
JPA Criteria Queries over RDF Data

Claus Stadler1 and Jens Lehmann2

1 Computer Science Institute, University of Leipzig
cstadler@informatik.uni-leipzig.de

2 Computer Science Institute III, University of Bonn & Fraunhofer IAIS
jens.lehmann@cs.uni-bonn.de, jens.lehmann@iais.fraunhofer.de

Abstract. We present the design and implementation of a prototype
system for querying RDF data via the Java Persistence API (JPA) cri-
teria query feature. The JPA is a specification for management of (pri-
marily, but not limited to) relational data. It comprises a set of Java
interfaces, annotations, and the JPA query language (JPQL) and thus
provides a framework for uniform persistence and retrieval of Java ob-
jects using various backends. These interfaces include the Criteria API
for building queries programmatically, allowing queries to be written once
against a Java domain model, and executing them on any supported
backend, which bears the potential of higher productivity in enterprise-
grade software development due to less repetitive – and prone to errors –
code in the data tier. Our contributions comprise (i) a lightweight system
design for enabling JPA compliant object/RDF mappings together with
de-/serialization of object graphs as RDF, (ii) an approach for rewrit-
ing criteria queries to SPARQL graph patterns, and (iii) a prototype
implementation.

Keywords: RDF, SPARQL, JPA, Criteria Query, JPQL, Query Rewriting

1 Introduction

The Java Persistence API (JPA) is a specification (latest version 2.1 from 2013)3

for management of (primarily, but not limited to) relational data. Besides facil-
itating object-relational mapping, it defines the JPA query language (JPQL)
and the criteria API which provide a database-agnostic way for persisting and
querying Java objects. However, so far there is a lack of support for RDF back-
ends. As a motivating example, consider Listing 1 which shows one of the SQL
queries used in the backend of the spring-batch4 workflow engine. If one wanted
to track job status information directly in RDF, it is certainly possible to craft
equivalent SPARQL queries against an appropriate RDF model. However, port-
ing queries to different backends can be a tedious and error prone task. Further,
static SPARQL queries would be tied to one specific set of vocabulary terms,
making minor adoptions difficult. In contrast, with modern O/RM tooling, writ-
ing queries can be achieved with code similar to Listing 2.

3
http://download.oracle.com/otndocs/jcp/persistence-2_1-fr-eval-spec/index.html

4
http://projects.spring.io/spring-batch/

mailto:cstadler@informatik.uni-leipzig.de
mailto:jens.lehmann@cs.uni-bonn.de
mailto:jens.lehmann@iais.fraunhofer.de
http://download.oracle.com/otndocs/jcp/persistence-2_1-fr-eval-spec/index.html
http://projects.spring.io/spring-batch/

2 Claus Stadler and Jens Lehmann

1 SELECT JOB EXECUTION ID, START TIME, END TIME, STATUS, EXIT CODE,
2 EXIT MESSAGE, CREATE TIME, LAST UPDATED, VERSION,
3 JOB CONFIGURATION LOCATION from JOB EXECUTION
4 where JOB INSTANCE ID = ? order by JOB EXECUTION ID desc

Listing 1. An SQL-query used in spring-batch’s JobExecution DAO

1 Cr i t e r i aBu i l d e r cb = em. g e tC r i t e r i aBu i l d e r () ;
2
3 Criter iaQuery<JobExecution> cq = cb . createQuery (JobExecution . c l a s s) ;
4 Root<JobExecution> r = cq . from (JobExecution . c l a s s) ;
5 cq . s e l e c t (r) . where (
6 cb . equal (r . get (” j ob In s tance Id ”) , j ob In s tance Id))
7 . orderBy (cb . desc (r . get (” execut ionId ”))) ;
8
9 TypedQuery<JobExecution> query = entityManager . createQuery (cq) ;

10 List<JobExecution> tq = query . g e tRe su l tL i s t () ;

Listing 2. Corresponding criteria query

Some advantages of an object-RDF mapper, from here on referred to as O/RDF,
are: No code required to manually map RDF triples to objects. As code is written
against the Java model, and is thus independent of the backend which stores the
objects, legacy systems already using the JPA can be transparently turned into
Semantic Web applications.

Our contributions are as follows: (i) A lightweight, yet flexible, system de-
sign for de-/serializing object graphs as RDF, and (ii) formal aspects of rewriting
criteria queries to SPARQL via the mappings, and (iii) a prototype implementa-
tion that enables querying Java entities backed by RDF data via the JPA criteria
API. The prototype is available as Open Source5 as the mapper module in our
Jena-based Semantic Web toolkit. The license is Apache 2, and maven artifacts
are published on maven central6.

The remainder is structured as follows: In Section 2, we present preliminaries
in regard to the used terminology and the JPA. Related work is summarized in
Section 3. Afterwards, Section 4 describes the core design of our system, espe-
cially the aspect of establishing a mapping between Java object graphs and their
corresponding RDF graph. In Section 5 we present our approach to rewriting
criteria queries. Finally, we conclude in Section 6.

2 Preliminaries

In this section, we give a brief overview of relevant terms, important components
of the JPA, and essentials of the criteria API.

Terminology : An entity is a lightweight persistence domain object. An entity
class is an ordinary Java class that is marked as having the ability to represent
objects in the database. Entities can be identified as well as referenced by an
(IRI, class) pair. A reference matches all entities with the same IRI that are
subclasses of the given class.

5
https://github.com/AKSW/jena-sparql-api/tree/master/jena-sparql-api-mapper

6
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22jena-sparql-api-mapper%22

https://github.com/AKSW/jena-sparql-api/tree/master/jena-sparql-api-mapper
http://search.maven.org/#search%7Cga%7C1%7Ca%3A%22jena-sparql-api-mapper%22

JPA Criteria Queries over RDF Data 3

JPA Criteria API The most important JPA components are:

– The EntityManager is the entry point for persistence-related operations on
Java entities. It provides standard interfaces for creating, reading, updating,
deleting (i.e. CRUD operations), and querying over entities independent of
the underlying data store. It provides the getCriteriaBuilder method which
is the starting point for criteria query construction.

– The CriteriaBuilder is used to construct criteria queries, compound selec-
tions, expressions, predicates, orderings7.

– Expressions: Primitive expressions are formed from paths over attribute
names of the corresponding entity classes. Compound expressions are built
using the CriteriaBuilder and include unary, arithmetic, comparison, condi-
tional operators.

A criteria query comprises the following basic information:

– The result type.

– A set of Query Roots: A root represents the start of a navigation along paths
of attributes from a referenced entity.

– Constraints: A set of predicate expressions constraining the set of entities.

– Orders: A list of (expression, sort-direction) pairs.

– Distinct : Removes duplicates from the result set.

For brevity, we do not consider grouping/aggregates, sub-queries and selections.
The special aspect of the criteria API is that primitive expressions are formed
by paths of attribute names created from roots.

3 Related Work

Well known implementations of the JPA specification include EclipseLink8 (JPA’s
reference implementation), Hibernate9 and Apache OpenJPA10, which, to the
best of our knowledge, do not feature RDF support. Yet, dedicated Java/RDF
mapping frameworks exist, which are usually based on one of the two predomi-
nent Java RDF frameworks, namely Apache Jena11 and Eclipse RDF4J12 (for-
merly Sesame).

Eclipse Komma[4][4]13 is an RDF4J-based framework, which provides its own
EntityManager API and distinguishes between interface and behaviour defini-
tions. The latter implement one or more interfaces. Interfaces can carry RDF
mapping information, similar to that in Listing 3. When loading a given RDF

7
http://docs.oracle.com/javaee/6/api/javax/persistence/criteria/CriteriaBuilder.html

8 http://www.eclipse.org/eclipselink/
9 http://hibernate.org/

10 http://openjpa.apache.org/
11 https://jena.apache.org/
12 http://rdf4j.org/
13 https://github.com/komma/komma

http://docs.oracle.com/javaee/6/api/javax/persistence/criteria/CriteriaBuilder.html
http://www.eclipse.org/eclipselink/
http://hibernate.org/
http://openjpa.apache.org/
https://jena.apache.org/
http://rdf4j.org/
https://github.com/komma/komma

4 Claus Stadler and Jens Lehmann

resource with Komma, it will yield a Java proxy implementing all suitable inter-
faces, whose method calls will delegate to all appropriate behaviors. Historically,
Komma evolved from the Alibaba14 project, which in turn evolved from Elmo.

EmpireRDF15 implements the JPA EntityManager interface and supports
querying the RDFized data with SPARQL and SERQL. However, it does not
feature support for JPQL or criteria queries.

4 System Architecture

In this section, we present the core design of our O/RDF system. Similar to
Komma and EmpireRDF, we introduce annotations for controlling RDF specifica
of the mapping not covered by the standard JPA annotations. Technically, the
system is designed to account for two main functions: (i) Recursively serializing
and de-serializing object graphs as RDF. For serialization, the process is initiated
by requesting the state of a Java object to be written out as an RDF graph rooted
in a given IRI. For de-serialization, the request is to load an IRI’s RDF data as a
subclass of a given class. (ii) Executing criteria queries on a SPARQL backend.
This involves rewriting constraints expressed with the criteria API to SPARQL,
in order to identify the set of IRIs of the entities which form the query’s result
set and thus need to be de-serialized.

In order to retrieve the appropriate RDF graph fragment to populate the
attributes of an entity, we introduce the notion of a Resource Shape, which
expresses a pattern for a set of (nested) RDF triples reachable from a resource.
Relevant related work in this regard are the ongoing efforts on Shape Expressions
(ShEx) [3] and the Shapes Constraint Language (SHACL)16.

4.1 Annotations

Annotations are a simple approach to tie a mapping directly to a class, such
as in Listing 3. Note, that in principle, O/RM mappings are independent en-
tities, and thus multiple mappings may exist for a set of classes. Choosing the
appropriate set of mappings is part of the O/RM engine configuration. The
annotation @DefaultIri accepts an expression string in the Spring Expression
Language (SpEL) to dynamically generate a default IRI for instances of an en-
tity class. @RdfType will cause the generated RDF to to include a triple that
associates the entity’s IRI with the stated.

1 @RdfType (” : JobExecution ”)
2 @Defau l t I r i (” : job−execut ion#{ i n s t ance Id}−#{execut ionId }”)
3 pub l i c c l a s s JobExecution {
4 @Ir i (” : i n s t ance Id ”) p r i va t e St r ing in s t ance Id ;
5 @Ir i (” : execut ionId ”) p r i va t e long execut ionId ;
6 @Ir i (” : c on f i g ”) p r i va t e Map<Str ing , Object> params ;
7 }

Listing 3. RDF Mapping annotations of a class

14 https://bitbucket.org/openrdf/alibaba
15 https://github.com/mhgrove/Empire
16 https://www.w3.org/TR/shacl/

https://bitbucket.org/openrdf/alibaba
https://github.com/mhgrove/Empire
https://www.w3.org/TR/shacl/

JPA Criteria Queries over RDF Data 5

4.2 Components for O/RDF mapping

In this section, we describe the main components for de-/serializing object graphs
from/to RDF graphs.

TypeDecider An IRI alone is insufficient for determining the appropriate set
of corresponding candidate entity classes, as any class could act as a “view” over
the resource’s RDF data. The purpose of the TypeDecider is to narrow down this
set of candidates – ideally to a single entity class. Note, that this functionality
requires all entity classes to be known to the O/RDF system in advance. The
TypeDecider supports exposing a resource shape for a given base class, whose
results can be passed to the getApplicableTypes method in order to decide on
the applicable sub-classes a resource can be loaded with. Also, for a given entity
and its corresponding IRI, it can write out the triples needed to preserve the
entity type in RDF.

RdfType The RdfType interface provides the essential high-level methods for
mapping classes to RDF. RdfType is the core interface for establishing a mapping
of a single Java class, retrievable by getJavaClass, to the RDF model. Newly un-
populated instances can be created from an RDFNode using the createJavaObject
class. Java primitive and composite types roughly correspond to RDF literals
and resources, respectively. An RDFNode and can be a literal or a resource. In
the former case, the result is expected to be the corresponding (boxed) Java
primitive type, such as 5l returned for the argument 58sd:long. For resources,
the RDF type is expected to yield an unpopulated entity.

Some Java classes do not have an identity on their own, in which case
hasIdentity returns false. For example, an instance of a Collection usually
neither has an attribute nor an entry that uniquely identifies this specific in-
stance. Yet, there needs to be an IRI that represents the collection in order to
retain links to the IRIs of the contained items. If an object’s class does not pro-
vide an IRI by itself, we create one based on the owning entity’s IRI and the
attribute names by which that object was reachable from an entity. For exam-
ple, the IRI of the Map in Listing 3 will be the default IRI of that class with the
attribute name params appended.

6 Claus Stadler and Jens Lehmann

The resolvePath method returns for a given property available in the class the
corresponding SPARQL role (see Section 5), encapsulated in the PathFragement
object.

In regard to querying, the resolvePath method is crucial for compiling the
WHERE clause of a criteria query to SPARQL, the exposeShape denotes which
RDF graph to retrieve, and the populate/exposeFragment methods are required
to set a Java object’s state according to the state of a (retrieved) RDF graph,
serialize the current state as triples possibly by reusing RDF terms from its
initial RDF graph.

RdfType is only responsible for writing and reading triples relevant to the
class it represents. Recursive resolution is handled by the engine based on the
information returned by RdfType, concretely

– when reading RDF, which RDF terms in the graph fragment, that matched
the shape, need to be further resolved to Java objects of which base class.

– when writing RDF, which RDF terms in the output need to be substituted
with RDF nodes obtained for Java objects.

RDFMapperEngine : The low-level interface for managing entities for which
a JPA wrapper is provided.

RoleBuilder : The role builder is capable of mapping paths of attribute names
to SPARQL roles.

5 Rewriting Criteria Queries

Here, we introduce SPARQL based notions for formally capturing the rewriting
steps. We first borrow the notions of concepts and roles form description logics
and adapt them to SPARQL. A similar idea is presented in [1], however we make
more considerations especially in regard to handling variables. Subsequently, we
introduce operations for navigation between SPARQL concepts via roles, role
chains, and sorting of concepts. Finally, we present the rewriting steps.

Let there be the set of variables V and the set of graph patterns17 GP .
For brevity, we assume the reader is familiar with evaluation of graph patterns
according to the SPARQL specification.

Definition 1. Projected Graph Patterns (PGPs): A projected graph pattern is
a pair pgp := (gp,W), with gp a graph pattern and W ⊂ V a set of variables
appearing in gp, which we refer to as distinguished variables. All other vari-
ables are undistinguished. This additional information about a gp’s variables
is subsequently used to determine which variables to rename / leave fixed when
performing operations on them.

Definition 2. SPARQL Concepts: A SPARQL concept is a pair (pgp, v) with
v ∈ V . SPARQL concepts thus denote sets of resources/individuals expressed as
a PGP with one of its variables tagged.
17 https://www.w3.org/TR/sparql11-query/#GraphPattern

https://www.w3.org/TR/sparql11-query/#GraphPattern

JPA Criteria Queries over RDF Data 7

Definition 3. Ordered SPARQL Concepts: An ordered concept expresses an or-
dering over a set of resources identified by a concept. We define it as (c, SCS)
with c a concept and SCS a sequence of SPARQL sort conditions in terms of
variables in c. We further introduce an operator applyOrder : (O, C)→ O, which
orders the items in C according to their order in O.order.

Definition 4. SPARQL role: A SPARQL role is defined as (pgp, s, t) with s, t ∈
V . Its evaluation therefore denotes a binary relation between a set of source and
target resources. Note, that this is a powerful notion, as it e.g. enables relating
resources to computed values, such as (?s rdfs:label ?o. Bind(lang(?o)

As ?x) , ?s, ?x). An empty role represents a zero-length path and is expressed
as a role having a PGP with an empty group graph pattern, and the same variable
for source and target.

Concept conjunction : C ∩C → C: yields a new concept by equating their result
variable, combining their graph patterns, and renaming any common undistin-
guished variables.

Role concatenation : R1 ◦ R2 → R yields a new role starting with the source
variable of r1 and the target on of r2, thereby renaming common undistinguished
variables.

Navigation : C.R → C: c.r Yields a new concept by traversing the role r from
c. Again, common undistinguished variables are renamed.

Ordering a concept : applyOrder(O,C) → O: An ordered concept can be used
to sort another concept by appropriately combining their graph patterns and
sort conditions. Ordering does not change the (multi-)set of resources matched
by the original concept.

Optimizing graph patterns : Graph patterns resulting from the operations may
contain redundant triple patterns and expressions which however differ by the
variables. For example, a concept ({?s rdfs:label ?x, ?y}, ?x) could be optimized,
if ?y was substituted for ?x. The technique that accomplishes this was first
described in [2].

Above definitions provide the tooling required to assemble SPARQL queries
from criteria expressions. The fundamental operation is converting paths of at-
tribute names to SPARQL roles, i.e. graph patterns with a designated target
variable. For example, resolving an attribute path address.street on a Person
class to a role is accomplished by requesting the RoleBuilder rb for Person from
the RdfMapperEngine, and invoking rb.get(“address”).get(“street”). The engine
forwards these requests to the appropriate RdfTypes and assembles the overall
role. Compound criteria expression can then be directly converted to SPARQL
expressions over these role’s target variables.

The remaining steps are to compile a criteria query to a corresponding or-
dered concept matching the IRIs of the desired entities and loading the entities
as necessary. This ordered concept is comprised of:

8 Claus Stadler and Jens Lehmann

– The SPARQL concept from the type decider for the requested entity class
(and those used as roots).

– The compilation of expressions from the WHERE part.
– The compilation of the criteria sort conditions into an ordered concept.
– Appropriate use of DISTINCT, LIMIT and OFFSET in the generated SPARQL

graph pattern, in accordance with the given criteria query.

Finally, for each resource matching the compiled SPARQL concept, the corre-
sponding entity is retrieved from the EntityManager using the query’s result
class.

6 Conclusion and Future Work

In this submission, we (i) outlined a system architecture for object/RDF map-
pings, (ii) introduced formal notions for SPARQL-based concepts, orderered
concepts, roles, and relevant operators in order to rewrite JPA criteria query
constraints to SPARQL, and (iii) provide an Open Source prototype implemen-
tation. This effectively enables uniform querying of Java domain models backed
by (SPARQL accessible) RDF data. In the future, we will add support for more
criteria query features, clarify certain semantics, such as deleting entities whose
corresponding triples back other entities, and performance will be evaluated and
optimized, such as by batching lookups of multiple resources by their resource
shape.

Bibliography

[1] S. Bin, L. Bühmann, J. Lehmann, and A.-C. Ngonga Ngomo. Towards
SPARQL-based induction for large-scale RDF data sets. In ECAI 2016 - Pro-
ceedings of the 22nd European Conference on Artificial Intelligence, volume
285 of Frontiers in Artificial Intelligence and Applications, pages 1551–1552.
IOS Press, 2016.

[2] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive
queries in relational data bases. In Proceedings of the ninth annual ACM
symposium on Theory of computing, pages 77–90. ACM, 1977.

[3] S. Staworko, I. Boneva, J. E. Labra Gayo, S. Hym, E. G. Prud’hommeaux,
and H. Solbrig. Complexity and expressiveness of shex for rdf. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 31. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[4] K. Wenzel. Komma: An application framework for ontology-based software
systems. Semantic Web–Interoperability, Usability, Applicability, 2010.

	JPA Criteria Queries over RDF Data
	Introduction
	Preliminaries
	Related Work
	System Architecture
	Annotations
	Components for O/RDF mapping

	Rewriting Criteria Queries
	Conclusion and Future Work

