
Formal Query Generation for Question
Answering over Knowledge Bases

Hamid Zafar1, Giulio Napolitano2, Jens Lehmann1,2

1 Computer Science Institute, University of Bonn, Germany;
hzafarta@cs.uni-bonn.de, jens.lehmann@cs.uni-bonn.de

2 Fraunhofer IAIS, Germany; giulio.napolitano@iais.fraunhofer.de,
jens.lehmann@iais.fraunhofer.de

Abstract. Question answering (QA) systems often consist of several
components such as Named Entity Disambiguation (NED), Relation Ex-
traction (RE), and Query Generation (QG). In this paper, we focus on
the QG process of a QA pipeline on a large-scale Knowledge Base (KB),
with noisy annotations and complex sentence structures. We therefore
propose SQG, a SPARQL Query Generator with modular architecture,
enabling easy integration with other components for the construction of
a fully functional QA pipeline. SQG can be used on large open-domain
KBs and handle noisy inputs by discovering a minimal subgraph based
on uncertain inputs, that it receives from the NED and RE components.
This ability allows SQG to consider a set of candidate entities/relations,
as opposed to the most probable ones, which leads to a significant boost
in the performance of the QG component. The captured subgraph cov-
ers multiple candidate walks, which correspond to SPARQL queries. To
enhance the accuracy, we present a ranking model based on Tree-LSTM
that takes into account the syntactical structure of the question and the
tree representation of the candidate queries to find the one representing
the correct intention behind the question. SQG outperforms the base-
line systems and achieves a macro F1-measure of 75% on the LC-QuAD
dataset.

1 Introduction

Extensive progress has been made in recent years by systems using Knowledge
Graphs (KGs) as their source of information. As the complexity of such sys-
tems may be considerable, it is common practice to segment the whole task
into various subtasks usually performed sequentially, including Named Entity
Disambiguation (NED), Relation Extraction (RE) and Query Generation (QG)
among others [1]. This segmentation, however, rarely corresponds to true mod-
ularity in the architecture of implemented systems,which results in the general
inability by the wider community to successfully and efficiently build upon the
efforts of past achievements. To tackle this problem, researchers introduced QA
modular frameworks for reusable components such as OKBQA [2,3] but little
attention has been given to query generation. For instance, OKBQA includes 24



2

reusable QA components of which only one is a query generator. Nonetheless,
the increasing complexity of questions leads to the following challenges for the
query generation task [4,1]:

1. Coping with large-scale knowledge bases: Due the very large size of existing
open-domain knowledge bases such as DBpedia [5] and Freebase [6], special
consideration is required.

2. Question type identification: For instance the question might be a boolean
one, thus the query construction should be carried out accordingly to gen-
erate desired answer.

3. Managing noisy annotations: The capability to handle a set of annotations
including several incorrect ones might increase the chance of QG to construct
the correct query.

4. Support for more complex question which requires specific query features
such as aggregation, sort as well as comparison.

5. Syntactic ambiguity of the input question: For example, ”Who is the father
of X?” might be interpreted as ”X is the father of who?” if the syntactical
structure of the question is ignored.

To the best of our knowledge, none of the existing works can deal with
all these challenges. Thereby, We present SPARQL Query Generator (SQG),
a modular query builder for QA pipelines which goes beyond the state-of-the-
art. SQG employs a ranking mechanism of candidate queries based on Tree-
LSTM similarity and is able to process noisy input. We also considered scalability
aspects, which enables us to evaluate SGQ on a large Q/A dataset based on
DBpedia [5].

2 Related Work

Diefenbach et al. [1] studied more than 25 QA systems and discussed the different
techniques these used for each component, including the query generation com-
ponent. They show that in most QA systems the query generation component is
highly mixed with components performing other tasks, such as segmentation or
relation extraction. Furthermore, their work mainly focused the analysis on the
overall performance of the QA systems, as only a few systems and publications
provided deep analysis of the performance of their query generation component.
For instance, CASIA [7], AskNow [8] and Sina [9] each have a SPARQL genera-
tion module, but do not provide an evaluation on it. [4] is a very comprehensive
survey of question answering over knowledge graphs, analyzing 72 publications
and describing 62 question answering systems for RDF knowledge graphs. In par-
ticular, they argue that it may not be beneficial that a wide range of research
articles and prototypes repeatedly attempt to solve the same challenges: better
performance may be obtained by providing sophisticated and mature solutions
for individual challenges. An alternative approach to QA pipelines is end-to-end
systems such as [10], which directly construct SPARQL queries from training
data. However, those are currently mostly restricted to simple questions with



3

a single relation and entity in which case query generation is straightforward.
While those systems are an interesting area of research and may be extensible
to more complex questions, they are unlikely to completely replace QA pipelines
due to the large amount of training data required.

To the best of our knowledge, there is a very limited number of working query
builders in the question answering community which can be used independently
and out of the box. Recent studies [3,2] explored the possibility of using inde-
pendent QA components to form a fully functional QA system. Singh et al. [3]
introduced Frankenstein, a QA framework which can dynamically choose QA
components to create a complete QA pipeline, depending on the features of the
input question. The framework includes two query building components: Sina
and NLIWOD QB. NLIWOD is a simple, template-based QB, which does not
include any kind of query ranking. Given correct inputs, NLIWOD compares the
pattern based on a number of input entity and relation to build the output query.
Sina [9] was originally a monolithic QA system, which did not provide a reusable
query builder. However, Singh et al. [3] decoupled the query building component
to make it reusable. Its approach consists in the generation of minimal sets of
triple patterns containing all resources identified in the question and select the
most probable pattern, minimizing the number of triples and of free variables.
Another approach not far from ours is presented by Abujabal et al. [11]. In par-
ticular, they also rely on ranking methodologies for choosing among candidate
queries. However they rely on question-query templates, previously learned by
distant supervision, which are ranked on several features by a preference func-
tion learned via random forest classification. By contrast, our ranking approach
is based on the similarity between candidate walks in a minimal subgraph and
the question utterance.

3 Approach

We formally describe knowledge graphs and the query generation problem as a
subproblem for question answering over knowledge graphs. Within the scope of
this paper, we define a knowledge graph as a labelled directed multi-graph: a
tuple K = (E,R, T ) where E is a set called entities, R is a set of relation labels
and T ⊆ V ×R× V is a set of ordered triples. The definition captures the basic
structure of, e.g., RDF datasets and property graphs.

We define query generation as follows: We assume that a question string s
and a knowledge graph K are given. In previous steps of the QA pipeline, entity
and relation linking have already been performed, i.e. we have a set of mappings
M from substrings (utterances) of s to elements of E and R, respectively. The
task of query generation is to use s, D and M to generate a SPARQL query.

This definition completely decouples the query generation task from the NED
and RE tasks. However, in a realistic setting, the NED and RE modules produce
a list of candidates per utterance in the question. As a result, we relax the
constraint on the utterance annotation to have a list of candidates per each
utterance. Formally, we define the task of advanced query generation based on



4

the definition of query generation, where each substring of s is mapped to a non-
empty subset of E or R respectively, i.e. there are several candidates for entities
and relations. For instance, Figure 1 illustrates that for the question ”What are
some artists on the show whose opening theme is Send It On?”, the annotation
for the ”artists” might be dbo:Artist or dbo:artists and so on. In Section 4.2,
we show that considering multiple candidates leads to a better performance, in
comparison to the case where only the top candidate is considered by the query
generator.

What are some artists on the show whose opening theme is Send It On?

dbo:Artist

dbo:artists
dbo:artist/coCreator

dbo:storyBoardArtists

dbo:show

dbo:show”name

dbo:openingTheme

dbo:openingIn

dbo:reOpening

dbo:openingThemeSong

dbr:Send It On (D’Angelo song)

dbr:Send It On (Disney’s Friends for Change song)

dbr:Bring It On...Bring It On

Fig. 1: A sample question annotated with output from NED and RE components.
There is a list of candidates for each spotted utterance in the question ranked
based on their confidence score.

Our hypothesis is that the formal interpretation of the question is a walk w
in the KG which only contains the target entities E and relations R of the input
question s plus the answer nodes. The definition of a (valid) walk is as follows:

Definition 1 (Walk). A walk in a knowledge graph K = (E,R, T ) is a sequence
of edges along the nodes they connect: W = (e0, r0, e1, r1, e2, . . . , ek−1, rk−1, ek)
with (ei, ri, ei+1) ∈ T for 0 ≤ i ≤ k − 1.

Definition 2 (Valid Walk). A walk W is valid with respect to a set of entities
E′ and relations R′, if and only if it contains all of them, i.e. :

∀e ∈ E′ : e ∈W and ∀r ∈ R′ : r ∈W

A node e with e ∈ W and e 6∈ E′ is unbound. An unbound node is an abstract
node which is used to connect the other nodes in the walk. This node, however,
can be related later to one or a set of specific nodes in the KG.

We carry out the task of capturing the valid walks in two steps: First, we
establish a type for the question (e.g. boolean or count). Depending on the type, a
number of valid walks are extracted from the KG, however, most of them may be
an incorrect mapping of the input question, in the sense that they do not capture



5

the correct intention behind the question. Thus, we sort the candidate walks with
respect to their similarity to the input question. The overall architecture of SQG
is shown in Figure 2 and in the following sections we discuss each step in more
detail.

Type

Classifier

Query

Generation

D. Parse

Tree

Ranking

Model

Question

+Annotations
q
u
e
st

io
n

q
u
e
st

io
n

question

type

tree rep.

of question

candidate
queries

Ordered Queries

Fig. 2: The Architecture of SQG

3.1 Query Generation

In order to find candidate walks in the KG, we need to start from a linked
entity e ∈ E and traverse the KG. Given the size of the existing KGs such as
DBpedia [12] or Freebase [6], however, it is very time-consuming to enumerate all
valid walks. Thus, we restrict to the subgraph consisting of all the linked entities
and relations. In this subgraph, we can then enumerate the candidate walks,
which can be directly mapped to SPARQL queries. Yet, the type of question is a
crucial feature that has to be identified in order to create the candidate queries
with correct structure from the valid walks.

Capture the Subgraph We start with an empty subgraph, which is popu-
lated with the linked entities E as its nodes. Then, we augment the nodes with
edges that correspond to the linked relations R, if such connections exist in the
KG. This is illustrated in Figure 3, if only the solid lines are considered. In this
step, we consider every possible direct way of connecting the entity(s) and the
relation(s) to enrich the subgraph: a relation might connect two existing nodes
in the subgraph, or it may connect an entity to a new unbound node. Thus, this
subgraph might contain several valid walks but the correct one, since the inten-
tion of the question might require to include nodes in the two-hop distance. For
instance, in Figure 3, the answer node (”unbound1”) is in the two-hop distance
from the entity ”dbr:Send it on” and is not included in the current subgraph.
Consequently, we need to expand the subgraph with the set of candidate rela-
tions R. Depending on the question, such expansion might correspond to a very
large portion of the underlying KG, which may not be even useful to create the
final list of candidate walks. Instead of expanding the subgraph, we expand the
existing edges of the subgraph with the set of candidate relations excluding the



6

relation that the existing edge represents. As a result, the search space in the
underlying KG is greatly reduced (see Figure 3, where the dashed lines repre-
sent the edge expansions). Algorithm 1 summarize the process of capturing the
subgraph.

unbound0 unbound1

dbr:TelevisionShow

dbr:Send It On

dbr:Bring It On...Bring It On

dbr:Send It On (D’Angelo song)

dbo : coCreator

dbo : artist

dbo : artists

dbo : openingTheme

dbo : show′′name

dbo : artists

dbo : openingTheme

dbo : artist

dbo : show

rdf : typerdf : type

dbo : openingTheme

dbo : artist

dbo : artist

dbo : artist

Fig. 3: The captured subgraph for the given question, annotated with candi-
date entities and relations; solid lines are the one that are in one hop distance;
dashed line means more than one hop distance; circles represent unbound nodes,
rectangles are the linked entities and edges are the relations in the KG.

Enumerate Candidate walks At this point, we have a subgraph that covers
all the entities and the relations in the question. We consider every unbound
node as a potential answer node, therefore we look for valid walks according to
Definition 2. For our example, Figure 4 reveals four valid walks. In case there is
only one valid walk in the subgraph, we map the walk to a SPARQL query and
report it as the corresponding query for the given question. Note that further
augmentations might be required to support different types of questions, such
as those requiring counts or returning boolean values. If there is more than one
valid walk, then ranking (as described below) needs to be performed in order to
find the most similar query to the input question.

unbound0 unbound1

dbr:TelevisionShow

dbr:Send It On

dbo : artist

dbo : openingTheme

dbo : artist rdf : type

rdf : type

rdf : type

rdf : type

dbo : openingTheme

dbo : openingTheme

dbo : openingTheme

dbo : artist
dbo : artist

Fig. 4: Four candidate walks are found which are shown in different colors



7

Data: E′, R′,K
Result: G: Minimal covering subgraph
Initialize G as an empty graph;
Add ∀e ∈ E′ to G as nodes;
foreach e ∈ E′, r ∈ R′ do

if (e, r, ?) ∈ K then
add (e, r, ?) to G ;

else if (?, r, e) ∈ K then
add (?, r, e) to G ;

end
foreach (e1, r, e2) ∈ G do

foreach r′ ∈ R′, r′ 6= r do
if (e2, r

′, ?) ∈ K then
add (e2, r

′, ?) to G ;
else if (?, r′, e2) ∈ K then

add (?, r′, e2) to G ;
else if (e1, r

′, ?) ∈ K then
add (e1, r

′, ?) to G ;
else if (?, r′, e1) ∈ K then

add (?, r′, e1) to G ;

end

end
Algorithm 1: Capture the subgraph

Question Type classification SQG supports simple and compound questions.
In order to support questions such as boolean and count questions, we first need
to identify the type of question. In some works, predefined patterns were used for
similar purposes [13,8,14]. However, we train an SVM and Naive Bayes model
to classify the questions into boolean, count or list questions based on their TF-
IDF representation. Although TF-IDF is a simple representation, the results are
shown in Section 4.2 reveal that it is strong enough for the purpose.

Given the class of the question, the query generator will format the query
accordingly. In the case of a count query, for instance, the query generator adds
the corresponding function to the output variable of the SPARQL query.

3.2 Query Ranking

There might be more than one valid walk, due to the uncertainty in the linked
entities/relations and complexity of the KGs. As a result, we need a way to rank
them with respect to the intention of the input question. Yit et al. [13] proposed
a model based on convolutional neural networks to represent the input questions
and the core-chains in a latent semantic space and compute the cosine similarity.
Although the order of the words is captured to some extent in the model, the
overall structure of the input question and candidate core-chains is not taken
into account. Considering the fact that the walks consist of many shared enti-
ties/relations, our hypothesis for the ranking model is that the structure of the



8

walks is a distinctive feature to distinguish the similarity between the candidate
walks and the input question. For instance, four walks are generated for our
running example, which have distinct structures (see Figure 7). Therefore, the
desired model should be able to incorporate the structure of the input. Tai et
al. [15] presented Tree-LSTM, an enhanced version of the vanilla LSTM, which
considers the tree representation of the input rather than just the sequence of
input tokens. They applied the model to the semantic relatedness of natural
language sentences and sentiment classification. We present a ranking model
based on Tree-LSTM. It considers the tree representation of the candidate walks
with respect to the syntactical structure of the question in order to compute
their similarity. In the following, we shortly introduce LSTM and Tree-LSTM,
subsequently we discuss the final model to fulfill the task.

Preliminaries As opposed to the vanilla neural networks, where the inputs
at different steps are assumed to be independent, Recurrent Neural Networks
(RNN) have a hidden state ht at each step t, which depends not only on the
current input but also the previous hidden state ht−1. This formulation enables
RNNs to memorize the previous computations for an arbitrarily long sequence of
inputs. In practice, however, it has been pointed out that the memory function-
ality of the RNNs is limited to a few steps back [16]. As a remedy to this issue,
RNNs with Long-Short Term Memory (LSTM) units were introduced [17]. They
are empowered by a memory cell which is able to keep the state for a longer
period of time.

Tree-LSTM RNNs and LSTMs consume the input in a sequential manner. How-
ever, when the structure of the input is not simply sequential, special treatment
is required. Tai et al. altered the architecture of LSTM to support tree-structured
input [15]. Tree-LSTMs aim to incorporate information that rests in the child
nodes, whilst LSTM support only sequential propagation. Tree-LSTM units take
into account the state of its child nodes to compute its internal state and the
output. This architecture enables Tree-LSTMs to easily incorporate the tree
structure of our input.

Question
Tree-LSTM

Query
Tree-LSTM

Similarity
Function

Question

Candidate walks

Latent repr. of question

Latent repr. of query

Sim. Score

Fig. 5: Ranking Model Architecture

Ranking Model Figure 5 shows the architecture of the ranking model, in which
two Tree-LSTMs are used to map the input walks and question into a latent



9

vectorized representation. We will later apply a similarity function to rank the
candidate queries based on the similarity score. In the preparation phase for the
input question to the Question Tree-LSTM, we substitute the surface mentions of
the entities in the question with a placeholder After that, the dependency parse
tree is created (see Figure 6). Furthermore, the Query Tree-LSTM receives the
tree representation of the candidate walks. Figure 7 depicts the candidate walks
of the running example. While all of the candidate walks are valid, only 7a
provides the correct interpretation of the input question.

What

are
cop

artist

some
det

on

show

the
det

#ent

theme

whose

poss
opening

amod

nsubj
is

cop

rcmod

pobj

prep

nsubj

Fig. 6: Dependency parse tree of question: ”What are some artists on the show
whose opening theme is Send It On?”

artist

openingTheme

type

unbound0 TelevisionShow

Send It On

unbound1

(a) What are some artists on the show whose
opening theme is Send It On?

artist

Send It On openingTheme

type

unbound1 TelevisionShow

unbound0

(b) What TV shows with Send It On as their
opening theme are the artists of Send it On?

artist

unbound1 openingTheme

type

unbound0 TelevisionShow

Send It On

(c) TV shows with Send It On as their open-
ing theme are the artists of what?

artist

Send It On openingTheme

type

unbound0 TelevisionShow

Send It On

(d) Which TV shows has a opening them
which is among the artists of Send it On?

Fig. 7: Tree representation of the candidate walks along with their NL meaning,
using the same colors as Figure 4



10

4 Empirical Study

In this section, we discuss the benchmark dataset and compare the result of SQG
with two baseline systems. We further provide an extensive analysis of SQG on
its different sub-modules such as an evaluation of question type classification,
query generation, and ranking model.

SQG is implemented using Python/pytorch. Additionally, we use Glove word
embedding [18] as the word representation in the ranking model. The code of
SQG is published on our GitHub page https://github.com/AskNowQA/query_

generation.

4.1 Datasets

We use the LC-QuAD [19] dataset in our experiments. The dataset consists of
5,000 question-answer pairs that cover different complexity and types of ques-
tions, such as simple and compound, boolean and count. Each pair is also anno-
tated with the corresponding SPARQL query, target entities, and relations. The
annotations are compatible with DBpedia [5] (version 2016-04).

4.2 Performance Evaluation

We measure the performance of SQG in terms of precision, recall and F1-measure
on a subset of LC-QuAD containing 3,200 questions and it is the same subset as
in Singh et al. [3] which reported the performance of Sina QB and NLIWOD QB
using the same metrics. Table 1 demonstrates that SQG significantly outperforms
the baseline systems.

Table 1: The comparison of SQG with existing works

Approach Precision Recall F1-measure

Sina* 0.23 0.25 0.24
NLIWOD* 0.48 0.49 0.48
SQG 0.76 0.74 0.75

* Result of the baseline systems are taken from [3]

There are three shortcomings in the baseline systems. First, they require the
correct entity/relation as input as NLIWOD does not support multiple candi-
dates and Sina fails when there are more than three candidates. Second, the
query augmentation ability is limited in both systems, and third, they lack a
ranking mechanism, which is required to reorder the list of candidate queries
with respect to the input question. We have addressed these problems in our
proposed approach and, in the next section, we first evaluate the question type

https://github.com/AskNowQA/query_generation
https://github.com/AskNowQA/query_generation


11

classification in SQG. Afterwards, we define different scenarios, in which the in-
put of the query generator varies from only target entity/relations to the list
of candidates per utterance. Finally, we examine the performance of our Tree-
LSTM as the ranking mechanism.

Question Type Classification First, we assess the accuracy of two different
classifiers. Note that the results are independent of the entity/relation linking
module, as they take no additional input from it. We perform a 10-fold cross
validation on 50% of the dataset to train the model and find the optimal param-
eter values. We then evaluate the classifiers using the optimal parameter values
on the test set. The performance results of both classifiers, in terms of precision,
recall and F1-measure are shown in Table 2. A large amount of diverse training
data ensures that the models, albeit simple, perform satisfactorily. Avoiding a
manually crafted set of patterns enables SQG to be more applicable in different
settings without further manual intervention.

Table 2: The accuracy of question type classifiers on the LC-QuAD Dataset

Model Precision Recall F1-measure

Naive Bayes 0.92 0.92 0.91
SVM 0.99 0.99 0.99

Query Generator Evaluation In this section, we introduce three scenarios
to evaluate the query generator as well as the ranking model in various settings:

Top-1 correct We supply only the correct target linked entity/relation to pro-
vide an upper-bound estimation of our performance.

Top-5 EARL+correct We consider a more realistic setting where a list of 5-
candidates per entity/relation from EARL [20], a tool for NER and RE, is
provided. In order to evaluate SQG independently of the performance of the
linker system, we insert the correct target linked entity/relation if it does
not already exist on the list. The purpose of this scenario is to assess the
robustness of SQG when the input annotations include several incorrect links
as well as the correct ones.

Top-5 EARL We use the output of EARL [20] to evaluate the QG component
in a fully functional QA system.

The evaluation results of query generation for all three scenarios are summa-
rized in Table 3.

In Top-1 correct, the query generator failed once to generate any candidate
query, while in six other cases none of the candidate query(s) returns the desired
answer. Note that, in this scenario, the ratio of generated queries per question
is close to one, because only the true target entities/relations were given to the
query generator. Consequently, the number of valid walks is very low.



12

In the second row of Table 3, which corresponds to Top-5 EARL+correct, we
observe that the query generator is able to process the noisy inputs and cover
98% of the questions. Furthermore, the average number of generated query per
question has increased to 2.25. In the next section, we study how this increase
in the average number of generated query affects the ranking model.

The performance in Top-5 EARL has dropped dramatically in comparison
to the first two scenarios. The main reason is that for 85% of the questions,
EARL provided partially correct annotations, which means that either there are
utterance(s) in the question which are annotated with an incorrect set of en-
tities/relations, or there are utterance(s) in the question which should not be
annotated, while EARL incorrectly annotates them with a set of entities/rela-
tions.

However, if we consider only the questions where EARL manages to include
all the correct target links to SQG, the coverage is again 98%, which is consistent
with the result of the artificial injection experiment from Top-5 EARL+correct.

Table 3: Evaluation metrics of Query Generator

Scenario Incorrect(%) No walk (%) Covered (%) Avg. #query

Top-1 correct 0.01 0.0 0.99 1.18
Top-5 EARL+correct 0.02 0.0 0.98 2.25
Top-5 EARL 0.12 0.72 0.16 3.28

Ranking Model Evaluation Before we analyze the ranking model, we exam-
ine the dataset that is prepared for it. We employ the Stanford Parser [21] to
generate the dependency parse tree of the input questions and the generated
candidate queries from the output of the query generator to create the dataset
for the ranking model. We split the dataset into 70%/20%/10% for the train set,
development set, and test set, respectively. Table 4 provides some insights on
the dataset, on which the ranking model is evaluated.

In the Top-1 correct scenario, the number of generated queries per question
is 1.18, because there are not many possible ways to connect the linked enti-
ty/relations. Moreover, the first row of Table 4 demonstrates that the number
of incorrect items in the dataset is not proportional to the number of correct
items. As a result, the ranking model is given an unbalanced dataset, since the
dataset mostly contains positive examples. In Top-5 EARL+correct, the number
of generated queries is higher, which leads to not only more training data for
the ranking model but also more diverse data such that we would not face the
same problem as in the previous scenario. The second row of Table 4 shows that
the distribution of incorrect and correct data is almost equal, which leads to
an increase in the performance of the ranking model, as it provides the model
enough data on both classes to learn the set of parameters that perform well. In
Top-5 EARL, the distribution of correct and incorrect instances in the datasets
is not balanced, though the average number of generated queries is higher than



13

in the other scenarios. Note that in this scenario, the total number of generated
queries is far lower than in the other scenarios, because the 72% of cases no walk
is generated. The peak in the number of incorrect instances is caused by wrong
annotations, which were provided by the NED and RE component.

Table 4: The distribution of incorrect and correct data per scenario

Scenario Size Train Dev Test
Correct Incorrect Correct Incorrect Correct Incorrect

Top-1 correct 5,930 0.85 0.15 0.84 0.16 0.87 0.13
Top-5 EARL+correct 11,257 0.46 0.54 0.46 0.53 0.48 0.52
Top-5 EARL 4,519 0.20 0.80 0.19 0.81 0.22 0.78

We have used two similarity functions in the ranking model: Cosine similarity
and a neural network-based function analogous the approach presented in [15].
The neural network computes the distance and the angle between the two latent
representations of the query. However, the neural network-based approach had
superior performance compared to the cosine similarity function. Thus, in the
following, we provide the result of the ranking model using the neural network
as the similarity function. Note that for every scenario, the parameters of the
similarity network was tuned on the development set.

In the Top-1 correct, despite the unbalanced distribution of the dataset, the
ranking model achieves an F1 measure of 74%. This, however, does not accurately
reflect the performance results for the ranking model as the average number of
generated queries in this scenario is 1.18, which means that mostly there is only
one candidate query per question.

As the second row of the Table 5 reveals, the F1-measure increases from
75% in Top-1 correct to 84% in Top-5 EARL+correct. In contrast to the Top-
1 correct, the average number of generated queries in Top-5 EARL+correct is
almost double to 2.25 and the distribution of correct/incorrect example is almost
balanced. This results show that the model performs better in comparison to
Top-1 correct when it is given a bigger and balanced dataset.

A micro F1-measure of 74% was achieved the Top-5 EARL. Further analysis
reveals that there are two main factors for the drop in the performance: first,
the input dataset is highly unbalanced towards incorrect instances; Additionally,
the size of the is considerably smaller than the one in Top-5 EARL+correct.

5 Conclusions and future works

We discussed the challenges of query generation in QA systems and introduced
SQG, a two-step SPARQL query generator as a reusable component that can be
easily integrated into QA pipelines. In the first step, a set of candidate queries are
generated, which is followed by a ranking step that arranges the candidate queries
based on their structural similarity with respect to the dependency parse tree of
the input question. We provide a detailed analysis of the effect of different factors



14

Table 5: Micro accuracy of the ranking model using the top ranked item

Scenario Precision (%) Recall (%) F1 (%)

Top-1 correct 0.77 0.74 0.75
Top-5 EARL+correct 0.84 0.84 0.84
Top-5 EARL 0.73 0.75 0.74

on the performance of QG component such as question type detection, noisy
input and ranking the candidate queries. In our experiments, SQG outperformed
current query generation approaches.

In future work, we plan to add support for more question types, which re-
quires union, sorting, comparison or other aggregation functions such as min and
max. Also, we will investigate the accuracy of SQG on other QA datasets that
might shed light on unseen weaknesses.

Acknowledgments

This research was supported in part by an EU H2020 grant provided for the
HOBBIT project (GA no. 688227) as well as by German Federal Ministry of Ed-
ucation and Research (BMBF) funding for the project SOLIDE (no. 13N14456).

We would also like to thank our colleagues Kuldeep Singh and Mohnish
Dubey for providing us additional data and their helpful and inspiring comments.

References

1. D. Diefenbach, V. Lopez, K. Singh, and P. Maret, “Core techniques of question
answering systems over knowledge bases: a survey,” Knowledge and Information
systems, pp. 1–41, 2017.

2. J.-D. Kim, C. Unger, A.-C. N. Ngomo, A. Freitas, Y.-g. Hahm, J. Kim, S. Nam,
G.-H. Choi, J.-u. Kim, R. Usbeck, et al., “Okbqa framework for collaboration on
developing natural language question answering systems,” 2017.

3. K. Singh, A. S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck,
A. Vyas, A. Khikmatullaev, D. Punjani, C. Lange, M. E. Vidal, J. Lehmann, and
S. Auer, “Why reinvent the wheel–lets build question answering systems together,”
in The Web Conference (WWW 2018), to appear, 2018.

4. K. Höffner, S. Walter, E. Marx, R. Usbeck, J. Lehmann, and A.-C. Ngonga Ngomo,
“Survey on challenges of question answering in the semantic web,” Semantic Web,
vol. 8, no. 6, pp. 895–920, 2017.

5. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives, “Dbpedia:
A nucleus for a web of open data,” The semantic web, pp. 722–735, 2007.

6. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a collab-
oratively created graph database for structuring human knowledge,” in Proceed-
ings of the 2008 ACM SIGMOD international conference on Management of data,
pp. 1247–1250, AcM, 2008.



15

7. S. He, Y. Zhang, K. Liu, and J. Zhao, “Casia@ v2: A mln-based question answering
system over linked data.,” 2014.

8. M. Dubey, S. Dasgupta, A. Sharma, K. Höffner, and J. Lehmann, “Asknow: A
framework for natural language query formalization in sparql,” in International
Semantic Web Conference, pp. 300–316, Springer, 2016.

9. S. Shekarpour, E. Marx, A.-C. N. Ngomo, and S. Auer, “Sina: Semantic interpre-
tation of user queries for question answering on interlinked data,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 30, pp. 39–51, 2015.

10. D. Lukovnikov, A. Fischer, J. Lehmann, and S. Auer, “Neural network-based ques-
tion answering over knowledge graphs on word and character level,” in Proceedings
of the 26th International Conference on World Wide Web, pp. 1211–1220, Inter-
national World Wide Web Conferences Steering Committee, 2017.

11. A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum, “Automated template
generation for question answering over knowledge graphs,” in Proceedings of the
26th International Conference on World Wide Web, pp. 1191–1200, International
World Wide Web Conferences Steering Committee, 2017.

12. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hell-
mann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer, “DBpedia - a large-scale,
multilingual knowledge base extracted from wikipedia,” Semantic Web Journal,
vol. 6, no. 2, pp. 167–195, 2015.

13. S. W.-t. Yih, M.-W. Chang, X. He, and J. Gao, “Semantic parsing via staged query
graph generation: Question answering with knowledge base,” 2015.

14. V. Lopez, M. Fernández, E. Motta, and N. Stieler, “Poweraqua: Supporting users
in querying and exploring the semantic web,” Semantic Web, vol. 3, no. 3, pp. 249–
265, 2012.

15. K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from
tree-structured long short-term memory networks,” in ACL 2015, July 26-31, 2015,
Beijing, China, Volume 1: Long Papers, pp. 1556–1566, 2015.

16. Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

17. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

18. J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word repre-
sentation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 1532–1543, 2014.

19. P. Trivedi and M. Dubey, “A corpus for complex question answering over knowledge
graphs,” in 16th International Semantic Web Conference, 2017.

20. M. Dubey, D. Banerjee, D. Chaudhuri, and J. Lehmann, “Earl: Joint entity and
relation linking for question answering over knowledge graphs,”

21. D. Chen and C. Manning, “A fast and accurate dependency parser using neural
networks,” in Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pp. 740–750, 2014.


	Formal Query Generation for Question Answering over Knowledge Bases

