DL-Learner - A Framework for Inductive Learning on the
Semantic Web
Extended Abstract

Lorenz Bithmann
SDA Research Group
Institute for Applied Informatics, University of Leipzig
Leipzig, Germany
buehmann@informatik.uni-leipzig.de

Patrick Westphal
SDA Research Group
Institute for Applied Informatics, University of Leipzig
Leipzig, Germany
patrick.westphal@informatik.uni-leipzig.de

ABSTRACT

The following paper is an extended summary of the journal pa-
per [5]. In this system paper, we describe the DL-Learner frame-
work. It is beneficial in various data and schema analytic tasks with
applications in different standard machine learning scenarios, e.g.
life sciences, as well as Semantic Web specific applications such
as ontology learning and enrichment. Since its creation in 2007, it
has become the main OWL and RDF-based software framework
for supervised structured machine learning and includes several
algorithm implementations, usage examples and has applications
building on top of the framework.

CCS CONCEPTS

« Information systems — Web Ontology Language (OWL);
Resource Description Framework (RDF), » Computing methodo-
logies — Structured outputs; Inductive logic learning; Super-
vised learning by classification; Statistical relational learning; Rule
learning; Instance-based learning;

KEYWORDS

System Description, Machine Learning, Supervised Learning, Se-
mantic Web, OWL, RDF

ACM Reference Format:

Lorenz Bithmann, Jens Lehmann, Patrick Westphal, and Simon Bin. 2017.
DL-Learner - A Framework for Inductive Learning on the Semantic Web: Ex-
tended Abstract. In Proceedings of TheWebConference (WWW2018), Claudia
d’Amato, Francesco Marcelloni, and Rudi Studer (Eds.). ACM, New York,
NY, USA, 5 pages. https:/doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WWW2018, April 23 — 27, 2018, Lyon, France

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.

ACM ISBN 978-x-xxxx-Xxxx-x/YY/MM. .. $15.00
https:/doi.org/10.1145/nnnnnnn.nnnnnnn

Jens Lehmann
Enterprise Information Systems, Fraunhofer IAIS
Institute of Computer Science, University of Bonn
Sankt Augustin, Germany and Bonn, Germany
jens.lehmann@cs.uni-bonn.de

Simon Bin
SDA Research Group
Institute for Applied Informatics, University of Leipzig
Leipzig, Germany
sbin@informatik.uni-leipzig.de

1 INTRODUCTION

Over the past two decades, data and knowledge have become more
important in our society. A major challenge that research faces
today is to analyse this growing amount of information to obtain
insights into the underlying problems, e.g. in [7] and [18]. In many
cases, in particular in the life sciences, it is beneficial to employ
methods that are able to use the complex structure of available
background knowledge when learning hypotheses. DL-Learner! is
an open software framework, which contains several such methods.
It has the primary goal to serve as a platform for facilitating the
implementation and evaluation of supervised structured machine
learning methods using semantic background knowledge.

A previous system paper on DL-Learner appeared in 2009 in
the Journal of Machine Learning Research [12]. Compared to that
system description, the major changes are: « Framework design:
The framework has been generalised from being focused on learn-
ing OWL class expressions using OWL ontologies as background
knowledge to a more generic supervised structured machine learn-
ing framework. Components are integrated via Java Beans and the
Java Spring framework, which allows more fine-grained and more
flexible interaction between them. Moreover, algorithms are con-
tinuously extended with options based on received feature requests.
In the same manner, new APIs and reasoners are continuously
upgraded.

« New algorithms for learning SPARQL queries (as feedback com-
ponent in question answering), fuzzy description logic expressions,
parallel OWL class expression learning, a special purpose algorithm
for the &L description logic, two algorithms for knowledge base
enrichment of almost all OWL 2 axioms from SPARQL endpoints
as well as an algorithm combining inductive learning with natural
language processing have been integrated.

« Scalability enhancements: There are now statistical sampling
methods available for dealing with a large number of examples as
well as different knowledge base fragment selection methods for
handling large knowledge bases in general.

Uhttp:/dl-learner.org, https:/github.com/SmartDataAnalytics/DL-Learner

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://dl-learner.org
https://github.com/SmartDataAnalytics/DL-Learner

WWW2018, April 23 - 27, 2018, Lyon, France

Domain Knowledge

supervised 7
learning @ .
problem R

use',
integrated
consolidated
knowledge

2444
merge, transform

Learning System

Domain Experts

hypothesis
generation

Y

p
inferencing l

P

symbolic classifier
and accuracy
assessment

knowledEé bases

Figure 1: General learning workflow.

The article is structured as follows: In Section 2, we give a de-
scription of the problems DL-Learner aims to solve. Subsequently,
in Section 3, the software framework is described. We summarise
core algorithms implemented in DL-Learner in Section 4. Use cases
of DL-Learner in different problem areas are covered in Section 5.
Notes regarding implementation and extension, as well as related
and future work are discussed in the journal article [5].

2 LEARNING PROBLEMS

The process of learning in logics, i.e. trying to find high-level explan-
ations for given data, is also called inductive reasoning as opposed to
inference or deductive reasoning. Learning problems which are sim-
ilar to the one we will analyse, have been investigated in Inductive
Logic Programming [19].

The goal of DL-Learner is to provide a structural framework and
reusable components for solving those induction problems. Figure 1
depicts a typical workflow from a user’s perspective. On the left
hand side, there are several knowledge bases which together form
the background knowledge for a given task. Within that background
knowledge, some resources are selected as positive and some others
as negative examples. In a medical setting, the resources could be
patients reacting to a treatment (positive examples) and patients
not reacting to a treatment (negative examples). Those are then
processed by a supervised machine learning algorithm and return
(in most cases in DL-Learner) a symbolic classifier. This classifier is
human readable and expressed in a logical form, e.g. as a complex
description logic concept or a SPARQL query. It serves two purposes:
First, due to its logical representation it should give insights into
the underlying problem, showing which concepts are relevant to
distinguish positive and negative examples. Furthermore, the result
can also be used to classify unseen resources.

In DL-Learner, the following learning problems are relevant:
Standard Supervised Learning Let the name of the back-ground
ontology be O. The goal in this learning problem is to find an OWL
class expression C such that all/many positive examples are in-
stances of C w.r.t. O and none/few negative examples are instances
of Cwurt. O.

Positive Only Learning In case only positive examples are avail-
able, it is desirable to find a class expression that covers the positive
examples while still generalising sufficiently well (usually measured
on unlabelled data).

Class Learning In class learning, you are given an existing class
A within an ontology O and want to describe it. This is similar

Lorenz Bithmann, Jens Lehmann, Patrick Westphal, and Simon Bin

- OCEL

- Pellet UES
- HermiT ~Eg
- ELK /ﬂ ¢
- OWLIink D
in & Yoo,
,70° ’O;,:\O
1
: \
208, Iy
U z}@ 9
n : 2 - Upward/Downward
. Java Spring a Refinement
S

Configuration - Different OWL Profiles

S T spanall

- Ontology File
- SPARQL Endpoint

+

- Class Learning Problem

- Pos/Neg Learning Problem

- Fuzzy Pos/Neg Learning Problem
- Pos Only Learning Problem

Figure 2: Overview of core DL-Learner components.

to the previous problem in that you can use the instances of the
class as positive examples. However, you can make use of existing
knowledge about A in the ontology and (obviously) A itself should
not be a solution. In addition, there are different nuances of the
above learning problems which depend on how negative know-
ledge should be treated (related to the open world assumption in
description logics).

DL-Learner implements standard binary measures, e.g. predict-
ive accuracy, F-measure, and all ternary measures described in [6].
Obviously, in most cases, we will not find a perfect solution to
the learning problem, but rather an approximation, the degree of
which is managed by setting suitable thresholds representing the
tolerance to noise/errors, i.e. the fraction of uncovered positive resp.
covered negative examples.

3 OVERVIEW OF THE FRAMEWORK

The DL-Learner framework provides means to flexibly build concept
learning algorithms. Several (Java) interfaces, adaptors and external
API connectors are part of the implementation. Figure 2 shows
the main parts of this structure: (1) Knowledge sources specify
where and how to retrieve data. Currently, most RDF and OWL
serialisation formats are supported. Data can be retrieved locally
or remotely. Retrieving data from SPARQL endpoints is also sup-
ported, including various options to extract fragments, filter and
pre-process data [8] as well as several retrieval strategies differ-
ing in performance. A single learning problem can have multiple
knowledge sources including mixtures of different types of sources.

(2) Reasoners perform inference over knowledge sources. DL-
Learner supports connecting reasoners via the OWL API, OWLlink
as well as direct access to e.g. Pellet if advanced features not covered
in the standard interfaces are needed. DL-Learner also implements
own approximate reasoners (not sound and/or incomplete) for high
performance hypothesis testing. Note that learning algorithms are
not required to use reasoning, i.e. can also work only on the asserted
knowledge, but indeed can benefit from inferred knowledge - there

DL-Learner - A Framework for Inductive Learning on the Semantic Web

0,45 [HE:1]
owl:Thing

0,73 {HE:5]
Car Person

too weak

0,78 [HE:5]

(Person and attends some owl:Thing)

0,97 [HE:4]
(Person and attends some Talk)

Figure 3: Search tree used in OCEL and CELOE algorithm.

is a trade-off between computational complexity and expressivity.

(3) Learning problems define the task to solve (see Sec. 2). Learning
problems are typically used by learning algorithms for hypothesis
testing. DL-Learner provides statistical sampling methods which
allow efficient hypothesis testing even in the presence of a high
number of examples [13]. Those methods approximate objective
functions, such as F-measure, by iteratively sampling from the given
examples until the confidence interval around the approximated
objective function value is sufficiently small.

(4) Refinement Operators are used to traverse through the space of
possible hypotheses. DL-Learner implements a set of refinement
operators, which can be configured towards particular fragments
of OWL as well as an efficient operator for the &L language spe-
cifically.

(5) Learning algorithms implement the core learning strategy.

4 LEARNING ALGORITHMS

In early work, we provided theoretical foundations for the field on
top of which we developed algorithms derived from Inductive Logic
Programming and genetic programming [11]. This was extended to
very expressive schemata [17] and learning problems with a lot of
instance data [8]. Later, we extended the theoretical and algorithmic
foundations for a) learning complex definitions in ontologies [13],
b) generic schema enrichment [3, 4], c) fuzzy description logics [9],
d) the light-weight & L-description logic [16] and e) combinations
of natural language processing and concept learning [2]. We will
briefly describe the algorithms resulting from those lines of research.

Refinement Operator Algorithms

The first category of algorithms is based on so-called refinement
operators. The design of those algorithms is motivated by the fact
that, generally, learning can be seen as the search for a correct
concept definition in an ordered space (%, <). In such a setting, one
can define suitable operators to traverse the search space.

DEFINITION 1 (REFINEMENT OPERATOR). Given a quasi—orolered2
search space (2, <)

2 A quasi-ordering is a reflexive and transitive relation.

WWW2018, April 23 - 27, 2018, Lyon, France

« a downward refinement operator is a mapping p : £ — 2% such
thatVa € 3 pla) C{feX|f < a}
e an upward refinement operator is a mapping § : & — 2% such
thatVa €3 §(a) c{fe>|a =< p}

Intuitively, a downward (resp. upward) refinement operator re-
turns a set of more specific (resp. general) concepts.

OCEL (OWL Class Expression Learner) was initially devised for
learning in the description logic ALC, but was later extended to
cover other parts of OWL as well, e.g. nominals. The general idea is
to use a proper and complete refinement operator to build a search
tree while using heuristics which control how the search tree is
traversed. The algorithm uses techniques to cope with redundancy
and infinity, in particular, infinity is handled by the ability to revisit
nodes in the search tree several times and perform incremental
applications of the refinement operator. Figure 3 visualises a search
tree of OCEL, starting from the most general concept owl: Thing as
the root node to more specific concepts like Person or Person that
attends some talk. Nodes are annotated with their score and
the number of times they have been expanded (denoted by the HE
value). Some nodes are too weak to eventually lead to competitive
learning problem solutions, i.e. the number of uncovered positive
examples is above a given threshold. They are never visited, which
allows the algorithm to ignore those parts of the search space
resulting in improved efficiency.

A summary of the CELOE (Class Expression Learning for On-
tology Engineering) [13], ELTL (EL Tree Learner) [16] and ISLE
(Inductive Statistical Learning of Expressions) [2], as well as OWL
Schema Learning Algorithms [3] and axiom pattern enrichment [4],
QTL (Query Tree Learning), PARCEL [22], Fuzzy DLL [9] and genetic
algorithms [11] can be found in the journal version [5].

5 USE CASE: KNOWLEDGE BASE
ENRICHMENT

A standard use case for the learning algorithms contained in DL-
Learner is knowledge base enrichment, i.e. the semi-automation of
schemata creation and revision based on the available instance data.
The combination of instance data and schemata allows improved
querying, inference and consistency checking. As an example, con-
sider a knowledge base containing a property birthPlace and sub-
jects in triples of this property, e.g. Brad Pitt, Angela Merkel, Albert
Einstein, etc. Our enrichment algorithms could, then, suggest that
the property birthPlace may be functional and has the domain
Person as it is encoded via the following axioms in Manchester
OWL syntax>:
ObjectProperty: birthPlace

Characteristics: Functional

Domain: Person

Range: Place

SubPropertyOf: hasBeenAt

Adding such axioms to a knowledge base can have several bene-
fits: 1.) The axioms serve as documentation for the purpose and
correct usage of schema elements. 2.) They improve the application
of schema debugging techniques. For instance, after adding the
above axioms the knowledge base would become inconsistent if a

3For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see http:/
www.w3.org/TR/owl2-manchester-syntax/.

http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/

WWW2018, April 23 - 27, 2018, Lyon, France

Preparation Phase

- ~—u
2. pattern to)
~—— query rewriting ~—
SPARQL Query Normalised Axiom

Pattern Library ~

~

Frequency Database

Lorenz Bithmann, Jens Lehmann, Patrick Westphal, and Simon Bin

BioPortal

1. extract and
normalise patterns

Oxford Library

~
P
~—

Execution Phase

¢
o

Reasoner

batch mode:
iterate over
patterns and
entities

query modes: direct,

(only executed once
per knowledge base)
sampled or local

(optional
invocation)

-

Input: Entity URI,
Pattern,

Knowledge Base
(SPARQL Endpoint)

1. obtain schema
information

Knowledge

N
<€ \
SPARQL
Endpoint

€

Background | 2. obtain axiom type
and entity specific data

’ .
N
@

Axiom Type Specific
Scoring Algorithms

Enrichment
Ontology

Background
Knowledge

+ Relevant
Instance Data

List of Axiom
Suggestions
+ Metadata

3. compute confidence
scores

Figure 4: The general workflow of knowledge base enrichment and its pattern based extension: Frequent axiom patterns in
various ontology portals are detected and converted into SPARQL query patterns (upper part). Those are then applied to other

data-sets to enrich them with further axioms (lower part).

person has two different birth places (explicitly stated to be not the
same) due to the functionality axiom. Specifically for the DBpedia
knowledge base we observed an erroneous statement asserting that
a person was born in Lacrosse, the game, instead of Lacrosse, the
city in the United States. Such errors can be automatically detected
when schema information such as the range restriction is present
(assuming disjointness of the classes Place and Game). 3.) Addi-
tional implicit information can be inferred. As an example in the
above case it can be inferred that the birth place of a person is
one of the places she stayed at. The main purpose of our research
is to reduce the effort of creating and maintaining such schema
information.

We have shown in [3] that the whole enrichment process can
be described as illustrated in the lower part of Figure 4 and also be
applied to large scale knowledge bases accessible via SPARQL. The
general workflow proceeds in three steps: (1) In the optional first
step, SPARQL queries are used to obtain existing information about
the schema of the knowledge base. In particular we retrieve axioms
which allow to construct the class hierarchy. It can be configured
whether to use an OWL reasoner for inferencing over the schema or
just taking explicit knowledge into account.* Naturally, the schema
only needs to be obtained once per knowledge base and can then
be re-used by all algorithms and all entities in subsequent steps.

(2) The second step consists of obtaining data via SPARQL which
is relevant for learning the considered axiom. This results in a set
of axiom candidates, configured via a threshold.

(3) In the third step, the score of axiom candidates is computed
and the results are returned.

In [4], patterns for frequent axioms are mined from more than

4Note that the OWL reasoner only loads the schema of the knowledge base and,
therefore, this option worked even in case with several hundred thousand classes in
our experiments using the HermiT reasoner.

one thousand ontologies and then used to learn on the DBpedia
data-set. As one would expected, the most frequent axiom pattern
was A SubClassOf B, but in the top 15 we found also patterns like
A SubClassOf p some (g some B)
A EquivalentTo B and p some C
A SubClassOf p value a
Those patterns have been applied to search for promising instanti-
ations on DBpedia and resulted in axioms like

Song EquivalentTo MusicalWork and (artist some

Agent) and (writer some Artist)
or

Conifer SubClassOf order value Pinales

A manual evaluation with non-author experts judging the 2154
proposed axioms showed that 48.2% of these axioms were useful
for extending the knowledge base. This shows promise, but also
clearly indicates that a human expert is required in loop to ensure
high quality.

Many more use cases such as Life-Science Problems [21] like
carcinogenesis prediction, Ontology Repair (ORE [14], RDFUnit [10]),
Suggestions for Ontology Editors®, Knowledge Exploration [15],
sentiment analysis [20], or hospital workflow management [1] are
summarised in the journal version [5].

ACKNOWLEDGMENTS

This work was supported by grants from the EU FP7 Programme
for the project GeoKnow (GA no. 318159) as well as for the German
Research Foundation project GOLD and the German Ministry for
Economic Affairs and Energy project SAKE (GA no. 01MD15006E)
and the European Union’s Horizon 2020 research and innovation
programme for the project SLIPO (GA no. 731581).

Shttp:/dl-learner.org/community/protege-plugin/

http://dl-learner.org/community/protege-plugin/

DL-Learner - A Framework for Inductive Learning on the Semantic Web

REFERENCES

[1

[2

8

[9

[10

i)

=

=

]

Pieter Bonte, Femke Ongenae, and Filip De Turck. 2016. Learning Semantic Rules
for Intelligent Transport Scheduling in Hospitals. In Proc. of the 5th Workshop on
Data Mining and Knowledge Discovery meets Linked Open Data.

Lorenz Bithmann, Daniel Fleischhacker, Jens Lehmann, Andre Melo, and Johanna
Vélker. 2014. Inductive Lexical Learning of Class Expressions. In Knowledge
Engineering and Knowledge Management (LNCS), Vol. 8876. Springer International
Publishing, 42-53.

Lorenz Bithmann and Jens Lehmann. 2012. Universal OWL Axiom Enrichment
for Large Knowledge Bases. In Proc. of EKAW 2012. 57-71.

Lorenz Bithmann and Jens Lehmann. 2013. Pattern Based Knowledge Base
Enrichment. In 12th International Semantic Web Conference, 21-25 October 2013,
Sydney, Australia. 33-48.

Lorenz Bithmann, Jens Lehmann, and Patrick Westphal. 2016. DL-Learner - A
framework for inductive learning on the Semantic Web. Web Semantics: Science,
Services and Agents on the World Wide Web 39 (2016), 15 — 24. http:/www.
sciencedirect.com/science/article/pii/S157082681630018X

Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. 2008. A Note on the
Evaluation of Inductive Concept Classification Procedures. In Proc. of the 5th
Workshop on Semantic Web Applications and Perspectives (SWAP2008), Rome, Italy,
2008, Vol. 426. CEUR-WS.org.

Thomas Dietterich, Pedro Domingos, Lise Getoor, Stephen Muggleton, and Prasad
Tadepalli. 2008. Structured machine learning: the next ten years. Machine
Learning 73, 1 (October 2008), 3-23.

Sebastian Hellmann, Jens Lehmann, and Séren Auer. 2011. Learning of OWL
Class Expressions on Very Large Knowledge Bases and its Applications. In
Semantic Services, Interoperability and Web Applications: Emerging Concepts. IGI
Global, 104-130.

Josué Iglesias and Jens Lehmann. 2011. Towards Integrating Fuzzy Logic Capab-
ilities into an Ontology-based Inductive Logic Programming Framework. In Proc.
of the 11th International Conference on Intelligent Systems Design and Applications
(ISDA). 1323-1328.

Dimitris Kontokostas, Patrick Westphal, Séren Auer, Sebastian Hellmann, Jens
Lehmann, Roland Cornelissen, and Amrapali Zaveri. 2014. Test-driven Evaluation
of Linked Data Quality. In Proc. of the 23rd International Conference on World
Wide Web (WWW ’14). 747-758.

(1]

[12]

[13

[14]

[15]

[16]

(17]

[18

(19]

[20

[21]

[22]

WWW2018, April 23 - 27, 2018, Lyon, France

Jens Lehmann. 2007. Hybrid Learning of Ontology Classes. In Proc. of the 5th
Int. Conference on Machine Learning and Data Mining MLDM (LNCS), Vol. 4571.
Springer, 883-898.

Jens Lehmann. 2009. DL-Learner: Learning Concepts in Description Logics.
Journal of Machine Learning Research (JMLR) 10 (2009), 2639-2642.

Jens Lehmann, Séren Auer, Lorenz Bithmann, and Sebastian Tramp. 2011. Class
expression learning for ontology engineering. Journal of Web Semantics 9 (2011),
71 - 81.

Jens Lehmann and Lorenz Bithmann. 2010. ORE - A Tool for Repairing and Enrich-
ing Knowledge Bases. In Proc. of the 9th International Semantic Web Conference
(ISWC2010) (LNCS). Springer, 177-193.

Jens Lehmann and Lorenz Bithmann. 2011. AutoSPARQL: Let Users Query Your
Knowledge Base. In Proc. of ESWC 2011. 63-79.

Jens Lehmann and Christoph Haase. 2009. Ideal Downward Refinement in the EL
Description Logic. In Inductive Logic Programming, 19th International Conference,
ILP 2009, Leuven, Belgium. 73-87.

Jens Lehmann and Pascal Hitzler. 2010. Concept Learning in Description Logics
Using Refinement Operators. Machine Learning journal 78, 1-2 (2010), 203-250.
Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach, Katsumi
Inoue, and Ashwin Srinivasan. 2012. ILP turns 20. Machine Learning 86, 1 (2012),
3-23.

Shan-Hwei Nienhuys-Cheng and Ronald de Wolf (Eds.). 1997. Foundations of
Inductive Logic Programming. LNCS, Vol. 1228. Springer.

Alberto Salguero and Macarena Espinilla. 2016. Sentiment Analysis and Ontology
Engineering: An Environment of Computational Intelligence. Chapter Description
Logic Class Expression Learning Applied to Sentiment Analysis, 93-111.

A. Srinivasan, R. D. King, and D. W. Bristol. 1999. An Assessment of Submissions
Made to the Predictive Toxicology Evaluation Challenge. In Proc. of the 16th
International Joint Conference on Artifical Intelligence - Volume 1 (IJCAI’99). 270~
275.

An C. Tran, Jens Dietrich, Hans W. Guesgen, and Stephen Marsland. 2012. An
Approach to Parallel Class Expression Learning. In Proc. of the 6th International
Conference on Rules on the Web: Research and Applications (RuleML’12). Springer-
Verlag, Berlin, Heidelberg, 302-316.

http://www.sciencedirect.com/science/article/pii/S157082681630018X
http://www.sciencedirect.com/science/article/pii/S157082681630018X

	Abstract
	1 Introduction
	2 Learning Problems
	3 Overview of the Framework
	4 Learning Algorithms
	5 Use case: Knowledge Base Enrichment
	Acknowledgments
	References

