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Abstract

Constantly increasing amounts of data on the Internet as well as fast GPUs available
allowed for the research in AI. Google DeepMind and self-driving cars are showing how fast
machine learning flows into industry. It helps humans to do their job, and the chatbots
are a good example of it. We use them to play music, tell us the weather, order a cab,
and much more. Chatbots are all about generating the response given the conversation so
far. In this work we train a dialogue response generation model using neural networks. It
is a sequence to sequence model which takes a dialogue as an input and produces the next
response as an output. The data used is the Ubuntu Dialogue Corpus - a large dataset
for research in unstructured multi-turn dialogue systems. Since the input sequences are
the dialogues, the inputs are pretty long, and in this case the information at the very
beginning of the sequence is often lost while training the model. That is one of the reasons
we are using attention. It allows the decoder more direct access to the input and lets the
model itself decide which inputs consider more for output generation. Also, we extend the
Ubuntu Dialogue Corpus with the information from the man pages in order to enrich the
input with the technical information. We use the short descriptions. In this way we do not
overload the input with too much additional information, but still add some background
knowledge.

1 Introduction

An explosion in the number of people having informal, public conversations on social media
websites such as Facebook and Twitter presented a unique opportunity to build collections of
naturally occurring conversations that are orders of magnitude larger than those previously
available. These corpora, in turn, present new opportunities to apply data-driven techniques
to conversational tasks [13].

The task of the response generation is to generate any response that fits the provided
stimulus without mentioning the context, intent or dialogue state. Without employing rules
or templates, there is the hope of creating a system that is both flexible and extensible when
operating in an open domain [13]. Success in open domain response generation could be useful to
social media platforms and provide conversation-aware autocomplete for responses in progress
or providing a list of suggested responses to a target status.

Researchers have recently observed critical problems applying end-to-end neural network
architectures for dialogue response generation [15, 16, 8]. The neural networks have been
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unable to generate meaningful responses taking dialogue context into account, which indicates
that the models have failed to learn useful high-level abstractions of the dialogue.

When we want a chatbot that learns from existing conversations between humans and
answers the complex queries, we need the intelligent models like retrieval-based or generative
models. The retrieval–based models pick a response from a collection of responses based on the
query. They do not generate new sentences and have always grammatically correct sentences.
The generative models are much more intelligent. They generate a response word by word
based on the query. They are computationally expensive to train, require huge amounts of data
and often have grammatical errors. They learn the sentence structure by themselves. But the
very important advantage of generative models over all the other types of the models is that
they are able to remember the previous conversations and handle previously unseen queries.

In this work we train the Sequence to Sequence model on the Ubuntu Dialogue Corpus
[6, 9, 10]. We train the generative model, which is generating the responses from scratch and
does not pick the response from the predefined set like retrieval-based models do. To our
knowledge, there was only one paper where the attention mechanism was used on the Ubuntu
Dialogue Corpus [11]. Our work was done independently and in parallel to the paper. We
also visualise attention weights to be able to see to which words the model attends to when
generating the output. Modelling was stopped when perplexity on the evaluation set stopped
decreasing by calculating moving average over the last steps. We also extend the input data
with user manuals in order to enrich it with the technical information. Extending the input
was already done for different tasks, like classification or response selection. We enlarge the
dataset for the response generation task.

2 Related Work

The Ubuntu Dialogue Corpus is the largest publicly available multiturn dialogue corpus and
is used for the task of response selection and generation [9]. There was considered a task of
selecting best next response using TF-IDF, Recurrent Neural networks (RNN) and Long Short-
Term Memory (LSTM). In the next utterance ranking task on the Ubuntu Dialogue Corpus
were evaluated performances of LSTMs, Bi-LSTMs and CNNs on the dataset and created an
ensemble by averaging predictions of multiple models [6]. The best classifier was an ensemble
of 11 LSTMs, 7 Bi-LSTMs and 10 CNNs trained with different meta-parameters.

The more interesting task that the response selection is response generation. Generative
models produce system responses that are autonomously generated word-by-word. They open
up the possibility for flexible and realistic interactions. Generative models were used for building
open domain, conversational dialogue systems based on large dialogue corpora [16]. There
was also introduced the multiresolution recurrent neural network (MrRNN) for generatively
modeling sequential data at multiple levels of abstraction [15]. MrRNN was applied to dialog
response generation on two different tasks: Ubuntu technical support and Twitter conversations,
and evaluated it in a human evaluation study and via automatic evaluation metrics.

To our knowledge, there was only one paper published recently with attention model on the
Ubuntu Dialogue Corpus (”Coherent Dialogue with Attention-based Language Models”) [11].
There was modeled coherent conversation continuation via RNN-based dialogue models. They
investigated how to improve the performance of a recurrent neural network dialogue model via
an attention mechanism. They evaluated the model on two dialogue datasets, the open domain
MovieTriples dataset and the closed domain Ubuntu Troubleshoot dataset. There was also
showed that a vanilla RNN with dynamic attention outperforms more complex memory models
(e.g., LSTM and GRU) by allowing for flexible, long-distance memory. The paper ”Coherent



Dialogue with Attention-based Language Models” was written independently and in parallel to
our work.

3 Sequence to Sequence Models

Here we discuss the difference between retrieval–based and generative models, explain RNNs
and LSTMs, describe encoder–decoder sequence to sequence architectures. After that we show
an interesting example of the attention mechanism, and why it is popular.

3.1 Retrieval-Based vs. Generative Models

Retrieval-based models pick a response from a fixed set and do not generate any new text. A
response is picked based on the input and context with the help of some heuristic (rule-based
expression match or an ensemble of Machine Learning classifiers). The responses are predefined.
Retrieval-based models are of course always grammatically correct. But picking the sentence
out of predefined set rarely makes much sense in Dialogue Systems. There are so many different
possibilities of conversations, that we really need to generate a new response instead of choosing
it.

Generative models is a harder task. There are no predefined responses. The new responses
are generated from scratch. These models are based on Machine Translation techniques, but are
also widely used for dialogue response generation. Generative models give the feeling of talking
to a human and unlike the retrieval-based models can refer back to the entities in the input.
Generative models require huge amounts of training data and are very hard to train. Also they
are likely to make grammatical mistakes, especially if the sentence is long. The research is
moving into the generative direction and in this work a generative model is built.

3.2 RNNs and LSTMs

In some machine learning algorithms (as well as neural networks) it is assumed that the inputs
and outputs are independent of each other. Obviously these models should not be used for
the text generation, where each word in a sentence heavily depends on the previous words.
This is where recurrent neural networks (RNN) come into play. They have a ”memory” which
captures information about what has been calculated so far. RNN performs the same task for
every element of a sequence and that is why is called ”recurrent”.

RNN is neural sequence model that achieves state of the art performance on important tasks
that include language modeling, speech recognition, machine translation and image captioning
[12, 4, 7]. They are widely used for natural language processing. In most cases LSTMs (Long
short-term memory), type of RNNs, are used since they are better at capturing long-term
dependencies [5]. The main difference between RNNs and LSTMs is that they have a different
way of computing the hidden state.

The LSTM contains special units called memory blocks in the recurrent hidden layer [14].
The memory blocks contain memory cells with self-connections storing the temporal state of the
network in addition to special multiplicative units called gates to control the flow of information.
Each memory block in the original architecture contained an input gate and an output gate.
The input gate controls the flow of input activations into the memory cell. The output gate
controls the output flow of cell activations into the rest of the network. Later, the forget gate
was added to the memory block [2].



Figure 1: An unrolled recurrent neural network

On the Figure 11 is a simple representation of the RNN with inputs xi and outputs hi.
RNNs have loops in them, allowing information to persist. It can be thought of as multiple
copies of the same network, each passing a message to a successor. Recurrent neural networks
are intimately related to sequences and lists because of it’s chain-like nature.

3.3 Encoder-Decoder Sequence to Sequence Architectures

In many applications, such as speech recognition, machine translation or question answering
the input and output sequences in the training set are generally not of the same length. RNN
can map an input sequence to an output sequence which is not necessarily of the same length.

Figure 2: Example of an encoder-decoder or sequence to sequence RNN architecture

On the Figure 2 is an example of an encoder-decoder or sequence to sequence RNN archi-
tecture [3]. It is used for learning to generate an output sequence (y(1),..., y(ny)) given an input
sequence (x(1),..., x(nx)). It is composed of an encoder RNN that reads the input sequence and
a decoder RNN that generates the output sequence (or computes the probability of a given
output sequence). The final hidden state of the encoder RNN is used to compute a generally
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fixed-size context variable C which represents a semantic summary of the input sequence and
is given as input to the decoder RNN.

The input to the RNN is often called the ”context”. C is a representation of this context. It
might be a vector or sequence of vectors that summarize the input sequence X = (x(1), ..., x(nx)).

The simplest RNN architecture for mapping a variable-length sequence to another variable-
length sequence was proposed recently and the state-of-the-art translation using this approach
was obtained [1, 17]. The idea is:

• an encoder or reader or input RNN processes the input sequence. The encoder emits the
context C, usually as a simple function of its final hidden state.

• a decoder or writer or output RNN is conditioned on that fixed-length vector to generate
the output sequence Y = (y(1), ..., y(ny)).

In a sequence to sequence architecture, the two RNNs are trained jointly to maximize the
average of logP (y(1), ..., y(ny)|x(1), ..., x(nx)) over all the pairs of x and y sequences in the training
set. The last state hnx

of the encoder RNN is typically used as a representation C of the input
sequence that is provided as input to the decoder RNN.

3.4 Attention Mechanism

An attention mechanism was introduced by Bahdanau, Cho, and Bengio [1]. It is used in the
model to allow the decoder more direct access to the input. The decoder peeks into the different
parts of the source sentence at each step of the output generation. The full source sentence is
no longer encoded into a fixed-length vector. Now the model learns what to attend to based on
what it has produced so far as well as on the input sentence.

On the Figure 3 below st is an RNN hidden state for time t, y’s are the translated words
produced by the decoder, and the x’s are the source sentence words [1]. The a’s are weights
that define in how much of each input state should be considered for each output. For example,
a1,3 shows how much attention the decoder pays to the third state in the source sentence while
producing the first word of the target sentence. Each decoder output word yt now depends not
only on the last state, but also on a weighted combination of all the input states.

Figure 3: The graphical illustration of the model generating the t-th target word yt given a
source sentence (x1, x2, ..., xT )



Illustration of the attention mechanism is on the Firgure 4 [1]. The source sentence is
in English and the generated translation is in French. Each pixel shows the weight αij of
the annotation of the j-th source word for the i-th target word in grayscale (0: black, 1:
white). ”La destruction” was translated from ”Destruction” and ”la Syrie” from ”Syria”, so
the corresponding weights are non-black.

Figure 4: Attention mechanism example for word sequences

4 Experimental Results

Due to very long input sequences and a very large dataset, the maximum batch size we could
fit into TITAN X with 12 GB for the model with 2 layers, 1024 units each was 30. This is very
small compare to 0,5 million data instances, which made the training process of such a large
model very slow.

Responses generated by the model were always grammatically correct and different, suitable
as response or not, but very generic. That is why we did not evaluate them using different
metrics such as BLEU or METEOR, but used perplexity, visualized attention and looked at
the generated responses.

When training the model statistics was printed and model was saved as checkpoint every 50
steps. During a step the model was trained using one batch. We also calculate moving average
over last 3000 steps since the perplexities every 50 steps were very different and hard to follow.

We stopped the training process when the perplexity on the evaluation set stopped decreas-
ing. On the Figure 5 is an example of how the perplexity on the evaluation set decreases over
time. On the X axis are the number of steps, and on the Y axis is the perplexity. This model
was trained on TITAN X with 12 GB for 10 days. The training takes that long due to large
input sequences, big number of dialogues and using attention, which further makes the model
bigger and more difficult to train. This model had 2 layers with 1024 units each.

An interesting observation on Figure 5 is that the perplexity of the smallest bucket is very
close to the perplexity on the training set. The perplexities for bigger buckets are larger: the
smallest perplexity is reached for the smallest bucket, and the largest perplexity is reached for



Figure 5: Decreasing of perplexity while training the model

the biggest bucket (bigger bucket - larger perplexity). This shows that it is more difficult for
the model to memorize longer sequences then shorter sequences, as expected.

The responses generated by the models were very generic. The reasons for that may be that
the beam search was not used and that the ”I don’t know” and ”I am not sure” are indeed
the most common answers on the Ubuntu Dialogue Corpus. We show some examples of the
response generated (* indicates the response generated by the model and + is the real answer
by the user).

Example

B: sorry i have no idea what that is
B: You can disable luks password prompt at boot by adding ”rd NO LUKS” kernel flag to
grub.conf
A: yah!! where, grub.cfg? syntax please. thanks
A: whats the syntax for rd NO LUKS? where to put in grub file
B*: I don ’ t know , sorry
B+: it doesn’t say
B+: can you reformat the disk?



When we take a closer look on the other words the model generated as candidates, we notice
much more variety among them (for now we cannot see the other possible responses, as we did
not use beam search and this is an idea for the future work). So on the Figure 6 we show the
top 10 generated tokens - candidates for each word in the output response:

Figure 6: Top 10 most probable tokens for each word in the generated response

First items from each row on Figure 6 form the output ”I don’t know, sorry” for the dialogue
above, since it is one of the most safe answers.

An interesting way to see how the attention is used by the model is to visualise it. On
the Figure 7 are the attention weights visualised (darker square - bigger weight). The X axis
represents the input dialogue and the Y axis shows the output response.

Figure 7: Visualisation of the attention weights

On the Figure 7 we can see, that the model was paying more attention to the words ”pulse”
and ”sound” when generating the output response for the dialogue below. The generated
response is A*.

Example

A: Any idea why empathy’s not playing notification sounds? Even though I have ’em ticked
in preferences
B: restarted it yet?
A: yar



B: check pulse to see if the application is muted for some reason?

B: well Sound settings.

A: Had sound effects turned off in sound settings, didn’t realize that controlled other

applications

B: Ah yea, ive done it a few time it’s annoying

B: My favorite though is recently pulse has been freezing on my desktop and audio will just

not be adjustable for like... 30 seconds or so

A*: I’m not sure, I’m not sure if it’s a problem with the sound card.

In conclusion we can say, that the model tends to give grammatically correct and different,
but generic responses. We believe that adding beam search will give the possibility to see the
other responses as well and choose the one among them.

Consider the next example. The user B at the end was giving the instructions what to do.
The model generated response ”thanks, I’ll try that”, which is suitable in this case. In any
case, there is enormous number of different possible responses, and every human would answer
differently.

Example

A: how do I create a folder from the command line?

A: ooooookay, how do I restart a process? kill and start? or is it easier? :P

B: depends on the process... who is it owned by? is it a system service?

A: nautilus

A: it seems to randomly lock up, so I was going to assign a keyboard shortcut to restart it,

only to find out I don’t know how to restart a process, or if it’s even possible...

B: Use the ”kill” command to send processes signals telling them to exit. You need the

process id to use ”kill” e.g. kill -TERM 1234. You can also use ”killall some-process-name”

e.g. killall nautilus

A*: thanks, I’ll try that

A+: so there’s no restart?

5 Challenges with Application in Industry

Machine learning and text mining methods are now widely used in industry. However, there are
still many open challenges when implementing the chatbots. The deep learning based dialogue
response generation models make it very hard to control the flow of the conversation. It is
difficult to know when a discussion was successful and a case can be ”closed”. It is as well
problematic to incorporate company knowledge into the process. In those ”non goal driven”
dialogue generation methods, it’s of course also hard to include process knowledge (i.e. the
chatbot should always ask for some insurance number in certain cases) - it may learn this from
previous conversations or not.

Another task would be to keep track of the ”state” of the conversation. For instance, a
customer wants to know whether he has warranty for a broken notebook screen. In this case,
the system needs to know when the notebook was purchased and whether it was damaged in an
accident (or is a manufacturing problem). Once the system has this information, it can actually
answer the original request of the customer.



6 Conclusion and Future Work

Dialogue response generation is still a challenge. Every human has his opinion and would
answer differently to the questions in the same situations. Even the same person would answer
differently to the same question depending on his mood and when you ask.

Dialogue response generation is more difficult then the question answering since the input
to the model is not a question, but a dialogue, and we consider the dialogues up to 160 tokens
long. Nevertheless we try to build the deep learning model to generate the responses the human
would give.

As evaluation metric we used perplexity and stopped the training when the perplexity on
the evaluation set stopped decreasing. Due to the large input size, long sequences and using
attention mechanism, the model used was large (e.g. 2 layers, each with 1024 units). Training
time of such a model was around 10 days on TITAN X with 12 GB. The responses produced by
the models were always grammatically correct, different, but generic. We believe that further
improvements to the model, like using beam search will help to overcome this issue.

The reason why our models produce such generic responses could be that the beam search
was not used while decoding. It is currently not implemented in TensorFlow models, so there
is still work to be done. As our research showed, the model without beam search produces very
generic responses in the dialogue response generation task. When displaying the best suitable
words for the response proposed by the model, we observe, that the model generated many
more possible responses to choose from. With the beam search we will be able to see them
and then pick the best one. For now the model picks the highest probable response, which is
natural and logical since the answer ”I am not sure, sorry” indeed can be given as response to
any possible question.

In this work we used the manpages as additional knowledge. Another way would be to
include the different type of knowledge from Ask Ubuntu2 (a question and answer site for
Ubuntu users and developers). In this case we would search through the website, find the most
relevant question for each dialogue and then condition on the answer to the question (or both
the question and the answer).

Another interesting idea for the future work would be to compare the performance differ-
ence between a model using attention and another model not using attention. Here the
availability of a GPU with large RAM should be considered, as well as possible large amount
of training time.

When analysing results we looked at perplexity, visualised attention weights and analysed
the model responses. But due to very generic responses generated by the model we did not
evaluate the results using all the evaluation metrics described before. During this work many
different evaluation metrics where analysed and compared. So, when better results are available
they can be analysed using another measures.

We implemented additional knowledge into the model appending it to the input sequence.
Another way would be to add the manpage information in a separate encoder RNN, and
then perform attention on this jointly. This would be better because the model can easily
separate out dialogue history from the technical manpages. For example, the model could learn
a separate attention mechanism for the dialogue history and for the man pages. It would also
shorten the length of the encoding sequences, which helps to reduce long-term dependencies.

2www.askubuntu.com
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