SQCFramework: SPARQL Query Containment Benchmark
Generation Framework

Muhammad Saleem
AKSW, Uni Leipzig, Germany
saleem@informatik.uni-leipzig.de

Jens Lehmann
Uni Bonn, Germany
Fraunhofer IAIS, Bonn, Germany
jens.lehmann@cs.uni-bonn.de
jens.lehmann@iais.fraunhofer.de

ABSTRACT

Query containment is a fundamental problem in data management
with its main application being in global query optimization. A
number of SPARQL query containment solvers for SPARQL have
been recently developed. To the best of our knowledge, the Query
Containment Benchmark (QC-Bench) is the only benchmark for
evaluating these containment solvers. However, this benchmark
contains a fixed number of synthetic queries, which were hand-
crafted by its creators. We propose SQCFramework, a SPARQL
query containment benchmark generation framework which is able
to generate customized SPARQL containment benchmarks from
real SPARQL query logs. The framework is flexible enough to gener-
ate benchmarks of varying sizes and according to the user-defined
criteria on the most important SPARQL features to be considered
for query containment benchmarking. This is achieved using dif-
ferent clustering algorithms. We compare state-of-the-art SPARQL
query containment solvers by using different query containment
benchmarks generated from DBpedia and Semantic Web Dog Food
query logs. In addition, we analyze the quality of the different
benchmarks generated by SQCFramework.

CCS CONCEPTS
*General and reference — Metrics; Evaluation; Performance;

ACM Reference format:

Muhammad Saleem, Claus Stadler, Qaiser Mehmood, Jens Lehmann, and Axel-
Cyrille Ngonga Ngomo. 2017. SQCFramework: SPARQL Query Contain-
ment Benchmark Generation Framework. In Proceedings of Knowledge
Capture, Texas, USA, December 2017 (K-CAP’2017), 8 pages.

DOL:

1 INTRODUCTION

Query containment is the problem of deciding whether the result
set of one query is included in the result set of another. It is a well-
known problem and is used in a number of tasks, such as devising
efficient query planners and caching mechanisms, data integration,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

K-CAP’2017, Texas, USA

© 2017 Copyright held by the owner/author(s). ...$15.00

DOI:

Claus Stadler
AKSW, Uni Leipzig, Germany
stadler@informatik.uni-leipzig.de

Qaiser Mehmood
INSIGHT, NUIG, Ireland
qaiser.mehmood@insight-centre.org

Axel-Cyrille Ngonga Ngomo
AKSW, Uni Leipzig, Germany
Uni-Paderborn, Germany
ngonga@informatik.uni-leipzig.de
axel.ngonga@upb.de

view maintenance, determining independence of queries from up-
dates, and query rewriting etc. [4, 9]. For example, suppose query
q1is contained in query ¢2. In case g2’s execution is time-expensive,
the result of g1 may be obtained more efficiently from ¢2’s result
set. Similarly, it is possible to check if two queries are equivalent by
simply checking their mutual containment. The significant growth
of the Web of Data has motivated a considerable amount of work
on SPARQL query containment [1, 3, 5-8, 10, 14, 15]. To the best
of our knowledge, the SPARQL Query Containment Benchmark
(SQC-Bench) [2] is the only benchmark designed to test SPARQL
query containment solvers. This benchmark contains a fixed num-
ber of 76 query containment tests handcrafted by the authors. Even
though the benchmark contains a variety of tests of varying com-
plexities, the number of tests is fixed and all tests are synthetic.
While SQC-Bench serves the purposes of its developers well, it
provides developers limited insights into the performance of their
systems on real datasets [12]. In addition, this benchmark does
not allow users to generate benchmarks tailored towards specific
use-cases.

We propose SQCFramework, a framework for the automatic
generation of SPARQL query containment benchmarks from real
SPARQL query logs. The framework is able to generate benchmarks
customized by its user in terms of (1) the number of containment
tests, (2) the structural features of the SPARQL queries (e.g., number
of triple patterns, number of projection and join variables, join ver-
tex degree etc.), and (3) the use of SPARQL constructs (e.g., UNION,
OPTIONAL, FILTER, REGEX etc.). For example, the user can opt to
create a benchmark with 100 benchmark queries, in which super-
queries (the query that contains another query) have a minimal
number of triples patterns equal to 4, having less than 3 join vertices
and at least a UNION clause. The framework generates the desired
benchmark from the query log by using different clustering meth-
ods, while considering the customized selection criteria specified
by the user. The contributions of this work are as follows: (1) We
present the first (to the best of our knowledge) SPARQL query con-
tainment benchmarks generation framework from real queries. (2)
Our framework allows the automatic generation of flexible bench-
marks according to the given use-case criteria specified by the user.
(3) We identify the key SPARQL features that should be consid-
ered while designing SPARQL query containment benchmarks. We
then apply the well-known algorithms — KMeans++, Aglomera-
tive, DBSCAN+KMeans++, FEASIBLE and FEASIBLE-Exemplars



K-CAP’2017, December 2017, Texas, USA

[12], Random selection — to select the benchmark queries from
the given set of containment queries. The detailed analysis of the
generated benchmarks enable users to select the best-fit benchmark
according to their needs. (4) We compare state-of-the-art SPARQL
query containment solvers using the benchmarks generated by our
framework and discuss the result.

SQCFramework is open-source and available online along with

a live demo!.

2 RELATED WORK

The query containment problem has a rich literature in relational
databases. In this work, we focus on SPARQL query containment.
In [1, 15], the SPARQL query containment problem is reduced to
a formula satisfiability test using p-calculus. While these works
provide theoretical proofs for the model they propose, they do not
provide any prototype implementation. The Alternation Free two-
way p-calculus (AFMU) [14] is a prototype implementation of the
formula satisfiability solver for the alternation-free fragment of the
pi-calculus. In AFMU, the problem of SPARQL query containment is
also reduced to a formula satisfiability test. The framework supports
projections, union conjunctive queries (UCQ), blank nodes, and
RDFs reasoning on SPARQL queries [2]. Another solver, the XML
tree logic solver (TreeSolver), is presented in [6]. It performs static
analysis on XPath queries by transforming them into p-calculus. It
is a satisfiability solver which can be used for decision problems
such as containment, equivalence, overlap, and coverage.

Letelier et al. [8] studied the fundamental problem of SPARQL
query containment in the form of subsumption relation. SPARQL-
Algebra is the SPARQL query containment solver based on the
theoretical study presented in [8]. This implementation supports
conjunctive and OPTIONAL queries with no projection [2]. The
complexity of well-designed SPARQL query containment, restricted
to the conjunction and OPTIONAL operators and with extensions
by UNION and/or projection is studied in [10]. Their complexity
results range from NP-completeness to undecidability. The problem
of SPARQL query containment for an expressive class of naviga-
tional queries called Extended Property Paths (EPPs) is studied in
[3]. Finally, [5] reduced the SPARQL query containment problem
to the problem of deciding whether a sub graph isomorphism exists
between the (normalized) algebra expression tree of a view and a
sub-tree of a user query.

To the best of our knowledge, SQC-Bench [2] is the only SPARQL
query containment benchmark that compared AFMU, SPARQL-
Abebra, and TreeSolver containment solvers. The benchmark con-
tains three test suites: (1) Conjunctive Queries with No Projec-
tion (CQNoProj): This test suite contains a total of 20 containment
test cases and is designed for the containment of Basic Graph Pat-
terns (BGPs). It contains conjunctive queries with no projection.
Each test-case checks containment between two queries. (2) Union
of Conjunctive Queries with Projection (UCQProj): This test
suite comprises 28 test cases: 14 tests contain projections, 6 tests
contain UNIONSs and 2 tests contain both. (3) Union of Conjunc-
tive Queries under RDFS reasoning (UCQrdfs): There is a total
of 28 test cases in this category. It tests the query containment
solver under RDFs reasoning. In comparison to the previous two

!https://github.com/AKSW/SQCFramework

Saleem et al.

test suites, the queries in this category have a low complexity, es-
pecially in terms of number of triple patterns and number of join
variables. This test suite makes use of 4 different small schemas to
test the correctness of solvers.

SQC-Bench provides a good variety in terms of number of triple
patterns, number of variables, number of joins and size of the
ontology. In addition, it also takes the type of graph pattern con-
nectors (UNION, OPTIONAL, FILTER etc.) and the type of ontology
(no schema, RDFS, OWL, etc.) into account. However, the bench-
mark is synthetic and contains a fixed number of 76 test cases. As
acknowledged by the authors, the used schemas are not realistic
[2]. Users are not able to generate customized containment bench-
marks, pertaining to a specific use case. In addition, it is likely
that real queries issued by the user differ significantly from the
synthetic queries presented in SQC-Bench [11, 12]. SQCFramework
addresses these drawbacks and allows users to generate customized
benchmarks from the SPARQL queries log, i.e., real queries posted
by real agents.

3 PRELIMINARIES

In this section, we define key concepts necessary to understand
the subsequent sections of this work. To denote the set of solution
mappings that is defined as the result of a SPARQL query Q over an
RDF graph G we write »Q..g. According to [2], we define the arity
of a query as the arity of the query answers. Note that when there
is an outer projection (i.e., explicitly mentioned in the query), it is
defined by its distinguished variables. Otherwise, it is defined by all
free variables of the query. For a given RDF graph, we say a query
is contained in another query if all of its answers are included in
those of other query.

Definition 3.1 (SPARQL query containment). Given two queries
Q1 and Q2 with the same arity, Q1 is Contained in Q2 denoted by
Q1 v Q2,if and only if »Q1.g  »Q2.g for every RDF graph G.
We call Q2 a super-query and Q1 a sub-query.

As mentioned, [2] identifies that structural SPARQL query fea-
tures (e.g., number of BGPs, number of triple patterns, number
of join vertices, number of projection variables etc.) are impor-
tant considerations while designing query containment bench-
marks. We also considered these features while generating au-
tomatic SPARQL containment benchmarks. In the following, we
define these SPARQL query features formally.

We represent any basic graph pattern (BGP) of a given SPARQL
query as a directed hypergraph (DH) [13], a generalization of a
directed graph in which a hyperedge can join any number of ver-
tices. In our specific case, every hyperedge captures a triple pattern.
The subject of the triple becomes the source vertex of a hyperedge
and the predicate and object of the triple pattern become the tar-
get vertices. For instance, consider the query in Figure 1 whose
hypergraph is illustrated in Figure 1. Unlike common SPARQL
representation, in which the subject and object of the triple pattern
are connected by an edge, our hypergraph-based representation
contains nodes for all three components of the triple patterns. As a
result, we can capture joins that involve predicates of triple patterns.
Formally, our hypergraph representation is defined as follows:

Definition 3.2 (Directed hypergraph of a BGP). The hypergraph
representation of a BGP B is a directed hypergraph HG = ,V; E”


https://github.com/AKSW/SQCFramework

SQCFramework: SPARQL fery Containment Benchmark Generation Framework

whog vertices are all the components of all triple paSern®in.e.,
V= gp0028fS;p;0g, and that contains a hypereddg&7° 2 E
for every triple paSerris; p;0° 2 B such thatS = fsgandT = ip;c®.

Listing 1: Examplary SPARQL query

SELECT DISTINCT ?drug ?title WHERE f

?drug db:cat dbc:mic. ?drug db:regNo ?id
?keggDrug rdf:type kegg:Drug.

?keggDrug bio2rdf:xRef ?id.

?keggDrug purl:title ?title.g

Figure 1: DH representation of the SPARQL query given in
Listing 1. Pre€xes are ignored for succinctness.

(Ee representation of a complete SPARQL query as a DH is the
union of the representations of the query's BGPs. As an example,
the DH representation of the query in Figure 1 is shown in Figure 1.

input queries commonly originate from the query logs of SPARQL
endpoints or can be manually provided by the user. In this work,
we aim to generate benchmarks from real user queries. To this
end, we use the Linked SPARQL <eries (LSQ) dataseld], which
provide real queries extracted from the logs of public SPARQL end-
points. (Ee LSQ datasets provide various statistics (e.g., number of
joins, number of triple paSerns, number of join vertices etc.) about
queries that we considered important (discussed in next section)
for benchmark generation. Currently, the LSQ project contains
datasets extracted from 20 SPARQL endpofnts.

4.2 Important Tery Features

A query containment benchmark should comprise queries/tests
of varying complexities. Hence, we consider the following query
features while generating containment benchmarkg.) Number

of entailments/sub-queries: Unlike QC-Bench where a super-
query commonly has one sub-query, it is possible for a given super-
query to have multiple sub-queries in a real SPARQL queries log. It
is hence possible that a given containment solver can successfully
identify one sub-query and fail to identify another sub-query for
the same super-query.

(2) Number of projection variables: As pointed out by P, this
dimension is of signi€cant importance and should be considered
while designing containment benchmarks. Eis is because the query
containment checks if the answers (solution mappings to projection
variables) of one query are contained in the answers of another.
(Ee higher the number of projection variables, the harder to check
for containment. Ee number of projection variables for the query
shown in Figure 1 is 2, i.e., drug and title.

(3) Number of BGPs: A BGP is a sequence of triple paSerns with
optional Filters . Adding other graph paSerns such &NIONNd

Based on the DH representation of SPARQL queries, we can de€ne OPTIONAkrminates the BGP (Eis feature is considered by?]

the following features of SPARQL queries:

De€nition 3.3 (Join Vertexfror every vertew 2V in such a hy-
pergraph we writeEj,v° and Ep v ° to denote the set of incoming
and outgoing edges, respectively; i.gylv° = IS T°2Ejv 2Tg
andEguev® = f1STO2Ejv 2Sg. If jEnivOj + jEouev® > 1, we call
VvV ajoin vertex

De€nition 3.4 (Join Vertex DegreBased on the DH represen-
tation of SPARQL queries, the join vertex degree of a vexiteg
VDWO = jEn O + jEout vOj, whereEn O respEoyt v is the set
of incoming resp. outgoing edges of

4 SQCFRAMEWORK BENCHMARK
GENERATION

In this section, we present the benchmark generation process in the
SQCFramework. We €rst discuss the selection of real queries that
we use for benchmarking. We then discuss the key query features
that we considered while generating the benchmarks using di,erent
clustering methods. We €nally discuss the generation of customized
benchmarks.

4.1 Input Teries

Our framework takes a set of queries as input and selects the re-
quired sample of queries according to the user-de€ned criteria. Ee

in the UCQProj test suites. Previous worB][pointed out that

the SPARQIOPTIONAE& one of the most discult constructors for
SPARQL query containment checks. Ee number of BGPs for the
query given in Figure 1 is 1.

(4) Total number of triple patterns:  Ee total number of triple
paSerns in a query has a direct relation with how expensive the
containment check is: the more the triple paSerns, the harder the
query containment checkd]. Ee number of triple paSerns for the
query given in Figure 1 is 5.

(5) Max. and Min. BGP triple patterns: BGPs are the most
essential and important building blocks of SPARQL queries, which
virtually every SPARQL-related system has to support. Eis feature
enables the selection of queries by the sizes of their BGPs. As an
example, the query given in Figure 1 has a single BGP with 5 triple
paSerns, hence, the Min. and Max. numbers of BGP triple paSerns
is 5.

(6) Number of join vertices: (Eis feature is also considered by
[2]. Ee answer size of a given query varies signi€cantly depending
on the join vertices in the query. It is possible that a given triple
paSern has a large number of solution mappings which are excluded
a%oer performingpin with the solution mappings of another triple

2Ee LSQ datasets are available from SQCFramework website
3BGP: hSps://www.w3.0rg/TR/sparql11-query/#BasicGraphPaSerns

K-CAP'2017, December 2017, Texas, USA



K-CAP'2017, December 2017, Texas, USA

paSern. (Ee number of join vertices for query given in Figure 1 is
3, i.e. the variablekeggDrugid, anddrug

Saleem et al.

Listing 2: Super-queries selection along with required fea-
tures from LSQ dataset

(7) Mean join vertex degree: Ee number of solution mappings
pertaining to a given projection variable is directly a,ected by num-
ber of joins and their degree. Eerefore, it is important to consider
both of these query features for containment benchmarking. For
the query given in Figure 1, the degrees of join vertidegggDrug
id, anddrug are 3,2,2, respectively. Ee mean join vertex degree
becomes 7/3 =2.33.
(8) Number of LSQ features: Ee Linked SPARQL <eries (LSQ)
[11] stores additional SPARQL features such as us®IETINCT
REGEXILTERLIMIT, BIND VALUE®RDERY ,BMVINGGROUP
BY OFFSE&ggregate functions (e.gGOUNBUIMMIn, Maxetc.),
SERVICEOPTIONAUNIONoroperty path etc. We make a count of
all of these SPARQL operators and functions and use it as a single
guery dimension. Ee number of LSQ features for query given in
Figure 1is 2, i.eDISTINCERndLIMIT clauses.

(Ee LSQ datasets contains most of the statistics about queries
mentioned above. Ee only feature that is missing is the number of

Prefix lIsq: <http://Isq.aksw.org/vocal>

SELECT DISTINCT ?sup countDISTINCT ?sub)
as ?entailments ?projVars ?bgps ?tps ?
joinVertices ?maxBGPTriples ?
minBGPTriples ?meanJVD count(? feature)
as ?noFeaturesf

?sub Isqg:isEntailed ?sup

?sup Isqg:hasStructuralFeatures ?sf

? sf Isq:projectVars ?projVars

? sf Isq:bgps ?bgps ?sf Isq:tps ?tps
? sf Isq:joinVertices ?joinVertices

? sf Isqg: maxBGPTriples ?maxBGPTriples
?sf Isq: minBGPTriples ?minBGPTriples

? sf Isqg: meanJoinVertexDegree ?meandVD
?sf Isqg:usesFeature ?feature

FILTER (str (?sub) !=str(?sup) )g

entailments, i.e., the number sub-queries for a every super-query in
the dataset (i.e., LSQ does not store the containment relationships

among queries). We made use of the existing SPARQL query con-

tainment solvers b, 6, 8, 14 and actually running queries to iden-
tify the containment relationships among queries in LSQ. We veri-
€ed the containment results by actually executing the both super-
and sub-queries over the underlying dataset and programmatically
checking if the result of the sub-query is indeed included in the
result of the super-query. In our benchmarks, we only consider
those LSQ queries which participate in at least one containment
relation, i.e., the queries are either a super-query or a sub-query for
another query in the dataset.

4.3 Benchmark Generation
Our benchmark generation problem is de€ned as follows:

De€nition 4.1 (Benchmark Generation Problém)L represent
the set of input (LSQ) queries. Our goal is to selectihqueries that
best represent as well as more diverse in features, with << jLj.

(Ee user provides the input LSQ dataset and the required number
N of super-queries and the selection criteria to be considered in the
generated benchmark. Een, the benchmark generation is carried

by using the SPARQL query given in Listing 2. (Ee result of this
query execution is stored in a map that is used in the subsequent
benchmark generation steps. In Section 4.4, we show how this
query can be modi€ed to generate customized query containment
benchmarks.

4.3.2 Normalized Feature Vect@Ee cluster generation algo-
rithms (explained in the next section) require distances between
queries to be computed. To this end, each of the queries from the
input LSQ dataset is mapped to a vector of length 9 which stores
the correspondingjuery featuresliscussed in Section 4.2 (Min. and
Max. BGPs from Section 4.2 are two features). Assuming the num-
ber of sub-queries is 2, the feature vector for the query given in
Figure 1is [2, 2,1, 5, 5, 5, 3, 2.33, 2]. To ensure that dimensions
with high values (e.g., the number of LSQ features) do not bias
the selection of queries for benchmarking, we normalize the query
feature vectors with values between 0 and 1. Eis is to ensure that
all queries are located in a unit hypercube. To this end, each of the
individual values in every feature vector is divided by the overall
maximal value (across all the vectors) for that query feature. Sup-
pose the values [10, 8, 6, 12, 5, 10, 10, 5, 30] represent the maximal

out in the following four main steps: (1) Select all the super-queries feature vector (i.e., each individual feature value is the maximum
along with the required features from the input LSQ dataset. (2) across all vectors), the normalized feature vector for the query given
Generate feature vectors and their normalization for the selected in Figure 1 becomes [0.2, 0.25, 0.16, 0.41, 1, 0.5, 0.33, 0.46, 0.06].
super-queries.(3) Generalte number of clusters from the super-

queries. (4) Select single most representative super-query from 4.3.3 Generatlpn O.f Clustefis a ngxt step, we generafe
each cluster to be included in the €nal benchmark. clusters from the given input LSQ queries represented as normal-

Note that since the number of sub-queries for a given selected ized feature vectors. For this step we used 5 existing well-known
algorithms { FEASIBLE, FEASIBLE-Exemplars, KMeans++, DB-

SCAN+KMeans++, Random selection { which allow the generation
of the required €xed number of clusters. Note DBSCAN+KMeans++
means that we applied DBSCAN €rst to remove the outlier queries
and then applied KMeans++ to generate the required number of
4.3.1 Selection of super-queri®sce LSQ contains RDF datasets, clusters. Note that we need an additional normalization of the
we can select super-queries along with the statistics by simply using remaining vectors a%oer outliers are removed. Moreover, note that
SPARQL queries. Our framework retrieves the set of super-queries our framework is fexible enough to integrate any other clustering
along with the required features (discussed in previous section) algorithm which allow the generation of a €x number of clusters.

super-query can be greater than or equal to 1, the number of query
containment tests in a benchmark will be greater than or equal to
the number of super-queries. Now we discuss each of these steps
in detail.



SQCFramework: SPARQL fery Containment Benchmark Generation Framework

Our framework provides a detailed analysis (explained in Section

Listing 3: Benchmark personalization

5.1) of the benchmarks generated using di,erent methods, thus al-
lowing users to pick the best method for the required containment
benchmark.

4.3.4 Selection of Most Representative feriggally, we per-
form the selection of a single prototypical query from each cluster.
(Eis step is exactly the same as performed in FEASIBLE: For each
clusterS, compute the centroid which is the average of the feature
vectors of all the queries i5. Following this, compute the distance
of each query irSwith ¢ and select the query of minimum distance
to include in the resulting benchmark.

Note that our framework also allows the generation of bench-
marks using random selection. In addition, it allows the gener-
ation of benchmarks using Agglomerative clustering. However,
Agglomerative clustering does not allow the creation of €xed size
benchmarks. Ee aforementioned benchmark website contains the
CLI options for the generation of benchmarks.

4.4 Benchmark Personalization

As mentioned before, our framework allows customized benchmark
generation according to the criteria speci€ed by the user. Eis can
be done by simply specializing the query given in Listing 2. For ex-
ample, imagine the user wants to generate customized benchmarks
with the following features: (Ee number of projection variables

Prefix 1Isq: <http://lsq.aksw.org/vocal>

Prefix prov: <http://www.w3.org/ns/prov#>

SELECT DISTINCT ?sup count(?sub) as ?
entailments ?projVars ?bgps ?tps ?
joinVertices ?maxBGPTriples ?
minBGPTriples ?meanJvd count(?feature)
as ?noFeaturesf

?sub Isqg:isEntailed ?sup

?sup Isqg:hasStructuralFeatures ?sf

? sf Isq:projectVars ?projVars ;

Isq:bgps ?bgps ; Isqg:tps ?tps ;

Isqg:joinVertices ?joinVertices ;

Isqg: maxBGPTriples ?maxBGPTriples ;

Isq: minBGPTriples ?minBGPTriples ;

Isqg: meanJoinVertexDegree ?meanJVD ;

Isqg:usesFeature ?feature

FILTER (str (?sub) !=str(?sup))

# |||]|| Personalization of the benchmark ||||||

?sup Isq:hasRemoteExec ?rExe

?rExe prov:atTime ?exeTime

FILTER(? projVars <=2 && (?bgps> 1 jj
>3)) ¢

ORDER BY DES(?exeTime) Limit

?tps

1000

in the super-queries should be at most 2. e number of BGPs
should be greater than 1 or the number of triple paSerns should be
greater than 3. (Ee benchmark should be selected from the most
recently executed 1000 queries, rather than considering the whole
LSQ queries for benchmarking.

Ee query for the selection of such a personalized benchmark
is given in Listing 3. Note that LSQ datasets also contain agent
information, thus creating a query containment benchmark from a

FEASIBLE, we measure how much the mean and standard deviation
of the features of benchmark queries deviate from those of the input
LSQ queries. We calli the mean and ; the standard deviation of

a given distribution w.r.t. the? feature of the said distribution.
LetB be a benchmark extracted from a set of queriedVe use two

single speci€c agent queries is also possible. Eis can be particu- measures to compute the di,erence betwe&mandL, i.e., the error

larly helpful when developing caching mechanisms or optimizing
SPARQL queries for a particular user/system.

5 EVALUATION AND RESULTS
Our evaluation comprises two main parts. First, we provide an

analysis of the benchmarks generated by the available SQCFrame-

work's methods. In the second part of our evaluation, we use
the selected benchmarks generated by our framework to compare
existing SPARQL query containment solvers w.r.t. their query con-
tainment precision and the execution time required to perform the
query containment tasks.

5.1 SQCFramework Benchmarks Analysis

A benchmark should not be solely comprised of query containment
tests that are very similar in their features. Suecient diversity in
the benchmark queries is important to ensure the overall quality of
the generated benchmark. To this end, we analyze the benchmarks
generated by our framework in terms of: 1) how well they represent

on the mean€& and deviationsE
&
l 1

Koy

E = Lo B andE = i1B°2: (1)

Given that the harmonic mean is biased towards smaller values, we

de€ne a composite error estimatidh(also called similarity error)
by using the harmonic mean 6fL E °and!l1 E ©:

21 EM E°
11 E 0+11 E 00

E (2

(Ee diversity scoreD is the average standard deviation of the

query featuresk included in the benchmari:

D=1
j=1

&
L 3

Note that for a given benchmark, the smaller the composite

K-CAP'2017, December 2017, Texas, USA

the input LSQ queries, and 2) the diversity of the benchmark queries error the beSer it represents the overall input query log, and the
generated by our framework. From the point of view of statistics, higher the diversity score, the more diverse the queries included
the €rst measure is equivalent to the selection of a sample from a in the benchmark. It is important to note that we are using the
population that has the characteristics (here mean and standard normalized features values while computirigand D, thus the
deviation) similar to those of the original population. Eus, like  values lie between 0 and 1.



K-CAP’2017, December 2017, Texas, USA

5.2 Experiment Setup

LSQ datasets: For the experimental evaluation in this work, we
used Semantic Web Dog Food (SWDF) and DBpedia LSQ datasets.
Other LSQ datasets (a total of 20) are available from the project
website and can be used in the benchmark generation after adding
the query containment relationships. We chose the SWDF and
DBpedia LSQ datasets because they were used in the FEASIBLE
[12] evaluation.

Benchmarks for Composite Error and Diversity Analysis: In order
to compare the quality of the benchmarks generated by the differ-
ent SQCFramework methods, we generated benchmarks of sizes
(number of super-queries) 15, 25, 50, 75, 100, and 125 from SWDF
and benchmarks of sizes 2, 4, 6, 9, 12, 15 from DBpedia. The SWDF
pattern of benchmarks was used in FEASIBLE as well. In DBpedia
we sought to generate small sized benchmarks in order to allow
users to perform a quick comparison of the query containment
solvers based on a reasonably small number of containment tests
(see Table 1). In addition, we wanted to compare the clustering
algorithms for various benchmark sizes.

Benchmark generation methods: We generated the above men-
tioned benchmarks using (1) FEASIBLE, (2) KMeans++, (3) DB-
SCAN+KMeans++, (4) Random selection, and (5) FEASIBLE-exemplars
and provide a detailed analysis of their composite errors and diver-
sity scores.

SPARQL containment solvers: We evaluated four SPARQL query
containment solvers: (1) SPARQL Algebra, (2) AFMU, (3) TreeSolver,
and (4) JSAC. To the best of our knowledge, these are the state of
the art available SPARQL containment solvers. We run each of the
query containment solvers in its default settings.

Benchmarks for Containment Evaluation: We selected a 10 super-
queries benchmark generated by KMeans++ from SWDF LSQ dataset.
This benchmark contains a total of 1192 SPARQL queries contain-
ment tests (ref., see Figure 2).

Hardware: We performed all of the experiments on an Ubuntu
16.04.02 LTS machine with 16GB RAM DDR4 and a 2.4GhZ Intel
17-7700HQ CPU.

Metrics: As mentioned, to analyze the benchmarks generated
by our framework, we define the similarity error and the diver-
sity score. For the comparison of the SPARQL query containment
solvers we choose two standard metrics: (1) Query Mixes per Hour
(QMpH) along with the standard deviation, and (2) the precision
of the containment solvers in terms of the number of correctly
identified containment tests. This metric denotes how long a par-
ticular containment solver takes to check the query containment
between two queries. This metric is generally used in the triple
store’s benchmark evaluation [12]. The second metric evaluates the
accuracy of the containment solvers. Note that each benchmark
is called a test suite or a query mix. We set the query timeout to
5 seconds. The query was aborted after that and maximum time
of 5 seconds (sufficient for 99% of queries) was used as the query
containment runtime for all queries which times out. All the data
(codes, benchmarks, results) to repeat our experiments along with
complete evaluation results are available at the project website.

Saleem et al.

5.3 Experiment Results

53.1 Composite Error and Diversity. Figure 2 shows the com-
posite errors and the diversity scores for the different benchmarks
generated from SWDF and DBpedia using the SQCFramework’s
currently supported methods. In terms of similarity/composite er-
ror shown in Figure 2a and Figure 2b, the DBSCAN+KMeans++’s
selection outperforms the other methods. DBSCAN+KMeans++’s
overall (across all the generated benchmarks) similarity error is
2% smaller than KMeans++ which is 28% smaller than Random
selection which in turn is 18% smaller than FEASIBLE which is 9%
smaller than FEASIBLE-Exemplars. In terms of diversity scores
shown in Figure 2c and Figure 2d, the FEASIBLE-Exemplars out-
performs the other methods. FEASIBLE-Exemplars’ overall (across
all the generated benchmarks) diversity score is 4% larger than
FEASIBLE which is 21% larger than KMeans++ which in turn is 6%
larger than DBSCAN+KMeans++ which is 47% larger than Random
selection.

In summary, we have the following key observations: (1) If the
aim is to test the query containment solvers with a benchmark that
best reflects the overall input query log then DBSCAN+KMeans++
is the best method. However, the downside of this approach is that
the benchmark queries will not be sufficiently diverse. This means
it is highly possible that many of the tests are too easy or may
even bias the overall results for a best suited query containment
solver. DBSCAN+KMeans++’s smaller error might be due to the fact
that DBSCAN first removes the outlier queries from the population,
leading KMeans++ to select more representative samples for the dis-
tribution. (2) If the aim is to test the query containment solvers with
a benchmark that contains diverse tests then FEASIBLE-Exemplars
is the best method. The reason for FEASIBLE-Exemplars’ highest
diversity scores is the method it follows to select the exemplars:
first it selects the middle query as first exemplar in the multi dimen-
sional space. The second exemplar is the query that has the longest
distance from the first exemplars. Similarly, the third exemplar is
the one that has the longest distance from the first two exemplars
and so on. This means FEASIBLE-Exemplars is a method that will
always give the best possible diverse queries benchmarks. However,
on the down side this benchmark may not well-reflect the overall
query log. (3) Our final observation is interesting: the two measures
are inverse to each other using cluster-based selection. If a method
is good in similarity error it performs poor in diversity score and
vice versa. The reason for this is that selecting outliers are always
more diverse but they do not represent the normal distribution.
However, this might not be true for random selection.

Table 1 shows the number of query containment tests and the
corresponding benchmark generation time for different benchmark
sizes of SWDF and DBpedia LSQ datasets. Note that we refer the
number of super-queries to be the size of the benchmark. We can see
the number of containment tests (in which two queries are checked
for containment) for each of the benchmarks is significantly larger
than the number of super-queries. This is simply because each
super-query can have multiple sub-queries and we include all sub-
queries for a given super-query in the resulting benchmark. Overall,
the clustering methods have comparable benchmark generation
time.



SQCFramework: SPARQL [ery ®ontainment Benchmark Generation Framework

== FEASIBLE i~ KMeans++ ~fr—DBScan+KMeans++
Random === FEASIBLE-Exemplars
0.045
0.04
0.035
o«
S 0.03
&
0.025
: \\
Z 0.02
é k
S 0.015 \A\
@
0.01 \\
[ —
0.005
\k$3
0
15 25 50 75 100 125
#SUPER QUERIES
(a) SWDF benchmarks similarity error
== FEASIBLE ~{—KMeans++ =i DBScan+KMeans++
Random === FEASIBLE-Exemplars
0.4
0.35 l\
03 o~
w %
Sozs | B SN
3 —— T
Z o2 Qg: ——
g R P
5 0.15
a
0.1
0.05

15 25 50 75

#SUPER QUERIES

(c) SWDF benchmarks diversity score

K-CAP’2017, December 2017, Texas, USA

=== FEASIBLE ~{—KMeans++ === DBScan+KMeans++
Random =¥ FEASIBLE-Exemplars
0.07
0.06 ‘
& 0.05
&
3
w 0.04
£
g 003
H
@ 0.02
0.01
*_‘ —i
0 ) I— —— |
2 a4 6 9 12 15

#SUPER QUERIES

(b) DBpedia benchmarks similarity error

=0 FEASIBLE i~ KMeans++ =i DBScan+KMeans++
Random == FEASIBLE-Exemplars
0.5
0.45
0.4
w 0.35
S o3 & -
4 _—ﬂ
£ 025
7]
g 02
2
0 0.15
0.1
0.05 l
[
2 4 6 9 12 15

#SUPER QUERIES

(d) DBpedia benchmarks diversity score

Figure 2: Comparison of the benchmarks generated by our framework in terms of similarity error and diversity score

Table 1: Comparison of the number of containment tests (#T) and the benchmark generation time (G in seconds) for different
benchmark sizes of SWDF and DBpedia. (KM++ = KMeans++, DB = DBSCAN,FSBL = FEASIBLE,Ex = Exemplars #Q = number

of super-queries or the benchmark size)

SWDF | DBpedia
FSBL KM++ DB+KM++ | Random | FSBLE-Ex FSBL KM++ | DB+KM++ | Random | FSBLE-Ex
#Q | #T G| #T G| #T G | #T G| #T G|[#Q | #T G |#T G|#T G |# G |#T G
15 | 1739 6 | 1694 7| 906 5 | 408 1]1877 2| 2| 9 1| 9 1] 34 1 4 11]36 1
25 2433 7 [ 1902 7 | 1134 6 | 179 1 |2721 2| 4 | 40 1|5 1| 55 1 38 1|38 1
50 | 4563 7 | 2153 7 | 1372 7 | 400 1 [4530 2 || 6 | 74 2| 64 1| 64 1 1 1|72 1
75 | 4716 7 | 2457 7 | 1972 7 | 496 14697 2 || 9 |[126 2 |105 1 {102 1 |117 1 |123 1
100 | 4863 8 | 3009 7 | 2218 7 | 1304 1 |4978 2|/ 12 | 163 2 |140 1 |111 1 |151 1 | 160 1
125 | 5149 9 | 3541 7 [ 3083 7 | 1522 1 [5153 2 || 15 |197 2 | 146 1 |146 1 |18 1 | 195 1

5.3.2 SQC-Bench Vs. SQCFramework. As shown in Figure 2,
FEASIBLE-Exemplar generates the most diverse benchmarks. In
Figure 3, we compare the diversities of the FEASIBLE-Exemplar
with SQC-Bench across the 9 selected features. This analysis is
based on the 27 super queries benchmark. This is because SQC-
Bench contains a total of 27 unique super queries. Thus we gener-
ated 27 super queries benchmark using FEASIBLE-Exemplar. As an
overall diversity score (i.e., the last bar of Figure 3), our approach
generated more diverse benchmark (0.29 vs. 0.24 diversity score) in
comparison with the SQC-Bench. Across the individual features,
the benchmark generated by our framework is more diverse than
SQC-Bench in 7/9 individual features. Only in number of projection

variables and number of BGPs the SQC-Bench standard deviation
is higher than our approach.

5.3.3 Containment Solvers Evaluation Result. Table 2 shows a
comparison of the selected query containment solvers for a bench-

mark of 10 super-queries generated from SWDF by using the KMeans++

clustering algorithm. Overall, JSAC clearly outperforms other
solvers as it is the only isomorphism-based one and can handle all
1192 test cases. The QMpH of AFMU is about twice as larger of
JSAC, suggesting it can quickly check the query containment test
cases. However, since TS, AFMU and TreeSolver can only handle
at most 5/1192 test-cases, the QMpH rate rather suggests how fast



K-CAP’2017, December 2017, Texas, USA

0.5
0.45
0.4
0.35
0.3

0.25
0.2
0.15
0.1

0.05 I
0

W SQCFrameWork-FEASIBLE-Exemplars

Q o\

= sQC-Benchmark

Normalized S.D.

& & Q° S Q° P O Ul D
F LSS S
K& ¥ @ .&0 ) ,\{b@ & &
‘,& R ¥ \s
£ R B
&
o\

Figure 3: SQC-Bench Vs. SQCFramework: Diversity analy-
sis across the selected features. #Proj Vars = Number of pro-
jection variables,#TPs = Number of triple patterns, MJVD =
Mean Join Vertex Degree

these solvers can rule out supporting a containment check instead
of indicating the actual performance on containment checks.

In comparison to QC-Bench, our results are rather surprising:
the solvers (i.e., SPARQL-Algebra, TreeSolver, AFMU) that were
able to handle the majority of the QC-Bench test cases are not
able to handle more than 5 SQCFramework’s generated test-cases.
Consequently, this means that the SPARQL query containment
that occurs in reality in query logs is different from the query
containments presented in QC-Bench: In practice, non-isomorphic
containments turn out to be much more scarce.

m TreeSolver = AFMU JSAC SPARQL-Algebra

18
1.6
14
12

1
0.8
0.6
0.4
0.2

0

Figure 4: Query Mixes per Hour (QMpH).

QMpH

Solver #TT #HT #CT #TO
TreeSolver 1192 5 5 2
AFMU 1192 5 5 12
SPARQL-Algebra | 1192 0 0 0
JSAC 1192 1192 1192 0

Table 2: Containment solvers comparison. #TT = total test
cases, #HT = number of handled test cases, #CT = number of
correct test cases, #To = number of timed out test cases.

Saleem et al.

6 CONCLUSION

In this paper we presented SQCFramework, a SPARQL contain-
ment benchmark generation framework. Our framework allows
users to generate customized benchmarks suited for a particular
use case, which is important to test the query containment solvers
pertaining to a given application. SQCFramework allows the gen-
eration of benchmarks using different approaches. We compared
the quality of the benchmarks generated using these approaches
in terms of their composite error and diversity score. It turns out
that DBSCAN+KMeans++ generates the most representative and
FEASIBLE-Exemplars generates the most diverse benchmarks com-
pared to other methods used in our framework. We also compared
existing SPARQL query containment solvers using the benchmarks
generated by our framework. JSAC accuracy is better than other
selected solvers. In addition, JSAC is able to check the containment
test in a reasonable amount of time. In future work, we will gen-
erate benchmarks from other LSQ datasets. We will also consider
adding other clustering methods into the framework. A further
milestone will be to identify other query features (e.g., the result
size of the query) that should be considered while generating the
query containment benchmarks.

6.1 Acknowledgements

This work has been supported by the project HOBBIT (GA no.
688227), LIMBO (no. 19F2029I) and OPAL (no. 19F2028A) as well as
by Science Foundation Ireland (SFI) under Grant No. SFI/12/RC/2289.

REFERENCES

[1] Melisachew Wudage Chekol, Jerome Euzenat, Pierre Geneves, and Nabil Layaida.
2012. SPARQL query containment under RDFS entailment regime. In Interna-
tional Joint Conference on Automated Reasoning. Springer, 134-148.

[2] Melisachew Wudage Chekol, Jérdme Euzenat, Pierre Geneves, and Nabil Layaida.
2013. Evaluating and benchmarking SPARQL query containment solvers. In
International Semantic Web Conference. Springer, 408-423.

[3] Melisachew Wudage Chekol and Giuseppe Pirro. 2016. Containment of expres-
sive SPARQL navigational queries. In International Semantic Web Conference.
Springer, 86-101.

[4] Chandra Chekuri and Anand Rajaraman. 2000. Conjunctive query containment
revisited. Theoretical Computer Science 239, 2 (2000), 211-229.

[5] Claus et al. 2017. JSAC Query Containment Solver. https://github.com/AKSW/
jena-sparql-api/tree/develop/jena-sparql-api-query-containment. (2017). [On-
line; accessed 16-May-2017].

[6] Pierre Geneves, Nabil Layaida, and Alan Schmitt. 2007. Efficient static analysis
of XML paths and types. Acm Sigplan Notices 42, 6 (2007), 342-351.

[7] Egor V Kostylev, Juan L Reutter, Miguel Romero, and Domagoj Vrgo¢. 2015.
SPARQL with property paths. In International Semantic Web Conference. 3-18.

[8] Andreés Letelier, Jorge Pérez, Reinhard Pichler, and Sebastian Skritek. 2013. Static
analysis and optimization of semantic web queries. TODS 38, 4 (2013), 25.

[9] Todd Millstein, Alon Halevy, and Marc Friedman. 2003. Query containment for
data integration systems. J. Comput. System Sci. 66, 1 (2003), 20-39.

[10] Reinhard Pichler and Sebastian Skritek. 2014. Containment and equivalence of
well-designed SPARQL. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, 39-50.

[11] Muhammad Saleem, Intizar Ali, Aidan Hogan, Qaiser Mehmood, and Axel-
Cyrille Ngonga Ngomo. 2015. LSQ: The Linked SPARQL Queries Dataset. In
ISWC. 261-269.

[12] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
FEASIBLE: a feature-based SPARQL benchmark generation framework. In ISWC.
Springer, 52-69.

[13] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014. HiBISCuS:
Hypergraph-Based Source Selection for SPARQL Endpoint Federation. In ESWC.

[14] Yoshinori Tanabe, Koichi Takahashi, Mitsuharu Yamamoto, Akihiko Tozawa, and
Masami Hagiya. 2005. A decision procedure for the alternation-free two-way
modal pi-calculus. In ARATRM. Springer, 277-291.

[15] Melisachew Wudage, Jérome Euzenat, Pierre Genevés, and Nabil Layaida. 2012.
SPARQL query containment under SHI axioms. In Proceedings 26th AAAI Con-
ference on Artificial Intelligence. 10-16.


https://github.com/AKSW/jena-sparql-api/tree/develop/jena-sparql-api-query-containment
https://github.com/AKSW/jena-sparql-api/tree/develop/jena-sparql-api-query-containment

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 SQCFramework Benchmark Generation
	4.1 Input Queries
	4.2 Important Query Features
	4.3 Benchmark Generation
	4.4 Benchmark Personalization

	5 Evaluation and Results
	5.1 SQCFramework Benchmarks Analysis
	5.2 Experiment Setup
	5.3 Experiment Results

	6 Conclusion
	6.1 Acknowledgements

	References

