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ABSTRACT

The following paper is an extended summary of the journal pa-
per [5]. In this system paper, we describe the DL-Learner frame-
work. It is beneficial in various data and schema analytic tasks with
applications in different standard machine learning scenarios, e.g.
life sciences, as well as Semantic Web specific applications such
as ontology learning and enrichment. Since its creation in 2007, it
has become the main OWL and RDF-based software framework
for supervised structured machine learning and includes several
algorithm implementations, usage examples and has applications
building on top of the framework.
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1 INTRODUCTION

Over the past two decades, data and knowledge have become more
important in our society. A major challenge that research faces
today is to analyse this growing amount of information to obtain
insights into the underlying problems, e.g. in [7] and [18]. In many
cases, in particular in the life sciences, it is beneficial to employ
methods that are able to use the complex structure of available
background knowledge when learning hypotheses. DL-Learner! is
an open software framework, which contains several such methods.
It has the primary goal to serve as a platform for facilitating the
implementation and evaluation of supervised structured machine
learning methods using semantic background knowledge.

A previous system paper on DL-Learner appeared in 2009 in
the Journal of Machine Learning Research [12]. Compared to that
system description, the major changes are: « Framework design:
The framework has been generalised from being focused on learn-
ing OWL class expressions using OWL ontologies as background
knowledge to a more generic supervised structured machine learn-
ing framework. Components are integrated via Java Beans and the
Java Spring framework, which allows more fine-grained and more
flexible interaction between them. Moreover, algorithms are con-
tinuously extended with options based on received feature requests.
In the same manner, new APIs and reasoners are continuously
upgraded.

« New algorithms for learning SPARQL queries (as feedback com-
ponent in question answering), fuzzy description logic expressions,
parallel OWL class expression learning, a special purpose algorithm
for the &L description logic, two algorithms for knowledge base
enrichment of almost all OWL 2 axioms from SPARQL endpoints
as well as an algorithm combining inductive learning with natural
language processing have been integrated.

« Scalability enhancements: There are now statistical sampling
methods available for dealing with a large number of examples as
well as different knowledge base fragment selection methods for
handling large knowledge bases in general.

Uhttp:/dl-learner.org, https:/github.com/SmartDataAnalytics/DL-Learner
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Figure 1: General learning workflow.

The article is structured as follows: In Section 2, we give a de-
scription of the problems DL-Learner aims to solve. Subsequently,
in Section 3, the software framework is described. We summarise
core algorithms implemented in DL-Learner in Section 4. Use cases
of DL-Learner in different problem areas are covered in Section 5.
Notes regarding implementation and extension, as well as related
and future work are discussed in the journal article [5].

2 LEARNING PROBLEMS

The process of learning in logics, i.e. trying to find high-level explan-
ations for given data, is also called inductive reasoning as opposed to
inference or deductive reasoning. Learning problems which are sim-
ilar to the one we will analyse, have been investigated in Inductive
Logic Programming [19].

The goal of DL-Learner is to provide a structural framework and
reusable components for solving those induction problems. Figure 1
depicts a typical workflow from a user’s perspective. On the left
hand side, there are several knowledge bases which together form
the background knowledge for a given task. Within that background
knowledge, some resources are selected as positive and some others
as negative examples. In a medical setting, the resources could be
patients reacting to a treatment (positive examples) and patients
not reacting to a treatment (negative examples). Those are then
processed by a supervised machine learning algorithm and return
(in most cases in DL-Learner) a symbolic classifier. This classifier is
human readable and expressed in a logical form, e.g. as a complex
description logic concept or a SPARQL query. It serves two purposes:
First, due to its logical representation it should give insights into
the underlying problem, showing which concepts are relevant to
distinguish positive and negative examples. Furthermore, the result
can also be used to classify unseen resources.

In DL-Learner, the following learning problems are relevant:
Standard Supervised Learning Let the name of the back-ground
ontology be O. The goal in this learning problem is to find an OWL
class expression C such that all/many positive examples are in-
stances of C w.r.t. O and none/few negative examples are instances
of Cwurt. O.

Positive Only Learning In case only positive examples are avail-
able, it is desirable to find a class expression that covers the positive
examples while still generalising sufficiently well (usually measured
on unlabelled data).

Class Learning In class learning, you are given an existing class
A within an ontology O and want to describe it. This is similar

Lorenz Bithmann, Jens Lehmann, Patrick Westphal, and Simon Bin

- OCEL

- Pellet UES
- HermiT ~Eg
- ELK /ﬂ ¢
- OWLIink D
in & Yoo,
,70° ’O;,:\O
1
: \
208, Iy
U z}@ 9
n : 2 - Upward/Downward
. Java Spring a Refinement
S

Configuration - Different OWL Profiles

S T spanall

- Ontology File
- SPARQL Endpoint

+

- Class Learning Problem

- Pos/Neg Learning Problem

- Fuzzy Pos/Neg Learning Problem
- Pos Only Learning Problem

Figure 2: Overview of core DL-Learner components.

to the previous problem in that you can use the instances of the
class as positive examples. However, you can make use of existing
knowledge about A in the ontology and (obviously) A itself should
not be a solution. In addition, there are different nuances of the
above learning problems which depend on how negative know-
ledge should be treated (related to the open world assumption in
description logics).

DL-Learner implements standard binary measures, e.g. predict-
ive accuracy, F-measure, and all ternary measures described in [6].
Obviously, in most cases, we will not find a perfect solution to
the learning problem, but rather an approximation, the degree of
which is managed by setting suitable thresholds representing the
tolerance to noise/errors, i.e. the fraction of uncovered positive resp.
covered negative examples.

3 OVERVIEW OF THE FRAMEWORK

The DL-Learner framework provides means to flexibly build concept
learning algorithms. Several (Java) interfaces, adaptors and external
API connectors are part of the implementation. Figure 2 shows
the main parts of this structure: (1) Knowledge sources specify
where and how to retrieve data. Currently, most RDF and OWL
serialisation formats are supported. Data can be retrieved locally
or remotely. Retrieving data from SPARQL endpoints is also sup-
ported, including various options to extract fragments, filter and
pre-process data [8] as well as several retrieval strategies differ-
ing in performance. A single learning problem can have multiple
knowledge sources including mixtures of different types of sources.

(2) Reasoners perform inference over knowledge sources. DL-
Learner supports connecting reasoners via the OWL API, OWLlink
as well as direct access to e.g. Pellet if advanced features not covered
in the standard interfaces are needed. DL-Learner also implements
own approximate reasoners (not sound and/or incomplete) for high
performance hypothesis testing. Note that learning algorithms are
not required to use reasoning, i.e. can also work only on the asserted
knowledge, but indeed can benefit from inferred knowledge - there
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Figure 3: Search tree used in OCEL and CELOE algorithm.

is a trade-off between computational complexity and expressivity.

(3) Learning problems define the task to solve (see Sec. 2). Learning
problems are typically used by learning algorithms for hypothesis
testing. DL-Learner provides statistical sampling methods which
allow efficient hypothesis testing even in the presence of a high
number of examples [13]. Those methods approximate objective
functions, such as F-measure, by iteratively sampling from the given
examples until the confidence interval around the approximated
objective function value is sufficiently small.

(4) Refinement Operators are used to traverse through the space of
possible hypotheses. DL-Learner implements a set of refinement
operators, which can be configured towards particular fragments
of OWL as well as an efficient operator for the &L language spe-
cifically.

(5) Learning algorithms implement the core learning strategy.

4 LEARNING ALGORITHMS

In early work, we provided theoretical foundations for the field on
top of which we developed algorithms derived from Inductive Logic
Programming and genetic programming [11]. This was extended to
very expressive schemata [17] and learning problems with a lot of
instance data [8]. Later, we extended the theoretical and algorithmic
foundations for a) learning complex definitions in ontologies [13],
b) generic schema enrichment [3, 4], c) fuzzy description logics [9],
d) the light-weight & L-description logic [16] and e) combinations
of natural language processing and concept learning [2]. We will
briefly describe the algorithms resulting from those lines of research.

Refinement Operator Algorithms

The first category of algorithms is based on so-called refinement
operators. The design of those algorithms is motivated by the fact
that, generally, learning can be seen as the search for a correct
concept definition in an ordered space (%, <). In such a setting, one
can define suitable operators to traverse the search space.

DEFINITION 1 (REFINEMENT OPERATOR). Given a quasi—orolered2
search space (2, <)

2 A quasi-ordering is a reflexive and transitive relation.
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« a downward refinement operator is a mapping p : £ — 2% such
thatVa € 3 pla) C{feX|f < a}
e an upward refinement operator is a mapping § : & — 2% such
thatVa €3 §(a) c{fe>|a =< p}

Intuitively, a downward (resp. upward) refinement operator re-
turns a set of more specific (resp. general) concepts.

OCEL (OWL Class Expression Learner) was initially devised for
learning in the description logic ALC, but was later extended to
cover other parts of OWL as well, e.g. nominals. The general idea is
to use a proper and complete refinement operator to build a search
tree while using heuristics which control how the search tree is
traversed. The algorithm uses techniques to cope with redundancy
and infinity, in particular, infinity is handled by the ability to revisit
nodes in the search tree several times and perform incremental
applications of the refinement operator. Figure 3 visualises a search
tree of OCEL, starting from the most general concept owl: Thing as
the root node to more specific concepts like Person or Person that
attends some talk. Nodes are annotated with their score and
the number of times they have been expanded (denoted by the HE
value). Some nodes are too weak to eventually lead to competitive
learning problem solutions, i.e. the number of uncovered positive
examples is above a given threshold. They are never visited, which
allows the algorithm to ignore those parts of the search space
resulting in improved efficiency.

A summary of the CELOE (Class Expression Learning for On-
tology Engineering) [13], ELTL (EL Tree Learner) [16] and ISLE
(Inductive Statistical Learning of Expressions) [2], as well as OWL
Schema Learning Algorithms [3] and axiom pattern enrichment [4],
QTL (Query Tree Learning), PARCEL [22], Fuzzy DLL [9] and genetic
algorithms [11] can be found in the journal version [5].

5 USE CASE: KNOWLEDGE BASE
ENRICHMENT

A standard use case for the learning algorithms contained in DL-
Learner is knowledge base enrichment, i.e. the semi-automation of
schemata creation and revision based on the available instance data.
The combination of instance data and schemata allows improved
querying, inference and consistency checking. As an example, con-
sider a knowledge base containing a property birthPlace and sub-
jects in triples of this property, e.g. Brad Pitt, Angela Merkel, Albert
Einstein, etc. Our enrichment algorithms could, then, suggest that
the property birthPlace may be functional and has the domain
Person as it is encoded via the following axioms in Manchester
OWL syntax>:
ObjectProperty: birthPlace

Characteristics: Functional

Domain: Person

Range: Place

SubPropertyOf: hasBeenAt

Adding such axioms to a knowledge base can have several bene-
fits: 1.) The axioms serve as documentation for the purpose and
correct usage of schema elements. 2.) They improve the application
of schema debugging techniques. For instance, after adding the
above axioms the knowledge base would become inconsistent if a

3For details on Manchester OWL syntax (e.g. used in Protégé, OntoWiki) see http:/
www.w3.org/TR/owl2-manchester-syntax/.
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Figure 4: The general workflow of knowledge base enrichment and its pattern based extension: Frequent axiom patterns in
various ontology portals are detected and converted into SPARQL query patterns (upper part). Those are then applied to other

data-sets to enrich them with further axioms (lower part).

person has two different birth places (explicitly stated to be not the
same) due to the functionality axiom. Specifically for the DBpedia
knowledge base we observed an erroneous statement asserting that
a person was born in Lacrosse, the game, instead of Lacrosse, the
city in the United States. Such errors can be automatically detected
when schema information such as the range restriction is present
(assuming disjointness of the classes Place and Game). 3.) Addi-
tional implicit information can be inferred. As an example in the
above case it can be inferred that the birth place of a person is
one of the places she stayed at. The main purpose of our research
is to reduce the effort of creating and maintaining such schema
information.

We have shown in [3] that the whole enrichment process can
be described as illustrated in the lower part of Figure 4 and also be
applied to large scale knowledge bases accessible via SPARQL. The
general workflow proceeds in three steps: (1) In the optional first
step, SPARQL queries are used to obtain existing information about
the schema of the knowledge base. In particular we retrieve axioms
which allow to construct the class hierarchy. It can be configured
whether to use an OWL reasoner for inferencing over the schema or
just taking explicit knowledge into account.* Naturally, the schema
only needs to be obtained once per knowledge base and can then
be re-used by all algorithms and all entities in subsequent steps.

(2) The second step consists of obtaining data via SPARQL which
is relevant for learning the considered axiom. This results in a set
of axiom candidates, configured via a threshold.

(3) In the third step, the score of axiom candidates is computed
and the results are returned.

In [4], patterns for frequent axioms are mined from more than

4Note that the OWL reasoner only loads the schema of the knowledge base and,
therefore, this option worked even in case with several hundred thousand classes in
our experiments using the HermiT reasoner.

one thousand ontologies and then used to learn on the DBpedia
data-set. As one would expected, the most frequent axiom pattern
was A SubClassOf B, but in the top 15 we found also patterns like
A SubClassOf p some (g some B)
A EquivalentTo B and p some C
A SubClassOf p value a
Those patterns have been applied to search for promising instanti-
ations on DBpedia and resulted in axioms like

Song EquivalentTo MusicalWork and (artist some

Agent) and (writer some Artist)
or

Conifer SubClassOf order value Pinales

A manual evaluation with non-author experts judging the 2154
proposed axioms showed that 48.2% of these axioms were useful
for extending the knowledge base. This shows promise, but also
clearly indicates that a human expert is required in loop to ensure
high quality.

Many more use cases such as Life-Science Problems [21] like
carcinogenesis prediction, Ontology Repair (ORE [14], RDFUnit [10]),
Suggestions for Ontology Editors®, Knowledge Exploration [15],
sentiment analysis [20], or hospital workflow management [1] are
summarised in the journal version [5].
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