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Abstract. Information retrieval approaches are considered as a key technology
to empower lay users to access the Web of Data. A large number of related
approaches such as Question Answering and Semantic Search have been developed
to address this problem. While Question Answering promises more accurate results
by returning a specific answer, Semantic Search engines are designed to retrieve the
best top-K ranked resources. In this work, we propose *path, a Semantic Search
approach that explores term networks for querying RDF knowledge graphs. The
adequacy of the approach is evaluated employing benchmark datasets against state-
of-the-art Question Answering as well as Semantic Search systems. The results
show that *path achieves better F1-score than the currently best performing
Semantic Search system.

1 Introduction

The growth of Semantic Web technologies has led to the publication of large volumes
of data. Approximately 10 000 Resource Description Framework (RDF)4 datasets are
available via public data portals.5 However, retrieving desired information from datasets
still poses a significant challenge. Lay users cannot be expected to make themselves
familiar with the underlying query languages and modeling structures.

A major challenge is the efficient retrieval of the resource that best represents the
user’s intent via natural language (NL) keyword queries. Relying solely on off-the-shelf
triple stores or document retrieval may lead to poor performance or precision (see
Section 5). To address this problem, we propose an approach for Semantic Search RDF
knowledge graphs by exploring its Term Network. A Term Network (see Section 4) is a
graph whose vertices are labeled terms. Overall, our contributions are as follows:

– We develop a new formal model for Semantic Search (SemS) based on Term
Networks;

– We present a ranking method that increases the precision on retrieving RDF data;
– We compare our approach with state of the art SemS techniques on the QALD-4 [17]

benchmark and show that we achieve a higher F1-score.

The rest of this paper is organized as follows: The related work is reviewed in
Section 2. Section 3 defines the preliminaries. Section 4 describes the *path model.
Section 5 outlines the evaluation and discusses the results. Finally, Section 6 concludes
giving an outlook of potential future work.

4 http://www.w3.org/RDF
5 http://lodstats.aksw.org/
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2 Related Work

Information retrieval (IR) over Linked Data is an active and diverse research field with
many existing related work focusing on designed for different environments, diverging
in complexity and precision. The related work can be mainly categorized in two types of
approaches that recover information from Linked Data Knowledge Graphs (KGs, see
Definition 1): (1) by using conventional IR techniques and (2) by answering natural
language questions. While the use of time efficient traditional IR systems lacks the ability
to deal with complex queries, they are usually faster. Wang et al. [19] shows that pure
traditional IR engines are faster than the combination of a triple store with a full-text
index. However, both models explore the semantics of an NL query for delivering the
response by applying statistics measures and heuristics in the KG.

Semantic Search (SemS) approaches aim to retrieve the top-k ranked resources for a
given NL input query. Swoogle [3], introduces a modified version of PageRank that takes
into account the types of the links between ontologies. Sindice [10], Falcons [2] and
Sig.ma [16] explores traditional document retrieval to index and locate relevant sources
and/or resources. Sindice is a search engine that can retrieve documents containing a
given statement. Falcon, uses a built-in ranking mechanism for entity ranking while
Sig.ma allows the use of constraints to query for particular classes and/or properties. In
all cases, the structure and semantics are not taken into account during the matching
phase.

YAHOO! BNC [4] used a local, per property, term frequency as well as a global
term frequency. It also applied a boost based on the number of matched query terms.
Umass [4] explored existing ranking functions applied to four field types: (1) title; (2)
name; (3) dbo:title, and; (4) all others. The fields were weighted separately with a
specific boost applied to each of them.

Later, Blanco et al. [1] proposed a modified version of BM25F ranking function
adapted for RDF data. The function was applied to a horizontal pairwise index structure
composed of the subject and its property values. However, the most important feature in
the proposed structure is the possibility to assign different weights to predicates. The
proposed adaptation is implemented in the GlimmerY! engine and is shown to be time
efficient as well as outperforms other state-of-the-art methods in ranking RDF resources.

Recently,Virgilio et al. [18] introduced a distributed technique for SemS on RDF
data using MapReduce. The method uses a distributed index of RDF paths. The proposed
strategy returns the best top-k answers in the first k generated results. The retrieval is
done by evaluating the paths containing the terms of the query using two strategies: (1)
Linear and (2) Monotonic. (1) The Linear strategy uses only the high ranked path(s).
As a consequence, it does not produce an optimum solution but has linear complexity
with respect to the size of matched entities. (2) The Monotonic strategy uses all matched
paths and, thus, produces better results. Intuitively, measuring all suitable paths from all
entities is less time efficient. Please refer to the work of Mangold et al. [8] for a more
detailed analysis of SemS approaches.

One of the biggest challenges in SemS method lies in evaluating the relatedness
between the terms in a KG and an NL query. Document retrieval engines rely on term
frequency weighting, which is based on the assumption, that the more frequently a term
occurs, the more related it is to the topic of the document [7]. While good retrieval
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performance needs to take the frequency into account, it suffers from frequent yet
unspecific words such as “the”, “a” or “in”. Inverse document frequency corrects this by
diminishing the weight of words that are frequently occurring in the corpus, leading to the
combined term frequency–inverse document frequency (tf-idf) [15] to score documents
for a query.

3 Preliminaries

We begin by introducing a formal definition of the RDF model. Thereafter, we introduce
fundamental concepts that are required for full understanding of the rest of the paper.

RDF6 is a standard for describing Web resources. A resource can refer to any
physical or conceptual thing, such as a Web site, a person or a device. The RDF data
model expresses statements about resources in the form of subject-predicate-object
triples. The subject denotes a resource; the predicate expresses a property (of the subject)
or a relationship (between subject and object); the object is either a resource or literal.
Resources are identified with IRIs, a generalization of URIs, while literals are used to
identify values such as numbers and dates by means of a lexical representation.

Definition 1 (RDF knowledge Graph, KG). Formally, let K be a finite RDF knowl-
edge graph (KG). K can be regarded as a set of triples (s, p, o) ∈ (I ∪ B)× P × (I ∪
L ∪ B), where R = I ∪ B is the set of all RDF resources r ∈ R in the KG, I is the
set of all IRIs, B is the set of all blank nodes, B ∩ I = ∅. P is the set of all predicates,
P ⊆ I. L is the set of all literals, L ⊂ Σ∗ and L ∩ I = ∅, where Σ is the unicode
alphabet. E is the set of all entities, E = I ∪ B \ P . An RDFTerm ϕ refers to any edge
label p ∈ P or vertex in the KG ϕ ∈ (I ∪B∪L). A KG is modeled as a directed labeled
graph G = (V,D), where V = E ∪ L, D ⊆ E × (E ∪ L) and the labeling function7 of
the edges is a mapping λ : D 7→ P . We disregard literal language tags and data types.

Figure 1 shows an excerpt of a KG where a literal vertex vi ∈ L (respectively
a resource vertex vi ∈ R) is illustrated by a rectangle, respectively an oval. Each
edge between two vertices corresponds to a triple, where the first vertex is called the
subject, the labeled edge the predicate and the second vertex the object. For example,
e2 rdfs:label−−−−−−−→ Mona Lisa corresponds to the triple <e2, rdfs:label, "Mona
Lisa">.

In this work, we address the problem of SemS systems that aim to retrieve the top-k
ranked entities representing the intention behind an NL user query.

Definition 2 (Natural Language Query). A NL query q ∈ Σ∗ is a user given keyword
string expressing a factual information needed.

4 Approach

For many years, scientists from the most diverse fields of cognitive science have tried to
explain and reproduce the human cognition system, including psychology, neuroscience,

6 https://www.w3.org/TR/REC-rdf-syntax/
7 Not to be confused with rdfs:label.
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Fig. 1. An excerpt of a KG. The label of rdfs:label properties were omitted for simplification.

philosophy, linguistics and artificial intelligence. While diverse theories have been
developed, a commonly shared idea is that knowledge is organized as a network [12].
Hudson et al. [6] go further and states that grammar is organized as a network as
well. According to Hudson’s work, the syntactic structure of a sentence consists of
a network of dependencies between single terms. Thus, everything that needs to be
said about the syntactic structure of a sentence can be represented in such a network.
Hudson explores Saussure’s [13] idea that “language is a system of interdependent terms
in which the value of each term results solely from the simultaneous presence of the
others”. He also argues about the psycholinguistic evidence for the use of spreading
activation in supporting knowledge reasoning. However, according to Hudson et al.,
the main challenge is finding out how the activation occurs in mathematical terms [6].
Our intuition is that as the KG contains a network of terms formed by the label (e.g.
rdfs:label) of the RDFTerms—properties, classes and entities—they can be used to
query.

Definition 3 (Term). A term8 can be a word or a phrase used to describe a thing or to
express a concept [11]. In this work we consider as term any literal (l ∈ L) in a KG.

Definition 4 (RDFTerm Label). A term associated with an RDFTerm ϕ, denoted by
L(ϕ), is the literal respectively the label of ϕ. Considering the rdfs:label9. as
labeling property:

label(r) :={l ∈ L | (r,rdfs:label, l) ∈ K}

L(ϕ) :=

{
{ϕ} if ϕ ∈ L,
label(ϕ) otherwise.

}
Although there is no evidence that the previous works were influenced by Hudson’s

theory, there are models that make use of the KG in order to evaluate the answer [20,14].
Figure 1 shows a set of literals associated with the resources in the KG sample. Each
resource contains a set of terms LR(r). This terms are called Resource-Associated Terms
and are defined as follows:

8 Not to be confused with an RDFTerm.
9 Other labeling properties may also be used.
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Definition 5 (Resource-Associated Terms). The set of terms associated with a re-
source r denoted by LR(r) is the union of all literals as well as labels of each property
and object in the triples in which r is the subject.

LR(r) :={l ∈ L | ∃(r, p, o) ∈ K :

∃ϕ ∈ {p, o} : l = L(ϕ)}

Example 1 (Resource-Associated Terms). Considering the KG depicted in Figure 1, the
triples having the entity e2 as subject are as follows:

1. e2 rdfs:label "Mona Lisa".
2. e2 dbo:artist e1.

The associated terms for e2 are: LR(e2) = { "label", "Mona Lisa", "artist",
"Leonardo da Vinci"}

Definition 6 (Term Network). A Term Network is a graph whose vertices are labeled
with terms.

A KG can be converted to a TN by visiting all vertices and edges executing the
following operations (Fig. 2 shows the TN for Example 1):

1. Labeling edges and non-literal vertices by a copy of their respective labels defined
by the labeling property rdfs:label;

2. Converting edges to vertices.

Mona Lisa

artist

Leonardo da Vinci

label

Mona Lisa

Fig. 2. Representation of a TN extracted from the triples that have e2 as subject from the KG
depicted in Fig. 1.

The TN of a KG is connected and its paths can have cycles as well as an arbitrary
length. In order to simplify the TN and eliminate its ambiguity, the proposed model
works on a simplified version of the TN extracted from a structure called Semantic
Connected Component (SCC), defined as follows:

Definition 7 (Semantic Connected Component). The Semantic Connected Compo-
nent (SCC) of an entity e in an RDF graph G under a consequence relation |= is defined
as SCCG,|=(e) := {(e, p, o) | G |= {(e, p, o)}} ∪ {(p, rdfs:label, l) ∈ G} ∪ {(o,
rdfs:label, l) ∈ G}}. If the graph and consequence relation is clear from the context,
we use the shorter notation SCC(e). Within this paper, we use the RDFS entailment
consequence relation as defined in its specification10.
10 http://www.w3.org/TR/rdf-mt/
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Example 2 (Semantic Connected Component). For instance, by RDFS entailment, the en-
tity dbr:Australia is a dbo:PopulatedPlace. The inference is due to dbr:Australia
being typed as dbo:Country which is a subclass of dbo:PopulatedPlace. Con-
sidering the running example, the SCC of the entity e2 is SCC(e2) = ({e2, e1,"Mona Lisa"},
{p5, p4}).

e2

Mona Lisa

artist

Leonardo 

da Vinci

e1

rdfs:label
dbo:artistrdfs:label

rdfs:label

Fig. 3. Representation of the SCC of the entity e2 extracted from the KG depicted in Fig. 1.

The structure used for and ranking is called Semantic Unit (SU). The SU is a tree,
where the nodes starting from its root node are labeled with tokens and have only one
child. Tokens are sub-strings extracted from another string, they are formally defined as
follows.

Definition 8 (Token). A token t ∈ T is the result from a tokenizing function T : Σ∗ →
Σ∗∗, which converts a string to a set of tokens.

The root node sub-trees of the SU form a set of paths starting from the resource to
which the SCC is associated, see Fig. 4. The SU is defined as follows:

Definition 9 (Semantic Unit (SU)). The Semantic Unit is a tree where:

– The root node is an entity;
– All vertices in the root node sub-trees only have one child, and;
– Vertices in the root node sub-trees are labeled with tokens.

Example 3 (Semantic Unit (SU)). Considering the running example, the SU of the
entity e2 is SU(e2) = ({ e2,v1,v2,v3,v4,v5,v6,v7}, {(e2, v1), (e2, v5), (v1, v2), (v2, v3),
(v3, v4), (v5, v6), (v6, v7)})11 and is depicted in Fig. 4.

An SCC can be converted into an SU as follows:

1. Converting the sub-trees starting from the root node of the SCC into TN;
2. Converting the literal vertices to a graph where there is an edge starting from each

token to its subsequent one, defined as follows:

G(l) := (T (l),D(l))
D(l) := {(t1, t2) ∈ T (l) | ∃i ∈ N : (πi(T (l)) = t1) ∧ (πi+1(T (l)) = t2)}

11 The output of the tokenizer used in this example are lowercase lexemes from a literal.

http://dbpedia.org/resource/Australia
http://dbpedia.org/ontology/PopulatedPlace
http://dbpedia.org/resource/Australia
http://dbpedia.org/ontology/Country
http://dbpedia.org/ontology/PopulatedPlace
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Fig. 4. Representation of the SU of the entity e2 extracted from the KG depicted in Fig. 1.

Example 4 (Literal to graph). Converting the term "mona lisa" to a graph.

G("mona lisa") = ({"mona","lisa"}, {("mona","lisa")})

In the following sections, we start by describing how we retrieve SU in the KG using
the query terms. Later, we discuss how we can efficiently rank it.

4.1 Retrieving

The idea is to perform the selection of SUs which have a term in intersection with the
query terms. For instance, one possible solution for {"mona", "lisa", "artist"}
is the co-occurrence of all terms in a SU. The next possible solution is the co-occurrence
of two of the three terms and so on. Thus, it is necessary to check for the existence of the
query terms in different paths. For example, one SU may contain the token "artist"
and another with the tokens ("mona","lisa"), see Example 5.

Example 5 (Retrieving "Mona Lisa artist"). In the KG in Fig. 1, the SCC con-
taining the answer for the query {"mona","lisa","artist"} is SCC(e2) and can
be retrieved by a simple lookup with a SPARQL query.

Query and Resource Labels Analysis Information retrieval systems for RDF are com-
monly designed to support full or keyword NL queries. However, converting keywords
to full queries is a more challenging task. The *path query approach is designed to
deal with keyword or full queries by converting the latter into keyword queries. The
process of conversion of a NL input query to a tuple of keywords consists of applying
known techniques, in order: (1) lowercase and (2) lemmatization. In order to increase
the number of matched SUs, the same analysis is applied to the SU labels.

After extracting the SUs, the SCC of the SU’s entity is used for ranking.

4.2 Ranking

Document retrieval approaches are not suitable for RDF because the most important
feature of RDF is not the terms, but the relation of the concepts underlying its graph
structure. The challenge of adapting the ranking method is measuring the relatedness
between the resources in the target KG and the input query terms. As a query rarely
exactly matches the resource associated terms, both are first converted into tokens.
Thereafter, the proposed ranking assumes that the probability of a resource being part
of an answer correlates with the number of matched tokens between the query and the
resource associated terms. For instance, a query containing birth date should be more



related to the property dbo:birthDate than to the property dbo:deathDate or
dbpprop:date. The strength is measured by the number of query tokens matching
with the resource tokens.

Definition 10 (Resource Matching). A resource matching is a functionMT : T → 2R

that maps query tokens T = {t1, t2, t3...tn} to resources, formally defined by MT(t),
where δ is a string dissimilarity function and θ ∈ [0, 1] ⊂ R:

MT (t) := {r ∈ R | ∃t′ ∈ T (LR(r)) : δ(t, t′) < θ}

Example 6 (Resource Matching). Let T (q) = {"mona","lisa","artist"}. Ac-
cording to Fig. 1, the tokens are mapped to: MT ("mona")={e2}, MT ("lisa")=
{e2}, MT ("artist")={p4}.

As the knowledge base is a graph, the resources and literal values are connected by
paths formed by edges and vertices, see Fig. 3.

Example 7 (Path). In the SCC shown in Fig. 3, there are two paths starting from the
entity e2 as follows: γ1= ((e2,"Mona Lisa")) and γ2 = ((e2, e1)).

Furthermore, resources belonging to a path between one resource to another are
labeled (e.g. rdfs:label). Therefore, it is possible to explore the terms associated to
the entity’s paths to determine its relevance.

Definition 11 (Path terms). Path terms are the set of all literals in the path γ, defined
as follows:

LP (γ) := {l | ∃ϕ ∈ γ : l ∈ L(ϕ)}

Example 8 (Path terms). For Example 7, the set of associated terms for the two given
paths are as follows:LP (γ1)= {"label","Mona Lisa"} andLP (γ2) = {"artist",
"Leonardo da Vinci"}.

Thus, the relevance score of an entity depends on the number of matched terms in its
associated paths. The higher the number of matched terms, the higher the relevance of
the entity. Furthermore, if a term matches multiple paths of an entity, it is only attributed
to the path with the highest number of matched terms. The relevance score of an entity
is the sum of all individual path scores; it is measured by the Semantic Weight Model
(SWM), which is formally defined as follows.

Definition 12 (Semantic Weight Model (SWM)). Each token t in T (q) is first mapped
to the paths of the SCC S. The set of matched tokens from a path γ is returned by the
function TP (γ, q). A path match of an SCC S is evaluated by the function MTP(γ, q, S)
using a path weighting function w : D+ → R.

TP (γ, q) :={t ∈ T (LP (γ)) | ∃t′ ∈ T (q) : δ(t, t′) < θ}
MTP(γ, q, S) :={t ∈ TP (γ, q) | ∀γ′ ∈ D(S)+ : w(γ)|TP (γ, q)| ≥ w(γ′)|TP (γ′, q)|}

http://dbpedia.org/ontology/birthDate
http://dbpedia.org/ontology/deathDate
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The final score of an SCC S is a sum of its n path-scores and is measured by the
function score(S), as follows:

score(S) =
∑

γ∈D(S)+

{
w(γ)|TP (γ, q)| if MTP(γ, q, S)6= ∅,
0 otherwise.

In case there are terms matching multiple paths and the paths have equal number of
matched terms and equal score, only one of the path scores is added to the SCC score.

The SWM assigns different weights based on the RDF properties on the path. This
means that the weight of a term in a path is determined by the type of the properties (label,
is-a relation, other) on that path and it acts as a tiebreaker for the paths with equal number
of tokens. The weight hierarchy of paths is constructed to allow the exploration of the
KG by querying entities by type, label, predicates and objects. Since terms extracted
from resources can have overlaps, there is a need for providing a disambiguation method.

Weighing Following we start explaining the rationality behind the defined weights, later
we use examples to better illustrate it.

Is-a relation The problem is that tokens can exist in different paths of an SCC. Thereafter,
a token in an is-a relation property can also exists in other properties. However, a property
as an entity label references the entity itself while an is-a relation references classes
of entities. In this case, if a query intends to select a specific class of entities, other
entities can be retrieved by mistake. Thus, it is important to provide an efficient method
to disambiguate between classes and entities. To alleviate this problem, the weight of the
paths containing an is-a relation property are set higher than other paths. Thereafter, the
selection of a specific entity can be done by building a more precise query. The reason is
that beside the entity’s label, other properties can be used to disambiguate. For instance,
in the case of a class and an entity have the same label, the user can use other entity
property’s term. Therefore, the highest weight is assigned to paths with an is-a relation
property γt—i.e. the paths containing rdf:type.

Entity label The second highest weight is assigned to labeling property paths γl—i.e.
the paths containing the rdfs:label property—and those are assigned higher values
than other property paths γo. Entities can be referenced multiple times in a KG, but
when a query contains an entity label, it is more likely that it is looking for the entity
than for its references—an object instance. Therefore, to prevent entities with references
to be higher ranked than the entity itself, the weight of the path with an labeling property
is set higher than a path with another property.

Despite the different weights, we still want a higher number of matched tokens to
score higher in practical cases, i.e. n + 1 matched tokens should score higher than n
matched tokens for reasonably low n:

(n+ 1)w(γt) > (n+ 1)w(γl) >

(n+ 1)w(γo) > nw(γt) >

nw(γl) > nw(γo)

(1)

Following, the model is explained using examples.

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/2000/01/rdf-schema#label


Case 1: Querying by entity label For the query “Rio de Janeiro”, the SWM should
consider the DBpedia entity dbpedia:Rio de Janeiro as the best answer although
the DBpedia entity dbpedia:Tom Jobim has the DBpedia property dbpprop:
birthPlace referencing the entity dbpedia:Rio de Janeiro. For the term
“The” in a query, the model will consider as a possible answer the entities dbpedia:
The Simpsons and dbpedia:The Beatles rather than the DBpedia property
dbpprop:The GIP.

Case 2: Querying by is-a relation Considering the query “place”, the implemented SWM
will prefer the data type dbo:Place instead of the property dbo:place.

Case 3: Querying by another properties Let us consider the case that the query is
“birth place” rather than “place” as in the previous example. As the number of matching
terms in the property dbo:birthPlace is higher than for the data type dbo:place,
consequently the weight of dbo:birthPlace will be higher than the data type.

5 Experimental Evaluation

We evaluate the performance of *path in comparison to the state-of-the-art SemS
system as well as QA in terms of Precision, Recall and F-measure. To the best of our
knowledge is the first time that the precision of both approaches are measured in the
same benchmark.

Benchmark Several benchmarks can be used to measure the precision of our approach,
including benchmarks from the initiatives SemSearch [4]12 and QA Over Linked Data
(QALD)13. SemSearch is based on user queries extracted from the YAHOO! search
log, with an average distribution of 2.2 words per-query. QALD provides both QA and
keyword search benchmarks for RDF data that aim to evaluate the extrinsic behavior
of systems. The QALD benchmarks are the most suitable for our evaluation due to the
wide type of queries they contain and also because it makes use of DBpedia, a very large
and diverse dataset. In this work, we use openQA framework [9] over the newest version
of the QALD benchmark compatible with the framework—QALD version 4 (QALD-4)
benchmark [17]. The proposed approach was compared with respect to the performance
of GlimmerY! because it is the best performing SemS system and it is open-source, which
allows to evaluates its performance.

Results Table 1 shows the performance of *path in comparison to GlimmerY!, the
state-of-the-art SemS system [1], and all participating QA systems in the multilingual
challenge of the QALD-4 benchmark.

12 http://km.aifb.kit.edu/ws/semsearch10/
13 http://greententacle.techfak.uni-bielefeld.de/˜cunger/qald/
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System P R F1 Approach

Xser 0.71 0.72 0.72 QA
gAnswer 0.37 0.37 0.37 QA
CASIA 0.40 0.32 0.36 QA
*path 0.30 0.30 0.30 SemS
Intui3 0.25 0.23 0.24 QA
ISOFT 0.26 0.21 0.23 QA
SINA 0.15 0.15 0.15 QA
RO FII 0.12 0.12 0.12 QA
TBSL 0.10 0.10 0.10 QA
GlimmerY! 0.07 0.07 0.07 SemS

Table 1. Precision (P), Recall (R) and F-measure (F1) achieved by different SemS and QA
systems in QALD-4 Multilingual Challenge. The systems are GlimmerY!, *path, SINA, TBSL
and all QALD-4 participating systems.

Discussion The proposed approach is faster than the best SemS participating in Sem-
Search’10. The main reason is that GlimmerY! build an an index without reasoning
which imposes constraints on the precision (Table 1). The index without reasoning
is a core limitation of GlimmerY!, since the user cannot query by using terms from
properties as well as from entity objects. For instance, in Case 1 in Section 4.2,
GlimmerY! fails to retrieve dbpedia:Tom Jobim because the terms of the entity
dbpedia:Rio de Janeiro belonging to the property dbpprop:birthPlace
are not indexed. The same occurs for the data type in Case 2 where the type is also
given by a non-literal object. However, the F-measure of *path decreases sensitively
(0.42) in comparison with the best performing QA system in QALD-4. The drawback
is due to *path does not target the treatment of complex queries—i.e., queries that
require the use of aggregations, restrictions as well as solution modifiers to be answered.

6 Conclusion, Limitations & Future Work

We have presented a novel ranking method for SemS over KGs. The results of an
experimental study show a significant improvement in comparison to the state-of-the-art
SemS. Furthermore, the approach achieves comparable precision when compared with
QA systems.

There are a few challenges not addressed in the current implementation as complex
queries [5]. In future work, we plan to extend the precision of this approach by addressing
the mentioned challenges. Furthermore, we plan to investigate indexing techniques. We
see this work as the first step of a larger research agenda for SemS over Linked Data.
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