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Abstract. Over the last years, the Semantic Web has been growing steadily. To-
day, we count more than 10,000 datasets made available online following Se-
mantic Web standards. Nevertheless, many applications, such as data integration,
search, and interlinking, may not take the full advantage of the data without hav-
ing a priori statistical information about its internal structure and coverage. In
fact, there are already a number of tools, which offer such statistics, providing
basic information about RDF datasets and vocabularies. However, those usually
show severe deficiencies in terms of performance once the dataset size grows
beyond the capabilities of a single machine. In this paper, we introduce a soft-
ware component for statistical calculations of large RDF datasets, which scales
out to clusters of machines. More specifically, we describe the first distributed in-
memory approach for computing 32 different statistical criteria for RDF datasets
using Apache Spark. The preliminary results show that our distributed approach
improves upon a previous centralized approach we compare against and provides
approximately linear horizontal scale-up. The criteria are extensible beyond the
32 default criteria, is integrated into the larger SANSA framework and employed
in at least four major usage scenarios beyond the SANSA community.

1 Introduction

Over the last two decades, the Semantic Web has grown from a mere idea for modeling
data in the web, into an established field of study driven by a wide range of standards and
protocols for data consumption, publication and exchange on the Web. For the record,
today we count more than 10,000 datasets openly available online using Semantic Web
standards 4. Thanks to such standards, large datasets became machine-readable [13].
Nevertheless, many applications such as data integration, search, and interlinking may
not take full advantage of the data without having a priori statistical information about
its internal structure and coverage. RDF dataset statistics can be beneficial in many
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ways, for example: 1) Vocabulary reuse (suggesting frequently used similar vocabulary
terms in other datasets during dataset creation), 2) Quality analysis (analysis of incom-
ing and outcoming links in RDF datasets to establish hubs similar to what pagerank
has achieved in the traditional web), 3) Coverage analysis (verifying whether frequent
dataset properties cover all similar entities and other related tasks), 4) privacy analy-
sis (checking whether property combinations may allow to uniquely identify persons
in a dataset) and 5) link target analysis (finding datasets with similar characteristics,
e.g. similar frequent properties) for interlinking candidates.

A number of solutions have been conceived to offer users such statistics about RDF
vocabularies [17] and datasets [9,7]. However, those efforts showed severe deficiencies
in terms of performance when the dataset size goes beyond the main memory size of
a single machine. This limits their capabilities to medium-sized datasets only, which
paralyzes the role of applications in embracing the increasing volumes of the available
datasets.

As the memory limitation was the main shortcoming in the existing works, we
investigated parallel approaches that distribute the workload among several separate
memories. One solution that gained traction over the past years is the concept of Re-
silient Distributed Dataset (RDDs), initially suggested at [18], which are in-memory
data structures. Using RDDs, we are able to perform operations on the whole dataset
stored in a significantly enlarged distributed memory.

Apache Spark 5 is an implementation of the concept of RDDs. It allows performing
coarse-grained operations over voluminous datasets in a distributed manner in parallel.
It extends earlier efforts in the area such as Hadoop MapReduce.

In this paper, we introduce a software component ”DistLODStats” for statistical
evaluation of large RDF datasets, which scales out to clusters of multiple machines. We
extend the approach proposed in [5] for computing 32 different statistical criteria for
RDF datasets. Our contributions can be summarized as follows:

– We propose an algorithm for computing RDF dataset statistics and implement it
using an efficient framework for large-scale, distributed and in-memory computa-
tions: Apache Spark.

– We perform an analysis of the complexity of the computational steps and the data
exchange between nodes in the cluster.

– We evaluate our approach and demonstrate empirically its superiority over a previ-
ous centralized approach.

– We integrated the approach into the SANSA framework, where it is actively main-
tained and re-uses the community infrastructure (mailing list, issues trackers, web-
site etc.).

– We briefly describe four usage scenarios for DistLODStats.

The paper is structured as follows: Our approach for the computation of RDF dataset
statistics is detailed in Section 2 and evaluated in Section 3. Related work on the com-
putation of RDF statistics is discussed in Section 5. Finally, we conclude and suggest
planned extensions of our approach in Section 6.
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2 Approach

In this paper, we adopted the 32 statistical criteria proposed in [5]. In contrast to [5], we
perform the computation in a large-scale distributed environment using Spark and the
concept of RDDs. Instead of processing the input RDF dataset directly, this approach
requires the conversion to an RDD that is composed of three elements: Subject, Property
and Object. We name such an RDD a main dataset.

The statistical criteria proposed in [5] are formalized as a triple (F,D, P) consisting
of a filter condition F, a derived dataset D and a post processing operation P. In our
approach, we adapt the definition of those elements to be applicable to RDDs.

Definition 1 (Statistical criterion). A statistical criterion C is a triple C = (F,D, P),
where:

– F is a SPARQL filter condition.
– D is a derived dataset from the main dataset (RDD of triples) after applying F.
– P is a post-processing filter operating on the data structure D.

F acts as a filter operation, which determines whether a specific criterion is matched
against a triple in the main dataset. D is the result of applying the criterion on the main
dataset. P is an operation applied to D to (optionally) perform further computational
steps. If no extra computation are needed, P just returns exactly the results from the
intermediate dataset D.

2.1 Main Dataset Data Structure

The main dataset is based on an RDD data structure which is a basic building block of
the Spark framework. RDDs are in-memory collections of records that can be operated
in parallel on large clusters. By using RDDs, Spark abstracts away the differences of
the underlying data sources. RDDs during their lifecycle are kept in-memory, which
enables efficient reuse of RDDs during several consequent transformations. Spark pro-
vides fault-tolerance by keeping a lineage information (a Directed Acyclic Graph (DAG)
of transformations) for each RDD. This way any RDD can be reconstructed in case of
node failure by tracing back the lineage. Spark enables full control over the persis-
tence state and partitioning of the RDDs in the cluster. Thus, we can further improve
computational efficiency of statistical criteria by planning a suitable storage strategy
(i.e. alternating between memory and disk). For example, we can precisely determine
which RDDs will be reused, and manage the degree of parallelism by specifying how
an RDD is partitioned across the available resources.

Definition 2 (Basic Operations). All the statistical criteria can be represented in our
approach using the following basic operations: map, filter, reduce-by, and group-by.
These operations can be formalized as follows:

– map : I → O, where I is an input RDD and O is an output RDD. Map transforms
each value from an input RDD into another value, following a specified rule.



– f ilter : I → O, where I is an input RDD and O is an output RDD, which contains
only the elements that satisfy a condition.

– reduce : I → O, where I is an input RDD of key-value (K,V) pairs and O is an
output RDD of (K, list(V)) pairs.

– group-by : (I, F)→ O, where I is an input RDD of pairs (K, list(V)), F is a grouping
function (e.g., count, avg), and O is an output RDD containing the values in list(V)
from I aggregated using the grouping function.

2.2 Distributed LODStats Architecture

The computation of statistical criteria is performed as depicted in Figure 1. Our ap-
proach consists of three steps: (1) saving RDF data in scalable storage, (2) parsing and
mapping the RDF data into the main dataset, and (3) performing statistical criteria eval-
uation on the main dataset and generating results.

Fig. 1. RDD lineage of a Criterion execution.

Fetching the RDF data (Step 1): RDF data needs first to be loaded into a large-scale
storage that Spark can efficiently read from. For this purpose, we use HDFS (Hadoop
Distributed File-System) 6. HDFS is able to accommodate any type of data in its raw
format, horizontally scale to arbitrary number of nodes, and replicate data among the
cluster nodes for fault tolerance. In such a distributed environment, Spark adopts differ-
ent data locality strategies to try to perform computations as close to the needed data as
possible in HDFS and thus avoid data transfer overhead.

Parsing and mapping RDF into the main dataset (Step 2): In the course of Spark
execution, data is parsed into triples and loaded into an RDD of the following format:
Triple<Subj,Pred,Obj> (by using the Spark map transformation).

Statistical criteria evaluation (Step 3): For each criterion, Spark generates an exe-
cution plan, which is composed of one or more of the following Spark transformations:
map, filter, reduce and group-by.
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2.3 Algorithm

The DistLODStats algorithm (see Algorithm 1) constructs the main dataset from an
RDF file (line 1). Afterwards, the algorithm iterates over the criteria defined inside the
DistLODStats framework and evaluates them (lines 4, 6 and 8).

To define a statistical criterion inside the DistLODStats framework, one must spec-
ify filter, action, and postProc methods. The evaluation of the criterion then starts first
by the filter method (line 4) that is used to apply the rule filters of the criterion (Rule
Filter in Table 1). Applied on a main dataset, this latter will return a new RDD with a
subset of the triples. Next, the action method is used to apply the criterion’s rule action
(Rule Action in Table 1). Applied on the filtered RDD, this either computes statistics
directly or reorganizes the RDD so statistics can be computed in the next step. At the
end, the postProc method is used as an optional operation to perform further statistical
computations (e.g. average after count or sort).

Algorithm 1: DistLODStats.
input : RDF: an RDF dataset, C: a list of criterion.

1 RDD mainDataset = RDF.toRDD < Triple > ()
2 mainDataset.cache()
3 foreach c ∈ C do
4 triples← c. f ilter(mainDataset)
5 triples.cache()
6 triples← c.action(triples)
7 if c.hasPostProc then
8 triples← c.postProc(triples)

In our work, we make use of Spark caching techniques. Basically, if an RDD is
constructed from a data source e.g. file, or through a lineage of RDDs, and then cached,
there is no need to construct the RDD again the next time it is needed. We have used two
different approaches for caching: (1) caching the main dataset entirely (line 2), and (2)
caching a derived RDD after applying the criteria filter on the main dataset (line 5). In
the first approach, the RDD is constructed from the RDF source during the first criteria
computation, so the next criteria do not need to fetch it again. In the second approach,
the RDD resulting from executing the filter of one criterion is cached and used by any
other criterion sharing the same filter pattern.

2.4 Complexity Analysis

The performance of criteria computation depends on two factors mainly:

– Data shuffling and filtering. In general, the computation can be expensive if there
is data movement involved during the distributed execution, which is also known
as shuffling. This generally happens when there is a data reduction (in the map-
reduce sense). This entails cases like grouping together similar data or applying



Criterion Rule (Filter→ Action) Postproc.

1 used classes p=RDF_TYPE && o.isURI() → map(_.o) –

2 class usage count p=RDF_TYPE && o.isURI() → map(o => (o, 1)).reduceByKey(_ + _) take(100)

3 classes defined p=RDF_TYPE && s.isURI()&& → map(_.s) –

(o=RDFS_CLASS||o=OWL_CLASS)

4 class hierarchy p=RDFS_SUBCLASS_OF && → G += (?s,?o) depth(G)

depth s.isIRI() && o.isIRI()

5 property usage → map(f => (f.pred, 1)) take(100)

.reduceByKey(_ + _)

6 property usage → groupBy(_.subj) count

distinct per subj. .reduceByKey(_ + _)

7 property usage → groupBy(_.obj) count

distinct per obj. .reduceByKey(_ + _)

8 properties → groupBy(_.subj) sum/count

distinct per subj. .combineByKey(_ + _)

9 properties → groupBy(_.obj) sum/count

distinct per obj. .combineByKey(_ + _)

10 outdegree → map(_.s).map(f => (f, 1)) sum/count

.combineByKey(_ + _)

11 indegree → map(_.o).map(f => (f, 1)) sum/count

.combineByKey(_ + _)

12 property p=RDFS_SUBPROPERTY_OF && → G += (?s,?o) depth(G)

hierarchy depth s.isIRI() && o.isIRI()

13 subclass usage p=RDFS_SUBPROPERTY_OF → count() –

14 triples → count() –

15 entities → map(f=>(s.isURI(), –

mentioned p.isURI(),o.isURI())).count

16 distinct entities → map(f=>(s.isURI(), –

p.isURI(),o.isURI())).distinct

17 literals o.isLiteral() → count() –

18 blanks as subj. s.isBlank() → count() –

19 blanks as obj. o.isBlank() → count() –

20 datatypes o.isLiteral() → map(o => (o.dataType(), 1)) –

.reduceByKey(_ + _)

21 languages o.isLiteral() → map(o => (o.languageTag(), 1)) –

.reduceByKey(_ + _)

22 average typed string o.isLiteral() && obj → count(); len/count

length .getDatatype()=XSD_STRING) len+=o.length()

23 average untyped o.isLiteral() && → count(); len/count

string length o.getDatatype().isEmpty() len+=o.length()

24 typed subject p=RDF_TYPE → count() –

25 labeled subject p=RDFS_LABEL → count() –

26 sameAs p=OWL_SAME_AS → count() –

27 links !s.getNS() → map(f => (s.getNS()+ o.getNS())) –

=(o.getNS()) .map(f=> (f, 1)).reduceByKey(_ + _)

28 max per property o.getDatatype()={XSD_INT | → map(f => (f.p, f.o)) –

{int,float,time} XSD_float | XSD_datetime} .maxBy(_._2)

29 average per property o.getDatatype()={XSD_INT | → m1=>map(_.o).count m1/m2

{int,float,time} XSD_float | XSD_datetime} m2=>map(_.p).count

30 subj. → map(f => (f.s.getNS())) –

vocabularies .map(f => (f, 1)).reduceByKey(_ + _)

31 pred. → map(f => (f.p.getNS())) –

vocabularies .map(f => (f, 1)).reduceByKey(_ + _)

32 obj. vocabularies → map(f => (f.o.getNS())) –

.map(f => (f, 1)).reduceByKey(_ + _)

Table 1. Definition of Spark rules (using Scala notation) per criterion.



Criterion Runtime Complexity Data shuffling and Data scanning

(1, 3) O(n) Data is filtered locally and returned, i.e. no data exchange is needed.

(2, 5) As sorting is required to
retrieve the top 100 re-
sults, i.e. the complexity
depends on the sorting al-
gorithm used.

This operation can be implemented in a map-reduce fashion: classes initially
are distributed across the cluster, so calculating their counts requires data to
be shuffled and then reduced. The sorting in post-processing requires moving
the data. Currently, data is sorted in each node and the union of the datasets is
subsequently sorted as well.

(6, 7, 8, 9) O(n) Following a map-reduce approach, the data is first mapped to
<subject,property> pairs and then reduced by subject, so data needs to
be shuffled prior to the grouping. De-duplication (distinct) is automatically
achieved by the reduce function.

(4, 12) O(V+E) The best representation of this criterion is a graph where data is already con-
nected, and only linear traversal is required so no data transfer is needed.

(10, 11, 20, 21) O(n) Following a map-reduce approach, data is first mapped to <subject,1> and then
reduced by subject counting the 1s, so data needs to be shuffled prior to the
grouping.

(13, 14) O(n) The count is performed locally and the individual counts are summed up for
the cluster, i.e. no data movement is needed.

(15) O(n) Counting of entities with mentioned s, p and o is done in parallel, so the overall
count uses individual counts and sums them. Hence, no data transfer is needed.

(16) O(n) This is similar to 15, but instead of counting, just returning the triples, so data
is saved directly after checking isURI and saved back, i.e. no data is moved.

(17, 18, 19, 24,
25, 26, 27, 30,
31, 32)

O(n) Data is filtered and then counted in each node, the overall count can be obtained
by summing up individual counts, so no data movement.

(23, 23) O(n) The computation requires to project out the objects only and map them to the
length of themselves, then the average is computed by summing up the length
dividing by the size of each map. The AVG count is done in parallel in each
node and then the AVG of all AVGs is a matter of getting single values from
each node, so no data movement is needed.

(28) O(n) Obtaining the maximum per property requires also reducing data distributed in
the cluster, so data movement needed.

(29) O(n) The data here is also reduced by property, so the sum and the count, thus the
average, can happen in the same time. Either way, data needs to be moved
across the cluster.

Table 2. Complexity and data shuffling breakdown by statistical criterion. Notation conventions:
n = number of triples; V = number of vertices; E = number of edges.

aggregation functions for SUM, AVG, COUNT, etc. Another factor influencing the
performance of criteria computation are filters. The more data is filtered in early
stages, the less processing is required in subsequent steps.

– Data scanning. To execute the criterion filter on the same data, data is scanned
only once for all criteria. However if data changes state, for example is mapped to
another form with new columns added, then another scan of the new state is needed.
Finally, if data is shuffled across cluster nodes, then a new scan is needed as well.

Per-criterion complexity analysis. Based on the two previous factors, we performed a
complexity analysis of each statistical criterion. The results are reported in Table 2. We
deem the complexity is mostly linear corresponding to cases where only one or limited
number of scans is required. However there are situations where the complexity can
increase when there are iterative executions, like the case of data sorting or graph-based
computations (e.g. finding cycles or getting the path between two edges).



Below we give an overview of complexity analysis for our most operators used through
our approach.

The complexity of map() and f ilter() itself is linear with respect to the number of
input triples. The overall complexity depends on the functions passed to them. Consider
an RDD as a single data structure on memory, any other operations (such as map and
filter) are linear, or O(n). The subsequent step is to split this RDD between s nodes, the
complexity on each node then becomes O(n/s). Let be f a function with complexity
O( f ), then its complexity will be O(n/s ∗ O( f )). As evident from the formula O(n/s ∗
O( f )), the runtime increases linearly when the size of RDD increases and decreases
linearly with the number of nodes in the cluster in case of a function f with with O( f ) =

O(1).
The complexity of the sortBy operation according to Spark7 is a sampled O(n),

which means only the unique sample keys m (with m ≤ n) are sorted and lead to a
complexity of O(m∗ log(m)) plus the ranges of key sets. Afterwords, the data is shuffled
around in O(n) which is costly as sorting needs to be applied internally for the range of
keys collected on a given partition p, i.e. O(p ∗ log(p)) time is required.

2.5 Implementation

DistLODStats comprises three main phases depicted in Figure 2 and explained previ-
ously. The output of the Computing phase will be the statistical results represented in
a human-readable format e.g. VoID, or row data. We expressed the three phases of the
32 criteria using the basic operations defined in Definition 2. Next, those have been
mapped to Spark transformations and actions in Table 1, where: map is mapped di-
rectly to Spark Map(), reduce is mapped to groupByKey(), and group-by is mapped to
reduceByKey(). Exceptions of this general strategy were done for the implementation
of the post processing steps of Criteria 4 and 12, where we use a Spark GraphX8, which
is more suitable for this particular case of graph-oriented criterion computation.

Fig. 2. Overview of DistLODStats’s abstract architecture.
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Furthermore, we provide a Docker image of the system9 available under Apache
License 2.0, integrated within the BDE platform10 - an open source Big Data Processing
Platform allowing users to install numerous big data processing tools and frameworks
and create working data flow applications.

We implemented DistLODStats using Spark-2.2.0, Scala 2.11.11 and Java 8. Dis-
tLODStats has meanwhile been integrated into SANSA [11,6], an open source11 data
flow processing engine for performing distributed computation over large-scale RDF
datasets. It provides data distribution, communication, and fault tolerance for manipu-
lating large RDF graphs and applying machine learning algorithms on the data at scale.
Via this integration, DistLODStats can also leverage the developer and user community
as well as infrastructure behind the SANSA project. This also ensure the sustainability
of DistLODStats given that SANSA is backed by several grants until at least 2021.

3 Evaluation

The aim of our evaluation is to see how well our approach can perform against non-
distributed approaches as well as analysing the scalability of the distributed approach.
In particular, we addressed the following questions: (Q1): How does the runtime of the
algorithm change when more nodes in the cluster are added? (Q2): How does the algo-
rithm scale to larger datasets? (Q3): How does the algorithm scale to a larger number of
datasets?

In the following, we present our experimental setup including the datasets used.
Thereafter, we give an overview of our results, which we subsequently discuss in the
final part of this section.

3.1 Experimental Setup

We used one synthetic and two real world datasets for our experiments:

1. We chose the geospatial dataset LinkedGeoData [16] which offers a spatial RDF
knowledge base derived from OpenStreetMap.

2. As a cross domain dataset, we selected DBpedia [10] (v 3.9). DBpedia is a knowl-
edge base with a large ontology.

3. As a synthetic dataset, we chose to use the Berlin SPARQL Benchmark (BSBM) [2].
It is based on an e-commerce use case which is built around a set of products that
are offered by different vendors. The benchmark provides a data generator, which
can be used to create sets of connected triples of any particular size.

Properties of these datasets are given in Table 3.
For the evaluation, all data is stored on the same HDFS cluster using Hadoop 2.8.0.

All experiments were carried out on a 6 nodes cluster (1 master, 5 workers): Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10GHz (32 Cores), 128 GB RAM, 12 TB SATA RAID-
5. The experiments on a local mode are all performed on a single instance of the cluster.

9
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Table 3. Dataset summary information (nt format).

−→
DBpedia BSBM

LinkedGeoData en de fr 2GB 20GB 200GB

#nr. of triples 1,292,933,812 812,545,486 336,714,883 340,849,556 8,289,484 81,980,472 817,774,057

size (GB) 191.17 114.4 48.6 49.77 2 20 200

We ran two centralized versions of LODStats (explained below at 3.2) for comparison.
The machines were connected via a Gigabit network. All experiments were executed
three times and the average value is reported.

3.2 Results

We evaluate our approach using the above datasets to compare it against the original
LODStats. We carried out two sets of experiments. First, we evaluate the execution
time of our distributed approach against the original approach. Second, we evaluate
the horizontal scalability via increasing nodes (machines) in the cluster. Results of the
experiments are presented in Table 4, Figure 3, Figure 4 and Figure 5.

Distributed Processing on Large-Scale Datasets
To address Q1, we started our experiments by evaluating the speedup gained by adopt-
ing a distributed implementation of LODStats criteria using our approach, and com-
pare it against the original centralized version. We run the experiments on four datasets
(DBpediaen, DBpediade, DBpedia f r, and LinkedGeoData) in a local environment on
a single instance with two configurations: (1) files of the dataset are considered sepa-
rately, and (2) one big file–all files concatenated.

Table 4. Distributed Processing on Large-Scale Datasets.

Runtime (h) (mean/std)

−→
LODStats DistLODStats

a) files b) bigfile c) local d) cluster e) speedup ratio

LinkedGeoData n/a n/a 36.65/0.13 4.37/0.15 7.4x

Men
DBpedia 24.63/0.57 fail 25.34/0.11 2.97/0.08 7.6x

Mde
DBpedia n/a n/a 10.34/0.06 1.2/0.0 7.3x

M f r
DBpedia n/a n/a 10.49/0.09 1.27/0.04 7.3x

Table 4 shows the performance of two algorithms applied to the four datasets. The
column LODStatsa) reports on the performance of LODStats on files separately (con-
sidering each file as a sequence of execution), the next columns LODStatsb) reports on
the performance of LODStats using a single big file by concatenating each file, and the



last columns reports on the performance of DistLODStats on the same case as previ-
ously i.e. the performance for one big dataset in local mode c) and cluster mode d).
We observe that the execution in DistLODStatsc),d) finishes with all the datasets (see
Figure 3). However, for LODStatsa),b) the execution often fails at different stages of
the execution. In particular, n/a indicates parser exceptions and fail out of memory ex-
ceptions. The only case where the execution finishes and actually slightly outperforms
DistLODStatsc) on a single node is executing LODStats on the dataset DBpediaen split
into files (25.34h for DistLODStatsc) vs 24.63h in LODStatsa)). This is because the
DistLODStatsc) considers the input dataset as a big file instead of evaluation it on each
file separately. LODStats streams the criteria one by one, so having a large dataset
streamed that way would lead to very high processing times. However, with small data
as input, the processing can finish in short amount of time, but the results can be very
inaccurate.

Fig. 3. Speedup performance evaluation of Dist-
LODStats.

Fig. 4. Sizeup performance evaluation of Dist-
LODStats.

Figure 3 shows the speedup performance evaluation for large-scale RDF Datasets
for DistLODStats on local mode and cluster mode, respectively. All results illustrate
consistent improvement for each dataset when running on a cluster. The maximum
speedup is 7.6x and the geometric mean of the speedup is 7.4x.

For example, on DBpediaen, the time on cluster mode is about 2.97 hours which is
7.6 times faster than evaluating DistLODStats on local mode (about 25.34 hours). The
reason why the time spent on local mode extremely decreases is that the size of the
working directory of worker processes is too large and Spark uses threads for distribut-
ing the tasks.

Scalability
Sizeup scalability To measure the performance of size-up i.e. scalability of our ap-
proach, we run experiments on three different sizes. This analysis keeps the number
of nodes in a cluster constant, we fix the number of workers (nodes) to 5 and grow
the size of datasets to measure whether a given algorithm can deal with larger datasets.



Since real-world datasets are considered to be unique in the size and also on other as-
pects e.g. number of unique terms, we chose the BSBM benchmark tool to generate
artificial datasets of different sizes. We started by generating a dataset of 2GB. Then we
iteratively increased the size of datasets by one order of magnitude.

On each dataset, we ran the distributed algorithm and the runtime is reported on
Figure 4. The x-axis is a generated BSBM dataset per each order of 10x magnitude.

By comparing the runtime (see Figure 4), we note that the execution time cost grows
linearly and is near-constant when the size of the dataset increases. As expected, it stays
near-constant as long as the data fits in memory. This demonstrates one of the advan-
tages of utilizing an in-memory approach in performing the statistics computation. The
overall time spent in data read/write and network communication found in disk-based
approaches is no present in distributed in-memory computing. The performance only
starts to degrade when substantial amounts of data need to be written to disk due to
memory overflows. The results show scalability of our algorithm in context of sizeup,
which answers question Q2.
Node scalability In order to measure node scalability, we use variations of the number
of the workers on our cluster. The number of workers varies from 1, 2, 3 and 4 to 5.

Fig. 5. Scalability performance evaluation on
DistLODStats.

Fig. 6. Speedup Ratio and Efficiency of Dist-
LODStats.

Let TN be the time required to complete the task on N workers. The speedup S is the
ratio S = TL

TN
, where TL is the execution time of the algorithm on local mode. Efficiency

measures the processing power being used (i.e speedup per worker). It is defined as the
time to run the algorithm on N workers compared to the time to run algorithm on local
mode: E = S

N = TL
NTN
.

Figure 5 shows the speedup for BS BM50GB. We can see that as the number of
workers increases, the execution time cost is super-linear. As depicted in Figure 6, the
speedup performance trend is consistent as the number of workers increases. In con-
trast, as the number of workers was increased from 1 to 5, efficiency increased only up
to the 4th worker for BS BM50GB dataset. This implies that the tasks generated from the
given dataset were covered with almost 4 nodes. The results imply that DistLODStats



can achieve near linear or even super linear scalability in performance, which answers
question Q3.

Breakdown by Criterion
Now we analyze the overall runtime of criteria execution. Figure 7 reports on the run-
time of each criterion on both BS BM20GB and BS BM200GB datasets.

Fig. 7. Overall Breakdown by Criterion Analysis (log scale).

Discussion. DistLODStats consists of 32 predefined criteria most of which have a
runtime complexity of O(n) where n is the number of input triples. The breakdown for
BSBM with two instances is shown in Figure 7. The results obtained confirm to a large
extent the pre-analysis made in Subsection 2.4. The execution is longer when there is
data movement in the cluster compared to when data is processed without movement
e.g. Criterion 2, 3 and 4. There are some criteria that are quite efficient to compute
even with data movement e.g. 22, 23. This is because data is largely filtered before the
movement. Criterion 2 and 28 are the most expensive ones in terms of time of execution.
This is most probably because of the sorting and maximum algorithm used by Spark.
Criteria 20 and 21 are particularly expensive because of the extra overhead caused by
extracting the data type and language for each particular object of type Literal. Criteria
like 14 and 15 do not require movement of data, but yet are inefficient in execution.
This is because the data is not filtered previously. The last three criteria do include data
movement but are among the most efficient ones. This is because the low number of
namespaces the chosen datasets have.

Overall, the evaluation study conducted demonstrates that parallel and distributed
computation of the different statistical values is scalable, i.e. the execution finishes in
reasonable time relative to the high volume of datasets.

4 Use Cases

DistLODStats is a generic tool for horizontally scalable statistics evaluation. We are
aware of the following major users of the tool:



Comprehensive statistics – LODStats LODStats12 is a project, which has crawled
RDF data from metadata portals for the past seven years. It interacts with the CKAN
dataset metadata registry to obtain a comprehensive picture of the current state of the
Data Web. The drawback of the previous engine for LODStats is its inability to horizon-
tally scale out, which naturally limited its scope to small and medium size datasets. For
this reason, statistical criteria for several large-scale datasets were not reflected in the
project website. Meanwhile, DistLODStats is used as underlying engine overcoming
the previous limitations and generating statistical descriptions, including e.g. VoID, for
large parts of the Linked Open Data Cloud.

Big Data Platform – BDE Big Data Europe (BDE)13 [1] is an open source big
data processing platform allowing users to deploy Big Data processing tools and frame-
works. Those tools and frameworks usually generate large amounts of log data. Dis-
tLODStats is used for computing statistics over those logs within the BDE platform.
BDE uses the Mu Swarm Logger service14 for detecting docker events and convert
their representation to RDF. In order to generate visualisations of log statistics, BDE
then calls DistLODStats from SANSA-Notebooks [6].

Blockchain – Alethio Use Case Alethio is building an Ethereum analytics plat-
form that strives to provide transparency over the transaction pool of the Ethereum p2p
network. Their 5 billion triple data set contains large scale blockchain transaction data
modelled as RDF according to the structure of the Ethereum ontology15. Alethio is us-
ing SANSA in general and DistLODStats specifically in order to perform large-scale
batch analytics, e.g. computing the asset turnover for sets of accounts, computing attack
pattern frequencies and Opcode usage statistics. DistLODStats was run on a 100 node
cluster with 400 cores to compute those statistics.

LOD Summaries – ABSTAT ABSTAT16[14] is a framework that aims to provide
a better understanding of linked data sets. It implements an ontology-driven linked data
summarization approach. DistLODStats is used for data set summarisation of large-
scale RDF datasets in this context.

5 Related Work

In this section, we provide an overview of related work regarding RDF dataset statistics
calculation. To the best of our knowledge, all but one existing approaches use small to
medium scale datasets and do not horizontally scale. A dataset is large-scale w.r.t. a par-
ticular task in the scope of this article if the main memory on commodity hardware is
insufficient to perform the task (without swapping to disk). We mention here, for exam-
ple RDFPro [3], which offers a suite of stream-oriented, highly optimized processors for
common tasks, such as data filtering, RDFS inference, smushing, as well as statistics
extraction. The second related approach we are aware of is Aether [12], which is an ap-
plication for generating, viewing and comparing extended VoID statistical descriptions

12
http://lodstats.aksw.org/

13
https://github.com/big-data-europe

14
https://github.com/big-data-europe/mu-swarm-logger-service

15
https://github.com/ConsenSys/EthOn

16
http://abstat.disco.unimib.it/

http://lodstats.aksw.org/
https://github.com/big-data-europe
https://github.com/big-data-europe/mu-swarm-logger-service
https://github.com/ConsenSys/EthOn
http://abstat.disco.unimib.it/


of RDF datasets. The tool is useful, for example, in getting to know a newly encountered
dataset, in comparing the different versions of a dataset, and in detecting outliers and
errors. Luzzu [4] is a quality assessment framework for linked data. Its Quality Metric
Language (LQML), is a domain specific language (DSL) that enables knowledge engi-
neers to declaratively define quality metrics whose definitions can be understood more
easily. LQML offers notations, abstractions and expressive power, focusing on the rep-
resentation of quality metrics. However, only one work we came across that provided
a distributed framework for RDF statistics computation: LODOP [8]. LODOP adopts
a MapReduce approach for computing, optimizing, and benchmarking data profiling
techniques. It uses Apache Pig as the underlying computation engine (Hadoop-based).
LODOP implements 15 data profiling tasks comparing to 32 in our work. Because of
the usage of MapReduce, the framework has a significant drawback: materialization of
intermediate results between Map and Reduce and between two subsequent jobs is done
on disk. DistLODStats does not use the disk-based MapReduce framework (Hadoop),
but rather bases its computation mainly in-memory, so runtime performance is presum-
ably better [15]. Unfortunately, we were unable to run LODOP for comparison. This
is due to technical problems encountered, despite the very significant effort we devoted
to deploy and run it. To the best of our knowledge, DistLODStats is the first software
component for in-memory distributed computation of RDF dataset statistics.

6 Conclusions and Future Work

For obtaining an overview over the Web of Data as well as evaluating the quality of
individual datasets, it is important to gather statistical information describing character-
istics of the internal structure of datasets. However, this process is both data-intensive
and computing-intensive and it is a challenge to develop fast and efficient algorithms
that can handle large scale RDF datasets.

In this paper, we presented DistLODStats, a novel software component for dis-
tributed in-memory computation of RDF Datasets statistics implemented using the Spark
framework. DistLODStats is maintained and has an active community due to its inte-
gration in SANSA. Our definition of statistical criteria provides a framework reducing
the implementation effort required for adding further statistical criteria. We showed that
our approach improves upon a previous centralized approach we compare against. Since
Spark RDDs are designed to scale horizontally, cluster sizes can be adapted to dataset
sizes accordingly. Although we achieved reasonable results in terms of scalability, we
plan to further improve time efficiency by persisting the data to an even higher extend
more in memory and perform load balancing.
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