
Why Reinvent the Wheel – Let’s BuildQuestion Answering
Systems Together

Kuldeep Singh
University of Bonn & Fraunhofer

IAIS, Germany
kuldeep.singh@iais.fraunhofer.de

Arun Sethupat Radhakrishna
University of Minnesota, USA

sethu021@umn.edu

Andreas Both
DATEV eG, Germany

contact@andreasboth.de

Saeedeh Shekarpour
University of Dayton,

Dayton, USA
sshekarpour1@udayton.edu

Ioanna Lytra
University of Bonn & Fraunhofer

IAIS, Germany
lytra@cs.uni-bonn.de

Ricardo Usbeck
University of Paderborn, Germany
ricardo.usbeck@uni-paderborn.de

Akhilesh Vyas
University of Bonn & Fraunhofer

IAIS, Germany
akhilesh.vyas@iais.fraunhofer.de

Akmal Khikmatullaev
University of Bonn & Fraunhofer

IAIS, Germany
akmal.khikmatullaev@gmail.com

Dharmen Punjani
University of Athens, Greece
dharmen.punjani@gmail.com

Christoph Lange
University of Bonn & Fraunhofer

IAIS, Germany
christoph.lange@uni-bonn.de

Maria Esther Vidal
Leibniz Information Centre For

Science and Technology University
Library & Fraunhofer IAIS, Germany

maria.vidal@tib.eu

Jens Lehmann
University of Bonn & Fraunhofer

IAIS, Germany
jens.lehmann@iais.fraunhofer.de

Sören Auer
Leibniz Information Centre For

Science and Technology University
Library & University of Hannover,

Germany
soeren.auer@tib.eu

ABSTRACT

Modern question answering (QA) systems need to flexibly inte-
grate a number of components specialised to fulfil specific tasks
in a QA pipeline. Key QA tasks include Named Entity Recogni-
tion and Disambiguation, Relation Extraction, and Query Building.
Since a number of different software components exist that im-
plement different strategies for each of these tasks, it is a major
challenge to select and combine the most suitable components into
a QA system, given the characteristics of a question. We study
this optimisation problem and train classifiers, which take features
of a question as input and have the goal of optimising the selec-
tion of QA components based on those features. We then devise a
greedy algorithm to identify the pipelines that include the suitable
components and can effectively answer the given question. We
implement this model within Frankenstein, a QA framework able
to select QA components and compose QA pipelines. We evaluate
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the effectiveness of the pipelines generated by Frankenstein us-
ing the QALD and LC-QuAD benchmarks. These results not only
suggest that Frankenstein precisely solves the QA optimisation
problem but also enables the automatic composition of optimised
QA pipelines, which outperform the static Baseline QA pipeline.
Thanks to this flexible and fully automated pipeline generation pro-
cess, new QA components can be easily included in Frankenstein
thus improving the performance of the generated pipelines.
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1 INTRODUCTION

Answering questions based on information encoded in knowledge
graphs has recently received much attention by the research com-
munity. Since 2010, more than 62 systems for question answering
(QA) over theWeb of Data have been developed [12]. These systems
typically include components building on Artificial Intelligence,
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Question
What is the capital of 
Canada? 

Did Socrates influence 
Aristotle?

Did Tesla win a nobel 
prize in physics?

DBpedia 
Spotlight

Tag Me

ReMatch

Aylien
RelMatch

SINA

NLIWOD QB

NED RL QB

Which river does the 
Brooklyn Bridge cross?

SPARQL Query

SELECT DISTINCT ?uri WHERE 
{dbr:Canada dbo:capital ?uri .}

ASK WHERE {dbr:Socrates 
dbo:influenced dbr:Aristotle .} 

ASK WHERE {dbr:Nikola_Tesla dbo:award 
dbr:Nobel_Prize_in_Physics .}

SELECT DISTINCT ?uri WHERE 
{dbr:Brooklyn_Bridge dbo:crosses ?uri .}

P1 P2 P3 P4

Q1

Q2

Q3

Q4

Figure 1: Four natural language questions answered successfully by different pipelines composed of three NED, two RL, and

two QB components. The optimal pipelines for each question are highlighted.

Natural Language Processing, and Semantic Technology; they im-
plement common tasks such as Named Entity Recognition and
Disambiguation, Relation Extraction, and Query Building. Evalua-
tion studies have shown that there is no best performing QA system
for all types of Natural Language (NL) questions; instead, there is
evidence that certain systems, implementing different strategies,
are more suitable for certain types of questions [22]. Hence, mod-
ern QA systems need to flexibly integrate a number of components
specialised to fulfil specific tasks in a QA pipeline.

Relying on these observations, we devise Frankenstein, a frame-
work able to dynamically select QA components in order to exploit
the properties of the components to optimise the F-Score. Franken-
stein implements a classification based learning model, which
estimates the performance of QA components for a given question,
based on its features. Given a question, the Frankenstein frame-
work implements a greedy algorithm to generate a QA pipeline
consisting of the best performing components for this question.

We empirically evaluate the performance of Frankenstein us-
ing two renowned benchmarks from the Question Answering over
Linked Data Challenge1 (QALD) and the Large-Scale Complex Ques-
tion Answering Dataset2 (LC-QuAD). We observe that Franken-
stein is able to combine QA components to produce optimised QA
pipelines outperforming the static Baseline pipeline.
In summary, we provide the following contributions:
● Frankenstein framework relying on machine learning tech-
niques for dynamically selecting suitable QA components
and composing QA pipelines based on the input question,
thus optimising the overall F-Score.
● A collection of 29 reusable QA components that can be com-
bined to generate 360 distinct QA pipelines, integrated in
the Frankenstein framework.
● An in-depth analysis of advantages and disadvantages of QA
components in QA pipelines after a thorough benchmarking
of the performance of the Frankenstein pipeline generator
using over 3,000 questions from the QALD and LC-QuAD
QA benchmarks.

As a result of this work, we expect a new class of QA systems to
emerge. Currently, QA systems are tailored to a particular domain
(mostly common knowledge), a source of background knowledge

1https://qald.sebastianwalter.org/index.php?x=home&q=5
2http://lc-quad.sda.tech/

(most commonly DBpedia [1]) and benchmarking data (most com-
monly QALD). Based on Frankenstein, more flexible, domain-
agnostic QA systems can be built and quickly adapted to new do-
mains.

The remainder of this article is structured as follows: We intro-
duce the motivation of our work in Section 2. The problem tackled
as well as the proposed solution are discussed in Section 3 and the
details of Frankenstein are presented in Section 4. The Section 5
describes the preparation of training datasets followed by perfor-
mance evaluation of components in Section 6. Section 7 reports
the empirical evaluation of Frankenstein QA pipelines, with sub-
sequent discussions in Section 8. The related work is reviewed in
Section 9 and finally, conclusions and directions for future work
are discussed in Section 10.

2 MOTIVATING EXAMPLE

A great number of components perform QA tasks – either as part
of QA systems or standalone [26]. Table 1 presents several QA
components, implementing the QA tasks NED (Named Entity Dis-
ambiguation) implemented by (i) DBpedia Spotlight [18], (ii) Aylien
API3, and (iii) Tag Me API [8]), RL (Relation Linking) implemented
by (i) ReMatch [20] and (ii) RelMatch [15]), and QB (Query Building)
implemented by (i) SINA [23] and (ii) NLIWOD QB4).

For example, given the question “What is the capital of Canada?”,
the ideal NED component is expected to recognise the keyword
“Canada” as a named entity and map it to the corresponding DBpe-
dia resource, i.e. dbr:Canada5. Thereafter, a component perform-
ing RL finds embedded relations in the given question and links
them to appropriate relations of the underlying knowledge graph.
In our example, the keyword “capital” is mapped to the relation
dbo:capital6. Finally, the QB component generates a formal query
(e.g. expressed in SPARQL), which retrieves all answers from the
corresponding knowledge graph (i.e. SELECT ?c {dbr:Canada
dbo:capital ?c.}).

Table 1 presents precision, recall, and F-Score of the listed com-
ponents for the QALD-5 benchmark (cf. [30] and Section 5.1). We
observe that DBpedia Spotlight, ReMatch, and NLIWODQB achieve
the best performance for the tasks NED, RL, and QB, respectively

3http://docs.aylien.com/docs/introduction
4Component is based on https://github.com/dice-group/NLIWOD and [29].
5The prefix dbr is bound to http://dbpedia.org/resource/.
6The prefix dbo is bound to http://dbpedia.org/ontology/.
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(cf. Section 6 for details). When QA components are integrated into
a QA pipeline, the overall performance of the pipeline depends on
the individual performance of each component. The fact that a par-
ticular component gives superior performance for a task on a given
set of questions does not imply that the component is superior
for all types of questions. That is, the performance of components
varies depending on the type of question.

Table 1: Performance of QA components implementing var-

ious QA tasks evaluated with the QALD-5 benchmark.

QA Component QA Task Precision Recall F-Score

DBpedia Spotlight NED 0.67 0.76 0.71
Aylien API NED 0.60 0.66 0.63
Tag Me API NED 0.47 0.57 0.52
ReMatch RL 0.54 0.74 0.62
RelMatch RL 0.10 0.19 0.13
SINA QB 0.38 0.41 0.39
NLIWOD QB QB 0.49 0.50 0.49

The performance values in Table 1 are averaged over the en-
tire query inventory. They are not representative for the specific
performance of components for various types of input questions.
For example, Figure 1 illustrates the best performing QA pipelines
for four exemplary input questions. We observe that Pipeline P1 is
the most efficient for answering Question Q1: “What is the capital

of Canada?” but it fails to answer Question Q4: “Which river does

the Brooklyn Bridge cross?”. This is caused by the fact that the RL
component ReMatch in Pipeline P1 does not correctly map the
relation dbo:crosses in Q4 for the input keyword “cross”, while
RelMatch maps this relation correctly. Although the overall preci-
sion of ReMatch on QALD-5 is higher than that of RelMatch, forQ4,
the performance of RelMatch is higher. Similarly, for Question Q2
“Did Socrates influence Aristotle?” Pipeline P2 delivers the desired
answer, while it fails to answer the similar question Q3 “Did Tesla
win a nobel prize in physics?”. Although questions Q2 and Q3 have
a similar structure (i.e. Boolean answer type), DBpedia Spotlight
NED succeeds forQ2, but onQ3 it fails to disambiguate the resource
dbr:Nobel_Prize_in_Physics. At the same time, Tag Me can ac-
complish the NED task successfully. Although, the optimal pipeline
for a given question can be identified experimentally by executing
all possible pipelines, this approach is costly and even practically
impossible, since covering all potential input questions is not feasi-
ble. Therefore, a heuristic approach to identify an optimal pipeline
for a given input question is required.

3 PROBLEM STATEMENT

A full QA pipeline is composed of all the necessary tasks to trans-
form a user-supplied Natural Language (NL) question into a query
in a formal language (e.g. SPARQL), whose evaluation retrieves the
desired answer(s) from an underlying knowledge graph. Correctly
answering a given input question q requires a QA pipeline that, ide-
ally, uses those QA components that deliver the best precision and
recall for answering q. Identifying the best performing QA pipeline
for a given question q requires: (i) a prediction mechanism to pre-
dict the performance of a component given a question q, a required

task, and a knowledge graph λ; (ii) an approach for composing an
optimised pipeline by integrating the most accurate components.

3.1 Predicting Best Performing Components

In this context, we formally define a set of necessary QA tasks as
𝒯 = {t1, t2, . . . , tn} such as NED, RL, and QB. Each task (ti ∶ q∗ →
q+) transforms a given representation q∗ of a question q into an-
other representation q+. For example, NED and RL tasks transform
the input representation “What is the capital of Canada?” into the
representation “What is the dbo:capital of dbr:Canada?”. The
entire set of QA components is denoted by 𝒞 = {C1,C2, . . . ,Cm}.
Each component Cj solves one single QA task; θ(Cj) corresponds
to the QA task ti in 𝒯 implemented by Cj . For example, ReMatch
implements the relation linking QA task, i.e. θ(ReMatch) = RL. Let
ρ(Cj) denote the performance of a QA component, then our first
objective is to predict the likelihood of ρ(Cj) for a given represen-
tation q∗ of q, a task ti , and an underlying knowledge graph λ. This
is denoted as Pr(ρ(Cj)⋃︀q

∗, ti ,λ). In this work, we assume a single
knowledge graph (i.e. DBpedia); thus, λ is considered a constant
parameter that does not impact the likelihood leading to:

Pr(ρ(Cj)⋃︀q
∗
, ti) = Pr(ρ(Cj)⋃︀q

∗
, ti ,λ) (1)

Moreover, for each individual task ti and question representation
q∗, we predict the performance of all pertaining components. In
other words, for a given task ti , the set of components that can
accomplish ti is 𝒞ti = {Cj , . . . ,Ck}. Thus, we factorise ti as follows:

∀Cj ∈ 𝒞
ti , (︀Pr(ρ(Cj)⋃︀q

∗
) = Pr(ρ(Cj)⋃︀q

∗
, ti)⌋︀ (2)

Further, we assume that the given representation q∗ is equal to the
initial input representation q for all the QA components, i.e. q∗ = q.
Finally, the problem of finding the best performing component for
accomplishing the task ti for an input question q, denoted as γ tiq , is
formulated as follows:

γ tiq = arg max
Cj∈𝒞ti

{Pr(ρ(Cj)⋃︀q)} (3)

Solution. Suppose we are given a set of NL questions𝒬 with the
detailed results of performance for each component per task. We
can then model the prediction goal Pr(ρ(Cj)⋃︀q, ti) as a supervised
learning problem on a training set, i.e. a set of questions𝒬 and a set
of labels ℒ representing the performance ofCj for a question q and
a task ti . In other words, for each individual task ti and component
Cj , the purpose is to train a supervised model that predicts the
performance of the given component Cj for a given question q
and task ti leveraging the training set. If ⋃︀𝒯 ⋃︀ = n and each task
is performed by m components, then n ×m individual learning
models have to be built up. Furthermore, since the input questions
q ∈ 𝒬 have a textual representation, it is necessary to automatically
extract suitable features, i.e. ℱ(q) = (f1, . . . , fr ). The details of the
feature extraction process are presented in Section 5.2.

3.2 Identifying Optimal QA Pipelines

The second problem deals with finding a best performing pipeline of
QA componentsψ goal

q , for a question q and a set of QA tasks called
goal. Formally, we define this optimisation problem as follows:

ψ
goal

q = arg max
η∈ℰ(дoal)

{Ω(η,q)} (4)
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where ℰ(goal) represents the set of pipelines of QA components
that implement goal and Ω(η,q) corresponds to the estimated per-
formance of the pipeline η on the question q.

Solution. We propose a greedy algorithm that relies on the opti-
misation principle that states that an optimal pipeline for a goal and
a question q is composed of the best performing components that
implement the tasks of the goal for q. Suppose that ⊕ denotes the
composition of QA components, then an optimal pipelineψдoalq is
defined as follows:

ψ
goal

q ∶= ⊕ti ∈goal{γ
ti
q } (5)

The proposed greedy algorithm works in two steps: QA Com-

ponent Selection and QA Pipeline Generation. During the first step
of the algorithm, each task ti in goal is considered in isolation to
determine the best performing QA components that implement ti
for q, i.e.γ tiq . For each ti an ordered set of QA components is created
based on the performance predicted by the supervised models that
learned to solve the problem described in Equation 3. Figure 2 illus-
trates the QA component selection steps for the question q=“What

is the capital of Canada?” and goal = {NED,RL,QB}. The algorithm
creates an ordered set OSti of QA components for each task ti in
goal. Components are ordered in each OSti according to the val-
ues of the performance function ρ(.) predicted by the supervised
method trained for questions with the features ℱ(q) and task ti ; in
our example, ℱ(q)={(QuestionType:What), (AnswerType:String),
(#words:6), (#DT:1), (#IN:1), (#WP:1), (#VBZ:1), (#NNP:1), (#NN:1)}
indicates that q is a WHAT question whose answer is a String; fur-
ther, q has six words and POS tags such as determiner, noun etc.
Based on this information, the algorithm creates three ordered sets:
OS

NED
, OS

RL
, and OS

QB
. The order in OS

NED
indicates that Dande-

lion7, Tag Me, and DBpedia Spotlight are the top 3 best performing
QA components for queries with the features ℱ(q) in the QA task
NED; similarly, for OSRL and OSQB .

In the second step, the algorithm follows the optimisation prin-
ciple in Equation 5 and combines the top ki best performing QA
components of each ordered set. Values of ki can be configured;
however, we have empirically observed that for all studied types
of questions and tasks, only the relation linking (RL) task requires
considering the top 3 best performing QA components; for the
rest of the tasks, the top 1 best performing QA component is suf-
ficient to identify a best performing pipeline. Once the top ki QA
components have been selected for each ordered set, the algorithm
constructs a QA pipeline and checks if the generated pipeline is able
to produce a non-empty answer. If so, the generated QA pipeline is
added to the algorithm output. In Equation 5, the algorithm finds
that only the QA pipeline Dandelion, ReMatch, and SINA produces
results; the other two pipelines fail because the QA components
RNLIWOD8 and Spot Property9 are not able to perform the relation
linking task of the question q=“What is the capital of Canada?”. The
algorithm ends when the top ki QA components have been com-
bined and checked; the output is the union of the best performing
QA pipelines that produce a non-empty answer.

7https://dandelion.eu/docs/api/datatxt/nex/getting-started/
8Component based on https://github.com/dice-group/NLIWOD.
9This component is the combination of the NLIWOD and RL components of [15].

QuestionType: What
AnswerType: String
#words: 6
#NN: 1, ...

Step I: QA Component Selection

OSQBOSRLOSNED

1. Dandelion

2. Tag Me

3. DBpedia Spotlight

1. Spot Property

2. ReMatch

3. RNLIWOD

1. SINA

2. NLIWOD QB

Step II: QA Pipeline Generation

Question: What is the 
capital of Canada?

Goal: {NED, RL, QB}

Question 
Features

OSQBOSRLOSNED

1. Dandelion

2. Tag Me

3. DBpedia Spotlight

1. Spot Property

2. ReMatch

3. RNLIWOD

1. SINA

2. NLIWOD QB

✔

✔

✔

Figure 2: QA Optimisation Pipeline Algorithm. The algo-

rithm performs two steps: First, QA components are consid-

ered in isolation; supervisedmethods are used to predict the

top k best performingQA components per task and question

features. Second, the QA Pipelines are generated from the

best performing QA component of the tasks NED and QB,

and the top 3QA components ofRL. TheQApipeline formed

of Dandelion, ReMatch, and SINA successfully answers q.

4 FRANKENSTEIN FRAMEWORK

Frankenstein is a framework that implements the QA optimisation
pipeline algorithm and generates the best performing QA pipelines
based on the input question features and QA goal.

4.1 Frankenstein Architecture

Figure 3 depicts the Frankenstein architecture. Frankenstein
receives, as input, a natural language question as well as a goal
consisting of the QA tasks to be executed in the QA pipeline. The
features of an input question are extracted by the Feature Extractor ;
afterwards the QA Component Classifiers predict best performing
components per task for the given question; these components are
passed to the Pipeline Generator, which generates best performing
pipelines to be executed, eventually, by the Pipeline Executor. The
Frankenstein architecture comprises the following modules:
Feature Extractor. This module extracts a set of features from a
question. Features include question length, question and answer
types, and POS tags. Features are discussed in Section 5.2.
QA Components. Frankenstein currently integrates 29 QA com-
ponents implementing five QA tasks, namely Named Entity Recog-
nition (NER), Named Entity Disambiguation (NED), Relation Link-
ing (RL), Class Linking (CL), and Query Building (QB). To the best
of our knowledge, only two reusable CL and QB components, and
five reusable RL components are available, therefore the component
distribution among tasks is uneven. In most of the cases NED, RL
and QB components are necessary to generate the SPARQL query
for a NL question. However, to correctly generate a SPARQL query
for certain NL questions, it is sometimes necessary to also disam-
biguate classes against the ontology. For example, in the question

4

https://dandelion.eu/docs/api/datatxt/nex/getting-started/
https://github.com/dice-group/NLIWOD


Best 
QA Components

DBpedia Spotlight

Aylien

AGDISTIS

...
TagMe

ReMatch

RelMatch

...

OKBQA DM

...
CL

SINA

...

Q
A

 C
om

po
ne

nt
s

Feature 
Extractor

Natural 
Language 
Question

AnswersComponent 
Selector

FRANKENSTEIN

NED 
component

RL 
component

CL 
component

QB 
component

Pipeline 
Executor

Pipeline 
Generator

QA Pipeline Optimiser

NED Classifiers RL Classifiers CL Classifiers QB Classifiers

QA Component Classifiers

Best 
QA Pipelines

QBRLNED

NLIWOD CLS NLIWOD QB

Goal

Figure 3: Frankenstein architecture comprising separate modules for question feature extraction, pipeline generation and

optimisation, as well as pipeline execution.

“Which comic characters are painted by Bill Finger”, “comic characters”

needs to be mapped to dbo:ComicsCharacter10. Table 2 provides
a list of QA components integrated in Frankenstein. The 11 NER
components are used with AGDISTIS to disambiguate entities as
AGDISTIS requires the question and spotted position of entities
as input [32]. Henceforth, any reference to NER tool, will refer to
its combination with AGDISTIS, and we have excluded individual
performance analysis of NER components. However, other 7 NED
components recognise and disambiguate the entities directly from
the input question. Hence, Frankenstein has 18 NED, 5 RL, 2 CL,
2 QB components.
QA Component Classifiers. For each QA component, a separate
Classifier is trained; it learns from a set of features of a question
and predicts the performance of all pertaining components.
QAPipeline optimiser. Pipeline optimisation is performed by two
modules. The Component Selector selects the best performing
components for accomplishing a given task based on the input fea-
tures and the results of the QA Component Classifiers; the selected
QA components are afterwards forwarded to the Pipeline Gener-
ator to dynamically generate the corresponding QA pipelines.
Pipeline Executor. This modules executes the generated pipelines
for an input question in order to extract answers from the knowl-
edge base (i.e. DBpedia in our case).

4.2 Implementation Details

The code for Frankenstein including all 29 integrated compo-
nents and empirical study results can be found in our open source
GitHub repository11. The integration of QA components within
Frankenstein as a loosely coupled architecture is based on the
following guiding principles: (a) Reusability (the framework should
be available as open source), (b) Interoperability between QA com-
ponents, (c) Flexibility (easy integration of components at any step
of the QA pipeline), and (d) Isolation (components are independent

10http://dbpedia.org/ontology/ComicsCharacter
11https://github.com/WDAqua/Frankenstein

of each other and provide exchangeable interfaces). We studied
the implementations of OKBQA [15], openQA [17], Qanary [4, 25]
and QALL-ME [9]; from these, to the best of our knowledge, only
Qanary can fulfil the aforementioned guiding principles. Unlike a
monolithic QA system the output of a component is not directly
passed to the next component in the QA process and Qanary en-
hances the knowledge base after each step via the abstract level
defined by the qa vocabulary. Therefore, components become in-
dependent of each other, and can easily be exchangeable just by
configuration. The integration of the 29 new components with the
Qanary methodology in Frankenstein is implemented in Java 8.
Remaining Frankenstein modules are implemented in Python 3.4.

5 CORPUS CREATION

In this section, we describe the datasets used in our study and how
we prepare the training dataset for our classification experiments.
All experiments were executed on 10 virtual servers, each with
8 cores, 32 GB RAM and the Ubuntu 16.04.3 operating system. It
took us 22 days to generate training data by executing questions
of considered datasets for all 28 components, as some tools such
as ReMatch[20] and RelationMatcher [27] took approximately 120
and 30 seconds, respectively, to process each question.

5.1 Description of Datasets

Throughout our experiment, we employed the Large-Scale Com-
plex Question Answering Dataset12 (LC-QuAD) [28] as well as the
5th edition of Question Answering over Linked Data Challenge13

(QALD-5) dataset [30].
LC-QuAD has 5,000 questions expressed in natural language along
with their formal representation (i.e. SPARQL query), which is ex-
ecutable on DBpedia. W.r.t. the state of the art, this is the largest
available benchmark for the QA community over Linked Data. We

12http://lc-quad.sda.tech/
13https://qald.sebastianwalter.org/index.php?x=home&q=5
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Table 2: 29 QA components integrated in Frankenstein: 8

QA components are not available as open source software,

25 provide a RESTful service API and 19 are accompanied

by peer-reviewed publications.

Component/ QA Task Year Open RESTful Publi-

Tool Source Service cation

Entity Classifier [7] NER 2013 ✗ ✓ ✓

Stanford NLP [10] NER 2005 ✓ ✓ ✓

Ambiverse [11]i NER/NED 2014 ✗ ✓ ✓

Babelfy [19]ii NER/NED 2014 ✗ ✓ ✓

AGDISTIS [32] NED 2014 ✓ ✓ ✓

MeaningCloud
iii NER/NED 2016 ✗ ✓ ✗

DBpedia Spotlight [18] NER/NED 2011 ✓ ✓ ✓

Tag Me API [8] NER/NED 2012 ✓ ✓ ✓

Aylien API
iv NER/NED - ✗ ✓ ✗

TextRazor
v NER - ✗ ✓ ✗

OntoText [16]vi NER/NED - ✗ ✓ ✓

Dandelion
vii NER/NED - ✗ ✓ ✗

RelationMatcher [27] RL 2017 ✓ ✓ ✓

ReMatch [20] RL 2017 ✓ ✓ ✓

RelMatch [15] RL 2017 ✓ ✓ ✓

RNLIWOD
viii RL 2016 ✓ ✗ ✗

Spot Property [15]ix RL 2017 ✓ ✓ ✓

OKBQA DM CLS
ix CL 2017 ✓ ✓ ✓

NLIWOD CLS
viii CL 2016 ✓ ✗ ✗

SINA [23] QB 2013 ✓ ✗ ✓

NLIWOD QB
viii QB 2016 ✓ ✗ ✗

i https://developer.ambiverse.com/
ii https://github.com/dbpedia-spotlight/dbpedia-spotlight
iii https://www.meaningcloud.com/developer
iv http://docs.aylien.com/docs/introduction
v https://www.textrazor.com/docs/rest
vi http://docs.s4.ontotext.com/display/S4docs/REST+APIs
vii https://dandelion.eu/docs/api/datatxt/nex/getting-started/
viii Component is similar to Relation Linker of https://github.com/dice-group/
NLIWOD.
ix Component is similar to Class Linker of http://repository.okbqa.org/
components/7.

ran the entire set of SPARQL queries (on 2017-10-02) over the DB-
pedia endpoint14, and found that only 3,252 of them returned an
answer. Therefore, we rely on these 3,252 questions throughout our
experiment.
QALD-5. Out of the QALD challenge series, we chose the 5th ver-
sion (QALD-5) because it provides the largest number of questions
(350 questions). However, during the experimental phase the re-
mote Web service of the ReMatch component went down and we
were only able to obtain proper results for 204 of the 350 questions.
Therefore, we took these 204 questions into account to provide a
fair and comparable setting (although, we obtained the results for
all 350 questions for all other components).

5.2 Preparing Training Datasets

Since we have to build an individual classifier for each component
in order to predict the performance of that component, it is re-
quired to prepare a single training dataset per component. The
whole sample set within the training dataset was formed by using
the NL questions included from the datasets described previously

14https://dbpedia.org/sparql

(from both QALD and LC-QuAD). In order to obtain an abstract
and concrete representation of NL questions, we extracted major
features enumerated below.

(1) Question Length: The length of a question w.r.t. the number
of words has been introduced as a lexical feature by Blunsom
et al. [3] in 2006. In our running example “What is the capital

of Canada?”, this feature has the numeric value 6.
(2) Question Word: Huang et al. [13, 14] considered the question

word (“wh-head word”) as a separate lexical feature for ques-
tion classification. If a specific question word is present in
the question, we assign the value 1, and 0 to the rest of the
question words. We adapted 7 Wh-words: “what”, “which”,
“when”, “where”, “who”, “how” and, “why”. In “What is the

capital of Canada?”, “What” is assigned the value 1, and all
the other words are assigned 0.

(3) Answer Type: This feature set has three dimensions, namely
“Boolean”, “List/Resource”, and “Number”. These dimensions
determine the category of the expected answer [22]. In our
running example, we assign “List/Resource” for this dimen-
sion because the expected answer is the resource dbr:Ottawa.

(4) POS Tags: Part of Speech (POS) tags are considered an in-
dependent syntactical question feature that can affect the
overall performance of a QA system [3]. We used the Stan-
ford Parser15 to identify the POS tags, where the number
of occurrences is considered as a separate dimension in the
question feature extraction.

We prepared two separate datasets from LC-QuAD and QALD.
We adopted the methodology presented in [6] and [27] for the
benchmark creation of the subsequent steps of the QA pipelines.
Furthermore, the accuracy metrics are micro F-Score (F-Score) as a
harmonic mean of micro precision and micro recall. Thus, the label
set of the training datasets for a given component was set up by
measuring the micro F-Score (F-Score) of every given question.

6 EVALUATING COMPONENT

PERFORMANCE

The aim of this experiment is to evaluate the performance of com-
ponents on the micro and macro levels and then train a classifier
to accurately predict the performance of each component.

Metrics. i) Answered Questions: The number of questions for
which theQApipeline returns an answer. ii) Micro Precision (MP):
The ratio of correct answers vs. total number of answers retrieved
by a component for a particular question. iii) Precision (P):
For a given component, the average of the Micro Precision over
all questions. iv) Micro Recall (MR): For each question, the
number of correct answers retrieved by a component vs. gold
standard answers for the given question. v) Recall (R): For a
given component, the average of Micro Recall over all questions.
vi) Micro F-Score (F-Score): For each question, the harmonic
mean of MP andMR. vii) Macro F-Score (F): For each component,
harmonic mean of P and R.

15http://nlp.stanford.edu:8080/parser/
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6.1 Macro-level Performance of Components

In this experiment, we measured the performance of the reusable
components from the QA community that are part of Franken-
stein. We executed each component for each individual query
from both LC-QuAD and QALD datasets. Then, for each dataset we
calculated the macro accuracy per component and selected those
representing highest macro performance. The performance results
of the best components are shown in Table 3. For brevity, detailed
results for each component are placed in our GitHub repository16.

Table 3: Themacro accuracy of the best components for each

task on the QALD and LC-QuAD corpora.

QA Task Dataset Best Component P R F

QB LC-QuAD NLIWOD QB 0.48 0.49 0.48
QALD-5 NLIWOD QB 0.49 0.50 0.49

CL LC-QuAD OKBQA DM CLS 0.47 0.59 0.52
QALD-5 OKBQA DM CLS 0.58 0.64 0.61

NED LC-QuAD Tag Me 0.69 0.66 0.67
QALD-5 DBpedia Spotlight 0.67 0.75 0.71

RL LC-QuAD RNLIWOD 0.25 0.22 0.23
QALD-5 ReMatch 0.54 0.74 0.62

Key Observation: Dependency on Quality of Input Question.
From Table 3, it is clear that the performance considerably varies
per dataset. This is because the quality of questions differs across
datasets. Quality has various dimensions, such as complexity or
expressiveness. For example, only 728 (22 %) questions of LC-QuAD
are simple (i.e. with single relation, single entity), compared to 108
questions (53 %) of QALD. The average length of a question in LC-
QuAD is 10.63, compared to 7.41 in QALD. Therefore, components
that perform well for identifying an entity in a simple question
may not perform equally well on LC-QuAD, which is also evident
from Table 3 considering the NED task. The same holds for RL
components. ReMatch, which is the clear winner on QALD, is out-
performed by RNLIWOD on LC-QuAD. Hence, there is no overall
best performing QA component for these two tasks, and the defini-
tion of the best performing QA component differs across datasets.
However, this does holds true neither for CL components nor for
QB components (note, these two tasks only have two components
each), even though the Macro F-Score values on both datasets have
significant differences.

6.2 Training the Classifiers

The aim of this part is to build up classifiers which efficiently predict
the performance of a given component for a given question w.r.t.
a particular task. As observed in the micro F-Score values of the
components, these values are not continuous but usually discrete,
e.g., 0.0, 0.33, 0.5, 0.66 or 1. Hence, we adopted five classification
algorithms (treating it as a classification problem) namely 1) Support
Vector Machines (SVM), 2) Gaussian Naive Bayes, 3) Decision Tree,
4) Random Forest, and 5) Logistic Regression. During the training
phase, each classifier was tuned with a range of regularisation

16https://github.com/WDAqua/Frankenstein

parameters to optimise the performance of the classifier on the
available datasets. We used the cross-validation approach with 10
folds on the LC-QuAD dataset. Figure 4 illustrates the details of
our experiment for training classifiers. Predominantly, Logistic
Regression and Support Vector Machines expose higher accuracy
as illustrated in Figure 4.

7 EVALUATING PIPELINE PERFORMANCE

In this experiment, we pursue the evaluation question “Can an

approach that dynamically combines different QA components taking

the question type into account (such as Frankenstein) take advantage

of the multitude of components available for specific tasks?” To an-
swer this question, we measure the Frankenstein performance on
the (i) task level and (ii) pipeline level. Throughout our experiment,
we adopt a component selector strategy as follows:

(1) Baseline-LC-QuAD: The best component for each task in
terms of Macro F-Score on the LC-QuAD dataset (cf. Sec-
tion 6.1).

(2) Baseline-QALD: The best component for each task in terms
of Macro F-Score on the QALD dataset (cf. Section 6.1).

(3) Frankenstein-Static: The QA pipeline consisting of the best
performing components for each task on the QALD dataset
(cf. Section 6.1).

(4) Frankenstein-Dynamic: The QA pipeline consisting of the
top performing components from the learning approach.

(5) Frankenstein-Improved: Similar to the dynamic Franken-
stein pipeline with a different setting.

7.1 Task-level Experiment

Our major goal is to examine whether or not we can identify the
N-best components for each QA task. Accordingly, we utilised the
following metrics for evaluation i) Total Questions: the average
number of questions in the underlying test dataset. ii) Answerable:
the average number of questions for which at least one of the com-
ponents has an F-Score greater than 0.5. iii) Top N : the average
number of questions for which at least one of the Top N compo-
nents selected by the Classifier has an F-Score greater than 0.5.
Furthermore, we rely on a top-N approach for choosing the best
performing component during our judgement.
Experiments on LC-QuAD. This experiment was run on the ques-
tions from the LC-QuAD dataset by applying a cross-validation
approach. We compare the component selector approach in (i)
learning-based manner – called Frankenstein, and (ii) Baseline-
LC-QuADmanner – called Baseline. Table 4 shows the results of our
experiment. Frankenstein’s learning-based approach selects the
top-N components with the highest predicted performance values
for a given input question. Obviously, this approach outperforms
the Baseline approach for the NED, RL, and QB tasks and equals
the Baseline for CL task. When we select the top-2 or top-3 best
performing components, Frankenstein’s performance improves
further.
Cross Training Experiment. The purpose of this experiment is
similar to the previous experiment but in order to verify the credibil-
ity of our approach, we extended our dataset by including questions
from QALD. In fact, questions from QALD are utilised as the test
dataset. The results of this experiment are shown in Table 5. We ob-
serve that Frankenstein significantly outperforms the LC-QuAD
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Figure 4: Comparison of Classifiers for all QA Components. Five Classifiers, namely Logistic Regression, Support Vector Ma-

chines, Decision Tree, Gaussian Naive Bayes, and Random Forest are compared with respect to accuracy.

Table 4: 10-fold Validation on LC-QuAD

QA Total Answer- Frankenstein Baseline

Task Questions able Top1 Top2 Top3

QB 324.3 175.4 162.7 175.4 – 159.6
CL 324.3 76 68.1 76 – 68.2
NED 324.3 294.2 245.2 270.9 284.3 236.3
RL 324.3 153.1 90.3 118.9 134.4 84.2

Table 5: Performance comparison on task level using LC-

QuAD as training and QALD as test dataset (204 questions)

QA Answer- Frankenstein Baseline Baseline

Task able Top1 Top2 Top3 QALD LC-QuAD

QB 119 91 119 – 102 102
CL 55 52 55 – 52 52
NED 168 132 153 163 144 109
RL 138 83 107 121 105 46

Baseline components for the NED (i.e. Tag Me) and RL (i.e. RNLI-
WOD) tasks while it achieves comparable results for the CL task.

7.2 Pipeline-level Experiment

In this experiment, we greedily arranged a pipeline by choosing
the best performing components per task from three strategies. We
use the same settings as cross training experiments by utilising
QALD questions as test dataset. The first one is the Frankenstein-
Static pipeline composed of Baseline components driven by QALD
(i.e. DBpedia Spotlight for NED, ReMatch for RL, OKBQA DM for
CL, and NLIWOD QB for QB). The other two strategies are the
Frankenstein-Dynamic and Frankenstein-Improved pipelines
composed by the learning-based component selector with top-1
setting (top-3 for RL of the improved strategy). The results of the

Table 6: Comparison with the Baseline Pipeline

Frankenstein- Answered P R Macro F-

Pipeline Questions Score

Static 37 0.17 0.19 0.18
Dynamic 29 0.14 0.14 0.14
Improved 41 0.20 0.21 0.20

comparison are demonstrated in Table 6. We conclude that the accu-
racy metrics for the dynamic pipeline are lower than for the static
pipeline. (Note: As performance metrics for state-of-the-art QA
systems on the same set of questions in QALD were not available,
we excluded this comparison in the table.)

We noticed that the failure of the RL component significantly af-
fects the total performance of both static or dynamic pipelines. Thus,
we selected the top-3 components for the RL task to compensate
for this deficiency. This setting yields the Frankenstein-Improved
pipeline, where we ran three dynamically composed pipelines out
of the 360 possible ones per question. Although this strategy is
expected to affect the total accuracy negatively, this did not happen
in practice; we even observed an increase in the overall precision,
recall, and F-Score. Typically, the available RL and QB components
have a full accomplishment or full failure for the input question. For
example, considering the question “What is the capital of Canada?”,
two of the top-3 selected RL components do not process the ques-
tion. Hence, eventually, only one of the three pipelines returns a
final answer. Thus, this simple modification in the setting signifi-
cantly improves overall pipeline performance and the number of
answered questions. With the static pipeline, the number of an-
swered questions is fixed, however, with dynamic pipelines, the
number of answered questions can be increased.
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8 DISCUSSION

Despite the significant overall performance achieved by Franken-
stein, we investigated erroneous cases in performance specifically
w.r.t. classifiers. For instance, in our exemplary question “What

is the capital of Canada?”, the top-1 component predicted by the
Classifier for the RL task fails to map “capital of” to dbo:capital.
Similarly, for the question (“Who is the mayor of Berlin?” ), the
predicted Dandelion NED component can not recognise and dis-
ambiguate “Berlin”. One of the reasons is related to the primary
features extracted from questions. We plan to extend the feature set
especially using the recent embedding models and also using differ-
ent features per task as we have currently used the same features for
all tasks. This can be done by associating features with component
performance and calculating Cramér’s V-coefficient for each feature
and a component’s ability to answer the given question [31]. One
more extension is about switching to more sophisticated learning
approaches like HMM, or deep learning approaches which require
significantly larger datasets. Another observation is that the exist-
ing RL and QB components generally result in poor performance.
The QB components need improvement in cases where previous
tasks yield a low F-Score for a given question (i.e. returning more
than one DBpedia URL as an answer). Hence, QB components
should intuitively learn based on available URLs of entities and
relations, and then form the right query. The current QB compo-
nents fail to do so, which severely affected the overall performance
of the complete QA pipelines (cf. Table 6). Further, RL and QB
components need significant improvements in runtime efficiency
and performance on complex questions. Thus, the QA community
has to pay more attention to improve the components accomplish-
ing these two tasks. To the best of our knowledge, currently very
few independent components are available for these tasks (also
for Class Linking) and the QA community can contribute building
more independent components for these tasks. The Frankenstein
architecture is not rigid and not restricted to the tasks considered
in this paper. With the availability of more components performing
new QA tasks (e.g., answer type prediction, syntactic parsing, query
re-ranking, etc.), just by extending concepts of the qa vocabulary,
new components can be added to the platform. Furthermore, in real
world settings, a greedy approach may negatively affect the runtime
of the pipeline. Hence, to provide a more efficient framework for
creating QA pipelines, we plan to replace the greedy approach with
concepts similar to web service composition [2], where we assign
cost metrics (e.g., precision, runtime, or memory consumption) to
select components using a pipeline optimiser in an automatic way.

9 RELATEDWORK

Since 2011, 38 QA systems have participated in the eight editions
of the Question Answering of Linked Data (QALD) challenge [33].
However, most participants started building their QA system from
scratch and did not reuse the plethora of already available compo-
nents for the QA subtasks that had to be addressed. Nevertheless,
some early approaches have already tried to solve this problem; ex-
amples include openQA [17], a modular open-source framework for
implementing QA systems from components having rigid but stan-
dardised Java interfaces. Also, QALL-ME [9] provides a SOA-based
architecture skeleton for building components for multilingual
QA systems over structured data. Moreover, OAQA [34] follows

several architectural commitments to components to enable inter-
changeability. QANUS [21] also provides capabilities for the rapid
development of information retrieval based QA systems. In 2014,
Both et al. [5] presented a first semantic approach for integrating
components, where modules that carry semantic self-descriptions
in RDF are collected for a particular query until the search intent
can be served. A more recent approach in this direction is Qa-
nary [4], which generates QA systems from semantically described
components wired together manually. Using the QA ontology [24]
provided by Qanary, modules can be exchanged, e.g. various ver-
sions of NER tools, to benchmark various pipelines and choose
the best performing one. In 2017, QA4ML [31] described a similar
approach to Frankenstein, where a QA system is selected out of
6 QA systems based on the question type. To the best of our knowl-
edge there is no question answering framework that enables the
automatic and dynamic composition of QA components to generate
optimised QA pipelines based on question features.

10 CONCLUSIONS AND FUTUREWORK

Frankenstein is the first framework of its kind for integrating
all state-of-the-art QA components to build more powerful QA
systems with collaborative efforts. It simplifies the integration of
emerging components and is sensitive to the input question. The
rationale was not to build a QA system from scratch but instead to
reuse the currently existing 29 major components being available
today to the QA community. Furthermore, our effort demonstrates
the ability to integrate the components released by the research
community in a single platform. Frankenstein’s loosely coupled
architecture enables easy integration of newer components in the
framework and implements a model that learns from the features
extracted from the input questions to direct the user’s question to
the best performing component per QA task. Also, Frankenstein’s
design is component agnostic; therefore, Frankenstein can eas-
ily be applied to new knowledge bases and domains. Thus, it is a
framework for automatically producing intelligent QA pipelines.
Our experimental study provides a holistic overview on the perfor-
mance of state-of-the-art QA components for various QA tasks and
pipelines. In addition, it measures and compares the performance
of Frankenstein from several perspectives in multiple settings
and demonstrates the beneficial characteristics of the approach.

We plan to extend our work in the following directions: (i) im-
proving quality as well as quantity of extracted features, (ii) improv-
ing the learning algorithm, (iii) extending our training datasets, and
(iv) including more emerging QA components. In conclusion, our
component-oriented approach enables the research community to
further improve the performance of state-of-the-art QA systems by
adding new components to the ecosystem, or to extend the available
data (i.e. gold standard) to adapt the training process.
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