuration parameters of S-GA and GA
are detailed in in Table 1.

5.2 Evaluation Metrics

Execution Time The execution time of SeqGA and S-GA was measured using
system clock time. This time was recorded for a maximum of 40 million genera-
tions. Table 2. Shows average execution time over 5 runs for each configuration
of SeqGA and S-GA. We can observe that execution time of SeqGA has almost
doubled when we increase the population size from 5000 to 10,000. However,
this is not the case in most of the cases for S-GA, where there is a slight in-
crease in execution time with an increase in population while keeping rest of
the configuration constant. This difference in time reduces with an increase in
the number of partitions. Migration size defines the total number of migrated
individual(s) by all partitions after Mi (Migration Size = Mr * m). Increase in
migration size results in increased network overhead and hence execution time.
But on the other hand this also helps S-GA to converge in a lesser number
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of generations. Table 4. lists the execution time of Sphere, Ackley, Rastrigin
and Griewank functions for optimization using 2000 dimensions. Results reveal
that S-GA outperforms SeqGA while being scalable to larger sized optimization
parameters e.g. dimensions, partitions, migration size and migration interval.

Table 4. Experimental Results of S-GA and SeqGA. Dimensions: 2000, Value To
Reach (VTR):0.0005, crossover scheme: Uniform, Mutation: Interchange, Replacement
Scheme: Weak parent, Selection Scheme: Roulette Wheel, Crossover Probability: 0.3,
Mutation Probability: 0.05, Population: 10000, Partitions: 36, Migration Rate: 10, Mi-
gration Gap: 10000 tables.

f S-GA SeqGA Speed Up
- Gen |Time|Error| Gen |Time|Error -
SPHERE [1.8E+407|5150| 0 |2089|6451| O 1.25
ACKLEY |[1.5E+07|4306 | 4.44 {1695|6716| 0 1.56
RASTRIGIN|1.3E+07|3723| 0 [1503|5775| O 1.55
GRIEWANK| 4E+06 [1306| 0 |821[3483| 0 3.07

Speed Up Speed up is the ratio of sequential execution time to the parallel
execution time. It reflects how much parallel algorithm is faster than a sequen-
tial algorithm. Table 4 and 5 reflects speed up for all the cases where SeqGA

and S-GA converge to VTR (Value To Reach). VTR defines the threshold for

1 . .
convergence. We have used - - as VTR in experimentation.
Numberof Dimensions

Speed up values in Table 4 and 5 shows that that speedup of S-GA is more if
we increase population and partitions size.

6 CONCLUSION

In this paper, we have proposed initial results for Scalable Parallel GA (S-GA) us-
ing Apache Spark for large-scale optimization problems. We have compared our
results with SeqGA technique. We have tested our technique for Sphere, Ackley,
Rastrigin, and Griewank functions that are typical benchmarks for continuous
optimization problems. We have used Population up to10000, Dimensions up
t02000, Partition Size up to 36, migration rate up to 10, and migration interval
gap to 10,000. S-GA has outperformed SeqGA for higher population, partitions,
migration rate, and migration interval in term of execution time. In future, we
plan to extend S-GA and evaluate different migration and distribution strategies
for larger scale and more complex optimization problems.
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