
Divided we stand out!
Forging Cohorts fOr Numeric Outlier Detection

in large scale knowledge graphs (CONOD)

Hajira Jabeen1, Rajjat Dadwal2, Gezim Sejdiu1, and Jens Lehmann1,2

1 University of Bonn, Germany lastname@cs.uni-bonn.de

https://www.uni-bonn.de/
2 Fraunhofer IAIS, Germany - {firstname.lastname}@iais.fraunhofer.de

Abstract. With the recent advances in data integration and the con-
cept of data lakes, massive pools of heterogeneous data are being curated
as Knowledge Graphs (KGs). In addition to data collection, it is of ut-
most importance to gain meaningful insights from this composite data.
However, given the graph-like representation, the multimodal nature,
and large size of data, most of the traditional analytic approaches are no
longer directly applicable. The traditional approaches could collect all
values of a particular attribute, e.g. height, and try to perform anomaly
detection for this attribute. However, it is conceptually inaccurate to
compare one attribute representing different entities, e.g. the height of
buildings against the height of animals. Therefore, there is a strong need
to develop fundamentally new approaches for the outlier detection in
KGs. In this paper, we present a scalable approach, dubbed CONOD,
that can deal with multimodal data and performs adaptive outlier de-
tection against the cohorts of classes they represent, where a cohort is a
set of classes that are similar based on a set of selected properties. We
have tested the scalability of CONOD on KGs of different sizes, assessed
the outliers using different inspection methods and achieved promising
results.

Keywords: Knowledge Graph · Cluster · Outlier · Blocking · Cohort ·
RDF · DBpedia .

1 Introduction

Numeric outlier detection has been of interest for the database and data mining
community for efficient and automatic detection of errors, frauds, and abnormal
patterns. A range of algorithms have been devised for outlier detection of homo-
geneous set of features like in traditional Databases or tabular data. However,
with the current influx of large-scale heterogeneous data in the form of knowl-
edge graphs (KGs), most of the traditional algorithms are no longer directly
(out-of-box) applicable and there is a strong need to develop fundamentally new
approaches to deal with the volume and variety of large-scale KGs.

A KG defines classes and relations among these classes in a schema, allows
linking of arbitrary entities (instances of classes) with defined relationships and

https://www.uni-bonn.de/

2 H. Jabeen et al.

covers a variety of domains. A multitude of approaches are being used to pop-
ulate and curate KGs. These range from crowdsourcing (DBpedia), application
of natural language processing techniques (NELL) to automatic extraction of
knowledge (YAGO, DBpedia). The liberal nature of these curation methods –
the knowledge being entered is neither restricted nor cross-validated – makes
them prone to various kinds of errors that can get camouflaged in different di-
mensions. These errors can be extraction errors like parsing errors, e.g. ”3-4”
can be interpreted as ”3”, and ”-4” , representation errors and conversion er-
rors, e.g. the units of measurements cm, inches, feet are mixed, or data entry
errors.

Numeric data can be associated with entities belonging to numerous classes
and one property can be associated with several different types, e.g. the property
“height” can be associated to a building, an animal, or a person. It is of utmost
importance to treat a particular property in correspondence with the type of
entities it represents when performing outlier detection. In this paper, we have
focused on outlier detection on numeric literals within a KG.

Anomaly or outlier detection is mostly regarded as an unsupervised learning
task dealing with identifying unlikely and rare events. Outliers are usually the
extreme values that deviate from the remaining observations. It is challenging
to devise a scalable yet generic method that can detect outliers across different
dimensions automatically without manual intervention. In this paper, we have
targeted the above challenges of detection of outliers in multimodal and multi-
variate data with different distributions coming from disparate sources curated
as a large KG. We propose an unsupervised numeric outlier detection method
that is generic and yet scales to large KGs. Our approach ‘Forging Cohorts
for Numeric Outlier Detection in large scale KGs (CONOD)’ proceeds in two
stages. In the first stage, the data is linearly cohorted using the type informa-
tion of the entities. In the second stage, the outlier detection is performed on
common numerical literal properties within each cohort. The major contribu-
tions of CONOD are 1) Scalability, 2) Generic-ness 3) Linear time cohorting, 4)
Applicability to multimodal data. We have tested the scalability of CONOD on
DBpedia and its scaled-out versions. To the best of our knowledge, CONOD is
the first open source, generic method for unsupervised numeric outlier detection
on KGs.

The rest of the paper is structured as follows: Section 2 discusses the prelim-
inaries, Section 3 reviews the related work and identifies the existing research
gaps, followed by the proposed approach, Experiments and evaluation, and Con-
clusions and future work in Sections 4, 5, and 6 respectively.

2 Preliminaries

2.1 Semantic web and DBpedia

The rationale behind the semantic web is to represent information by providing
machine and human understandable descriptions of real world things (resources).

Cohorts for numeric outlier detection in large scale knowledge graphs 3

The Resource Description Framework (RDF) is a W3C standard model for repre-
senting semantic relationships between data items. The RDF data is represented
as a set of triples containing a subject, a predicate, and an object. Subjects are
the resources represented by unique URIs, objects can either be a resource or
a literal. The predicate is the relationship between the subject and the object.
The membership of a resource to its classes is defined by the rdf:type property
and each resource can belong to many classes.

DBpedia [7] is a community effort to extract structured information from
Wikipedia and to make this information available on the Web in the form of
linked data3. DBpedia released its first dataset in 2007 by the developers of Uni-
versity of Mannheim and University of Leipzig. Wikipedia consists of information
like images, numerical attributes, e.g. population or height, links to external web
pages and structural information. In its current version, DBpedia contains in-
formation about 4.58 million things, including 1,445,000 persons, 735,000 places
(including 478,000 populated places), 87,000 movies among many others.

2.2 Anomaly detection

Outlier or anomaly detection is a technique for ”finding patterns in data that
do not conform to the expected normal behavior” [1]. A broad range of outlier
detection methods have been proposed in the literature and they can be roughly
categorized as being based on nearest neighbors, clusters, or metrics like density,
distance, depth, and statistics for outlier detection. In this work, the focus is
to apply a simple outlier detection method for univariate numerical outliers.
Therefore, we discuss a few prominent, univariate, statistical methods for outlier
detection.

Grubbs’ method The Grubbs’ method [5] also known as the maximum
normed residual test is used to detect a single outlier in a univariate data set
that follows an approximately normal distribution. The Grubbs’ test is defined

as: G = max |Yi−Ȳ |
s , with Ȳ and s denoting the sample mean and standard de-

viation, respectively. The Grubbs’ test statistic is the largest absolute deviation
from the sample mean in units of the sample standard deviation. The Grubbs’
procedure tests the hypothesis whether the value that is the furthest from the
uniform sample mean is an outlier. Therefore, it is not suited for data that is
non uniformly distributed or contains blocks of outliers.

Inter Quartile Range The Inter Quartile Range IQR method [10] is the
amount of spread in the middle 50% of a dataset. It is the distance between the
first quartile Q1, Median M(or Q2) and third quartile Q3 of the given numerical
dataset. Quartiles divide a rank-ordered data set into four equal parts. The values
that separate parts are called the first, second, and third quartiles; and they are
denoted by Q1, Q2, and Q3, respectively.
Q1 is the median of all the values smaller than the median M whereas the Q3 is
the median of all the values higher than the median M . IQR is the measure of
variability defined by the difference between Q3 and Q1. The data points which

3 https://en.wikipedia.org/wiki/DBpedia

https://en.wikipedia.org/wiki/DBpedia

4 H. Jabeen et al.

are smaller than Q1−1.5∗ IQR and greater than Q3 + 1.5∗ IQR are considered
as outliers. The constant value 1.5 depends upon the distribution of the data
and can be adjusted accordingly.

Median Absolute Deviation Median Absolute Deviation (MAD) [9] mea-
sures the variability of a univariate sample of quantitative data in statistics. It
is more resilient to outliers in a data set than the standard deviation method.
MAD is defined as the median of the absolute deviations from the data’s median
for univariate data. The median absolute deviation is defined as :
MAD = b ∗median (|Xi − median(X)|)
Outlier detection using MAD can be performed by calculating A = Median +
2.5 ∗MAD, and B = Median− 2.5 ∗MAD. Any value in the input set X which
is greater than A and less than B is considered an outlier.

Leys et. al. [9] have surveyed different methods of outlier detection. They
argue that the ’mean’ of any data have zero breakdown point(One infinite value
in data shifts the mean to infinite) that makes it unsuitable for the calculation
of outliers. Whereas Median breakdown value is about 50%, meaning that the
median can resist up to 50% of outliers. MAD also has the same breaking point,
whereas IQR has a breakdown point of 25%. Based on the resilience, we have
chosen MAD and IQR to find the outliers in RDF data.

2.3 Apache spark for big data processing

Apache Spark is a scalable, in-memory, general-purpose cluster computing frame-
work with APIs available in Java, Python, and Scala4. Apache Spark, consoli-
dated under one stack, consists of several independent special purpose libraries.

1. Spark Core includes basic functionalities of spark like task scheduling,
memory management, fault recovery and interaction with the storage system.
It is also home to the Resilient Distributed Dataset(RDD) API.

2. Spark SQL is the component of the Spark stack that deals with structured
data by providing the DataFrames API. The basic SQL operations can be
performed on DataFrames.

3. The Cluster Manager is designed for distributed computing where par-
allel operations run on various computer nodes. Spark can use its inbuilt
standalone scheduler or can use other cluster managers like Apache Mesos
or Hadoop yarn.

Resilient Distributed Dataset (RDD) RDD [15] is an immutable and
distributed scala collection. In Spark, everything is expressed as RDD. An RDD
can be created by:

1. Loading an external dataset in Spark,
2. Parallelizing an existing collection of objects,
3. Manipulating existing RDDs.

Two types of operations can be performed on RDDs:

4 https://spark.apache.org/docs/latest/

https://spark.apache.org/docs/latest/

Cohorts for numeric outlier detection in large scale knowledge graphs 5

1. Transformation: Return another RDD after applying a function on existing
RDDs This is done via a lazy execution, i.e. the result is not immediately
computed.

2. Action: Compute a result based on an RDD and either return or save it to
an external storage system. Here, the computation is eager, i.e. the result is
immediately computed.

The lazy evaluation of Spark helps in achieving fault tolerance and optimizing
performance. Spark creates a lineage graph for all transformations and executes
it optimally when an action is triggered. This lineage graph is used to recover
lost computing information upon a node failure. Spark offers a range of inbuilt
functions for RDD operations executing in parallel with little to no programming
overhead.

3 Related work

The literature on outlier detection in KGs is relatively scarce because KGs had
mainly been considered for data consolidation or curation and their potential
for analytics has gained momentum in the recent years only. Below, we discuss
a few existing outlier detection methods for KGs.

Weinand et al. [14] presented an experimental approach for the detection of
numeric outliers from DBpedia. The authors argued that the traditional outlier
detection approaches are limited by the existence of natural outliers. Therefore,
they group similar objects together and then apply outlier detection exclusively
on these grouped objects to overcome this problem. The grouping incurs high
complexity as it uses the type information, which is not always present or is
either too generic (e.g. owl:Thing as only type) or is inaccurate. Due to being
computationally expensive, the proposed method was tested on only part of
DBpedia using the SPARQL endpoint for three numerical properties (DBpedia-
owl:populationTotal, DBpedia-owl:height, and DBpedia-owl:elevation). Addition-
ally, the authors have compared different outlier detection techniques, i.e., Inter
Quartile Range (IQR), Kernel Density Estimators (KDE) [12] and dispersion es-
timators and reported that the IQR performs better than other methods tested.
In a similar approach [13] Paulheim used hot encoding for type vectors of en-
tities and clustered them into groups before performing anomaly detection on
numerical features for identification of wrong links in the data.

Fleischhacker et al. [4] presented an outlier detection method that crosschecks
the results of outliers by exploiting the “sameAs” properties in the knowledge
base and also makes an effort towards differentiating between natural outliers
and actual outliers in the data. The outlier detection method is carried out by
dataset inspection through specialized SPARQL queries against the knowledge
base. In the first step the authors select the interesting properties for outlier
detection. In the second step, the subpopulation is sought by using specialized
operators for developing a set of constraints (top-down ILP algorithms for dis-
covery of datalog rules) against classes, properties, and property values. This
exploration is organized as a lattice where the root node consists of a property

6 H. Jabeen et al.

and the corresponding number of instances. After the lattice has been deter-
mined, the next step is to find the outliers on all unpruned nodes of the lattice.
The results of the outlier score are stored as a set of constraints which returns
the corresponding instance set. The classification of outliers into natural or real
is done with the help of data interlinking property by comparing with differ-
ent datasets. This procedure helps in better handling natural outliers and thus
reducing the false positive rate. However, building the lattice for the subpopu-
lation discovery requires substantial memory and computation [11]. In addition,
the method requires manual querying of data in order to extract the required
information. Therefore, the method is unsuitable for very large scale knowledge
bases.

Debattista et al. [3] have presented a preliminary approach for distance-based
outlier detection for linked data quality improvement. They detect incorrect RDF
statements by applying a distance-based clustering method for pointing out the
outliers in linked data.

In summary, the outlier detection methods discussed above have the limita-
tions of:
a) Accessing the data through a SPARQL endpoint(slow, unreliable),
b) Using Clustering(mostly with quadratic complexity),
c) Using Sub-latex search(complex),
and therefore are not scalable to large-scale knowledge graphs, which is the main
contribution of this work.

4 Approach

In this section, we detail CONOD, a scalable and generic algorithm for numeric
outlier detection in KGs. In order to deal with the multimodality of the data,

Fig. 1: CONOD execution pipeline

we have used a cohort-based approach. A cohort can be defined as the set of
classes that share some similarities based on their selected features. CONOD
can be divided into following steps 1) data cleaning, 2) cohort creation, 3) prop-
erty selection, 4) outlier detection(IQR) and 5) output, as shown in Figure 1.
Algorithm 1 describes the working of CONOD that takes RDF triples as input,
creates RDD, applies a series of transformations and actions, and returns a list
of outliers as output.

Cohorts for numeric outlier detection in large scale knowledge graphs 7

Algorithm 1: CONOD

Result: Outliers list
input : RDF : an RDF dataset

1 RDD mainDataset = RDF.toRDD < Triple > ()
2 mainDataset.cache()
3 Numerics← filter(mainDataset)
4 Subjects← filter(mainDataset)
5 FilteredData← Numerics ∪ Subjects
6 PairedRDD ← FilteredData.GroupBy(Subjects)
7 V ectorizedData← V ectorize(PairedRDD)
8 Hashes← LSHASH(V ectorizedData)
9 Cohorts← similarityByJoin(Hashes,Hashes, threshold)

10 Properties← Cohorts.getPProperties()
11 Outliers← IQROutlier(Properties)

4.1 Data cleaning and filtering

KGs are created by collecting data from different sources represented in the form
of triples. These triples can contain relationships of numerous types. As we are
interested in numerical values for the outlier detection, we use a data filtering
step to extract the data of interest. Here, we also assume that the data contains
a schema and has the information about the rdf:type for most of the resources
and is possibly enriched with Linked data Hypernyms [6].

The Linked Hypernyms Dataset (LHD) provides types in DBpedia names-
pace. These types are extracted from the first sentences of Wikipedia articles
from different languages using Hearst pattern matching over part-of-speech anno-
tated text and disambiguated to DBpedia concepts. The cleaning step selects the
triples with objects having literals of type “xsd:integer, xsd:nonNegativeInteger
and xsd:double”. At a later stage, for cohorting, we use the information about
type and LHD of the subjects of filtered triples. Therefore, we also filter the type
information at this stage. This filtering is done in step 1-5 of Algorithm 1.

4.2 Creation of cohorts

In this step, the filtered data is used for creation of cohorts by using Locality
Sensitive Hashing(LSH) [2]. LSH is an important class of hashing techniques.
LSH uses a family of functions (“LSH families”) to hash data points into buckets,
so that the data points which are close to each other are in the same buckets
with high probability, while data points that are far away from each other are
likely in different buckets. As discussed in the previous sections most of the
outlier detection methods use some sort of clustering to find the outliers in the
data which are quadratic in nature. The proposed LSH based cohorting achieves
scalable performance using linear complexity. The process of cohorting can be
described as:

8 H. Jabeen et al.

1. Select the type information and LHD types of each subject and represent
them as a key-value pair, with subject as the key and type-and-LHD infor-
mation as the values.

2. Convert this type information into vectors named featureVectors

3. Create hashes of the featureVectors using LSH hashing.

4. Find similarity between hash-vectors and create cohorts

5. Output cohorts

We have experimented with two different vectorizing models CountVector-
izer and HashingTF. We have used similarity join method for measuring the
similarity among different values. This can be seen in step 6-9 of Algorithm 1.

4.3 Properties in cohorts

Once the cohorts of subjects are created, we group the numerical properties of
these subjects within each cohort and perform outlier detection for each property
in parallel. This is step 10 in Algorithm 1.

4.4 Outlier detection, and Output

Algorithm 1 uses the IQR method to find outliers from the group of proper-
ties in Step 11. The implementation of IQR is described in Algorithm 2. The
IQR algorithm takes numeric properties as input, prepares a list of numbers
corresponding to each property, applies the IQR method on this list and returns
the list of outliers. The list of outliers is saved in HDFS for analysis purposes,
e.g. classification of outliers, outlier analysis etc.

Algorithm 2: IQROutlier

Result: Outliers list
input : numericProperties: Group of properties from each cohort

1 RDD numericRDD = numericProperties.toRDD < Triple > ()
2 listNumerics← filter(numericRDD)
3 sortedList← sort(listNumerics)
4 Q1 ← firstQuartile(sortedList)
5 Q3 ← thirdQuartile(sortedList)
6 IQR← Q3 −Q1

7 lowerRange← Q1 − 1.5 ∗ IQR
8 upperRange← Q3 + 1.5 ∗ IQR
9 outliersList←

filter(listNumerics < lowerRange or listNumerics > upperRange)

Cohorts for numeric outlier detection in large scale knowledge graphs 9

4.5 Implementation

We have used the distributed in-memory computing framework Apache Spark
to support horizontal scalability. CONOD has been implemented as a module
in SANSA [8], an open source 5 data flow processing engine for performing dis-
tributed computation over large-scale RDF datasets. It provides data distribu-
tion, communication, and fault tolerance for manipulating massive RDF graphs
and applying machine learning algorithms on the data at scale. We have used
the SANSA-RDF layer for the ingestion of RDF data and its representation as
RDDs. The algorithm is provided as an API in the machine learning layer of
SANSA.

5 Experiment and evaluation

We have tested the performance of CONOD on a cluster with 4 servers having
a total of 256 cores, and each server has Xeon Intel CPUs at 2.3GHz, 256GB
of RAM and 400GB of disk space, running Ubuntu 16.04.3 LTS (Xenial) and
connected via a Gigabit Ethernet2 network.

We have used Spark Standalone mode with Spark version 2.2.1 and Scala
with version 2.11.11. Each Spark executor is assigned a memory of 250GB.

Table 1 provides an overview of the results generated by CONOD. Out of
117544372 triples, 22375991 numeric literals were selected for anomaly detection
after the filtering process. These triples belong to 1567 distinct properties. From
these properties only 408 were found to have outliers and the total number of
outliers found in DBpedia are 24015, which is approximately 0.1 % of numeric
literals present in the data.

Table 1: Statistics for DBpedia large file (16.6 GB)

Statistics Value

Distinct Properties 2863
Triples (including duplicates) 117,544,372
Numeric literals after filtering process (including duplicates) 22,375,991
Filtered distinct numerical properties 1,567
The number of properties with outliers 408
Total number of outliers 24,015
– Runtime TV series has total number of outliers 482
– Built-year property of buildings has total number of outliers 86
– PostalCode of area has total number of outliers 176

5 https://github.com/SANSA-Stack

https://github.com/SANSA-Stack

10 H. Jabeen et al.

5.1 Execution time

In this section, we discuss the scalability and runtime performance of CONOD.
The runtime does not include the time for data ingestion from Hadoop file sys-
tem.

Datasets and execution time In order to test the scalability, applicability,
and efficiency of CONOD in terms of execution time, we have tested the approach
on different sizes of DBpedia as shown in table 2.

Dataset Categorization Dataset Size
DBpedia-Small 110 MB

DBpedia-Medium 3.7 GB
DBpedia 16.6 GB

DBpedia *2 32 GB
DBpedia * 4 64 GB
DBpedia * 8 128 GB

Table 2: Dataset Description

The execution times of CONOD on different datasets are shown in Figure 2.
We can see the the run time increased with the increase of data. For DBpedia-
Small it took only 2 minutes while for DBpedia * 8, it took approximately 5.9
hours. This can be noted that the time taken by CONOD increases by a factor
of 1.5 when we double the size of data depicting the linear increase in runtime
corresponding to the data size.

Fig. 2: CONOD: Execution time of different datasets

Comparison with other approaches In order to show the scalability and
comparison with traditional methods, we have implemented a Cartesian product
based similarity method for cohorting similar subjects (by using DataFrame’s
crossJoin function in Spark). This has also helped us to evaluate the speedup

Cohorts for numeric outlier detection in large scale knowledge graphs 11

gained with CONOD. Here, we compare the runtime for both approaches, i.e.,
cohorting of classes by using the Cartesian product and CONOD (using two
different vectorizing methods namely, CountVectorizerModel and HashingTF).
In Figure 3, it can be noted that the execution time of the small dataset is almost
equal for all the three methods because the small dataset does not require more
resources like memory or execution cores.

For the medium-DBpedia, the DataFrame crossJoin function takes less time
compared to other approaches. The other two approaches take more time due to
approximate similarity join function that calculates the approximate similarity
for finding the similar items in our algorithm and also the process of computing
the vector from strings and creation of vocabulary for the vectorizing is no-
ticeable for the medium sized data. Due to this reason, the execution time of
HahingTF and CountVectorizerModel model is more as compared to crossJoin
on medium datasets However, on DBpedia dataset, The DataFrame crossJoin
approach fails on the cluster being tested due to its O(n2) complexity and we
have represented this with three dots in figure 3. The CountVectorizerModel ap-
proach takes more time than the HashingTF on the large dataset as it scans the
data twice, first time for building the model, and second time for the transforma-
tion. CountVectorizerModel needs extra memory equal to the number of unique
features whereas HashingTF does not require additional space. By examining
the results shown in the figure, it can be inferred that CONOD(HashingTF)
performs better than the other approaches explored in this paper for larger
datasets.

Fig. 3: Execution time comparison of different approaches

5.2 Visualization of outliers

Given a large number of outliers detected against a number of different prop-
erties, it is not straightforward to assess the quality of outliers. Therefore, we
have created two dimensional scatter plots of the numerical values of a few ran-
domly selected properties in order to visualize the outliers and analyze them.

12 H. Jabeen et al.

We have used python matplotlib6 library for creating the graphs. The red color
in the graph corresponds to the outliers, whereas green represents the normal
data values.

Built(year) property of buildings Built property represents the year
when a building is built. Listing 1.1 shows that Foolad Shahr Stadium was built
in 1988.

dbr:Foolad Shahr Stadium dbo:built 1998ˆˆxsd:integer.
dbr:Ivaylo Stadium dbo:built 1958ˆˆxsd:integer.

Listing 1.1: Built property in DBpedia

The Figure 4 shows the scatter plot of built property. The x-axis represents
the years and the y-axis represents the frequency of occurrence of each year.
Since built property signifies the past events, any value greater than the current
year can be considered as a real outlier. e.g. a value in the x-axis shows that
year has value around 0.9 x 1e19 and this is a outlier. The graph also shows
an erroneous value that Metropolitan Life Insurance Company Hall of Records
building was built in the year 9223372036854775807. One can observe in the
zoomed-in graph, that the values near zero are shown as outliers in the plot.

Width property of cars We have plotted the outlier graph for the width
of automobiles in Figure 5. The width property of cars has range xsd:double and
xsd:integer. The Listing 1.2 shows that the automobile named as Toyota Avalon
has width 1997 in DBpedia.

dbr:Jaguar S−Type dbo:width ”2007”ˆˆxsd:integer.
dbr:Toyota Avalon dbo:width ”1997”ˆˆxsd:integer.

Listing 1.2: RDF data of width property of cars present in DBpedia

The value around 2000 in the graph is an outlier because DBpedia extraction
tool has extracted year in place of width.

Fig. 4: Outliers ’Built-year’
Fig. 5: Outliers ’Width of cars’

6 https://matplotlib.org/

https://matplotlib.org/

Cohorts for numeric outlier detection in large scale knowledge graphs 13

The zoomed-in graph in Figure 5 shows that most of the cars have width
range from 0.627 to 3.011 and the values out of this range are outliers.

5.3 Manual inspection of outliers

In the manual inspection of outliers, we have compared the outliers with the
corresponding Wikipedia pages to observe the reason. Given the large size of the
knowledge base and a large number of outliers detected, the manual inspection
of outliers of all the values is not feasible.

dbr:GS&WR Class 201 dbo:builddate 188718951901ˆˆxsd:integer.
dbr:GE UM12C dbo:builddate 19631966ˆˆxsd:integer.

Listing 1.3: Example of real outliers in Dbpedia

Therefore, we randomly sampled some values for inspection. We have found some
unusual patterns in the output as shown in the Listing 1.3 and classified them
as real outliers.

The inspection also enabled us to figure-out the reasons behind these outliers
in DBpedia.

Erroneous information in Wikipedia Given that Wikipedia is being
maintained and updated by the community, and input to the pages is not strictly
validated, Wikipedia is prone to containing erroneous information. This incorrect
information results in the outliers in DBpedia. The correctness of these outliers
is difficult to assess as it needs to be confirmed from the external sources or to
be validated by experts.

DBpedia extraction tool The infobox section of Wikipedia presents a
summary of the key features and is used to improve navigation to other interre-
lated articles. The DBpedia extraction tool sometimes extracts the information
incorrectly from the infobox that leads to the outliers.

dbr:Oldsmobile 88 dbo:wheelbase 1969ˆˆxsd:integer.
dbr:Media, Pennsylvania dbr:postalCode 190631906519091ˆˆxsd:integer.

Listing 1.4: Incorrect values extracted by DBpedia extraction tool

1. Extracting value present at first place from Wikipedia Infobox
While going through outliers, we observed that DBpedia extraction tool
extracts the numeric value present at the starting position place in the in-
fobox. The Listing 1.4 shows that DBpedia extracted the information from
Wikipedia about the car, namely Oldsmobile 887. The actual value of wheel-
base of Oldsmobile 88 is 124 inches whereas DBpedia extracted year 1969
present at the starting position.

2. Concatenation of numbers
Sometimes DBpedia extraction tool removes the hyphens, comma or other
separators between the values and merges them into one number. e.g. The

7 https://en.wikipedia.org/wiki/Oldsmobile_88

https://en.wikipedia.org/wiki/Oldsmobile_88

14 H. Jabeen et al.

maximum length of the postal code is ten digits worldwide 8. However,
in the Listing 1.4, it is shown that Media Pennsylvania has postal code
’190631906519091’ .

3. Problems Interpreting and Converting Units
There are some properties in DBpedia dataset which use different units of
measurement. While converting these values, it can do some incorrect cal-
culation. For example, it has extracted hyphen as a negative sign appended
to the value. e.g. If a TV show duration is 11-12 and 24-26 minutes. The
DBpedia extraction tool extracts values for runtime property in minutes i.e.,
-12 minutes from the infobox of Arthur TV series and the resulting runtime
is (-12*60= -720 seconds).

4. Infobox properties without starting year
Some events on Wikipedia have no starting date, and the value for those
events is empty and is written like “- 1998” DBpedia extracts this value as
a negative year.

5. Removing characters from alphanumeric value 9

In some observations DBpedia extraction tool removes the letters from al-
phanumeric values e.g. idoxifene with property unii has value 456UXE9867,
and in DBpedia, it is stored as 456 only. Also IUPAC name is alphanumeric,
but DBpedia extracted it as -88.

6 Conclusions and future work

In this paper, we have presented CONOD a simple, generic and scalable method
to discover numeric outliers from KGs. CONOD is the first open source and dis-
tributed outlier detection algorithm for knowledge graphs. It makes use of Local
similarity hashing to achieve faster cohorting. We have analyzed the results of
CONOD for scalability and it has been found scalable up to a dataset of 128GB
size on the available cluster. We have analyzed the resulting outliers both manu-
ally and graphically. The analysis shows the validity of the resulted outliers and
also helped us in pointing out a few limitations of DBpedia extraction frame-
work. CONOD can be extended by addition of more features prior to cohorting
to obtain more meaningful cohorts. We can also choose from a range of different
vectorization methods. An important branch to explore would to include other
data types at literal positions for outlier detection. We can also explore the fact
that the outliers can be present at the subject and predicate position of the
triples by making use of semantic relationships to detect these outlier values.

Acknowledgment

This work was partly supported by the EU Horizon2020 projects WDAqua (GA
no. 642795), Boost4.0 (GA no. 780732) and BigDataOcean (GA no. 732310).

8 https://en.wikipedia.org/wiki/Postal_code
9 https://en.wikipedia.org/wiki/Idoxifene

https://en.wikipedia.org/wiki/Postal_code
https://en.wikipedia.org/wiki/Idoxifene

Cohorts for numeric outlier detection in large scale knowledge graphs 15

References

1. Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

2. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 253–262. ACM,
2004.

3. Jeremy Debattista, Christoph Lange, and Sören Auer. A preliminary investiga-
tion towards improving linked data quality using distance-based outlier detection.
In Joint International Semantic Technology Conference, pages 116–124. Springer,
2016.

4. Daniel Fleischhacker, Heiko Paulheim, Volha Bryl, Johanna Völker, and Chris-
tian Bizer. Detecting errors in numerical linked data using cross-checked outlier
detection. In International Semantic Web Conference, pages 357–372. Springer,
2014.

5. Frank E Grubbs. Procedures for detecting outlying observations in samples. Tech-
nometrics, 11(1):1–21, 1969.

6. Tomáš Kliegr. Linked hypernyms: Enriching dbpedia with targeted hypernym
discovery. Web Semantics: Science, Services and Agents on the World Wide Web,
31:59–69, 2015.

7. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef, Sören
Auer, et al. Dbpedia–a large-scale, multilingual knowledge base extracted from
wikipedia. Semantic Web, 6(2):167–195, 2015.

8. Jens Lehmann, Gezim Sejdiu, Lorenz Bühmann, Patrick Westphal, Claus Stadler,
Ivan Ermilov, Simon Bin, Nilesh Chakraborty, Muhammad Saleem, Axel-
Cyrille Ngonga Ngomo, et al. Distributed semantic analytics using the sansa stack.
In International Semantic Web Conference, pages 147–155. Springer, 2017.

9. Christophe Leys, Christophe Ley, Olivier Klein, Philippe Bernard, and Laurent
Licata. Detecting outliers: Do not use standard deviation around the mean, use
absolute deviation around the median. Journal of Experimental Social Psychology,
49(4):764–766, 2013.

10. Robert McGill, John W Tukey, and Wayne A Larsen. Variations of box plots. The
American Statistician, 32(1):12–16, 1978.

11. André Melo, Martin Theobald, and Johanna Völker. Correlation-based refinement
of rules with numerical attributes. In FLAIRS Conference, 2014.

12. Emanuel Parzen. On estimation of a probability density function and mode. The
annals of mathematical statistics, 33(3):1065–1076, 1962.

13. Heiko Paulheim. Identifying wrong links between datasets by multi-dimensional
outlier detection. In WoDOOM, pages 27–38, 2014.

14. Dominik Wienand and Heiko Paulheim. Detecting incorrect numerical data in
dbpedia. In European Semantic Web Conference, pages 504–518. Springer, 2014.

15. Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation, 2012.

	Divided we stand out! Forging Cohorts fOr Numeric Outlier Detection in large scale knowledge graphs (CONOD)

