
Simplified RDB2RDF Mapping

Claus Stadler
∗

Department of Computer
Science, University of Leipzig,

Germany
cstadler@informatik.uni-

leipzig.de

Jörg Unbehauen
Department of Computer

Science, University of Leipzig,
Germany

unbehauen@informatik.uni-
leipzig.de

Patrick Westphal
Department of Computer

Science, University of Leipzig,
Germany

pwestphal@informatik.uni-
leipzig.de

Mohamed Sherif
Department of Computer

Science, University of Leipzig,
Germany

sherif@informatik.uni-
leipzig.de

Jens Lehmann
Department of Computer

Science, University of Leipzig,
Germany

lehmann@informatik.uni-
leipzig.de

ABSTRACT
The combination of the advantages of widely used relational
databases and semantic technologies has attracted signifi-
cant research over the past decade. In particular, mapping
languages for the conversion of databases to RDF knowledge
bases have been developed and standardized in the form of
R2RML. In this article, we first review those mapping lan-
guages and then devise work towards a unified formal model
for them. Based on this, we present the Sparqlification Map-
ping Language (SML), which provides an intuitive way to
declare mappings based on SQL VIEWS and SPARQL con-
struct queries. We show that SML has the same expressivity
as R2RML by enumerating the language features and show
the correspondences, and we outline how one syntax can be
converted into the other. A conducted user study for this
paper juxtaposing SML and R2RML provides evidence that
SML is a more compact syntax which is easier to understand
and read and thus lowers the barrier to offer SPARQL access
to relational databases.

1. INTRODUCTION
Despite the success of semantic technologies, a large share

of structured knowledge still resides in relational databases.
For this reason, significant research effort has been invested
by the Semantic Web community into making relational
databases available as RDF.

Due to the strong interest in this area, several approaches
and languages for mapping relational data to triples have
been devised, in particular the W3C standard R2RML1.

∗Corresponding Author
1http://www.w3.org/TR/r2rml/

WWW2015 Workshop: Linked Data on the Web (LDOW2015).
Copyright is held by the author/owner(s).

While having a standard itself is of high importance, we
argue that R2RML has some drawbacks on the syntactical
level: Writing RDF views in R2RML is very verbose and
arguably not as intuitive as it could be. The choice of us-
ing RDF as base syntax for R2RML has the advantage that
people writing mappings can be expected to know RDF.
However, there is a significant gap between the relational
database structure and the structure of the R2RML map-
ping specifications. While graphical editors, such as [11][7],
partially mitigate the problem of having to write those map-
ping definitions, these also have their limitations. In par-
ticular, they would have to support both, the full feature
set of the mapping language while still be efficient to work
with and producing human readable output. Moreover, in
some environments, Web based editors in the spirit of ph-
pmyadmin2 may pose security risks or are not convenient,
since many database and RDF experts are simply used to
work on text files and textual representations of data and
queries. While they appreciate unobtrusive help, like syn-
tax checking or code completion, a graphical user interface
might impose an unfitting work flow, for example when an
administrator is used to be able to perform small database
related tasks via a command line interface. In this work,
we introduce the Sparqlification Mapping Language (SML)
as a human friendly alternative to R2RML. It is notewor-
thy, that non-RDF syntaxes for which RDF-based versions
exist are commonly used the Semantic Web. For example,
while e.g. OWL ontologies can be written directly in RDF,
Manchester OWL Syntax3 is a popular and concise alter-
native used in the primer of the OWL 2 specification itself.
As another example, while SPARQL queries in principle can
be written in RDF using the SPIN SPARQL Syntax4, it is
uncommon to do so unless special use cases demand this.

SML is based on work towards a unified formal model for
RDB2RDF mappings. While it has equal expressiveness to
R2RML, it uses a different syntactical approach: It blends
the traditional SQL CREATE VIEW statements with SPARQL
CONSTRUCT queries. Both features can be expected to be fa-

2http://www.phpmyadmin.net
3http://www.w3.org/TR/owl2-manchester-syntax/
4http://spinrdf.org/sp.html

http://www.w3.org/TR/r2rml/
http://www.phpmyadmin.net
http://www.w3.org/TR/owl2-manchester-syntax/
http://spinrdf.org/sp.html

miliar to persons working on RDB2RDF data integration
and combined provide a more concise syntax than R2RML.
In fact, we believe that for RDF itself, history has shown
that the seemingly obvious choice of syntactically building
on XML has had several drawbacks and the special purpose
language Turtle meanwhile enjoys high popularity for man-
ually crafting and editing RDF documents and Turtle 1.1
became a W3C Proposed Recommendation in 2014. Simi-
larly, we believe a more intuitive special purpose RDB2RDF
mapping language can provide similar benefits.

The research on the syntax of SML builds on a compar-
ison of RDB2RDF mapping languages and a subsequently
defined formal model of those languages. Languages like
R2RML and SML are syntactic instances of this formal
model. We use this model to highlight the equivalence be-
tween the languages and derive approaches for converting
between them. In particular, this implies that any proces-
sor, which can work on the W3C R2RML standard, can
also use SML as input and no further implementation ef-
fort is required to use SML in combination with a number
of RDB2RDF engines. Our main argument is that SML
despite its simplicity provides equal expressiveness and is,
therefore, a viable alternative to R2RML. The contributions
of the article are as follows:

• Definition of the compact SML mapping language with
equal expressiveness to R2RML

• Comparison of RDB2RDF mapping languages.

• A unified formal model of RDB2RDF mapping lan-
guages.

• Converters from R2RML to SML and vice versa.

• Syntax highlighting definition for the editor vim and
an online SML editor with syntax and error highlight-
ing as a demonstrator. Although this component is
an engineering effort, it contributed to the fairness of
the user study in terms of providing comparable tool
support for both R2RML and SML.

All tools, demos and the specification of the SML syntax,
are available at http://sml.aksw.org.

The remainder of the article is structured as follows: In Sec-
tion 2 we review existing RDB2RDF mapping languages.
Subsequently, in Section 3 we present a corresponding for-
mal model. The SML syntax is introduced in Section 4,
whereas Section 5 compares it to R2RML. In Section 6 the
conversion approach from SML to R2RML is described. In
Section 7, we describe a user study via a public survey with
46 participants amounting to almost 16 hours of survey com-
pletion time. Finally, we conclude this paper in Section 8.

2. RDB2RDF SYSTEMS AND MAPPING
LANGUAGES REVIEW

The mapping of relational databases (RDB) to the Re-
source Description Framework (RDF) is of keen interest
from the inception of the Semantic Web as exemplified in [6].
The exposition of such previously constrained data allows
integration and interlinking with other data on the Web.
Based on this need, multiple tools and approaches emerged.
In an approach for fostering interoperability between those

tools, the standardization of the RDB2RDF Mapping Lan-
guage (R2RML) was initiated by the W3C RDB2RDF work-
ing group5.

R2RML is defined in [4] as a mapping language for de-
scribing customized mappings of relational data into RDF.
The R2RML specification is accompanied by the Direct Map-
ping (DM) specification [2], describing a standard way of
translating a relational database into RDF without the use
of a customized mapping definition. An R2RML mapping
definition is represented in RDF using the R2RML vocabu-
lary and serialized in the Terse RDF Triple Language (Tur-
tle). It can be used to either store converted relational data
in an RDF dump file, expose the data as Linked Data or
allow querying it via a SPARQL endpoint. A more general
overview of mapping tools for structured sources is given
in [14]. Recent efforts, such as [5], propose extensions of
R2RML for non-relational sources by adding support for
the use of e.g. XPath6 and JSONPath expressions in the
mappings. In this work we focus on relational data.

With the advent of R2RML, vendors took up the standard
and either modified their existing tools to additionally sup-
port R2RML or created tools fully based on the standard.
In general these tools can be categorized with regards to dif-
ferent dimensions, with the type of data exposition and the
mode of querying the underlying database being the most
distinctive. A list of existing R2RML tools is given in Ta-
ble 1. These tools have in common that they all allow the
exposition as SPARQL endpoint and all employ SPARQL-
to-SQL translation.

The R2RML tools use the mapping definition expressed
in R2RML to connect the relational data with a domain on-
tology. The domain ontology describes the actual RDF data
exposed and consists of standard vocabularies and custom
created terms depending on the use case. Listing 1 provides
an example of an R2RML mapping of a simple employee
table only containing IDs (EMPNO) and names (ENAME).

1 <#TriplesMap1 >
2 rr:logicalTable [rr:tableName "EMP"];
3 rr:subjectMap [
4 rr:template "http :// data.example.com/employee

/{EMPNO}";
5 rr:class ex:Employee;
6];
7 rr:predicateObjectMap [
8 rr:predicate ex:name;
9 rr:objectMap [rr:column "ENAME"];

10].

Listing 1: Example of an R2RML mapping.

D2RQ-ML7 is another declarative language for mapping
RDB to RDF, supported by the D2R server. As D2R is one
of the most popular RDB2RDF solutions, its mapping lan-
guage is also supported by other tools like UltraWrap. The
D2RQ mapping itself is an RDF document as well, usually
written in Turtle syntax. The mapping defines a virtual
RDF graph that contains information from the database.
This is similar to the concept of views in SQL, except that
the virtual data structure is an RDF graph instead of a vir-
tual relational table. The D2RQ Platform provides SPARQL
access, a Linked Data server, an RDF dump generator, a
simple HTML interface, and Jena API access to D2RQ-

5http://www.w3.org/2001/sw/rdb2rdf/
6http://www.w3.org/TR/xpath-30/
7http://d2rq.org/d2rq-language

http://sml.aksw.org
http://www.w3.org/2001/sw/rdb2rdf/
http://www.w3.org/TR/xpath-30/
http://d2rq.org/d2rq-language

mapped databases. Listing 2 shows an example of a D2RQ
mapping from a conferences table in a database to the con-
ference class in an ontology.

1 map:Database1 a d2rq:Database;
2 d2rq:jdbcDSN "jdbc:mysql :// localhost/iswc";
3 d2rq:jdbcDriver "com.mysql.jdbc.Driver";
4 d2rq:username "user";
5 d2rq:password "password";
6 .
7 map:Conference a d2rq:ClassMap;
8 d2rq:dataStorage map:Database1.
9 d2rq:class :Conference;

10 d2rq:uriPattern "http :// conferences.org/comp/
confno@@Conferences.ConfID@@";

11 .
12 map:eventTitle a d2rq:PropertyBridge;
13 d2rq:belongsToClassMap map:Conference;
14 d2rq:property :eventTitle;
15 d2rq:column "Conferences.Name";
16 d2rq:datatype xsd:string;
17 .

Listing 2: D2RQ map for conferences.

Generally speaking, D2RQ-ML is close to R2RML with
some notable distinctions. D2RQ-ML includes the database
connection information in the mapping file and uses different
constructs to express joins between tables.

Another notable approach is utilized in the ontop[9] plat-
form by the Knowledge Representation meets Databases (KRDB)8

research group. Ontop supports mapping definitions in its
own language and R2RML. Quest, the SPARQL engine/rea-
soner in ontop, implements query rewriting techniques that
translate SPARQL into SQL. Listing 3 shows an example
from the ontop documentation9.

1 [MappingDeclaration] @collection [[
2 mappingId Book collection
3 target :BID_{id} a :Book .
4 source SELECT id FROM books
5]]

Listing 3: Example of the Ontop mapping language

Virtuoso RDF Views [1] is another tool specific map-
ping language. It is part of OpenLink’s Virtuoso Universal
Server10. Virtuoso RDF Views provide a declarative Meta
Schema Language for mapping of SQL data to RDF ontolo-
gies and preceded Virtuoso’s R2RML support. The corre-
sponding mappings are dynamic, such that changes to the
underlying data are reflected immediately in the RDF views.
OpenLink Virtuoso Universal Server includes SPARQL sup-
port and an RDF data store tightly integrated with its rela-
tional storage engine. An example of a Virtuoso RDF View
definition is given in Listing 4.

1 graph <http :// localhost/testdata/products#>
2 subject prd:product_iri(PRODUCT.PRODUCT_ID)
3 predicate rdf:type
4 object prd:Product

Listing 4: Virtuoso RDF views example

Besides the textual mapping languages, there are also
tools providing a graphical representation of the mapping.
The Asio Semantic Web bridge SBRD11 or the more re-
cent R2RML editor presented in [12] fall into this category.
8http://www.inf.unibz.it/krdb/
9https://github.com/ontop/ontop/wiki/
ontopOBDAModel

10http://virtuoso.openlinksw.com/
11http://bbn.com/technology/knowledge/asio_sbrd

SBRD utilizes Snoggle12 for mapping from RDB to RDF.
Snoggle is a graphical ontology mapper based on the Se-
mantic Web Rule Language (SWRL)13. It allows users to
draw ontologies and then create mappings between them on
a graphical canvas. This mapping is then translated into
SWRL/RDF or SWRL/XML.

An overview of the introduced RDB2RDF solutions is
given in Table 1.

3. TOWARDS A UNIFIED FORMAL MODEL
FOR RDB2RDF MAPPINGS

In this section, we outline a formal approach for mapping
tabular data to RDF. For this purpose, we first briefly sum-
marize fundamental concepts of the RDF data model. It
should be noted, that we assume that RDF is generated by
row-wise processing of the underlying relational data. Both
R2RML and SML build on this assumption. Also, without
loss of generality, we only consider quads rather than triples
in the formalization. The reason is, that we can view any
generated triple as being labeled with the URI of the graph
it belongs to.

Preliminaries.
Let the RDF primitives be: U the set of URIs, B the set of

blank nodes, L the set of literals and V the set of variables.
Further:

• T is the set of all RDF terms, defined as U ∪ B ∪ L.

Furthermore, we make use of the following notions:

• J is the joint set of RDF terms and variables, defined
as T ∪ V.

• Q is the set of all quads, defined as J × J × J × J .

• A quad pattern Q is a finite, possibly empty, set of
quads, defined as Q ⊂ Q

• R is the set of all quad patterns, thus the powerset of
Q, denoted by P(Q)

• A quad q is defined as q ∈ Q.

• vars(Q) is the set of variables appearing in Q.

• A ground quad (pattern) is a variable free quad (pat-
tern).

Finally, we introduce our notion of a relation instance
(short: relation) L, which, for convenience, we define as a set
of partial functions that map attribute names to attribute
values. It is noteworthy, that R2RML defines an entity re-
ferred to as logical table. Instances of this entity possess
an effective SQL query14 which can be evaluated over an
instance of a database schema in order to obtain a relation.

Generating RDF from relations.
Based on the previously introduced primitives, we are now

able to formally capture the nature of RDF mapping ap-
proaches for relational data.

A relational data to RDF (R2R) mapping m is a four-
tuple (N,P,L, f):

12http://bbn.com/technology/knowledge/snoggle
13http://www.w3.org/Submission/SWRL/
14

http://www.w3.org/TR/r2rml/#dfn-effective-sql-query

http://www.inf.unibz.it/krdb/
https://github.com/ontop/ontop/wiki/ontopOBDAModel
https://github.com/ontop/ontop/wiki/ontopOBDAModel
http://virtuoso.openlinksw.com/
http://bbn.com/technology/knowledge/asio_sbrd
http://bbn.com/technology/knowledge/snoggle
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/r2rml/#dfn-effective-sql-query

Tool/Features Mapping language SPARQL Version License Support

Ontop [10] Own language & R2RML 1.0 Free Free
Revelytix Spyder R2RML 1.1 Free With fees
Asio SBRD Graphical — Commercial Commercial
Virtuoso RDF Views [1] Own language & R2RML 1.1 Free Free
D2RQ Platform [3] D2RQ-ML 1.1 Free Free
Morph [8] R2RML 1.0 Free Free
Ultrawrap [13] R2RML 1.0 Commercial Commercial
SparqlMap [15] R2RML 1.0 Free Commercial
Sparqlify R2RML & SML 1.0 Free Free

Table 1: Comparison between different mapping tools and languages.

• N is the name of a view.

• P is a quad pattern which acts as the template for
the construction of triples and relating them to named
graphs. The template is instantiated once for each row
of the relation.

• L is a relation to be converted to RDF.

• f is a mapping with signature L→ (V → T): f yields
for each element of the relation L a partial function
that binds the variables of the template P to RDF
terms in T . Note that it is not required for variables
of P to be bound, which enables the support NULL
values in the source data.

An R2R mapping is valid, if its evaluation yields an RDF
dataset, as defined in the SPARQL secification15.

Given a quad pattern Q ⊂ Q and a partial function a :
V → T , we define the substitution operator

ρ[a] : R→ R

ρ[a](Q) yields a new ground quad pattern Q′ with all vari-
ables replaced in accordance with a. Any quads of Q with
unbound variables in a are omitted in Q′.

An evaluation of a mapping m proceeds by passing each
row of L as an argument to f , thereby obtaining the bindings
for vars(P), which are used to instantiate the template P
for finally creating ground quads. Let M be the set of all
mappings, then a function eval :M→R can be defined as:

eval(m) =
⋃
l∈L

{
ρ[f(l)](P)

}
with m = (N,P,L, f)

What remains is to define a representation of the function
f in terms of expressions. We refer to such a set of expres-
sions as a variable definition. An analysis of the mapping
languages revealed, that there is a small set of essential op-
erations for RDB-to-RDF mappings, for which we devised
an Extended Backus–Naur Form (EBNF) of an expression
grammar as shown in Listing 5 and explained as follows.

In a first step, we need to be able to construct RDF terms
from the underlying relation, hence we introduce the rdf-
term-ctor-expr16 production. Note that our plainLiteral

and typedLiteral functions roughly correspond to the func-
tionsSTRDT and STRLANG of the SPARQL standard, although
in SML arguments may be of types other than string, such
as when mapping a column of type real to a corresponding
typed literal. Yet, in the future aliases may be introduced to
SML for better alignment with existing SPARQL features.

15
http://www.w3.org/TR/sparql11-query/#rdfDataset

16We use ctor as abbreviation for constructor

An analysis of the mapping languages revealed, that there
is a small set of essential operations for RDB-to-RDF map-
pings, namely concat, str and urlEncode and percentEn-
code17. These function symbols are usually used for the
construction of URIs and IRIs from values of the underly-
ing relation: The function symbol concat may be used to
prepend a prefix IRI to one or more ID columns. The func-
tion symbol str corresponds to an implicit conversion and
therefore usually does not have to be stated explicitly as it
can be implied. It is needed to preserve type consistency:
For instance, concat is only defined for string arguments.
Therefore, concat(’http://ex.org/’, 1) would yield a type er-
ror without the prior conversion of the second argument to
string.

Note, that although these functions could be applied in
the underlying RDBMS, support at the mapping level opens
possibilities for basic optimizations without the need to parse
the involved SQL.

1 varDefinition = (var ’=’ rdf -term -ctor -expr)* ;
2

3 rdf -term -ctor -expr
4 = bNode ’(’ expr ’)’
5 | uri ’(’ expr ’)’
6 | plainLiteral ’(’ expr (’,’ expr)? ’)’
7 | typedLiteral ’(’ expr ’,’ expr ’)’
8 ;
9

10 expr -list
11 = (expr (’,’ expr)*)?
12 ;
13

14 expr
15 = var // Denotes a reference to a column
16 | str ’(’ expr ’)’
17 | concat ’(’ expr -list ’)’
18 | urlEncode ’(’ expr ’)’
19 ;

Listing 5: EBNF for variable definition expressions

Example: Assume a given relation holding the label of a
product:

{{(id, 1), (label,“Coke”)} , . . .}

Assume that we aim to obtain the following assignment from
variables to RDF terms:

{{(?s,<http://ex.org/1>), (?l,“Coke”@en)} , . . .}

Then a definition of f as

f : [{?s = uri(concat(’http://ex.org/’, str(?id))),

?l = plainLiteral(?label, ’en’)}] (1)

would yield the desired output.

17http://tools.ietf.org/html/rfc3986

http://www.w3.org/TR/sparql11-query/#rdfDataset
http://tools.ietf.org/html/rfc3986

4. SML SYNTAX
In this section, we give an introduction to the SML syntax.
The left hand side of Figure 1 shows an example of SML,

whose syntactic constituents are explained as follows.
Recall that in the previous Section 3 we formally defined

an R2R view as a four-tuple (N,P,L, f). The core syntax of
an SML view definition comprises four parts that correspond
directly to the formal definition. Additionally, SML features
an optional constraint component for improving query per-
formance. An SML view definition is composed of the fol-
lowing parts:

• The name of the view. This corresponds to an element
of the set N .

• A construct clause, which consists of triple patterns
which can be optionally associated with a specific named
graph by surrounding them with GRAPH G { . . . }, where
G can be a variable name or an IRI. Hence, the syn-
tax is equivalent to the quads production rule of the
SPARQL 1.1 standard18. This corresponds to an ele-
ment of P .

• A FROM clause, where a reference to a logical table
can be specified. As in R2RML, this can be either an
SQL SELECT statement, the name of a physical table
or the name of a view. The former needs to be escaped
in triple double-quotes, i.e. """SELECT ...""". The
execution of a logical table’s effective SQL query over
an SQL connection yields a result set which formally
corresponds to L.

• The variable definition clause acts as the bridge be-
tween the RDF and SQL data models, and is used to
specify the creation of RDF terms from rows of the re-
lation. It consists of a set of variable definition state-
ments of the form ?var = rdf-term-ctor(expr0, . . . ,
exprn), and should at least support the grammar de-
fined in 5.

• Finally, there is a CONSTRAINT clause for specify-
ing contstraints about variables on the RDF level. As
such, it has no direct influence on the virtual RDF re-
lation, but rather on query performance. The example
in Figure 1 shows, that solely based on the definition
of ?s = uri(?website) we have no information about
the set of URIs being created. Specifying such a type
of constraints enables SPARQL-to-SQL rewriters, for
instance, to prune joins whose join condition equates
variables with disjoint sets of prefixes. Syntactically,
up to now only stating prefix constraints is supported.

5. COMPARISON OF SML WITH R2RML
In this section, we summarize essential features of R2RML

and explain how they relate to those of SML. R2RML map-
pings are expressed as RDF graphs for which R2RML by
convention uses Turtle serialization. The fundamental class
is rr:TriplesMap, whose instances are specifications of the
triples to generate from an underlying logical table. As such,
an instance of a TriplesMap corresponds to an SML view
definition. In the following, we explain the most important
attributes that TriplesMaps may have, and compare them

18http://www.w3.org/TR/sparql11-query/#rQuads

to SML. Figure 1 shows a side-by-side comparison of the
mapping languages for a specific example. Both syntactic
formats can be converted to each other.

Defining Logical Tables.
R2RML defines the predicate rr:logicalTable to relate

a TriplesMap to a logical table. The object of this pred-
icate must be a resource that is further described using
rr:tableName or rr:sqlQuery. A TriplesMap must have
exactly one logical table. In SML, the FROM clause serves
the same purpose. Table 2 compares how to state a logical
table in R2RML and SML.

rr:tableName ”person” . . . From person
rr:tableName ”SCOTT.DEPT” . . . From ”SCOTT.DEPT”
rr:sqlQuery ”””SELECT . . . ””” . . . From ”””SELECT . . . ”””

Table 2: Comparison of attributes of rr:logicalTable with SML’s
FROM clause.

Creating RDF terms from logical tables.
Both SML and R2RML allow to express how to create

RDF terms from the rows of the underlying logical table. In
SML, the term constructor expressions of the WITH clause
serve this purpose, whereas R2RML introduces the notion
of TermMaps. SML uses an expression syntax to specify
the RDF term creation, which corresponds to using a com-
bination of the properties rr:template, rr:termType and
rr:datatype in R2RML. The template syntax for values
of rr:template corresponds to the SML expression sym-
bols concat and urlEncode. Table 3 shows examples of RDF
term construction in both mapping languages. The function
asTemplate(expr) is assumed to yield the R2RML template
for a given SML expression. Note that SML is slightly more
expressive in this regard, as it allows e.g. nested urlEncod-
ings.

Forming Quads from RDF Terms.
Once there exists a specification of how to create RDF

terms from the rows of a logical table, these RDF terms need
to be grouped to form quads. In SML, this is done using the
CONSTRUCT clause, which re-uses the quads production
rule of the SPARQL 1.1 standard. Hence, anyone familiar

SML RDF term constructor R2RML term map

bNode(?COL) ... [rr:column "COL" ;
rr:termType rr:blankNode]

bNode(expr) ... [rr:template "asTem-
plate(expr) " ;

rr:termType rr:blankNode]

uri(expr) ... [rr:(constant|column|template)
"asTemplate(expr) ";

rr:termType rr:IRI]

plainLiteral(?COL) ... [rr:column "COL"]

plainLiteral(expr) ... [rr:template "asTem-
plate(expr) "]

typedLiteral(?COL, xsd:int) ... [rr:column "COL" ;
rr:datatype xsd:int]

typedLiteral(expression,
xsd:int)

... [rr:template "asTem-
plate(expr) " ;

rr:datatype xsd:int]

Table 3: Transformation of SML term constructors to R2RML
term maps

http://www.w3.org/TR/sparql11-query/#rQuads

SML R2RML

Prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
Prefix xsd: <http://www.w3.org/2001/XMLSchema#>
Prefix ex: <http://ex.org/>

Create View hotels As
Construct {
?s a ex:Hotel ;
rdfs:label ?l ;
ex:vacancy ?v

}
With

?s = uri(?website)
?l = plainLiteral(?name,’en’)
?v = typedLiteral(?vacancy,

xsd:boolean)
Constrain

?s prefix "http://ex.org/"
From
"""SELECT website, name,
vacancy FROM hotels"""

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix ex: <http://ex.org/> .

<HotelTriplesMap>
rr:logicalTable [rr:sqlQuery
"""SELECT website, name,
vacancy FROM hotels"""];

rr:subjectMap [
rr:column "website";
rr:class ex:Hotel

];
rr:predicateObjectMap [

rr:predicate rdfs:label;
rr:objectMap

[rr:column "name";
rr:language "en"];

];
rr:predicateObjectMap [

rr:predicate ex:vacancy;
rr:objectMap

[rr:column "vacancy";
rr:datatype

xsd:boolean];
].

Figure 1: A simple view in SML and R2RML.

with SPARQL should already be familiar with SML in this
regard.

In R2RML, the TriplesMap serves this purpose, however
its specification is more verbose: For relating a TriplesMap
to TermMaps for the subject, predicate, object and graph
components, there exist the general properties rr:subjectMap,
rr:predicateMap, rr:objectMap and rr:graphMap, respec-
tively. Note that for each of these properties there exists a
syntactic shortcut without the Map in the name, that can
be used for constants.

These properties are used to form the following structure:
Every TriplesMap carries exactly one specification for its
subjects, and zero or more specifications for the pairs or
predicates and objects. Subjects are specified by relating
the TriplesMap to a TermMap using rr:subjectMap. A Sub-
jectMap may carry zero or more attributes of rr:graphMap
and rr:class. The former specifies in which graphs the gen-
erated triples reside. The latter is a syntactic shortcut for
rdf:type’ing the subjects with given IRIs. Zero or more
rr:predicateObjectMap attributes denote the predicate-object-
pairs to associate with each subject. Thereby, each Predica-
teObjectMap carries the attributes rr:objectMap and graphMap,
which again are TermMaps.

Foreign Key Relations among Logical Tables.
R2RML offers a model for the expression of joins. This

model is primarily intended for the generation of IRIs that
require a join of tables between one or more foreign key con-
straints to hold. The R2RML vocabulary distinguishes the
roles of the parent and child table, where the child references
the parent on a certain join condition.

SML offers a limited SQL syntax for this purpose, which
is shown and compared to R2RML in Figure 2. Note, that
in contrast to using SML’s triple double-quotes syntax for
stating SQL queries, this syntax allows the SML processor
to understand the SQL natively (i.e. without requiring an
full SQL parser) and thus consider it for optimizations such
as self join elimination.

Assigning Triples to Named Graphs.
To assign triples to be generated to a certain named graph,

again term maps are utilized. Accordingly, an additional
term map inside a subject or predicate map is defined, which
is called graph map. These nested term map expressions
introduce further complexity to the actual triples map.

6. CONVERTING SML TO R2RML
In this section, we briefly outline the approach for the

conversion of SML to R2RML. The process of converting
prefix definitions is straightforward since the only difference
is that SML uses the Prefix keyword, whereas in R2RML
turtle notation @prefix is used. The name of an SML view
definition serves as a base for crafting the IRIs for naming
triples maps. However, it has to be taken into account that
one SML view definition can correspond to many R2RML
triples maps. The definition of a logical tables as table
names, view names or queries have direct counterparts in
R2RML, namely rr:tableName and rr:sqlQuery.

The SML CONSTRAINT clause has no equivalent in R2RML
and is thus omitted in the conversion. Note that constraints
only act as hints that may be considered for improving per-
formance.

The Construct and With sections of an SML do not di-
rectly translate to R2RML. In general, a new triples map can
be created for each quad of the Construct section. However,
if an SML view defines multiple quads with the same variable
in the subject position, multiple instances of rr:predicate-
ObjectMap can be created on the same triples map.

Regarding the constructor arguments, one has to differen-
tiate between an atomic value and a compound expression.
An atomic value can either be a column reference, resulting
in an rr:column term map or a constant expression requiring
rr:constant. In all other cases, a more complex expression is
assumed, resulting in an rr:template. Such an expression has
to be evaluated from the innermost to the outermost term
constructor which leads to the evaluated expression shown
in Table 3.

SML R2RML

Prefix ex: <http://ex.org/>

Create View departments As
Construct {
?d a ex:Department

}
With
?d = uri(ex:dept, ?name)

From
departments

Create View employees As
Construct {
?e a ex:Employee ;
ex:worksIn ?d

}
With

?e = uri(ex:emp, ?e.id)
?d = uri(ex:dept, ?d.name)

From
employees e Join departments d
On (d.id = e.dept_id)

@prefix ex: <http://ex.org/> .

<#Departments>
rr:logicalTable [rr:tableName "departments"];

rr:subjectMap [
rr:template "http://ex.org/dept/{id}"];
rr:class ex:Department

.

<#Employees>
rr:logicalTable [rr:tableName "employees"];

rr:subjectMap [
rr:template "http://ex.org/emp/{id}" ;
rr:class ex:Employee];

rr:predicateObjectMap [
rr:predicate ex:worksIn;
rr:objectMap [

rr:parentTriplesMap <#Departments>;
rr:joinCondition [

rr:child "dept_id";
rr:parent "id";

];
];

].

Figure 2: A view in SML and R2RML with a referencing object map.

An even more complex R2RML mapping has to be cre-
ated if an SML variable already used in subject position is
also referred to in the object position of another Construct

statement. In this case a referencing object map has to be
used in R2RML. An example and the corresponding triples
maps are shown in Figure 2. There, the definition of the
rr:joinCondition can be omitted since both triples maps
refer to the same logical table. Note, that R2RML only pro-
vides a language expression to declare referencing objects
and not for e.g. predicates and graphs. A conversion from
R2RML to SML proceeds in a similar fashion as described
in this section, however details are omitted for brevity.

7. EVALUATION
We evaluated the SML mapping language to clarify the

following questions:
1. Is SML easier to read than R2RML and does SML

have a lower entry barrier than R2RML?
2. Can people understand SML mappings or R2RML map-

pings faster?
3. If given the choice, would people prefer SML or R2RML?

7.1 Experimental Setup
We set up a survey, which consists of three parts:
1. Questions about prior expertise of the participant.
2. Test questions for SML and R2RML.
3. An assessment of the characteristics of SML and R2RML

by the participants.
We used a standard star rating for most questions ranging

from 1 star (lowest value) to 5 starts (highest value). The
comparison with R2RML was performed as it is the current
W3C standard for RDB2RDF mapping.

In the fist part, we asked participants to state their famil-
iarity with the SML and R2RML languages as well as with
related concepts such as the Turtle syntax and the SQL and
SPARQL query languages. In the second part, we had 5
different tasks for participants. Each task was formulated
for SML and R2RML with renamed classes and properties.

In the first 3 tasks, participants had to select the subset
of 4 shown triples, which was actually generated from a
given mapping. The tasks were ordered by complexity of
the mapping specification. In the 4th and 5th task, the in-
verse needed to be performed: Given a target RDF output,
participants had to select those mappings from 4 presented
mappings, which generates the target output. Finally, in the
third part of the survey, participants had to assess a) the dif-
ficulty of the presented tasks, b) whether they could make
sense of the SML and R2RML mappings, c) whether they
found SML and R2RML easy to read, d) whether they would
consider using SML for RDB2RDF tasks and e) whether
they have a preference between SML and R2RML.

The survey was distributed to the Semantic Web and
Linked Data mailing lists and announced on Twitter.

7.2 Results
Overall, a total of 102 participants took part in the sur-

vey, of which 73 completed the survey. We removed entries
with an completion time below 500 seconds in order to re-
move bot entries and carefully assessed the removed entries.
46 participants remained out of which 28 answered all test
questions correctly. The 46 participants required an average
time of 1243.1 seconds to complete the survey. As a result,
the overall time valid participants spent on the survey was
953 minutes. All results of the survey can also be directly
obtained and analysed at the SML project website.

The averaged results of the survey are shown in Table 4.
The self assessment scores in Table 4 illustrate that the au-
dience is interested in RDB2RDF conversions and that the
participants are familiar with Turtle (TTL), SPARQL and
SQL. R2RML familiarity is considerably lower with an av-
erage of 3 and SML relatively unknown (1.74).

We discuss each of our evaluation questions in turn:
Readability and Entry barrier: Figure 3 shows that SML

appears to have a lower entry barrier than R2RML. Par-
ticipants who were familiar with R2RML already judged
both languages to have similar readability. However, par-

criterion value

Relevance : 4.15
Familiarity TTL : 4.11
Familiarity SPARQL: 4.30
Familiarity SQL : 4.33
Familiarity R2RML : 3
Familiarity SML : 1.74

criterion value

Average Understandability R2RML : 3.85
Average Understandability SML : 3.88
Average Readability R2RML : 3.26
Average Readability SML : 3.72
Average Considering SML : 3.59
Average Preference R2RML - SML: 3.26

Table 4: Averaged results of survey questions (1 = lowest rating, 5 = highest rating).

Figure 3: The plot shows the R2RML familiarity plotted against the readability assessment of R2RML and SML. Overall, SML was
judged to be significantly more readable although this effect is reduced for participants already familiar with R2RML.

Figure 4: The figure on the left assesses the time needed to solve an RDB2RDF mapping task. The figure on the right shows the
preference for a mapping language. Overall, SML tasks required less time and the language was preferred, although this does not hold
when considering only R2RML experts.

ticipants who were less familiar with R2RML judged SML
to be much more readable than R2RML and gave high read-
ability scores.

Time needed to solve tasks: For this task, we randomly
started the survey either with either an SML or R2RML
task to be able to assess this evaluation question. The me-
dian time required for completing completing in R2RML was

67.08 seconds and for SML 69.23 seconds, giving R2RML
a slight edge. In a more thorough analysis, Figure 4 shows
the time required to solve the first RDB2RDF mapping task
in the survey, for R2RML experts (self assessment greater
or equal 4) and R2RML novices (self assessment less 4).
R2RML experts require less time for solving the task in
the R2RML, however R2RML novices appear are able to

complete the task faster using SML. It is further clear that
R2RML experts require less time for solving the task regard-
less of the utilized language. It should be noted that there
is an unknown amount of time required to understand the
task irrespective of the mapping language, i.e. the difference
between the mapping language is larger than depicted.

Overall preference: Figure 4 shows that there is an over-
all preference for SML. This preference does not hold when
considering only the group of R2RML experts, but is very
significant when considering people not familiar with any of
the two mapping languages.

8. CONCLUSIONS AND FUTURE WORK
In this article, we presented work towards a unified model

for RDB2RDF mappings and the lightweight mapping lan-
guage SML that reuses familiar elements of SPARQL and
SQL in order to lower the learning curve and ease the manual
writing and maintenance of view definitions. An extensive
public survey confirmed that this is the case. We provided
an in-depth comparison of how SML relates to the R2RML
standard, and detailed how the former can be automatically
converted to the latter.

SML has been successfully deployed in several scenarios:
We created SML mappings for the BSBM and SP2 bench-
marks, two popular SPARQL benchmarks that are often
used for evaluating RDB2RDF mappers. Most prominently,
we created SML mappings for transforming the OpenStreetMap
(OSM) database to RDF. These efforts are carried out as
part of the LinkedGeoData19 (LGD) project, where we give
access to more than 25 billion OSM RDF triples created
through SPARQL-to-SQL rewriting over about 3 billion re-
lational rows via more than 40 SML view definitions.

Furthermore, SML mappings have been created for two
large scale linguistic resources: One is the mapping of the
Wortschatz database20, which contains statistics, such as
frequency and co-occurrences, about words in more than
240 languages. The other resource is PanLex21, which is a
database holding translations of about 19 million expression
extracted from over 2.000 sources. Links to the correspond-
ing SML mappings are published together with our other
SML related resources22.

In general, we believe that mapping relational structures
to RDF will stay a highly important topic in research and
practice to provide an unobtrusive transition towards the use
of semantic technologies. Providing engineers an intuitive
yet powerful language is a crucial step to ease this transition.
Future work will continue on extending the formalizations as
well as sorting out details based on community feedb, such
as whether an explicit FROM QUERY syntax for specifying SQL
queries is preferred over the current approach where this is
implied by the use of triple quotes.

Acknowledgment
This work was supported by grants from the EU’s 7th Frame-
work Programme provided for the projects LOD2 (GA no.
257943) and GeoKnow (GA no. 318159).

19http://linkedgeodata.org/
20http://www.wortschatz.uni-leipzig.de/
21http://ld.panlex.org
22http://sml.aksw.org

9. REFERENCES

[1] Mapping relational data to rdf with virtuoso’s rdf
views.
http://virtuoso.openlinksw.com/whitepapers/

relational%20rdf%20views%20mapping.html.

[2] M. Arenas, A. Bertails, E. Prud’hommeaux, and
J. Sequeda. R2rml: Rdb to rdf mapping language
(w3c recommendation). Technical report, 2012.

[3] C. Bizer and R. Cyganiak. D2r server – publishing
relational databases on the semantic web. Poster at
the 5th Int. Semantic Web Conf. (ISWC2006), 2006.

[4] S. Das, S. Sundara, and R. Cyganiak. R2rml: Rdb to
rdf mapping language (w3c recommendation).
Technical report, 2012.

[5] A. Dimou, M. Vander Sande, P. Colpaert,
R. Verborgh, E. Mannens, and R. Van de Walle. Rml:
a generic language for integrated rdf mappings of
heterogeneous data. In Proceedings of the 7th
Workshop on Linked Data on the Web (LDOW2014),
Seoul, Korea, 2014.

[6] T. B. Lee. Relational databases on the semantic web,
09 1998. Design Issues (published on the Web).

[7] C. Pinkel, C. Binnig, P. Haase, C. Martin,
K. Sengupta, and J. Trame. How to best find a
partner? an evaluation of editing approaches to
construct r2rml mapping. In ESWC, 2014.

[8] F. Priyatna, O. Corcho, and J. Sequeda. Formalisation
and experiences of r2rml-based sparql to sql query
translation using morph. In Proceedings of the 23rd
international conference on World wide web, pages
479–490. International World Wide Web Conferences
Steering Committee, 2014.

[9] M. Rodriguez-Muro, M. Rezk, J. Hardi, M. Slusnys,
T. Bagosi, and D. Calvanese. Evaluating sparql-to-sql
translation in ontop. In OWL Reasoner Evaluation
Workshop, volume 1015 of CEUR Workshop
Proceedings, pages 94–100. CEUR-WS.org, 2013.

[10] M. Rodriguez-Muro, M. Rezk, J. Hardi, M. Slusnys,
T. Bagosi, and D. Calvanese. Evaluating sparql-to-sql
translation in ontop. 2013.

[11] K. Sengupta, P. Haase, M. Schmidt, and P. Hitzler.
Editing r2rml mappings made easy. 2013.

[12] K. Sengupta, P. Haase, M. Schmidt, and P. Hitzler.
Editing r2rml mappings made easy. In International
Semantic Web Conference (Posters & Demos), volume
1035 of CEUR Workshop Proceedings, pages 101–104.
CEUR-WS.org, 2013.

[13] J. F. Sequeda and D. P. Miranker. Ultrawrap: Sparql
execution on relational data. Web Semantics: Science,
Services and Agents on the World Wide Web,
22:19–39, 2013.

[14] J. Unbehauen, S. Hellmann, S. Auer, and C. Stadler.
Knowledge extraction from structured sources. In
S. Ceri and M. Brambilla, editors, Search Computing -
Broadening Web Search, volume 7538 of Lecture Notes
in Computer Science, pages 34–52. Springer, 2012.

[15] J. Unbehauen, C. Stadler, and S. Auer. Accessing
relational data on the web with sparqlmap. In JIST,
2012.

http://linkedgeodata.org/
http://www.wortschatz.uni-leipzig.de/
http://ld.panlex.org
http://sml.aksw.org
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html
http://virtuoso.openlinksw.com/whitepapers/relational%20rdf%20views%20mapping.html

	Introduction
	RDB2RDF Systems and Mapping Languages Review
	Towards a Unified Formal Model for RDB2RDF Mappings
	SML Syntax
	Comparison of SML with R2RML
	Converting SML to R2RML
	Evaluation
	Experimental Setup
	Results

	Conclusions and Future Work
	References

