
SPIRIT: A Semantic Transparency and
Compliance Stack

Patrick Westphal1, Javier D. Fernández2,3, Sabrina Kirrane2, and Jens
Lehmann4

1 Institute for Applied Informatics (InfAI), University of Leipzig, DE
patrick.westphal@informatik.uni-leipzig.de

2 Vienna University of Economics and Business, AT
{javier.fernandez, sabrina.kirrane}@wu.ac.at

3 Complexity Science Hub Vienna, AT
4 Enterprise Information Systems, Fraunhofer IAIS, DE

jens.lehmann@iais.fraunhofer.de

Abstract. The European General Data Protection Regulation (GDPR)
sets new precedents for the processing of personal data. In this paper,
we propose an architecture that provides an automated means to en-
able transparency with respect to personal data processing and sharing
transactions and compliance checking with respect to data subject usage
policies and GDPR legislative obligations.

1 Introduction

The European General Data Protection Regulation (GDPR) came into effect in
May 2018. Although Recital 26 of the GDPR clearly states that the obligations
set forth in the GDPR do not apply to anonymous data, it is often impossible
to guarantee that data is truly anonymous. Especially in a Big Data context
many companies find themselves in a state of uncertainty with respect to current
business intelligence operations. Another issue faced by many companies is the
fact that the desired outcome can not always be achieved over anonymised data
(e.g. personalised recommendations). In such cases, there is a need not only to
obtain consent for personal data processing from the data subject, but also to
provide transparency with respect to the processing and demonstrate compliance
with respect to the data subjects consent. Towards this goal, in this paper, we
propose a personal data processing transparency and compliance architecture
that employs existing Big Data processing techniques.

2 The SANSA Stack

The current “Big Data landscape” provides a plethora of tools and frameworks
covering a variety of methods and techniques for processing huge amounts of data
via a distributed cluster of machines. However, none of the general purpose Big
Data processing frameworks provide built-in support for processing big semantic

2 P. Westphal, J.D. Fernández, S. Kirrane, and J. Lehmann

data e.g. to load and store RDF data, which, as a uniform data format supports
dealing with heterogeneity of Big Data. This gap is tackled by the Semantic
Analytics Stack (SANSA)5 [1] which is an open source semantic data processing
framework built on top of Apache Spark6 and Apache Flink7 SANSA provides
a stack of functional layers ranging from RDF/OWL data representation to
machine learning algorithms working on semantic data.

The Knowledge Distribution and Representation layer provides a means to
read and write RDF and OWL files. In terms of data structures and programming
interfaces SANSA follows the common and accepted representations of Apache
Jena8 and the OWL API9. Hence, the RDF and OWL data is provided as dis-
tributed collections of Apache Jena triples and OWL API axioms, respectively.
On top of this, the Query layer comprises functionality for searching, explor-
ing and extracting information from big semantic data through the SPARQL
query language. SANSA supports executing SPARQL queries within an Apache
Spark/Flink program, or via an HTTP SPARQL endpoint. In both cases the ac-
tual queries are translated into lower level Apache Spark/Flink data processing
instructions and executed on the Knowledge Distribution and Representation
layer. The next layer in the SANSA Stack is the Inference layer which builds on
the layers mentioned so far. Besides actual data-level assertions, the Semantic
Web technology stack also provides a means to express schema or ontological
knowledge. Parts of the inherent semantics of the respective W3C standards,
RDFS and OWL, may be encoded as rules which can be applied to infer new
knowledge. With this forward chaining process all rule-based inferences may
be materialized. In contrast backward chaining techniques infer new knowledge
starting at a given ‘goal’, which can be a (set of) RDF triple(s). SANSA sup-
ports different existing reasoning profiles for rule-based forward/backward chain-
ing. Apart from these profiles, SANSA is able to compute an efficient execution
plan for arbitrary sets of rules. Hence, users can adjust the trade-of between
expressivity and performance, and furthermore introduce custom rules, e.g. to
represent business policies. On top of the SANSA Stack the Machine Learning
layer provides a collection of machine learning algorithms that can directly work
on RDF triples or OWL axioms. The algorithms implemented thus far cover
knowledge graph embeddings [2] (e.g. for link prediction), graph clustering and
association rule mining techniques.

3 SPIRIT: Leveraging the SANSA Stack for
Transparency and Compliance

In this paper, we introduce our transparency and compliance checking implemen-
tation of the SANSA stack, which is depicted in Figure 1. The SANSA-based

5 SANSA Stack home page, http://sansa-stack.net
6 Apache Spark, https://spark.apache.org
7 Apache Flink, https://flink.apache.org
8 Apache Jena, http://jena.apache.org/
9 OWL API, https://owlcs.github.io/owlapi/

http://sansa-stack.net
https://spark.apache.org
https://flink.apache.org
http://jena.apache.org/
https://owlcs.github.io/owlapi/

SPIRIT: A Semantic Transparency and Compliance Stack 3

Big DataNon-Big Data

App

def main(args) {
 userId = args(0); val query = args(1)
 axioms, rules = loadPolicies(userId) // (1)

 return getUserTransactions(userId, query)
}

def getUserTransactions(userId, query) {
 wholeLog: RDD = NTripleReader.load(...) // (2)
 queryEngine = new QueryEngine(wholeLog+axioms) // (3)
 reasoner = new Reasoner(rules + profile, queryEngine) // (4)
 return reasoner.getInf(query): Collection[Triple] // (5)
}

Querying

Knowledge Distribution & Representation

Distributed In-Memory Processing

Distributed Filesystem

Node Node Node Node …

Dash
board

Data
Subject

Company
def main(…) {
 query = constructQuery()
 submit(App.main,
 userId, query)
 presentResults()

l
o
g
i
n
(
u
s
e
r
I
d
)

Business Logic

OWL +
Rules

P
olicies

S
ervice

Data
Purpose
Processing
Storage
Sharing

Line of Business
Applications

CRMCRMCRM

…

Logs
Distrib. FS
Converter

HTTPS

HTTPS

Async./Pull
Data Stream

TLS

TLS

Policies

HTTPS

Inference

Machine Learning

Fig. 1. SPIRIT architecture exemplifying the transparency use case

transparency and compliance checking application (right) is used to analyse log
information concerning personal data processing and sharing that is output from
line of business applications on a continuous basis (bottom left), and to present
the information to the user via the SPIRIT dashboard (top left).

Ingesting Transaction Logs into SPIRIT: When it comes to personal
data processing there is a need for a general mechanism to verify compliance
with existing usage policies and legal obligations. One such mechanisms is the
recommissioning of existing application and system logs such that they can be
used to verify that data processing and sharing complies with usage policies
specified by the data subject. Considering the sheer volume of data generated
when application logs are used for personal data processing and sharing auditing,
there is a need for a file system that is able to handle Big Data, is fault tolerant,
and is capable of supporting parallel processing. The Hadoop Distributed File
System (HDFS)10 fulfills all those criteria and is the default choice for Apache
Spark and Apache Flink. Moreover, there is a stable and mature solution to
transfer log data to HDFS, called Apache Flume11, which provides a means to
transform log content, e.g. obtained from an application log, before it is passed
along to the HDFS. This allows heterogeneous transaction logs to be translated
to RDF on the fly.

SPIRIT Transaction Log Processing with SANSA: Our SANSA-based
architecture allows storage and access to all log data in a Big Data process-
ing environment. Semantic web technologies ease data integration across several
heterogeneous line of business applications, enabling interoperability across plat-
forms and providing a simple way to link user data and policies. As sketched
in Figure 1 the main steps that need to be performed include: (1) loading the

10 HDFS, http://hadoop.apache.org/
11 Apache Flume, http://flume.apache.org/

http://hadoop.apache.org/
http://flume.apache.org/

4 P. Westphal, J.D. Fernández, S. Kirrane, and J. Lehmann

policies from the policy store and dividing them into rules that are used in the
reasoning step, and schema/ontology axioms added to the log data later; (2)
loading the RDF log data stored in the distributed file system; (3) initialising
a query engine with the log and schema/ontology data; (4) creating a reasoner
which works on the query engine, considers the rules from the policy store and a
set reasoning profile; and eventually (5) invoking the backward chaining on the
given query goal. Our SPIRIT architecture offers transparency for data subjects,
and means to verify that all business processes comply both with the consent
provided by the data subject and relevant obligations from the GDPR by: (i) en-
coding user data policies in (subsets of) OWL 2 DL; and (ii) providing a compli-
ance checking mechanisms on the basis of the the SANSA inference rule-engine.
As for the former, we allow policies to define restrictions in terms of five data cat-
egories related to the GDPR regulation (as depicted in Figure 1): Data reflects
which personal data is governed by the policy. Processing lists the operations
(e.g. anonymisation, aggregation, etc.) performed on the personal data. Purpose
describes why data are collected/processed. Storage concerns where data are
stored and for how long. Sharing specifies the potential use of the personal data
by third parties. In addition to the personal data policies, the SPIRIT archi-
tecture holds rules that provide means to check compliance of data processing
and sharing transactions according to the data policies and GDPR regulations.
Acknowledging that GDPR compliance checking cannot fully automated (given
the generality, vagueness and subjectivity inherent in the regulation), we focus
on verifying minimal sets of conditions (“if condition X holds then the data pol-
icy Y is violated”) to assist the stakeholders in charge of providing evidence of
GDPR compliance.

The SPIRIT Dashboard: The SPIRIT dashboard provides a means for
data subjects, companies and supervisory authorities to obtain transparency
with respect to the processing of personal data and compliance with respect to
the data subjects usage policies. A user request is converted into a query which
is passed to the SANSA application, together with a user identifier. The results
are then passed back to the dashboard to be presented to the user.

Acknowledgments. This work is partially funded by the European Union’s
Horizon 2020 research and innovation programme grants 732194 (QROWD) and
731601 (SPECIAL), and the Austrian Research Promotion Agency (FFG) grant
861213 (CitySPIN).

References

1. J. Lehmann, G. Sejdiu, L. Bühmann, P. Westphal, C. Stadler, I. Ermilov, S. Bin,
N. Chakraborty, M. Saleem, and A.-C. N. Ngomo. Distributed semantic analyt-
ics using the sansa stack. In Proceedings of the 16th International Semantic Web
Conference (ISWC). Springer, 2017.

2. M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

	SPIRIT: A Semantic Transparency and Compliance Stack

