
Efficiently Pinpointing SPARQL Query
Containments

Claus Stadler1, Muhammad Saleem1, Axel-Cyrille Ngonga Ngomo2, and Jens
Lehmann3,4

1 Computer Science Institute, University of Leipzig, 04109 Leipzig, Germany
{cstadler|saleem}@informatik.uni-leipzig.de

2 University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
axel.ngonga@upb.de

3 Smart Data Analytics Group, Computer Science Institute III, University of Bonn,
53117 Bonn, Germany

jens.lehmann@cs.uni-bonn.de
4 Enterprise Information Systems Department, Fraunhofer IAIS, Germany

jens.lehmann@iais.fraunhofer.de

Abstract. Query containment is a fundamental problem in database re-
search, which is relevant for many tasks such as query optimisation, view
maintenance and query rewriting. For example, recent SPARQL engines
built on Big Data frameworks that precompute solutions to frequently
requested query patterns, are conceptually an application of query con-
tainment. We present an approach for solving the query containment
problem for SPARQL queries – the W3C standard query language for
RDF datasets. Solving the query containment problem can be reduced to
the problem of deciding whether a sub graph isomorphism exists between
the normalized algebra expressions of two queries.

Several state-of-the-art methods are limited to matching two queries only,
as well as only giving a boolean answer to whether a containment rela-
tion holds. In contrast, our approach is fit for view selection use cases,
and thus capable of efficiently enumerating all containment mappings
among a set of queries. Furthermore, it provides the information about
how two queries’ algebra expression trees correspond under containment
mappings. All of our source code and experimental results are openly
available.

1 Introduction

Answering queries over views is a field within database research with several ap-
plications, such as in data integration, data warehousing and query optimization,
question answering, and automatic composition of workflows [12]. In general,
there are two main incentives: Performance improvements and data integration.

There are several scenarios where the evaluation of SPARQL queries over
RDF datasets intrinsically suffers performance penalties without precomputa-
tion. For example, the S2RDF SPARQL engine [11], built on the Apache Spark

Big Data system, precomputes all joins between properties due to the way Spark
processes joins.

As another example, consider a faceted browsing scenario, where a user
dynamically filters for ”Find all objects of type ’Bakery’ that are located in
’Leipzig’” on a large dataset such as OpenStreetMap. Bakery is not selective, as
there are several ten-thousands entities of that type world wide, and ’objects lo-
cated in Leipzig’ is not selective, as there are several ten-thousands other entities
besides Bakery in the city. Yet, the size of the intersection between those two
dimensions is comparatively low (around 250 entities). In data warehousing, this
problem is known as the sparse join5. Join indexes are a type of materialized
views used to address these problems.

We see the applications of this work as two fold: On the one hand, the system
is aimed at providing a solid base for building advanced SPARQL caching solu-
tions. On the other hand, the system opens up novel ways for studying SPARQL
queries, such as those obtained from query logs. For example, how frequent are
containments in practice? How many variants of semantically equivalent queries,
such as retrieving all types, are typically used? Given a specific query workload,
can one expect advantages from caching, and would a query-containment-based
approach provide any advantage over a much simpler string based approach?

In this work, we make the following contributions:

– A system for SPARQL query containment that advances the state-of-the-art
by supporting isomorphic containments.

– Thereby, we devise a hybrid graph index structure for fast in memory graph-
based retrieval of isomorphic sub-graphs.

– We compare the performance and correctness of our system against four
other systems in a benchmark.

The remainder is structured as follows: In Section 2, we introduce the pre-
liminaries in regard to conjunctive queries, SPARQL, and query containment.
In Section 3, we outline our approach to isomorphic query containment from a
theoretical perspective. In Section 4, we present an efficient, generic and cus-
tomizable implementation realized using a combination of state of the art com-
ponents. Subsequently, relevant related work is discussed in Section 5. Our find-
ings, obtained from running our system in a query containment benchmark, are
presented in Section 6 Finally, Section 7 concludes this paper and presents
directions for future work.

2 Preliminaries

In this section, we introduce fundamental concepts and terminology.

RDF Conceps: Let there be distinct sets of IRIs I, Blank Nodes B Literals L, and
Variables V . The set T = I∪B∪L is referred to as RDF terms. In accordance with

5 http://www.orafaq.com/tuningguide/sparse%20join.html

http://www.orafaq.com/tuningguide/sparse%20join.html

the RDF standard, an RDF Graph G is defined as G ⊆ (I ∪B)× I× (I ∪B∪L),
i.e. a set of triples with IRIs or blank nodes in the first position (also called
subject), an IRI in the second position (also called predicate) and an RDF term
in the third position (also called object). A generalized RDF GraphG ⊆ T×T×T
allows RDF terms as subject, predicate and object. For our work, we introduce
the notions of an Extended RDF Term E := T ∪ V and Extended RDF Graph
as E × E × E. We use the latter notion to model SPARQL queries as graphs
thereby allowing constants and query variables to act directly as vertices (rather
than as labels for nodes).

SPARQL Algebra and Semantics: SPARQL (SPARQL Protocol and RDF Query
Language) is a standard language for querying and updating RDF data. SPARQL
queries are formally executed against RDF datasets: An RDF dataset may con-
tain zero or more named graphs and must contain one default graph.

A solution binding (short: binding) is a partial function which associates
variables with RDF terms µ : V → T . The domain dom(µ) is the subset of V
for which µ is defined. Two bindings µ1, µ2 are compatible if all common domain
variables map to the same value, i.e. ∀x ∈ dom(µ1 ∩ µ2) : µ1(x) = µ2(x). In
general, SPARQL result sets are multisets, which may be (partially) ordered.

In general, for the evalution of (SPARQL) algebra expressions, the Frege
principle holds: The result of an evaluation of a whole is a function over the
evaluation of its parts:

JO(a1, . . . , an)K := φO(Ja1K, . . . , JanK)

whereas φO is the semantic composition function corresponding to O.
Our work builds on SPARQL with multiset semantics (required for properly

handling DISTINCT) as described in [1].

Definition 1 (Basic Query containment). Query containment (CQ) is gen-
erally defined as:

A v B iff JAKD ⊆ JBKD for every D

Where A and B are queries and D stands for datasets.

Definition 2 (Containment Mapping and Homomorphic Query Con-
tainment).
A containment mapping is a homomorphism h : vars(v)→ vars(q) ∪ consts(q)
that maps the variables of a query (which we refer to as view) v to a query q,
such that

q vh v iff q v h(v)

We refer to basic query containment under containment mappings as homo-
morphic query containment.

Definition 3 (Transformational Query Containment and Equivalence).
This is a further generalization on query containment, which requires that there

exists a sequence of unary operations that establishes the containment of a view in
a query: Let Φ = φ1◦ . . .◦φn be a sequence of unary operations, with φi : Q 7→ Q,
where Q is a set of (SPARQL) algebra expressions.

q vΦ v iff q v Φ(v)

Under this perspective, the application of a containment mapping is as special
case of such operations, whereas examples of other operations that could be
applied to establish a query containment include selection, projection, and dis-
tinct. For instance, according to Definition 1, if the result set of a query v had
an additional column over that of q but was otherwise equivalent, there could
not be a containment. Additional operations can also be used to establish query
equivalence. An example is shown in Figure 1.

View v Query q Residual Operations

1 SELECT ?s ?p {
2 ?s ?p ?o
3 }

1 SELECT DISTINCT ?x {
2 ?x ?y ?z
3 FILTER (?y = rdf:type

)
4 }

For containment:

1 PROJECT (?x)
2 applyCM (?s->?x, ?p->?y)

For equivalence:

1 DISTINCT
2 PROJECT (?x)
3 FILTER (?y = rdf:type)
4 applyCM (?s->?x, ?p->?y)

Fig. 1: In order to establish the containment q vΦ v, the extra column ?p of
the view must be projected away. In order to establish equivalence, additional
filtering and distinct needs to be applied to view. Application of a containment
mapping is denoted by applyCM.

Definition 4 (Algebra Expression Tree). An algebra expression tree (AET)
is a tree representation of a SPARQL algebra expression. For example, a join
A×B can be represented as a tree with the three nodes A, B and the JOIN itself.
The concrete representation we use is described in Section 3.2.

Definition 5 (Conjunctive Queries). Conjunctive queries, also known as
select-project-join queries, are a sub-set of first-order logic queries that only
allows conjunctions (i.e. logical and). Because of their simplicity they are of
particular interest in studies.

(x1, . . . , xk).∃xk+1 . . . xm.A1, . . . , Ar

The variables x1, . . . , xk are called distinguished variables (i.e. projected vari-
ables), whereas xk+1, . . . , xm are referred to as undistinguished. Ai are atomic
formulae over constants and variables, i.e. disjunction and negation are not per-
mitted.

View Selection: This is the problem of efficiently finding a set of candidate views
among a set of views. The naive approach is to linearly scan all available views
and test for whether a rewriting exists. However, as each containment check may
be expensive due to the NP complete nature of the problem, significant perfor-
mance improvements can be made by reducing the set of candidates. In this
work, we devise an index structure which enables an efficient selection of can-
didate views on the basis of pruning the candidates for which no isomorphisms
between the leaf nodes of the view to the query exist.

3 Approach

In this section, we describe our approach to homomorphic SPARQL query con-
tainment analysis, which can serve as the base for transformational QC. Given
two SPARQL queries, one acting as a view v and the other as the request q, our
basic approach is to first normalize their algebra expressions, such that if q v v,
v’s AET would be a sub-tree of that of q in regard to a containment mapping.
As leaf nodes of both AETs are conjunctive queries, the ones of v are converted
to graphs and indexed using a subgraph isomorphism index (SII). For each of q’s
leaf AET graphs, an index lookup is performed in order to obtain a set of can-
didate leafs of v. On this basis, candidate matchings are enumerated, as shown
in Figure 2. Note, that the index enables scaling the retrieval of candidate leaf
graphs to a set of queries, which caters for candidate view selection use cases.

View v Query q Lookup result Candidate matchings

1 UNION(v1, v2) 1 UNION(q1, q2 , q3)
v1: { q1, q2 },
v2: { q2, q3 },

(v1, q1), (v2, q2)
(v1, q1), (v2, q3)
(v1, q2), (v2, q3)

Fig. 2: Example of obtaining candidate matchings between the AET leaf graphs
vi and qi of v and q, respectively. The candidate leafs are based on lookups in
the SII. The set of candidate matchings is the corresponding k-permutations of
n enumeration: If v1 mapped to q2, then we do not allow another vi to map to
it as well, hence {(v1, q2), (v2, q2)} is omitted.

Each candidate matching of the leaf graphs is based on a set of subgraph iso-
morphisms between CQs. The containment mapping for a single pair of CQs is
obtained by simply deriving the mapping of their variables from that subgraph
isomorphism. The containment mapping for the whole candidate matching is
obtained by building the cartesian product over all individual containment map-
pings, and retaining those, whose union is compatible, i.e. a variable must not
be mapped to different values. For every candidate matching and corresponding
containment mapping, we employ bottom up scans in order to compute node
mappings of the two involved queries’ AETs. Hence, a major challenge is the

efficient computation of such candidate matchings under a set of views. Another
challenge is to design the system in a way, such that additional normalizations
and matching rules can be added or configured in a flexible way.

Figure 3 depicts our architecture to address these challenges.

Query Containment Index

Query Processor

TreeMapper

SPARQL Algebra Normalizer

Subgraph Isomorphism Index

Node Mapper

CQ to Graph Converter

Index DAG

SGI

Solver

put(“view1”, “SELECT * {?s ?p ?o . FILTER(?p = rdf:type)}”) lookup(“SELECT * { … }”)

put(“view1_leaf1”, graphOf(“{quad(?g ?s ?p ?o), (?p = rdf:type)}”))
Normalized
lookup query

Retrieve
candidate
leafs

Fig. 3: Query Containment Engine Architecture

The most essential components are explained as follows:

– Query Containment Index (QCI): This entity supports the put(key,
query), remove(key), and lookup(query) operations which form the public
API of the system. The result of lookup(q) is the for each matching keys,
a set of tree mapping objects: The tree mapping comprises the detected
containment mapping together with a map that associates each node in a
query v’s AET with one of the nodes of the lookup query q.

– SPARQL Algebra Normalizer: This component applies equivalence trans-
formations to SPARQL queries, such that if a view was contained in a query,
its AET would be a sub tree of that of the query. Most importantly, AETs
are converted such that their leaf nodes become conjunctive queries.

– CQ Graph Converter: Obtains an extended RDF graph representation of
the conjunctive queries. As it turns out, this approach exhibits some ”nat-
ural” advantages: RDF terms (variables and constants) remain as such in
this graph representation without the need for further conversion. Blank

nodes are used as a distinguished node type to represent syntactic elements,
i.e. instances of triple/quad patterns and expressions. As a consequence,
containment mappings can be directly obtained from detected subgraph iso-
morphisms by retaining only the mapped variables.

– Subgraph Isomorphism Index (SII): A data structure for indexing the
graphs of CQs. Supports finding all subgraph isomorphisms between the
indexed graphs and a given query graph. When performing a lookup with a
query q on the QCI, the QCI first obtains all CQ graphs of the leaf nodes of
the normalized query q′. Afterwards, requests to the SII are made with the
CQ graphs in order to establish a set of candidate leaf matching between q′

and the queries in the QCI.
– (Bottom-Up) Tree Mapper: Component for performing a bottom-up scan

of two trees under a candidate leaf matching.
– Node Mapper: This component is invoked by the bottom-up tree mapper

for each pair of matching nodes of the view and the query’s AET, in order
to check for containment or equivalence by means of computing residual
operations.

– Subgraph Isomorphism Solver: Our framework presently uses the VF2
algorithm, but it is designed to support any other algorithm for this purpose.

3.1 Query Normalization

Typical Query Normalization We apply several well known normalization tech-
niques to the queries:

– Distribute joins over unions, i.e. (A ∪B)× C → (A× C) ∪ (B × C)
– Filter placement: Any constraints are “pushed down” to the leaves of an

algebra expression as close as possible. For example, σe(A ∪ B) → σe(A) ∪
σe(B). Ideally, filters become parents of quad blocks.

– Commutative binary operations, such as cross joins and unions, are con-
verted to n-ary versions of the original ones. For example, (A× (B ×C))→
×n(A,B,C). This makes testing semantic equivalence of two expressions
easier, as it is avoids having to enumerate all possible equivalent expressions
using the original binary operators.

– Merge consecutive filters into a single one, σx(σy(. . .))→ σx∧y(. . .)
– Merge joins of quad blocks into a single quad block.
– Normalization of filter expressions to DNF for leaf nodes, and CNF for inner

nodes in a query’s AET.

Normalize leaves to Conjunctive Queries The leaves of SPARQL algebra expres-
sions are either VALUE or quad nodes. Table 1 shows semantically equivalent
queries, that differ by the constants appearing in the quad block and the filters.
In order to treat these cases uniformly, we substitute every distinct constant c in
a quad block with a corresponding fresh variable v (not appearing elsewhere in
the query) and introduce an appropriate FILTER(v = c) expression. The filter
placement optimization together with the merging of filters may add additional
predicate expressions.

Next, we split the filter conditions into a conjunctive part and a remainder.
For this purpose, we convert the whole expression to CNF. The conjunctive part
is the set of clauses containing only a single expression, which means that there
is no logical OR operation involved.

Now we have all information in place in order to obtain a normalized SPARQL
algebra expression whose leaf nodes are conjunctive queries. The third column
in Table 1 shows such an example.

As a consequence, in our case, containment mappings become mappings only
between variables - instead of variables and constants.

1 SELECT * {
2 ?s a ?o
3 FILTER (?o = Bakery
4 || ?o = Cafe)
5 }

1 SELECT ?s {
2 ?s ?p ?o .
3 FILTER (?p = rdf:type)
4 FILTER (?o = Bakery
5 || ?o = Cafe)
6 }

1 FILTER(
2 CQ(?s ?o,
3 quadblock ({?g ?s ?p ?o}),
4 equals (?p, rdf:type)),
5 ?o = Bakery || ?o = Cafe)

Table 1: Semantically equivalent SPARQL queries; third column uses a conjunc-
tive query

3.2 Representation of Conjunctive Queries as Extended RDF
Graphs

Here we describe how we represent conjunctive queries as graphs in order to be
able to derive containment mappings from subgraph isomorphisms.

The basic idea is summarized as follows: Trivially, if two conjunctive queries
are equivalent, so are their graphs. If two queries only differ by the naming of
their variables, a graph isomorphism test will find the substitutions that would
make them equal. And if a query q differs from a view v by having additional
constraints, it means there exists a subgraph isomorphism from v to q.

The conversion of conjunctive queries to extended RDF graphs is quite direct:
The projection is omitted. For every quad, a blank node is allocated which is
described using graph, subject, predicate, object predicates.

The general transformation of expressions is as follows: Primitive expressions,
namely variables and literals, are represented by themselves. For every compound
(sub-)expression, a fresh blank node is allocated. Such a blank node carries a
:symbol predicate to denote the operator or function name, whereas arguments
are attached using : argi predicates, where i denotes the index of the argument.
In the case of commutative operations, :arg (without index) is used.

Additional rules can be provided to cover more sophisticated cases: For in-
stance, our system supports finding containments contains(?v, ‘‘ab’’ is cov-
ered by contains(?v, ‘‘a’’). We accomplish this, by simply omitting the lit-

eral values that appear as the second argument of top-level6 contains expressions
in the graph representation.

This causes graph isomorphism algorithms to potentially map (the blank
nodes of) two contains expressions with different arguments, and a subsequent
semantic check tests for whether the omitted values are in a substring relation.

Note, that predicates are always constants (IRIs). Variables and literals of
the query remain unchanged in the eRDF graph, and blank nodes correspond to
entities (i.e. quads and expressions) that are subject for matching using subgraph
isomorphism approaches. An example of a graph obtained from an expression is
shown in Figure 4.

1 _:cq
2 :hasQuad _:q1 ;
3 :hasExpr _:e1 ;
4 :hasExpr _:e2 .
5

6 _:q1 :graph ?g ; :subject ?s ;
7 :predicate ?p ; :object ?o .
8

9 _:e1 :symbol "="; :arg ?p ;
10 :arg rdfs:label .
11

12 _:e2 :symbol "contains" ;
13 :arg1 ?o .

cq

q1

rdfs:label

e1

?s?g ?p ?o

e2

= contains

hasQuad hasExprhasExpr

gg ps o arg argsymbol symbol

arg1

Fig. 4: Graph representation of the SPARQL query
SELECT * { ?s ?p ?o . FILTER(?p = rdfs:label && contains(?o, ’Lu’)) }

4 Implementation

Our implementation is based on the Apache Jena Semantic Web Toolkit7, the
JGraphT8 graph library, and our own Jena-based Jena SPARQL API toolkit9.

Indexing with set tries An essential observation is, that all query graphs make use
of sets of several constants, such as rdf:type and any other used URI and literal.
These constants are invariant under isomorphism, i.e. if such an isomorphism
exists, constants are mapped onto themselves. Hence, given query graph Q and
a set of candidate graphs C, then there can only be isomorphisms to a graph
C ∈ C if Cs constants are a subset of that of G, i.e. const(C) ⊆ const(Q). A
datastructure for fast super and sub set queries, named set trie, is presented in
[10].

6 An expression is top-level if it is not a sub-expression
7 http://jena.apache.org/
8 http://jgrapht.org/
9 https://github.com/SmartDataAnalytics/jena-sparql-api

http://jena.apache.org/
http://jgrapht.org/
https://github.com/SmartDataAnalytics/jena-sparql-api

Indexing with an isomorphism DAG Every vertex in the index uniquely corre-
sponds to a (graph) key, whereas each edge represents a specific isomorphism
between the corresponding graphs. Edges naturally represent sub-super graph
relations between the graphs corresponding to an edge’s source and target ver-
tices. Conceptually, every edge holds three pieces of information: (1) The iso-
morphism mapping between A and B, referred to as iso, (2) the residual graph
B \ applyIsomorphism(A, iso) and (3) the residual graph tags. Note, that the
residual tags is the set of tags by which the target graph B differs from the
source graph A, i.e. tags(B) \ tags(A).

We can use the set trie data structure for indexing a node’s edges by its
residual tags: If we were to lookup subgraphs at an index node n for a graph g,
with tags T , then only graphs reachable by edges of n that provide a subset of
T are applicable.

– put(I,K,G) Adds an entry that associates a key with a graph to the index
– getAllSubgraphsOf(I,G)→ (K → (V → V)) A function that finds all those

entries in the index I that are subgraphs of G. For each matching graph, all
isomorphisms are returned.

Fig. 5: Subgraph isomorphism subsumption graph created by the index

5 Related Work

Query optimization is concerned with the transformation of queries into equiva-
lent ones that are less expensive to evaluate. In this context, conjunctive queries

are an extensively studied class of queries due to their practical relevancy and
simplicity. Early work on minimizing conjunctive queries (which is somewhat
similar to minimizing automatons) by eliminating redundant conjuncts was pre-
sented in [2]. However, theoretical studies on conjunctive queries at that time
were mostly concerned with set semantics. Bag semantics are significantly more
relevant in practice and are studied, e.g. in [3], or recently for SPARQL [1]. A
survey of the closely related field of query answering over views given in [5],
which classifies approaches in a taxonomy and provides an overview of further
work handling extensions in view and query languages, such as unions and access
pattern limitations.

The subgraph isomorphism problem is concerned with finding all embeddings
of a graph in another. An extensive analysis of five representative (sub-) graph
isomorphisms algorithms, namely VF2, QuickSI, GraphQL, GADDI, and SPath,
has been performed in [6]. Although in the experiments there was no single
winner, QuickSI had the best overall performance, only GraphQL was able to
complete on all tests.

Early work on caching SPARQL queries was carried out in [7], where the
authors describe a system for caching application domain objects and dependent
SPARQL result sets. However, this work is unrelated to the rewriting queries
using views field because cache entries for SPARQL queries are only determined
based on hashes of their string representation. A SPARQL caching system that
employs canonical graph labelling, such that isomorphic queries receive the same
label, is described in [8]. A recent related system, although apparently not
based on SPARQL, for fast super and subgraph queries by means of caching
is presented [13]. Notably, this system integrates the aforementioned subgraph
isomorphism implementations via Java bindings. Recently, SQCFramework [9]
is proposed, a SPARQL query containment benchmark generation framework
which generates customized SPARQL benchmarks from the real user queries log.
The framework employs different clustering techniques to generate customized
query containment benchmarks.

6 Evaluation

The main aspects we are interested in are: How does the performance of our
system compare to existing query containment checkers, are there cases where
we outperform the state-of-the-art, and is our system sufficiently fast for its
application in query caching to be viable. We evaluate our system using the
data from the Inrialpes’ SPARQL containment benchmark10[4] on a notebook
with Intel I7-7700HQ CPU (2.80GHz), 16GB RAM, running Ubuntu 16.04. The
original benchmark runner that is part of the benchmark suite required every
single task to be run in a new VM, because some of the query containment
checkers were not re-entrant. Hence, the original benchmark measured “cold”
times, which include all the overhead of freshly launched Java VMs, such as

10 http://sparql-qc-bench.inrialpes.fr/

http://sparql-qc-bench.inrialpes.fr/

0.0001

0.001

0.01

0.1

1

10

nop1 nop2 nop3 nop4 nop5 nop6 nop7 nop8 nop9 nop10 nop11 nop12 nop13 nop14 nop15 nop16 nop17 nop18 nop19 nop20

CQNoProj

Ti
m

e
 (

s)
 lo

g
sc

al
e

AFMU JSAG SA TS

Fig. 6: CQNoProj performance chart across all tools - TS dominates.

just-in-time compilation. We managed to fix these issues11, allowing to perform
proper warm-up runs and thus obtain more realistic times.

This benchmark comprises three suites:

– CQNoProj: This suite defines a set of containment tests only based on
conjunctive queries “without projection”, i.e. SELECT * queries.

– UCQProj: A suite comprising union conjunctive queries with varying sets
of distinguished and non-distinguished variables.

– UCQrdfs: Union conjunctive queries with projection with addition of RDFS
entailments.

Our work does not consider reasoning, leaving us with 48 benchmark tasks
from CQNoProj and UCQProj, with a total of 43 distinct queries. Our sys-
tem yields the correct solution on 45 of these tasks, with the exception of UC-
QProj{#p24, #26, #27}. The reason is, that at present we require all UNION
members of a view to have a corresponding member in the query. However, this
can lead to false negatives: For example, a query ?s a Person is contained in a
view {?s a Person} UNION {?s a Agent}, although ?s a Agent does not have a
correspondence. Yet, such type of containments may be irrelevant to caching: if
e.g. for any dataset ?s=Smith was a solution of the view, it cannot be decided
whether it is an answer to the query. Figure 6 and Figure 7 show the perfor-
mance of the tools AFMU, TreeSolver (TS), SparqlAlgebra (SA) and our tool
labeled JSAG (short for jena-sparql-api graph-isomorphism based query con-
tainment solver). Figure 6 is dominated by TS, followed by AFMU. Figure 8 is
a comparison of our tool with SA. In most cases, JSAG performs only slightly
worse than SA, which does not support containment mappings. Whereas SA is
capable of solving all supported tasks with millisecond performance, there are
only 3 instances where JSAG performed significantly worse but still within the
one hundredth of a second range. JSAG’s worst performance is at 0.046 seconds
on CQNoProj#16, however more investigation is needed to determine the rea-
son for the large performance difference to SA. The evaluation shows, that our

11 This was achieved by resetting some private global variables using Java reflection.

0.0001

0.001

0.01

0.1

1

10

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 p23 p24 p25 p26 p27 p28

UCQProj

Ti
m

e
(s

)
lo

g
sc

al
e

AFMU JSAG SA TS

Fig. 7: UCQProj performance chart across all tools - TS dominates.

0.0001

0.001

0.01

0.1

n
o

p
1

n
o

p
2

n
o

p
3

n
o

p
4

n
o

p
5

n
o

p
6

n
o

p
7

n
o

p
8

n
o

p
9

n
o

p
10

n
o

p
11

n
o

p
12

n
o

p
13

n
o

p
14

n
o

p
15

n
o

p
16

n
o

p
17

n
o

p
18

n
o

p
19

n
o

p
20 p

1

p
2

p
3

p
4

p
5

p
6

p
7

p
8

p
9

p
10

p
11

p
12

p
13

p
14

p
15

p
16

p
17

p
18

p
19

p
20

p
21

p
22

p
23

p
24

p
25

p
26

p
27

p
28

CQNoProj UCQProj

Ti
m

e
 (

s)
 lo

g
sc

al
e

JSAG SA

Fig. 8: Performance chart of JSAG and SA.

system not only outperforms existing solutions, but its performance is promising
for the intended caching and analysis use cases.

7 Conclusions and Future Work

In this paper, we present a system for efficiently performing query containment
checks. This is accomplished by means of normalizing algebra expressions, trans-
forming the leaf nodes of AETs to conjunctive queries (CQs), converting CQs to
(extended) RDF graphs and applying graph isomorphism testing to determine
whether the leaf nodes of two AETs can be matched. Once a candidate matching
between AET leaf nodes has been established, a bottom-up scan is performed
to determine whether one query appears as a sub-(expression)-tree in the other,
thus providing (incomplete) solutions to the query containment problem. The
evaluation shows, that our system outperforms some state-of-the-art SPARQL
query containment checkers, and it is only slightly slower than the fastest tool,
which does not support containment mappings.

One direction of future work is to leverage this system as a building block for
realizing advanced SPARQL precomputation and caching solutions. SPARQL-
based faceted browsing and Big Data RDF processing may be among the areas

that could benefit the most from such systems. Furthermore, this work enables
analysing novel aspects of SPARQL query workloads.

All of our components, the revised query containment benchmark and the
raw benchmark result data (in RDF and CSV) are publicly available at 12.

Acknowledgements

This work was partly supported by the grant from the European Unions Horizon
2020 research Europe flag and innovation programme for the projects HOBBIT
(GA no. 688227), QROWD (GA no. 732194) and WDAqua (GA no. 642795).

12 https://github.com/SmartDataAnalytics/jena-sparql-api/tree/master/

jena-sparql-api-query-containment

https://github.com/SmartDataAnalytics/jena-sparql-api/tree/master/jena-sparql-api-query-containment
https://github.com/SmartDataAnalytics/jena-sparql-api/tree/master/jena-sparql-api-query-containment

Bibliography

[1] R. Angles and C. Gutiérrez. The multiset semantics of SPARQL patterns. In
International Semantic Web Conference (1), volume 9981 of Lecture Notes
in Computer Science, pages 20–36, 2016.

[2] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 77–90. ACM, 1977.

[3] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries.
In C. Beeri, editor, PODS, pages 59–70. ACM Press, 1993.

[4] M. W. Chekol, J. Euzenat, P. Genevès, and N. Layäıda. Evaluating and
benchmarking SPARQL query containment solvers. In International Se-
mantic Web Conference, pages 408–423. Springer, 2013.

[5] A. Halevy. Answering queries using views - a survey. The VLDB Journal,
10(4):270–294, 2001.

[6] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-depth comparison
of subgraph isomorphism algorithms in graph databases. PVLDB, 6(2):133–
144, 2012.

[7] M. Martin, J. Unbehauen, and S. Auer. Improving the performance of
semantic web applications with SPARQL query result caching. To appear
in proceedings of 7th Extended Semantic Web Conference (ESWC2010),
Heraklion, Crete, Greece,, May 30 - June 03 2010.

[8] N. Papailiou, D. Tsoumakos, P. Karras, and N. Koziris. Graph-aware,
workload-adaptive SPARQL query caching. In T. K. Sellis, S. B. Davidson,
and Z. G. Ives, editors, SIGMOD Conference, pages 1777–1792. ACM, 2015.

[9] M. Saleem, C. Stadler, Q. Mehmood, J. Lehmann, and A.-C. N. Ngomo.
Sqcframework: SPARQL query containment benchmark generation frame-
work. In Proceedings of the Knowledge Capture Conference, K-CAP 2017,
pages 28:1–28:8, New York, NY, USA, 2017. ACM.

[10] I. Savnik. Index data structure for fast subset and superset queries. In
A. Cuzzocrea, C. Kittl, D. E. Simos, E. R. Weippl, and L. Xu, editors, CD-
ARES, volume 8127 of Lecture Notes in Computer Science, pages 134–148.
Springer, 2013.

[11] A. Schtzle, M. Przyjaciel-Zablocki, S. Skilevic, and G. Lausen. S2RDF:
RDF querying with SPARQL on spark. CoRR, abs/1512.07021, 2015.

[12] K. Singh, I. Lytra, M.-E. Vidal, D. Punjani, H. Thakkar, C. Lange, and
S. Auer. Qaestro - semantic-based composition of question answering
pipelines. In D. Benslimane, E. Damiani, W. I. Grosky, A. Hameurlain,
A. P. Sheth, and R. R. Wagner, editors, DEXA (1), volume 10438 of Lec-
ture Notes in Computer Science, pages 19–34. Springer, 2017.

[13] J. Wang, N. Ntarmos, and P. Triantafillou. Graphcache: A caching system
for graph queries. In V. Markl, S. Orlando, B. Mitschang, P. Andritsos, K.-
U. Sattler, and S. Bre, editors, EDBT, pages 13–24. OpenProceedings.org,
2017.

	Efficiently Pinpointing SPARQL Query Containments
	Introduction
	Preliminaries
	Approach
	Query Normalization
	Representation of Conjunctive Queries as Extended RDF Graphs

	Implementation
	Related Work
	Evaluation
	Conclusions and Future Work

