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Abstract

Some facts in the Web of Data are only valid within a certain time interval. However, most of the knowledge bases
available on the Web of Data do not provide temporal information explicitly. Hence, the relationship between facts
and time intervals is often lost. A few solutions are proposed in this field. Most of them are concentrated more in
extracting facts with time intervals rather than trying to map facts with time intervals. This paper studies the problem
of determining the temporal scopes of facts, that is, deciding the time intervals in which the fact is valid. We propose a
generic approach which addresses this problem by curating temporal information of facts in the knowledge bases. Our
proposed framework, Temporal Information Scoping (TISCO) exploits evidence collected from the Web of Data and
the Web. The evidence is combined within a three-step approach which comprises matching, selection and merging.
This is the first work employing matching methods that consider both a single fact or a group of facts at a time. We
evaluate our approach against a corpus of facts as input and different parameter settings for the underlying algorithms.
Our results suggest that we can detect temporal information for facts from DBpedia with an f-measure of up to 80%.
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1. Introduction

The Web of Data can be regarded as a dynamic envi-
ronment where information can change rapidly and can-
not be assumed to be static [21]. Changes in the Web of
Data sources should reflect changes in the real world
[10, 41], otherwise data can soon become outdated.
Some facts are not time variant and thus do not change
over time e.g. <CristianoRonaldo, bornIn,
Portugal> while others has a validity time1 with
a start and end e.g. <CristianoRonaldo,
playFor, ManchesterUnited> refers to a fact
valid from 2003 to 2009.

Most of knowledge bases store facts under a histor-
ical perspective. Facts in this knowledge bases have
been true sometime until the current time. We refer
to the representation of these facts in the knowledge

∗Principal corresponding author
1The time interval in which the fact is true.

bases as to historification of dynamic facts. Figure 1
shows examples of different teams for the same entity
Jennison Myrie-Williams (facts extracted from DBpe-
dia 2015-10). Historification of dynamic facts, which
is frequently found in many and prominent datasets in
Linked Data (LD), fails to provide details about the time
interval when the facts have been true. These knowl-
edge bases adopt a temporal flattening approach of rep-
resenting dynamic facts. The incompleteness and the
inaccuracy of temporal information in LD [36] is often
due to the information extraction process (that can be er-
ror prone) or to the representation model (that requires
very sophisticated meta-modeling strategies to represent
versioning metadata in RDF). For instance, in DBpe-
dia it is not possible to know the time interval of the
fact <Jennison Myrie-Williams, playFor,
Stevenage> since all time points are associated di-
rectly with the entity rather than the fact (see Figure 1
from f5-f14) and the semantics of the predicate is the
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Figure 1: A set of facts F about the entity Jennison Myrie-Williams and a set of time points T occurring with the entity.

subject predicate object

Jennison Myrie-Williams playFor Port	Vale	F.C.	

Jennison Myrie-Williams playFor Stevenage_F.C

Jennison Myrie-Williams playFor Dundee	United	F.C.

Jennison Myrie-Williams playFor Cheltenham	Town	F.C.

subject predicate object

Jennison Myrie-Williams year 1988

Jennison Myrie-Williams year 2002

Jennison Myrie-Williams year 2006

Jennison Myrie-Williams year 2007

Jennison Myrie-Williams year 2008

Jennison Myrie-Williams year 2009

Jennison Myrie-William year 2010

Jennison Myrie-Williams year 2011

Jennison Myrie-Williams year 2012

Jennison Myrie-Williams year 2013

f1

f3

f2

f4

f5

f7

f6

f8

f9

f11

f10

f12

f13

f14

Web Data    

same for the starting and the ending time points (e.g.
year).

Despite the importance of the relationship between
facts and time intervals, very few solutions are pro-
posed. Most of them are concentrated more in extract-
ing facts with time intervals from text [42, 25, 19, 29]
rather than trying to map facts with time intervals. The
system CoTS provided in [40] is similar to our system
since it also detects validity time of facts. In contrast to
our approach, CoTS relies on document metadata such
as its creation date, to assign time intervals to facts. To
the best of our knowledge, this is the first work employ-
ing both local and global matching approach, and a sys-
tem for mapping facts to time intervals.

To map those facts to the correct time intervals, we
have to address two main challenges. First, the set of
time intervals is created as a combination of all time
points extracted from the knowledge base for each en-
tity where the starting time point is smaller than the end-
ing time point. As shown from the example, each fact f1
to f4 will have 55 possible time intervals. This set needs
to be reduced since it contains also noisy intervals such
as all intervals starting with the birth year. Second, to
find the correct intervals, we need to extract supporting
evidence from external sources that indicates how of-
ten a fact occurs with each time point, and subsequently
predict the possible time interval of each fact based on
the acquired evidence.

In this work, we focus on curating time intervals as-
sociated with facts. We introduce an approach for de-
tecting the temporal scope of facts referred to by triples
(short: the temporal scope of the triples). Given a fact
(i.e., an RDF triple), our approach aims to detect the
time points at which the temporal scope of the triple

begins and ends. Two sources can be envisaged for
gathering such information: the document Web and LD.
Our approach is able to take advantage of both: the
Web is made use of by extending upon a fact validation
approach [27], which allows detecting Web documents
which corroborate a triple. In contrast to typical search
engines, the system does not just search for textual oc-
currences of parts of the statement, but tries to find web-
pages which contain the actual statement phrased in nat-
ural language. The second source of information for
time scopes is the Web of Data itself. Here, we use
DBpedia, for possible time scopes and devise an algo-
rithm for combining the results extracted from Web doc-
uments with those fetched from RDF sources. The al-
gorithm consists of three main steps: First, the evidence
extracted from Web documents is matched against a set
of relevant time intervals to obtain a significance score
for each interval. Second, a small set of more signifi-
cant intervals is selected. Finally, the selected intervals
are merged, when possible, by considering their mutual
temporal relations. The set of disconnected intervals [1]
returned by the algorithm defines the temporal scope of
the fact. We also propose two normalization strategies
that can be applied to the data extracted from Web doc-
uments before running the algorithm, to account for the
significance of dates appearing in the documents cor-
roborating the input fact.

This article makes the following contributions:

• We present an approach for modelling a space of
relevant time intervals for a fact starting from dates
extracted from RDF triples.

• We devise a three-phase algorithm for temporal
scoping, i.e. for mapping facts to sets of time inter-
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vals, which integrates the previous steps via match-
ing, selection and merging.

• We describe two matching methods that consider
facts in isolation or cluster them according to the
main entity.

• We provide TISCO, a running prototype; the first
system able to provide temporally annotated facts
which are modelled according to a relationship-
centric perspective [36].

This article is an extension of the initial description
of work in [37]. The main additions are as follows:

• We describe in detail more alternative solutions,
including an additional function in the matching
phase of our approach and a normalization func-
tion of occurrences of dates. We present experi-
mental results comparing them.

• We developed a prototype for annotating facts with
temporal information and show how all the differ-
ent matching functions and their combinations can
be integrated in one framework.

The rest of this paper is structured as follows: We
give an overview of the state of the art of relevant sci-
entific areas in Section 2. In Section 3 we define the
terminologies and the notations used in this paper. In
this section, we provide a general overview and the sys-
tem infrastructure of our approach. In Section 4, we de-
scribe how temporal information is extracted from web
pages using a temporal extension of the DeFacto algo-
rithm [27]. Section 5 shows how this information can be
mapped to a set of time intervals specifying its tempo-
ral scope. Further time intervals are selected according
to some criteria and merged when possible in Section 6.
We then evaluate the approach by using temporal scopes
from Yago2 as gold standard and facts from DBpedia as
input in Section 8. Finally, we conclude in Section 9
and give pointers to future work.

2. Related work

The work presented in this paper relies on two areas
of research: the extraction of time information and fact
checking.

2.1. Extraction of Time Intervals
Most data-driven and Web applications need to man-

age temporal information in order to capture, model,
explore, retrieve, and summarize information changing
over time.

2.1.1. Information Extraction on the Web
Several approaches in the field of information ex-

traction have started to consider the notion of time as
an important aspect while querying the collections of
documents [2, 7]. The extraction of temporal informa-
tion from free text is difficult to be handled since there
is a large diversity of ways in which time can be ex-
pressed. In the best case time can be expressed explic-
itly based on three granularity levels such as year, month
and day. In the worst case, temporal information can
be expressed either implicitly or through relative tem-
poral expressions [7]. Temporal taggers are used in the
process of temporal information extraction by following
rule based approaches. Taggers such as TempEx [30],
GUTime2 and HeidelTime3 have the task of correctly
identifying and normalizing temporal information after
the text is preprocessed. Although temporal taggers are
quite effective for temporal information extraction, they
represents different challenges such as they are limited
to one language and to one specific domain (e.g. the
news domain). In addition temporal taggers may re-
quire additional effort for certain applications. There-
fore, our approach uses straightforward regular expres-
sions to look for temporal information.

Some approaches consider the detection of links be-
tween events and temporal information (e.g., dates)
within one or more sentences of a document where the
event is mentioned, as a classification problem and thus
adopt machine learning techniques (e.g., [42, 25, 19]).
Temporal Information Extraction (TIE) [29] is a more
recent system that finds a maximal set of temporal anno-
tations for events mentioned in a given sentence. There-
with, it can infer relations between these events using
the temporal annotations. Instead of Allen-style inter-
vals [1], TIE uses time points. However, this approach
is not sufficient to extract the temporal scope of facts
because it focuses on the micro-reading of temporal an-
notations in single documents or sentences.

Although the aim of temporal bounding [11] and our
approach is the same since both retrieve temporal con-
straints given a fact, there are fundamental differences.
NLP techniques employed in temporal bounding are
more sophisticated but at the same time more expensive
and extract evidence from the text on a limited corpus.
Our approach uses softer, but more efficient, NLP tech-
niques to extract evidence from the whole web. In other
words, we do not parse and analyze sentences using

2http://www.timeml.org/site/tarsqi/modules/
gutime/download.html

3http://dbs.ifi.uni-heidelberg.de/index.php?
id=form-downloads
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part-of-speech tagging, which we consider a "deeper"
approach to natural language understanding. In addi-
tion, our approach investigates how to complement ev-
idence retrieved from texts with evidence from the web
of data.

2.1.2. Information Extraction on the Web of Data
Several approaches are provided to represent tem-

poral meta information in RDF [17, 10, 45, 23]. Al-
though there have been several approaches for repre-
senting temporal meta information, there is still little
understanding about the actual practice of using these
representations [36]. As shown in [36], their usage is
very limited since the complex mechanisms of mod-
elling temporal meta information makes the querying of
temporally annotated facts not easy.

PRAVDA [44] is an Hybrid Acquisition of Temporal
Scopes for RDF Data, a proposed method to harvest ba-
sic and temporal facts from free text. The approach is
based on a semi-supervised label propagation algorithm
that determines the similarity between structured facts
and textual facts. Yet, it does not use the verbalization
of RDF triples to check for RDF triples in text like De-
Facto does.

The system CoTS [40] is similar to our system since it
also detects temporal scopes for facts. In contrast to our
approach, CoTS relies on document meta-data such as
its creation date to assign temporal scopes to facts. Yet,
it does not use the verbalization of RDF triples to check
for RDF triples in text like DeFacto does but it searches
in a large text corpus by building query templates for
each relation e.g. ’Kennedy-presidentOf-US’ is repre-
sented by the query ’President Kennedy’. In Section 8,
we show an objective comparison of our approach and
CoTS.

More recent works [9, 24] provide an enrichment of
time intervals in the knowledge bases. The work in [24]
is very similar since they provide additional temporal
scoping of facts and events in a knowledge base. The
temporal scoping is extracted from free text based on
a rule-based system and is matched against facts. This
approach can be considered a complementary work of
Temporal DeFacto which has to deal with verbalization
and also disambiguation challenges which is out of the
scope of this paper. Instead, the work in [9] identifies
the correct temporal scoping of facts based on a set of
constraints that can be extracted either through rule min-
ing tools or designed by humans. The constraints cap-
ture the inconsistencies in the temporally scoped facts.

Knowledge bases publicly available on the web

are DBpedia4 [28], Freebase5 [6], Wikidata6 [43] and
Yago7 [39]. These knowledge bases are edited by the
crowd such as Freebase and Wikidata or extracted
from Wikipedia, a large-scale and semi-structured
knowledge base. Other knowledge bases are also
created such as NELL [8] by using information ex-
traction methods for unstructured or semi-structured
information. But a few of them extract temporal
information to indicate the temporal validity of facts.
Yago2 and Wikidata provide the most complete
list of temporal scopes of facts. Yago2, which we
use also in our work, provides temporal scopes by
the property occursSince and occursUntil
properties, e.g., the fact <BillClinton,
holdsPoliticianPosition,
PresidentOfUnitedStates> with identifier
f1 and temporal triple given as follows: <f1,
occursSince, 1993-##-##>. Table 1 shows
some statistics about the most occurring tempo-
ral properties and the completeness of facts with
temporal scopes in Yago2. Wikidata uses qual-
ifiers that indicate the time period during which
the fact was true. For example, the fact about
Bill Clinton in Wikidata will be represented as
<wd:Q1124, p:P39, wds:statementID>,
<wds:statementID, ps:P39,
wd:Q11696> <:statementID,pq:P580,
”1993-01-20”xsd:date>, which states that Bill
Clinton has a political position of President of
the United States of America under the
qualifier property ps:5808 and qualifier value 20
January 1993. Table 2 shows some statistics in
Wikidata about the three temporal properties seen
in Yago2. Since the two properties member of
sports team and position held can be used
for all subcategories of athletes and human respectively,
we added an additional filter. The filter adds the
occupation association football player and politician
for the two properties respectively. As we may notice
from the two tables, the temporal property playFor for
soccer players is the most complete.

2.2. Fact Checking
With respect to fact-checking for knowledge bases,

a very recent framework has been proposed by Samadi
et al. [38]. Similartly to DeFacto, it identifies relevant

4dbpedia.org
5freebase.com
6wikidata.org
7yago-knowledge.org
8indicates the start time
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Table 1: Temporal properties and their completeness in Yago2

Temporal Property % Facts

playFor 63%
holdsPoliticalPosition 14%
isMarriedTo 20%

Table 2: Temporal properties and their completeness in Wikidata

Temporal Property % Facts

member of sports team 92%
position held 35%
spouse 30%

sources, extracts evidences from them, estimates source
credibility and uses those credibility scores for im-
proved claim evaluation. This work, dubbed ClaimEval,
is an extension of the author’s previous work [31],
which also allows to evaluate the truth value of state-
ments by querying the web, but without considering
source credibility into account. The main differences
among OpenEval, ClaimEval [31, 38] and DeFacto [27]
is that the latter is optimised to extract proofs by con-
sidering a larger variety of features related to natural
language patterns found on websites, besides its multi-
lingual support (German, French and English) [14].

In another line of research on fact checking in [34,
35], trustworthiness is also a central element. The au-
thors rely on a model based on hubs and authorities.
This model allows to compute the trustworthiness of
facts and websites by generating a k-partite network of
pages and facts and propagating trustworthiness infor-
mation across it. The approach returns a score for the
trustworthiness of each fact. An older yet similar ap-
proach is that presented in [46]. Here, the idea is to use
a 3-partite network of webpages, facts and objects and
apply a propagation algorithm to compute weights for
facts and webpages.

Other approaches on fact checking are described in
more detail in [12]. The authors present a system-
atic review of the components of DeFacto. These ap-
proaches pose several challenges and issues to deal with
and this explain the reason why there are not so many
approaches proposed in the literature.

3. Problem Definition

In this section, we first give a technical background
about the RDF data model (Section 3.1) and then we
provide the problem definition of temporal scoping of
facts (Section 3.2).

3.1. Background
LD adopts the Resource Description Framework

(RDF) [22] for publishing and linking structured data
on the Web. The basic idea of the RDF data model is a
statement represented by a triple containing three RDF
terms in the form of subject-predicate-object. An RDF
term is an element that can be of three types: Uniform
Resource Identifier (URI), literal and blank node. Ac-
cording to the RFC396 a URI is defined as follows:

“A URI is a compact sequence of characters that
identifies an abstract or physical resource” − [4].

Example of resources that represent real world and
abstract objects may be places, people and images. A
literal may represent values such as strings, numbers, or
dates. A blank node is neither a URI nor a literal, but
is a local identifier that denotes an unnamed resource.
Blank nodes are used inside a document that contains
an RDF description and cannot be referenced outside of
their originating scope.

The use of blank nodes is discouraged for LD [5] al-
though in practice LD extensively adopt them. How-
ever, in our approach we do not consider blank nodes
similarly to the work in [9]. We represent a fact by a
triple with subjects being URIs and objects being ei-
ther URIs or literals, (e.g., <Cristiano Ronaldo,
team, Manchester United> represents a fact
asserting that the relationship indicated by the team
predicate holds between the entity Cristiano
Ronaldo and Manchester United, denoting the
subject and the object respectively). In other words facts
describe real world entities. We use the term entities9

as a short form for named individuals as defined in the
OWL 2 specification [32].

According to the third LD principle [5], we assume
that each URI identifying an entity is dereferenceable.
The dereferenceability of the URI entities relies on the
HTTP mechanism, known as content negotiation [13].
This mechanism dereferences the URI that identifies the
entity and returns the description of the entity in a speci-
fied data format and language indicated by a user agent.
For short we call a description of an entity, an entity
document and we formally define it as follows:

Definition 1 (Entity document). An entity document de-
noted as d is the description of the entity e which is re-
turned after looking up the HTTP URI of e.

Entity documents can be represented in the form of
HTML pages when read by humans. Entity documents
that are intended to be read by machines are represented

9Entities are represented by URIs.
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Figure 2: Approach Overview

Web Data    
fact

t1 occ1
t2 occ2
t3 occ3
t4 occ4

Matching Selection

Reasoning

<fact> <fact>[x1,y1],…,[xn,yn]

Web Documents

t1 t2 t3 … tn 
t1 

t2 
t3 
… 
tn 

Mapping facts to time intervalsTemporal Information 
Extraction

Temporally scoped 
fact

as RDF documents in order to enable different applica-
tions to process the standardized content.

Additionally to the RDF construct called reifica-
tion [18] there exist other approaches used to repre-
sent temporal information in RDF such as n-ary re-
lationship [36, 3]. Time information can be of two
types: time points and time intervals. Time points
can be represented as typed literal such as xsd:date,
xsd:dateTime or even an xsd:integer10. It is
possible to distinguish temporal triples which refer to
triples of the form <s,a,t> where the object t repre-
sents a time point and a a temporal annotation property
for short temporal property. We call temporal prop-
erty every property used in a temporal triple such as
dateOfBirth, createdOn, start or end. An ex-
ample of temporal triples can be shown in Figure 1 from
f5 to f14.

3.2. Temporal Scoping Problem
A vast amount of facts in knowledge bases are con-

sidered to be dynamic and are valid only in an interval
of time. Providing facts with temporal information is
relevant for many application domains. Several knowl-
edge bases contain dynamic facts without explicitly an-
notating triples with a temporal scope that we define as
follows:

Definition 2 (Temporal scope). Given a fact f and a
time interval [ti, tj ] delimited by a starting time point
ti and an ending time point tj , a temporal scope de-
noted as 〈f, [ti, tj ]〉 is the specification of the time inter-
val when the fact is true.

10It might be interpreted as a year

In this paper we regard time as a discrete, linearly or-
dered finite domain, as proposed in [17]. A time interval
denoted as [ti, tj ] satisfies the condition that ti <= tj .
We adopt the same representation of a time point as of a
time interval where the starting time point ti is equal to
the ending time point tj . In our discrete time model, two
intervals [ti, tj ] and [th, tk] are disconnected iff tj < th,
or tk < ti, and connected otherwise.

Temporal triples available in the knowledge base may
be considered relevant to define the temporal scope. We
consider a set of dynamic facts F = {f1, f2, ..., fm}
where m is the number of facts and sk is the subject
of a generic fact fk; and a set of time points T =
{t1, t2, ...tn} extracted from n temporal triples of the
form <sk,a,ti> where ti is a generic time point. The
number of time points is greater or equal to the number
of facts (n >= m). The problem addressed in this paper
is to find a set of temporal scopes denoted by TS where
each time interval has a starting and ending time point
from T . The task of assigning the correct set of time
intervals to a fact is known as temporal scoping that we
formally define as follows:

Definition 3 (Temporal scoping). Let f ∈ F be a fact
and TS = {[ti1 , tj1 ], ..., [tin , tjn ]} a set of temporal
scopes. Temporal scoping problem finds a mapping be-
tween f and TS.

4. Temporal Evidence Extraction

An overview of our approach is given in Figure 2.
The temporal evidence for a given fact f is extracted
from unstructured documents (see Section 4.1) and
from RDF documents (see Section 4.2) where a space
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of possible time intervals relevant to the fact is built;
the evidence extracted from unstructured documents is
matched against the space of relevant time intervals and
after a selection and merging function is applied, the fi-
nal set of temporal scopes are associated with the input
fact.

4.1. Temporal Evidence Extraction from Unstructured
Data

To extract evidence from unstructured data, we pro-
vide an RDF triple as input, which is then mapped to
natural-language patterns. With this pattern we are able
to search the corpus of indexed documents. Finally we
return a distribution of all dates and their number of oc-
currences for a given fact. Hence, the output of the tem-
poral evidence extraction from unstructured data for a
fact f can be regarded as a vector UEV over all pos-
sible time points ti whose ith entry is the number of
co-occurrences of s or o with ti. We will use the func-
tion φi(f, ti) to denote the value of UEV [i] for the fact
f . Figure 3 shows a set of facts and their correspondent
UEV .

Figure 3: A set of facts and the UEV for each fact.

subject predicate object years Occ

Jennison Myrie-
Williams

team Port	Vale	
F.C.	

2007 1

Jennison Myrie-
Williams

team Port	Vale	
F.C.	

2011 6

Jennison Myrie-
Williams

team Port	Vale	
F.C.	

2012 5

Jennison Myrie-
Williams

team Port	Vale	
F.C.	

2013 10

Jennison Myrie-
Williams

team Stevenage_
F.C

2011 12

Jennison Myrie-
Williams

team Stevenage_
F.C

2012 10

Jennison Myrie-
Williams

team Dundee	
United	F.C.

2009 2

Jennison Myrie-
Williams

team Dundee	
United	F.C.

2010 310

Jennison Myrie-
Williams

team Cheltenham	
Town	F.C.

2007 1

Jennison Myrie-
Williams

team Cheltenham	
Town	F.C.

2008 2

f1

f3

f2

f4

Web Documents

4.1.1. Temporal Evidence Extraction with DeFacto
Temporal DeFacto [14] is an extension to the DeFacto

framework presented in [27]. The system takes an RDF
triple as input and returns a confidence value for this
triple as well as a possible evidence for the fact. The
evidence consists of a set of webpages, textual excerpts

from those pages and meta-information on the pages.
The main steps of temporal DeFacto are given as fol-
lows:

Step 1 The first task of DeFacto is to retrieve webpages
which are relevant for the given task. The retrieval
is carried out by issuing several queries to a search
engine. These queries are computed by verbaliz-
ing the RDF triple using natural-language patterns
extracted by the BOA framework [15]. The high-
est ranked webpages for each query are retrieved,
which are candidates for being sources for the in-
put fact. Both the search engine queries as well as
the retrieval of webpages are executed in parallel
to keep the response time for users within a rea-
sonable limit.

Step 2 Once a webpage has been retrieved, we extract
plain text by removing HTML markup and apply
our fact confirmation approach on this text. In
essence, the algorithm decides whether the web
page contains natural language formulations of the
input fact. If no webpage confirms a fact accord-
ing to DeFacto, then the system falls back on light-
weight NLP techniques and computes whether the
webpage does at least provide useful evidence.

Step 3 To also incorporate time information into the fact
validation process we extended DeFacto as fol-
lows. On all retrieved webpages we apply the Stan-
ford Named Entity Tagger11 and extract all entities
of the Date class. We then examine all occurrences
occso ∈ Occso of the subject and object label of
the input fact (or their surface forms, e.g. “Manch-
ester United F.C.” might also be called “ManU”) in
a proximity of less than 20 tokens.

Step 4 In addition to fact confirmation, the system com-
putes different indicators for the trustworthiness
of a webpage as presented in [33]. These indi-
cators are of central importance because a single
trustworthy webpage confirming a fact may be a
more useful source than several webpages with low
trustworthiness.

Step 5 In addition to finding and displaying useful
sources, DeFacto also outputs a general confidence
value for the input fact. This confidence value
ranges between [0, 1] and serves as an indica-
tor for the user: Higher values indicate that the

11http://www-nlp.stanford.edu/software/
CRF-NER.shtml
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found sources appear to confirm the fact and can
be trusted. Low values mean that not much evi-
dence for the fact could be found on the Web and
that the websites that do confirm the fact (if such
exist) only display low trustworthiness.

Step 6 The generated provenance output can also be saved
directly as RDF and abides by the PROV Ontol-
ogy12. The source code of the DeFacto algorithms
and DeFacto’s user interface are open-source13.

4.1.2. Normalizing Occurrences of Time Points
Two types of normalization functions can be envis-

aged: local normalization and global normalization.
These functions aim to transform the output vector of
the evidence extracted from unstructured data into a
probabilistic time distribution vector. Each approach
describes a frequency-based interpretation of the UEV
output, which takes a year as input and returns a number
representing its probability.

Local Normalization. The local normalization denoted
by normlocal of a time point ti and a fact f is the proba-
bility (i.e., the relative frequency) of the co-occurrences
of ti with f . Assuming that φ is a function taking f and
ti as input and returning the co-occurrence of ti with f ,
we can define the local normalization function as fol-
lows:

normlocal(x) =
φ(f, x)∑

y∈|T | φ(f, y)
(1)

This function divides the occurrence of a time point
by the sum of all occurrences of time points in T of a
given fact. The main drawback of such a normalization
is that it does not take into consideration a global view
of facts sharing the same subject s.

Global Normalization. An alternative approach to
compute the time distribution vector for a given fact, is
to adopt a global view of time points for all facts sharing
the same subject s.

Probability distribution. The global normalization de-
noted by normglob of a time point ti for a given fact
f is the probability of the co-occurrence of ti over all
objects of s. The global normalization function can be
computed as follows:

normglob(x) =
φ(f, x)∑

y∈|FS| φ(y, x)
(2)

12http://www.w3.org/2011/prov/
13https://github.com/AKSW/DeFacto

This function divides the φ of a time point x by the sum
of all φ entries of x distributed over all objects of facts
in FS that have the same subject s with FS ⊂ F . For
instance, if a player associated with different teams for
a particular time period, the global normalization bal-
ances the occurrence of the time point on all the teams.

Term frequency−inverse document frequency normal-
ization. We propose another normalization function,
inspired by the tfidf. We introduce the time point fre-
quency and inverse fact frequency. This normaliza-
tion combines time points frequency (calculated simi-
larly to term frequency) to the global specificity of the
time point (calculated similarly to inverse document fre-
quency).

• Time point frequency (tf) is the number of occur-
rences of a time point divided by the sum of oc-
currences of time points in T for a given fact f .
It operates at the level of the single fact f (local
level) and it corresponds to the normlocal function
defined before.

• Inverse fact frequency (if) considers how many
times a time point is used in some facts w.r.t. the
total number of facts. It will penalize time points
that occur more frequently in and will reward oth-
ers that do not occur so frequently, thus consider-
ing the specificity of a time point. It operates at the
level of objects and time points (global level).

In particular, if a player is associated globally only
to a team for a particular date (score > 0) it means that
this time point is very specific. Otherwise, if the player
is associated to several teams for a particular time point,
the tfif penalizes the time point by decreasing the total
score.

normtfif (x) = normlocal(x) ∗ log(1+
|FS|

|{y ∈ FS : 〈y, x〉}|
)

(3)

where |FS| is the total number of facts having the
same subject and predicate and |{y ∈ FS : 〈y, x〉〉| is
the number of facts associated with a time point xwhich
have non-zero values.

4.2. Temporal Information Evidence from Web of Data
Given a set of facts F to map to time inter-

vals, we first identify the set of entities that occur
as subjects. Given the subject s of the fact, we
use the HTTP content negotiation mechanism to re-
trieve the entity document d. As an example, given
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Figure 4: RIM of the entity Jennison Myrie Williams with relevant time intervals.
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Web Data    

the fact 〈 Jennison Myrie-Williams, team,
Port Vale F.C.〉, we extract the RDF document
describing Jennison Myrie-Williams. Once an
entity document has been retrieved, we identify tempo-
ral triples14 in the entity document d and extract dates
by using regular expressions, which identify standard
date formats and variations. In this step we adopt an
approach that was used in previous work [36]. We add
to this set of extracted dates a date representing the cur-
rent time. As a result of this step, each fact f ∈ F is
associated with a set of time points T extracted from
the RDF document describing the subject of the fact. In
principle, our approach can consider dates represented
at any granularity level; in the following examples and
in the experiments, time is represented at the year level
similarly as in other related work [29, 40].

Intuitively, we want to use the time points T associ-
ated with a subject s to identify a set of most relevant
time intervals for scoping facts with s as subject; in this
way, we can reduce the space of all possible time inter-
vals considered for an individual fact. The set of time
intervals relevant to a subject s is defined as the set of
all time intervals whose starting and ending points are
members of T . Relevant time intervals are represented
using an upper triangular matrix.

Given a set of relevant time points T for a subject s, a
relevant time interval matrix (Relevant Interval Matrix
for short) RIM is an upper triangular matrix of size
|T | × |T | defined as follows:

14We use temporal triples available in the knowledge base under the
assumption that this information can be relevant to define the scope
of facts.

RIM =


rimt1,t1 · · · · · · rimt1,tn

0
. . .

0 0
. . .

0 0 0 rimtn,tn

 (4)

Columns and rows of a relevant interval matrixRIM
for a subject s are indexed by ordered time points in T ;
each cell rimti,tj with i, j > 0 represents the time inter-
val [ti, tj ], where ti, tj ∈ T . At the moment we assign
a placeholder value null to each cell rimi,j such that
i ≤ j. In the matching phase, we will use entity-level
RIMs (i.e., aRIM for each entity) as schemes for fact-
level matrices; in these fact-level matrices null values
will be replaced by scores that represent the significance
of intervals for individual facts. Observe that the use of
an upper triangular matrix is suitable for representing
time intervals since the time intervals represented in the
cells in the lower part of the matrix (i > j) are not valid
by definition. Also note that, the cells in the diagonal
of the RIM matrix represent time intervals whose start
and end points coincide.

Figure 4 shows a RIM that has in columns and rows
a set of ordered relevant time points extracted from the
RDF document of the entity Jennison Myrie Williams.
As it is shown by the RIM , the entries below the di-
agonal are not considered because they do not satisfy
the condition that the starting time point is less than the
ending time point.

An alternative way of building the RIM is to use an
arithmetic progression of time points such that the dif-
ference between two consecutive time points is one. We
select the smallest and the biggest time point from T
and then we create the sequence of time points as an
arithmetic progression.
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5. Matching Methods

The matching phase is based on the determination of
a family of matching functions that we describe in the
following sections. It is clear that in the general case the
problem we are trying to solve requires a matching * : *
since a fact can be associated with several time intervals
and vice versa. In our previous work [37] we used a lo-
cal approach that we reassume in Section 5.1. However,
it is also possible to apply a global matching approach
as described in Section 5.2. All functions compute val-
ues between 0 and 1.

5.1. Local Matching Function

The inputs of the matching phase for a fact f with a
subject s: are the following: a relevant interval matrix
RIM extracted the entity document d and a time distri-
bution vector UEV . Probabilistic time distribution vec-
tors obtained by normalization (see Section 4.1.2) can
be also used as input instead of the UEV . The match-
ing phase returns an interval-to-fact significance matrix
(Significance Matrix (SM) for short) associated with the
fact f . An SM is a triangular square matrix having the
same size and structure of the input RIM . As a next
step, null values of a RIM are replaced with signifi-
cance scores returned by a matching function.

In practice, to build an SM of a fact f with subject
s, we match a fact-level UEV associated to the fact f
against an entity-level RIM , i.e. the matching aims to
inject a time distribution vector into RIM by produc-
ing a significance matrix SM . The matching function
match(UEV,RIM) = SM , where s is a subject and
f is a fact, is given as follows:

smi,j =


0 if rimi,j = 0

j∑
k=i

φ(f,k)

(j−i)+1 if rimi,j = null ∧ i < j

φ(f, i) ∗ wi,j if rimi,j = null ∧ i = j

(5)

Since the denominator (j − i) + 1 in the formula
used in case two represents the number of time points
included in the interval [i, j], the formula is equal to the
average of UEVs for the time points contained in the in-
terval. As an example, the score for a cell sm1995,2000

is defined as the average value of UEV for the time
points between 1995 and 2000 (including the starting
and ending points). Since the elements in the diagonal
have length equal to 1, the formula used in case three
is equivalent to multiplying the score computed with
the formula used in case two for a weight wi,j ; we use
this weight to penalize the scores in the diagonal as we

discovered that formula in case two would assign high
scores to the element in the diagonal, thus favoring time
intervals with length equal to 1 in the selection phase.
Intuitively we want to penalize elements in the diago-
nal unless they are the only significant values selectable
in the SM matrix. The weight is defined as inversely
proportional to the difference between the length of the
considered interval (equal to 1) and the length of the
UEV vector (length(UEV )) as follows:

wi,j =
1

c ∗ length(UEV )
(6)

where c is a constant used to control the score reduc-
tion ratio applied to the elements in the diagonal of the
SM matrices. To learn the constant we applied a cross-
validation like approach by splitting the dataset such
that one part was used for the training and the other part
for testing the value of c. Figure 5 shows an example
of the local matching function applied on each RIM for
the subject Jennison Myrie-Williams.

5.2. Global Matching Function

In Section 5.1, we described a matching function that
consider a single fact at a time, the following approach
proposes a matching function that operates globally and
considers more than one fact for the same subject. We
extend our approach by adopting the matching problem
on bipartite graphs [16]. A bipartite graphG = (V ,E) is
a graph in which the vertex set V can be divided into two
disjoint subsets such that no two graph vertices within
the same set are adjacent.

A possible solution of the matching problem on bi-
partite graphs is to represent this problem as an instance
of a linear programming problem, in particular the Max-
imum Weight Bipartite Matching (MWBM). We define
the matching problem of MWBM as follows:

Definition 4 (Maximum Weight Bipartite Matching).
Given a weight wij ∈ R for all (i, j) ∈ E, find a max-
imum weight of matching where the weight of matching
M is given by w(M) =

∑
(i,j)∈M wij .

A matching M ⊆ E is a collection of edges such that
every vertex of V is incident to at most one edge of M .
If a vertex v has no edge ofM incident to it then v is said
to be exposed (or unmatched). A matching is perfect
if no vertex is exposed; in other words, a matching is
perfect if the cardinality of M is equal to the cardinality
of the two disjoint subsets of V .

An instance of the MWBM problem can be described
in our approach as follows: Given a set of facts f ∈ FS
where FS ⊂ F , we collect all SMs having the same
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Figure 5: Local matching function.

Jennison Myrie-Williams team Port	 Vale	F.C.	

Jennison Myrie-Williams team Stevenage_F.C.

Jennison Myrie-Williams team Dundee United F.C.

Jennison Myrie-Williams team Cheltenham Town F.C.

1988 2002 2006 2007 2008 2009 2010 2011 2012 2013
1988 0 0 0 0,05 0,14 0,14 0,13 0,13 0,12 0,12
2002 0 0 0,17 0,43 0,38 0,33 0,30 0,27 0,25
2006 0 0,5 1 0,75 0,60 0,50 0,43 0,38
2007 1 1,5 1 0,75 0,60 0,50 0,43
2008 2 1 0,67 0,50 0,40 0,33
2009 0 0 0 0 0
2010 0 0 0 0
2011 0 0 0
2012 0 0
2013 0

1988 2002 2006 2007 2008 2009 2010 2011 2012 2013
1988 0 0 0 0 0 0,09 0,22 0,21 0,2 0,19
2002 0 0 0 0 0,25 0,56 0,5 0,45 0,42
2006 0 0 0 0,5 1 0,83 0,71 0,63
2007 0 0 0,67 1,25 1 0,83 0,71
2008 0 1 1,67 1,25 1 0,83
2009 2 3 1,67 1,25 1
2010 3 2 1 0,75
2011 0 0 0
2012 0 0
2013 0

1988 2002 2006 2007 2008 2009 2010 2011 2012 2013
1988 0 0 0 0,05 0,05 0,05 0,04 0,29 0,48 0,85
2002 0 0 0,17 0,14 0,13 0,11 0,70 1,09 1,83
2006 0 0,5 0,33 0,25 0,2 1,17 2 3
2007 1 0,5 0,33 0,25 1 2 3,14
2008 0 0 0 1,5 2,2 4
2009 0 0 2 2,75 4,2
2010 0 3 3,67 5,25
2011 6 6 7
2012 5 7,5
2013 10

1988 2002 2006 2007 2008 2009 2010 2011 2012 2013
1988 0 0 0 0 0 0 0 0,5 0,88 0,85
2002 0 0 0 0 0 0 1,2 2 1,83
2006 0 0 0 0 0 2 3,14 3
2007 0 0 0 0 2,4 4 3,14
2008 0 0 0 3 4 4
2009 0 0 4 5,5 4
2010 0 6 7,33 5,5
2011 12 11 7,33
2012 10 5
2013 0

subject. Thereafter, we create two sets A and B where
A comprises all objects o of f ∈ FS and B comprises
the set T of all relevant time points for the given subject
s. For each edge (i, j) of the bipartite graph there is a
weight provided by SMs as shown in Table 3.

The MWBM proposes a matching with cardinality 1
to 1 while our problem of matching has cardinality N
to N. A solution to this is to create an analogy with the
well known problems of College Admission or Hospital
Residents problem which uses a mapping with cardi-
nality 1 to N. Analogously, a matching is a mapping
of the time intervals (resident) to the set of facts (hospi-
tals). After that, we can transform the mapping with car-
dinality 1 to N into a classical matching problem with
cardinality 1 to 1 by replacing a fact f by N facts
f1, f2, . . . fN . Table 4 shows that first we exchange ob-
jects with time points and the objects are replicated n-
times with n the number of time points. Once the weight
is assigned to each edge then the aim is to find the maxi-
mal matching based upon linear programming. We con-
sider the linear programming in order to prove optimal-
ity of the matching. For this purpose, one would like to
find upper bounds on the size of any matching and hope
that the smallest of these upper bounds be equal to the
size of the largest matching. This is a duality concept
that will itself be a combinatorial optimization problem.
The solution of a dual problem in this case would be
a minmax algorithm which gives a maximum matching
and a minimum vertex cover (for more details see [26]).

In Table 5 we show the results returned by our al-
gorithm which returns the matching that maximize the
sum of values. The final results returned is:

• Cheltenham→ { 2007,2008 }

• Dundee United→ { 2009 }

• Stevenage→ { 2010, 2011 }

• Port Vale→ { 2012 }

To notice that we do not use the time intervals but the
time points for two reasons: (i) the matching algorithms
consider the independence between the sets, (ii) there
do not exist matching algorithms that can be applied to
the poset of the set of all subsets of the elements in T .

We expect the global matching approach to work bet-
ter on functional properties. However, since we use
time points at year granularity, previously functional
properties might become non-functional (e.g., a soccer
player changing team in mid year). In our case, we con-
duct experiments (see Section 8) with properties that
are fairly functional but where functionality is not al-
ways guaranteed: isMarriedTo (fairly functional), play-
For (very close to be functional, with exception being
players playing for national teams and loans and also if
someone change team in the mid year), holdsPolitical-
Position (fairly functional).

6. Selection and Reasoning

6.1. Selection Function

Once we have a set of significance matrices SM1, ...,
SMn, each one associated with a fact f having subject
s, we then select the time intervals that might be mapped
to the considered facts. We propose two basic selec-
tion functions that use SMs; both functions can select
more than one interval to associate with a fact f . The
neighbor-x selects a set of intervals whose significance
score is close to the maximum significance score in the
SM matrix, up to a certain threshold. In other terms, we
define the neighborhood of the time interval with max-
imum significance score as the set of intervals whose
significance scores fall in the range defined by the max-
imum score as upper bound and by a threshold based
on a parameter x as lower bound. The threshold is lin-
early proportional to the maximum significance score,
i.e. the threshold is higher when the maximum signifi-
cance is higher and vice-versa. The threshold is defined
to be proportional to the maximum score in such a way
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Table 3: An example of the initial instance.

Objects/
Years

1988 2002 2006 2007 2008 2009 2010 2011 2012 2013

Cheltenham 0 0 0 0.017 0.033 0 0 0 0 0
Dundee
United

0 0 0 0 0.033 0.033 0 0 0 0

Port Vale 0 0 0 0.005 0 0 0 0.003 0.003 0
Stevenage 0 0 0 0 0 0 0.022 0.022 0 0

Table 4: An example of the transformed instance.

Years/ Ob-
jects

Cheltenham . . . Dundee
United

. . . Port
Vale

. . . Stevenage . . .

1988 0 0 0 0 0 0 0 0
2002 0 0 0 0 0 0 0 0
2006 0 0 0 0 0 0 0 0
2007 0.017 0.017 0 0 0.005 0.005 0 0
2008 0.033 0.033 0.033 0.033 0 0 0 0
2009 0 0 0.033 0.033 0 0 0 0
2010 0 0 0 0 0 0 0.022 0.022
2011 0 0 0 0 0.003 0.003 0.022 0.022
2012 0 0 0 0 0.003 0.003 0 0
2013 0 0 0 0 0 0 0 0

Table 5: An example of the output of the MWBM algorithm.

Years Objects score

2007 Cheltenham 0.017
2008 Cheltenham 0.033
2009 Dundee United 0.033
2010 Stevenage 0.022
2011 Stevenage 0.022
2012 Port Vale 0.003

that the similarity range from which we select intervals
is higher when the upper bound of the range, i.e., the
maximum similarity score, is higher. For example, if
maximum score is 0.033, for x = 0.8, we select all time
intervals with similarity score higher than 0.0264, with
a range equal to 0.0066; if maximum score is 0.066,
we select all time intervals with similarity score higher
than 0.0528, with a range equal to 0.0132. The range is
higher when the maximum score is higher because also
absolute values that fall into the range are, in absolute

terms, higher and, thus, deemed to be more valuable.
The parametric function neighbor-x with an SM and a
parameter x given as input is defined as follows:

neighbor(SM, x) = {[i, j] | smi,j ≥ maxScore− x ∗maxScore}
(7)

The two basic functions top-k and neighbor-x can be
combined into a function neighbor-k-x that selects the
top-k intervals in the neighborhood of the interval with
higher significance score. Observe that neighbor-0 is
equal to top-1 for every value of the parameter x. The
neighbor-k function behaves as a filter on the results
of the top-k function, by selecting only intervals whose
significance is close enough to the most significant in-
terval.

6.2. Aggregation of Time Intervals
Finally, we use rules based on Allen’s interval algebra

to merge the selected time intervals and map each fact
to a set of disconnected intervals. Let a and b be two
time intervals associated with a fact f and defined re-
spectively by [ti, tj ] and [th, tk]; we merge a and b into

12



an interval defined by [min(ti, th),max(tj , tk)] when-
ever one of the following conditions, each one based on
Allen’s algebra relations [1], is verified:

• a overlap b or a is-overlapped-by b

• a meets b or a is-met-by b

• a during b or b during a

• a starts b or b starts a

• a finishes b or b finishes a

The temporal scope of a fact is defined by the set of
disconnected time intervals mapped to it after the inter-
val merging phase.

7. Web Interface

TISCO15, is a prototype that supports experts of the
matching problems to test their algorithms in a straight-
forward way. This system already implements the
matching functions described in Section 5 and also the
selection functions described in Section 6. The TISCO
features include its extensible architecture that facili-
tates the integration of a variety of matching functions,
its capability to evaluate and compare matching results,
and its user interface with a control panel that drives all
the matching methods and other configuration parame-
ters.

The architecture of TISCO is shown in Figure 6 and
it comprises the following components:

• The DispatcherServlet has the role of Front Con-
troller, which provides a centralized entry point for
handling requests [4]. It deals to map service URLs
exposed with corresponding controller methods.

• The Controllers carry out the checks and calcula-
tions once the request has been forwarded to the
responsible controller. Thereafter the responsible
controller recalls and forward the response to the
service layer methods needed.

• The Services have the role of managing services
that have a business functionality. They also pro-
vide a logical grouping related functionality to cer-
tain aspects of the application.

• The Core Library contains and exposes the classes
of the main algorithms and data structures used by
the entire system.

15http://tisco.disco.unimib.it/
temporal-interval-scoping/

• The Spring data module for MongoDB has the task
of managing and facilitating the interactions with
the database.

To allow easier use and immediate service we devel-
oped a front end interface. There are two features of the
interface: the creation/management of a matching pro-
cess through a control panel and the querying of tempo-
rally annotated results in the database.

8. Evaluation

This section describes the evaluation of our approach.
The aim of the experiment is to show i) the correctness
of our approach by comparing different configurations
of normalization, matching and selection functions and
ii) the efficiency and scalability of our approach.

8.1. Experiment settings

We test our approach by considering the DBpedia
dataset16.

Gold Standard. We choose data from Yago2 since
significant parts of DBpedia and Yago2 are extracted
from the same source (i.e., Wikipedia), it is possible to
easily map facts from DBpedia to facts in Yago2. It is
one of the few large open-source knowledge bases that
provides temporal annotations for a significant num-
ber of facts (714,925 time points associated with facts).
Facts in Yago2 are identified through an id which helps
to match them against temporal meta information, rep-
resented by time points, that are stored in a separate file.
To evaluate our approach we extract 14 properties of
Yago. We choose the 3 most occurring properties which
can be easily framed in timespans that are precise to the
year. We extracted facts for the three relations as shown
in Table 7. The three relations represents three different
domains: sport, politics and celebrities17.

In order to create time intervals we had to iden-
tify for the same fact its starting and ending time
point that are represented by the occursSince and
occursUntil relation respectively. We had to man-
ually curate the data by solving incorrectly matched
facts and time points. For instance, a fact identi-
fied by a unique id such as (X playFor Y) may
happen more than once during the career of a soccer

16As we showed in our previous work [37], Freebase is incomplete
and as such the precision and recall results drop significantly. DB-
pedia is improved in the latest release and thus we consider the lat-
est version (2015-10) which might be more accurate. Freebase is not
maintained since 2014.

17The used dataset can be found in https://goo.gl/ioeWM4
13



Figure 6: The system architecture.

player. In such situation, the fact may be associated
with the wrong time interval where the starting date
may not correspond to the ending date identified au-
tomatically. Two authors of the paper (the first and
the third) had to do the correction by completing the
missing facts. We found 5% to be wrong match on
time intervals for the property playFor, marriedTo and
holdsPoliticalPostion. Around 2% of date
values were 0 for the property marriedTo.

External Evidence. Regarding the external evidence
we used two data sources:

• Google Books Ngram18 is a corpus of scanned
books. The resulting corpus contains n-grams of
length 1 to 5 and a year which indicate the pe-
riod of time the n-gram was found and three dif-
ferent counts for each n-gram which indicate: the
occurrence of the n-gram, the number of distinct
books having the n-gram and the number of pages
that contain the n-gram always referring to a sin-
gle year. This corpus contains data with a time
coverage spanning from 1500 to 2008. We use
the same experimental dataset as proposed in [40].
Therefore, we choose three US Administration of-
fice properties as shown in Table 6. For Google
Books Ngrams dataset, we index only the English
5-grams published during the period 1960 - 2008
and we search each fact of our dataset in the n-
gram datasets by first mapping the fact to the query
template that has the following structure ’Office
LastName’ e.g., ”president clinton“. To note that
the version of the dataset is not specified in the pa-
per so we consider version 2 that corresponds to
the id number 20120701.

18http://storage.googleapis.com/books/ngrams/
books/datasetsv2.html

• Temporal DeFacto. Regarding the evidence ex-
tracted by temporal DeFacto, we perform the ex-
periments on a subset of facts. The limit number
of queries that can be sent through temporal De-
Facto is imposed by traffic limitations of its un-
derlying search engine. Therefore, we apply some
selection rules as follows: the top 1043 facts on
the most important soccer players who are born af-
ter 1983 (≤30 years old), the top 100019 facts on
politicians born after 1940, and the top 100020 facts
on celebrities born after 1930.

Table 6: Properties of interest and the number of facts for each prop-
erty

Property Selec.
Facts

president 9
vice president 12
secretary 27

Table 7: Properties of interest and the number of facts for each prop-
erty

Property Entities Selec.
Facts

Total
Facts

<playFor> 180 1043 315,486
<holdsPoliticalPosition> 621 719 5,610
<ismarriedTo> 710 876 5,582

Measure In order to evaluate the accuracy of our
method, we measured the degree to which the tempo-
ral scope we retrieved is correct w.r.t. the gold stan-
dard. Therefore, for each fact, we considered the degree

19But only 719 of them have temporal triples.
20But only 876 of them have temporal triples.
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of overlap between the retrieved intervals and the inter-
vals in the gold standard. This degree of overlap can be
computed by adapting the well-known metrics of preci-
sion, recall and F1-measure to this problem leveraging
the discrete time model. Intuitively, the precision of a
temporal scope can be measured by the number of time
points in the temporal scope generated by our solution
that fall into the time interval in the gold standard. The
recall of our solution can be measured by the number of
time points in the gold standard that are covered by the
temporal scope.

Let R(f) be the set of time points in the temporal
scopes21 retrieved for a fact f and Ref(f) be the set of
time points included in the reference temporal scopes
for f ; the following formulas capture the intuitions de-
scribed above:

precision(f) =
|R(f) ∩ Ref(f)|
|R(f)|

. (8)

recall(f) =
|R(f) ∩ Ref(f)|
|Ref(f)|

. (9)

Precision and recall for a fact f can be combined as
usual in F1-measure defined as the harmonic mean of
precision and recall. Note that: when precision(f) =
1, each interval in the retrieved temporal scope is
included in the interval of the gold standard; when
recall(f) = 1, all the time points in the interval of
the gold standard are covered by the retrieved temporal
scopes; when F1(f) = 1 the temporal scope contains
exactly the same time points as the gold standard.

Baseline Given that no prior algorithm aims to tackle
exactly the task at hand, we computed the precision,
recall and F-measure that a random approach would
achieve. To this end, we assumed that given the restric-
tions we set on the intervals within which our solutions
must lie (e.g., 1983-2014 for soccer players), a random
solution would simply guess for each date whether it
should be part of the final solution. This serves as a
lower bound for the score a temporal scoping algorithm
should achieve.

Configurations For all facts we applied different
configurations in the experimental settings:

Matchers

• loc-no-diag-penal: local matching
function without the penalization on the di-
agonal,

21The reasoning on temporal scopes is already applied.

• loc-diag-penal: local matching func-
tion with diagonal penalization,

• glob-disj-intervals: global match-
ing function without overlapping of time in-
tervals and

• glob-conti-intervals: global
matching function with time interval over-
lapping.

Selections

• topk2: top-k function with k=2,

• proxy3: neighbor-x function with x=3 and

• topk2proxy10: neighbor-k-x with k=2
and x=10

Normalizations

• nNorm: no normalization applied,

• normlocal: local normalization applied,

• normglob: global normalization applied,

• normtfif : term frequency - inverse docu-
ment frequency.

8.2. Comparison on US Administration properties

In this section we show a comparison of our approach
against CoTS [40]. First, we extract all the facts from
DBpedia having the template: <USpolitician,
office, USadministrationOffice>
e.g., <dbo:Bill_Clinton, dbo:office,
dbo:President_of_the_United_States>.
For each type of the US politician (see Table 6) we
extract the relevant time points, from their entity
documents, to create the RIM matrix. Then we use
the evidence from the ngram corpus to inject data in
the RIM matrix. The measures of our work (DBpedia-
ngram) are slightly different from the traditional
precision and recall used in the CoTS approach [40].
Therefore, the metrics in CoTS metrics capture if the
fact is true or false at a given time interval. We observe
that our approach significantly improve temporal
scoping performance as shown in Table 822. The main
reasons of this improvement is due to the use of the
RIM matrix build with relevant time points extracted
from DBpedia. If we use another RIM matrix build
with relevant time points extracted from ngram corpus

22As we can notice, the total number of facts is different. This is
due to the fact that a lot of secretary position in the English version of
the 5-grams from where we extract the evidence was missing.
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and the evidence injected from the same ngram corpus
(ngram-ngram), the result gets worse. The main reason
is that the sequence of dates creating the RIM and dates
used for the evidence will have the same characteristic,
i.e., the distance of successive members will be the
same in both cases and the matching function will be
equal to the occurrences not normalized23.

Table 8: Properties of interest and the number of facts for each prop-
erty

Approach Selec.
Facts

F1

CoTS 48 63.63
DBpedia-ngram 31 79.51
ngram-ngram 31 44.85

Based on these results, in all subsequent experiments,
we analyse in detail the components of our approach.

8.3. Results on DBpedia properties
In this section, we show the experiments on the

properties of Table 7 evaluated with our metrics.

playFor Property Figure 7 compares our approach
against the baseline. Our approach obtains higher preci-
sion above 0.6 and higher recall above 0.7 and it im-
proves F-measure over baseline methods by 30-49%.
We next give a detailed comparison of the playFor
property being a non functional property. It means that
there is an overlapping between the time intervals when
a soccer player plays for a club and the national team.
Another case of overlapping is when a player can play
for a club and can be borrowed by another club. We
show next the best results considering different config-
urations.

Comparison of matchers Figure 7 compares the re-
sults of applying local matcher with/without diagonal
penalization and global matcher with/without overlap.
We observe that while precision (above 0.75) is bet-
ter for global matcher with disjoint intervals, the recall
(above 0.85) is better for global matcher with continu-
ous intervals. Although these two matching functions
lead to very high results on precision and recall, the F-
measure is higher for local matcher with diagonal pe-
nalization (above 0.65). The best result is achieved af-
ter applying the configuration with selection function
neighbor-10 and normalization function is global.

Since it is not possible to understand all the details
of the results through an average metric, we group the

23The denominator will be always one

results of precision, recall and F-measure into four cat-
egories defined as: minor than 0.25, from 0.25 to 0.50,
from 0.50 to 0.75 and greater than 0.75. Table 9 shows
the distribution of the results according to the cate-
gories. For local matchers and global matcher with dis-
joint intervals, precision values above 0.75 are higher
than global matcher with continuous intervals. Instead
the latter one has higher values above 0.75 for recall
than local matchers and global matcher with disjoint in-
tervals. As it is shown in the last column, local matcher
has more values above 0.75 (43% of values are greater
than 0.75) and below 0.25 (16.4% of values) than the
global matcher with disjoint intervals. This is an indi-
cation that a local matcher produces very good results
but also very bad results in contrast to a global matcher
with disjoint intervals that has most of the values within
0.25-0.50 and 0.50-0.75.

Comparison of selection function Figure 8 shows
the selection functions that comprises top-k, neighbor-x
and their combination. As we may notice, top-2 con-
siderably increases recall and decreases precision. F-
measure is slightly higher for neighbor-10 and the com-
bination function (top-2, proxy-10) than the top-2 func-
tion.

Comparison of normalization function Figure 9
compares the estimated precision, recall and F-measure
on different normalization functions. The differences
are quite small and F-measure is the smallest for tfif al-
though it has the highest precision.
holdsPoliticalPosition Property Figure 10

shows the contribution of applying two matching func-
tions and two variations of them. Applying glob-disj-
intervals increases precision, but it is at the price of a
big drop in recall. This is very similar to what hap-
pen to the playFor property. The glob-conti-intervals
matcher, on the other hand, increases the recall but not
significantly as the loc-diag-penal. We observe that F-
measure is improved over baseline methods by 20-45%.
The best result is achieved when applied the configura-
tion with selection function neighbor-10 and normaliza-
tion function is local.
ismarriedTo Property Figure 11 shows the con-

tribution of applying again the 4 matching functions.
We observe that global matchers as for the other two
properties improve precision and recall, but overall the
average F1 is better for the local matcher with the pe-
nalization on the diagonal. The best result is achieved
when applied the configuration with selection function
neighbor-7 and normalization function is local.
US administration properties. For all

the US administration office properties as shown in Ta-
ble 6, we construct the RIM and the external evidence
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Figure 7: Comparing different matching function

Precision Recall F-measure
loc-no-diag-penal 0,692547524 0,58839936 0,643808817

glob-disj-intervals 0,799898898 0,443159853 0,570340023

loc-diag-penal 0,673435823 0,673471796 0,673453809

glob-conti-intervals 0,33610998 0,846074712 0,481099369

baseline 0,109864861 0,5 0,180146239
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Table 9: A detailed analysis on the three matching function for the playFor property.

Precision Recall F-measure
local-
no-
diag-
penal

glob-
conti-
intervals

glob-disj-
intervals

local-
no-
diag-
penal

glob-
conti-
intervals

glob-disj-
intervals

local-
no-
diag-
penal

glob-
conti-
intervals

glob-disj-
intervals

<0.25 15% 50% 6.1% 19% 7.4% 47% 16.4% 32% 11%
0.25-0.50 10% 25.5% 1.9% 12.6% 7.3% 18% 15.2% 35.6% 19%
0.50-0.75 23% 11.5% 15.9% 12.4% 8.3% 23% 25.4% 20.4% 31%
>0.75 52% 13% 76.1% 56% 77% 12% 43% 12% 39%

as explained in Section 8.2. Figure 12 shows the preci-
sion, recall and f-measure for the three US administra-
tion properties. The results are very good with respect
to the other DBpedia properties. The accuracy of our
approach is related to the quality of the input which in
this case shows that the Google Book ngram has more
accurate data available than DeFacto that collects data
from the Web.

8.4. Scalability

To test the scalability of our approach including all
the steps, we computed the running times by varying the
sizes of the data. In particular we used the data of the
playFor property. We equally divided the data into
10 subsets. We tried to keep the size of the splits similar
although in some cases it was not possible because the
same subjects were kept in the same subset. We ran the

experiments on the first subset and incrementally added
all the others. Figure 13 shows the execution time of our
approach. We observe that (i) our approach terminated
in 3905 milliseconds for 180 distinct subjects (around
1000 facts) and (ii) the execution time grows nearly lin-
ear in the size of the data which shows the scalability of
our approach.

9. Summary and Discussions

This paper studies the problem of determining and
mapping time intervals to dynamic facts. We proposed a
framework comprising several functions and configura-
tion parameters that can efficiently provide the matching
and the selection of the set of time intervals that maxi-
mize the effectiveness of our approach. In addition, we
proposed a running prototype, TISCO that will support
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the users in exploring facts with temporal scopes and
simplify the testing of new algorithms for matching and
selection functions. We evaluated our approach on facts
extracted from DBpedia by using cleaned-up temporal
scopes extracted from Yago2. We provide the bench-
marking dataset to support the users in testing their ap-
proaches since it is difficult to perform the task at hand.

Our approach achieved promising results for tem-
poral scoping of facts by employing various matching
functions. The worse results are usually related to the
shape of the input data: relevant time points and un-
structured evidence vector. The UEV has an exponential
growth and thus our algorithm tends to capture the most
recent time intervals while failing with less recent dates.

Figure 8: Comparing different selection function

Precision	   Recall	   F-‐measure	  

top-‐2,proxy-‐10	   0.672388148	   0.66462162	   0.668482327	  

proxy-‐10	   0.673435823	   0.673471796	   0.673453809	  

top-‐2	   0.583453964	   0.763957592	   0.661615352	  
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Figure 9: Comparing different normalization functions.
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Figure 10: Comparing different matching functions on
holdsPoliticalPosition property

Precision Recall F-measure
loc-no-diag-penal 0,625153668 0,558064799 0,648904218

loc-diag-penal 0,654361792 0,75068105 0,699219956

glob-disj-intervals 0,780444444 0,333789056 0,46759286

glob-conti-intervals 0,344916661 0,758712748 0,474240113

baseline 0,164327946 0,500701418 0,247445421
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Figure 11: Comparison on matching functions on ismarriedTo
property

Precision Recall F-measure
loc-no-diag-penal 0,235927371 0,358425129 0,357893435

glob-disj-intervals 0,423076923 0,099418685 0,161003273

loc-diag-penal 0,295914438 0,651564472 0,40699024

glob-conti-intervals 0,186587298 0,77943278 0,301095721

baseline 0,104034087 0,118767019 0,110913439
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Figure 12: Comparison of matching functions on US
administration office properties

Precision Recall F-measure
loc-no-diag-penal 0,882380952 0,729708995 0,798815623

loc-diag-penal 0,869047619 0,747566138 0,803742476

glob-disj-intervals 0,563462669 0,468930041 0,511868342

glob-conti-intervals 0,265573077 0,972016461 0,417168042
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Figure 13: Scalability of our algorithm.
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Another case, is the length of the UEV. In cases when
UEV has length two and the same UEV is captured for
different facts of the same subject, the local matching
functions fail while the global matching functions get
better results. We get better results for politician and
players since more evidence is found on the Web than
for celebrities. In addition, politician facts get better re-
sults since they are considered as functional properties
while soccer players playing for a club may be at the
same time loaned out to other club and they also plays
in a national team.

However there is still room for improvement. Next,
we discuss possible future directions. First, it would be
interesting to apply the hybrid approach of extracting
temporal information within further domains. There-
fore, we plan to enlarge the unstructured evidence also
by considering tools that extract temporal expression
such as HeidelTime or other temporal expressions tem-
ponyms as proposed in [24]. In addition, we plan to
compare our approach with the approaches proposed in
the Text Analysis Conference(TAC)24 in the KBP re-
search area in particular in the Temporal Slot Filling
Task [20]. As we already mentioned our approach is
completely unsupervised and the NLP techniques we
adopt are softer with respect to the NLP techniques em-
ployed in TAC 2010 KBP task or other similar works
[11]. Moreover, our approach will investigate how
to complement evidence retrieved from texts with evi-
dence from the Web of Data.

24http://www.nist.gov/tac/
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