
CROCUS: Cluster-based Ontology Data
Cleansing

Didier Cherix2, Ricardo Usbeck12, Andreas Both2, and Jens Lehmann1

1 University of Leipzig, Germany
{usbeck,lehmann}@informatik.uni-leipzig.de

2 R & D, Unister GmbH, Leipzig, Germany
{andreas.both,didier.cherix}@unister.de

Abstract. Over the past years, a vast number of datasets have been
published based on Semantic Web standards, which provides an oppor-
tunity for creating novel industrial applications. However, industrial re-
quirements on data quality are high while the time to market as well
as the required costs for data preparation have to be kept low. Unfortu-
nately, many Linked Data sources are error-prone which prevents their
direct use in productive systems. Hence, (semi-)automatic quality as-
surance processes are needed as manual ontology repair procedures by
domain experts are expensive and time consuming. In this article, we
present CROCUS – a pipeline for cluster-based ontology data cleansing.
Our system provides a semi-automatic approach for instance-level error
detection in ontologies which is agnostic of the underlying Linked Data
knowledge base and works at very low costs. CROCUS was evaluated
on two datasets. The experiments show that we are able to detect errors
with high recall.

1 Introduction

The Semantic Web movement including the Linked Open Data (LOD) cloud3

represents a combustion pointfor commercial and free-to-use applications. The
Linked Open Data cloud hosts over 300 publicly available knowledge bases with
an extensive range of topics and DBpedia [1] as central and most important
dataset. While providing a short time-to-market of large and structured datasets,
Linked Data has yet not reached industrial requirements in terms of provenance,
interlinking and especially data quality. In general, LOD knowledge bases com-
prise only few logical constraints or are not well modelled.

Industrial environments need to provide high quality data in a short amount
of time. A solution might be a significant number of domain experts that are
checking a given dataset and defining constraints, ensuring the demanded data
quality. However, depending on the size of the given dataset the manual evalu-
ation process by domain experts will be time consuming and expensive. Com-
monly, a dataset is integrated in iteration cycles repeatedly which leads to a

3 http://lod-cloud.net/

generally good data quality. However, new or updated instances might be error-
prone. Hence, the data quality of the dataset might be contaminated after a
re-import.

From this scenario, we derive the requirements for our data quality evalua-
tion process. (1) Our aim is to find singular faults conflicting with large business
relevant areas of a knowledge base. (2) The data evaluation process has to be
efficient. Due to the size of LOD datasets, reasoning is infeasible due to perfor-
mance constraints, but graph-based statistics and clustering methods can work
efficiently. (3) The data evaluation process has to be agnostic of the underlying
knowledge base, i.e., it should be independent of the evaluated dataset.

Often, mature ontologies created by a third party provide the basis for in-
dustrial applications (e.g., DBpedia). Aiming at short time-to-market, industry
needs scalable algorithms to detect errors. Furthermore, the lack of costly do-
main experts requires non-experts or even layman to validate the data before
influencing a productive system. Resulting knowledge bases may still contain
errors, however, they offer a fair trade-off in an iterative production cycle.

In this article, we present CROCUS, a cluster-based ontology data cleansing
framework. CROCUS can be configured to find several types of errors in a semi-
automatic way, which are afterwards validated by non-expert users called quality
raters. By applying CROCUS’ methodology iteratively, resulting ontologies can
be safely used in industrial environments.

Our contributions are as follows: we present (1) a pipeline for semi-automatic
instance-level error detection that is (2) capable of evaluating large datasets.
Moreover, it is (3) an approach agnostic to the analysed class of the instance as
well as the Linked Data knowledge base. Finally, (4) we provide an evaluation
on a synthetic and a real-world dataset.

The following Section 2 provides an overview of the state of the art and
Section 3 describes the CROCUS method while Section 4 presents the evaluation
of the process. Finally, we conclude in Section 5.

2 Related Work

The research field of ontology data cleansing, especially instance data can be
regarded threefold: (1) development of statistical metrics to discover anomalies,
(2) manual, semi-automatic and full-automatic evaluation of data quality and
(3) rule- or logic-based approaches to prevent outliers in application data.

In 2013, Zaveri et al. [2] evaluate the data quality of DBpedia [3]. This manual
approach introduces a taxonomy of quality dimensions: (i) accuracy, which con-
cerns wrong triples, data type problems and implicit relations between attributes,
(ii) relevance, indicating significance of extracted information, (iii) representa-
tional consistency, measuring numerical stability and (iv) interlinking, which
looks for links to external resources. Moreover, the authors present a manual
error detection tool called TripleCheckMate4 and a semi-automatic approach

4 http://github.com/AKSW/TripleCheckMate

supported by the description logic learner (DL-Learner) [4,5], which generates a
schema extension for preventing already identified errors. Those methods mea-
sured an error rate of 11.93% in DBpedia.

A rule-based framework is presented by Furber et al. [6] where the authors
define 9 rules of data quality. Following, the authors define an error by the num-
ber of instances not following a specific rule normalized by the overall number
of relevant instances. Afterwards, the framework is able to generate statistics on
which rules have been applied to the data.

Several semi-automatic processes, e.g., [7,8], have been developed to detect
errors in instance data of ontologies. Bohm et al. [7] profiled LOD knowledge
bases, i.e., statistical metadata is generated to discover outliers. Therefore, the
authors clustered the ontology to ensure partitions contain only semantically
correlated data and are able to detect outliers. Hogan et al. [8] only identified
errors in RDF data without evaluating the data properties itself.

In 2013, Kontokostas et al. [9] present an automatic methodology to assess
data quality via a SPARQL-endpoint5. The authors define 14 basic graph pat-
terns (BGP) to detect diverse error types. Each pattern leads to the construction
of several cases with meta variables bound to specific instances of resources and
literals, e.g., constructing a SPARQL query testing that a person is born before
the person dies.

A first classification of quality dimensions is presented by Wang et al. [10]
with respect to their importance to the user. This study reveals a classification
of data quality metrics in four categories.

Recently, Zaveri et al. [11] presents a systematic literature review on different
methodologies for data quality assessment. The authors chose 21 articles, ex-
tracted 26 quality dimensions and categorized them according to [10]. The re-
sulting overview shows which error types exist and whether they are repairable
manually, semi-automatic or fully automatic.

To the best of our knowledge, our tool is the first tool tackling error accuracy
(intrinsic data quality), completeness (contextual data quality) and consistency
(data modelling) at once in a semi-automatic manner reaching high f1-measure
on real-world data.

3 Method

First, we need a standardized extraction of target data to be agnostic of the
underlying knowledge base. SPARQL [12] is a W3C standard to query instance
data from Linked Data knowledge bases. The DESCRIBE query command is a way
to retrieve descriptive data of certain instances. However, this query command
depends on the knowledge base vendor and its configuration. To circumvent
knowledge base dependence, we use Concise Bounded Descriptions (CBD) [13].
Given a resource r and a certain description depth d the CBD works as follows:
(1) extract all triples with r as subject and (2) resolve all blank nodes retrieved

5 http://www.w3.org/TR/rdf-sparql-query/

so far. Finally, CBD repeats those steps d times. CBD configured with d = 1
only retrieves triples with r as subject although also triples with r as object
could contain useful information. Therefore, a rule is added to CBD, i.e., (3)
extract all triples with r as object, which is called Symmetric Concise Bounded
Description (SCDB) [13].

Second, CROCUS needs to calculate a numeric representation of an instance
to facilitate further clustering steps. Metrics are split into three categories:

(1) The simplest metric counts each property (count). For example, this
metric can be used if a person is expected to have only one telephone number.

(2) For each instance, the range of the resource at a certain property is
counted (range count). In general, a student should take undergraduate courses.
If there is a student taking courses with another type (e.g., graduate courses),
this metric is able to detect it.

(3) The most general metric transforms each instance into a numeric vec-
tor and normalizes it (numeric). Since instances created by the SCDB consist
of properties with multiple ranges, CROCUS defines the following metrics: (a)
numeric properties are taken as is, (b) properties based on strings are converted
to a metric by using string length although more sophisticated measures could
be used (e.g., n-gram similarities) and (c) object properties are discarded.

As a third step, we apply the density-based spatial clustering of applications
with noise (DBSCAN) algorithm [14] since it is an efficient algorithm and the
order of instances has no influence on the clustering result. DBSCAN clusters
instances based on the size of a cluster and the distance between those instances.
Thus, DBSCAN has two parameters: ε, the distance between two instances, here
calculated by the metrics above and MinPts, the minimum number of instances
needed to form a cluster. If a cluster has less than MinPts instances, they are
regarded as outliers. We report the quality of CROCUS for different values of
MinPts in Section 4.

Finally, identified outliers are extracted and given to human quality judges.
Based on the revised set of outliers, the algorithm can be adjusted and con-
straints can be added to the Linked Data knowledge base to prevent repeating
discovered errors.

4 Evaluation

LUBM benchmark. First, we used the LUBM benchmark [15] to create a
perfectly modelled dataset. This benchmark allows to generate arbitrary know-
ledge bases themed as university ontology. Our dataset consists of exactly one
university and can be downloaded from our project homepage6.

The LUBM benchmark generates random but error free data. Thus, we add
different errors and error types manually for evaluation purposes:

– completeness of properties (count) has been tested with CROCUS by adding
a second phone number to 20 of 1874 graduate students in the dataset. The
edited instances are denoted as Icount.

6 project homepage: https://github.com/AKSW/CROCUS

Fig. 1: Overview of CROCUS.

– semantic correctness of properties (range count) has been evaluated by add-
ing courses to 20 graduate students. Normally, LUBM’ graduate students
take only courses of type GraduateCourse. We have modified the data of
20 graduate student instances (Irangecount) to participate in courses for non-
graduate students (Course).

– numeric correctness of properties (numeric) was injected by defining that
a graduate student has to be younger than a certain age. To test this, 20
graduate students (Inumeric) age was replaced with a value bigger than the
arbitrary maximum age of any other graduate.

For each set of instances holds: |Icount| = |Irangecount| = |Inumeric| = 20 and
additionally |Icount∩ Irangecount∩ Inumeric| = 3. The second equation overcomes
a biased evaluation and introduces some realistic noise into the dataset. One of
those 3 instances is shown in the listing below:

1 @prefix rdf : <http ://www.w3 . org /1999/02/22−rdf−syntax−ns#> .
2 @prefix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
3 @prefix ns2 : <http :// example . org/#> .
4 @prefix ns3 : <http ://www. Department6 . Un ive r s i ty0 . edu/> .
5
6 ns3 : GraduateStudent75 a ns2 : GraduateStudent ;
7 ns2 : name ”GraduateStudent75” ;
8 ns2 : undergraduateDegreeFrom <http ://www. Univer s i ty467 . edu> ;
9 ns2 : emai lAddress ”GraduateStudent75@Department6 . Un ive r s i ty0 . edu” ;

10 ns2 : t e l ephone ”yyyy-yyyy-yyyy” , ”xxx−xxx−xxxx” ;
11 ns2 : memberOf <http ://www. Department6 . Un ive r s i ty0 . edu> ;
12 ns2 : age ”63” ;
13 ns2 : takesCourse ns3 : GraduateCourse21 , ns3:Course39 , ns3 :

GraduateCourse26 ;
14 ns2 : adv i so r ns3 : A s s o c i a t ePro f e s s o r 8 .

Listing 1.1: Example of an instance with manually added errors (in red).

DBpedia - German universities benchmark. Second, we used a subset
of the English DBpedia [3] 3.8 to extract all German universities. The following
SPARQL query presents already the difficulty to find a complete list of univer-
sities using DBpedia.

LUBM
count range count numeric

MinPts F1 P R F1 P R F1 P R
2 — — — — — — — — —
4 — — — 0.49 1.00 0.33 — — —
8 — — — 0.67 1.00 0.5 — — —

10 0.52 1.00 0.35 1.00 1.00 1.00 — — —
20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 1: Results of the LUBM benchmark for all three error types.

1 SELECT DISTINCT ? in s tance
2 WHERE {
3 { ? in s tance a dbo : Un ive r s i ty .
4 ? in s tance dbo : country dbpedia : Germany .
5 ? in s tance foaf : homepage ?h .
6 } UNION {
7 ? in s tance a dbo : Un ive r s i ty .
8 ? in s tance dbp : : country dbpedia : Germany .
9 ? in s tance foaf : homepage ?h .

10 } UNION {
11 ? in s tance a dbo : Un ive r s i ty .
12 ? in s tance dbp : : country ”Germany”@en .
13 ? in s tance foaf : homepage ?h .
14 }}

Listing 1.2: SPARQL query to extract all German universities.

After applying CROCUS to the 208 universities and validating detected in-
stances manually, we found 39 incorrect instances. The list of incorrect instances
as well as the overall dataset can be found on our project homepage. For our
evaluation, we used only attributes existing in at least 50% of the instances to
reduce the exponential parameter space. Apart from an increased performance
of CROCUS we did not find any effective drawbacks on our results.

Results. To evaluate the performance of CROCUS, we used each error type
individually on the adjusted LUBM benchmark datasets as well as a combination
of all error types on LUBM7 and the real-world DBpedia subset.

Table 1 shows the f1-measure (F1), precision (P) and recall (R) for each
error type. For some values of MinPts it is infeasible to calculate cluster since
DBSCAN generates only clusters but is unable to detect outlier. CROCUS is
able to detect the outliers with a 1.00 f1-measure as soon as the correct size of
MinPts is found.

Table 2 presents the results for the combined error types as well as for the
German universities DBpedia subset. Combining different error types yielding a
more realistic scenario influences the recall which results in a lower f1-measure

7 The datasets can also be found on our project homepage.

than on each individual error type. Finding the optimal MinPts can efficiently
be done by iterating between [2, . . . , 100]. However, CROCUS achieves a high
recall on the real-world data from DBpedia. Reaching a f1-measure of 0.84 for
LUBM and 0.91 for DBpedia highlights CROCUS detection abilities.

LUBM DBpedia
MinPts F1 P R F1 P R

2 0.12 1.00 0.09 0.04 0.25 0.02
4 0.58 1.00 0.41 0.04 0.25 0.02
8 0.84 1.00 0.72 0.04 0.25 0.02

10 0.84 1.00 0.72 0.01 0.25 0.01
20 0.84 1.00 0.72 0.17 0.44 0.10
30 0.84 1.00 0.72 0.91 0.86 0.97
50 0.84 1.00 0.72 0.85 0.80 0.97

100 0.84 1.00 0.72 0.82 0.72 0.97

Fig. 2: Evaluation of CROCUS against a
synthetic and a real-world dataset using
all metrics combined.

Property Errors

dbp:staff,
dbp:estab-

lished,
dbp:internat-

ionalStudents

Values are typed as
xsd:string although
they contain numeric
types like integer or
double.

dbo:country,
dbp:country

dbp::country
”Germany”@en collides
with dbo:Germany

Fig. 3: Different error types discovered by
quality raters using the German univer-
sities DBpedia subset.

In general, CROCUS generated many candidates which were then manually
validated by human quality raters, who discovered a variety of errors. Table 3
lists the identified reasons of errors from the German universities DBpedia sub-
set detected as outlier. As mentioned before, some universities do not have a
property dbo:country. However, we found a new type of error. Some literals
are of type xsd:string although they represent a numeric value. Lists of wrong
instances can also be found on our project homepage.

Overall, CROCUS has been shown to be able to detect outliers in synthetic
and real-world data and is able to work with different knowledge bases.

5 Conclusion

We presented CROCUS, a novel architecture for cluster-based, iterative ontology
data cleansing, agnostic of the underlying knowledge base. With this approach
we aim at the iterative integration of data into a productive environment which
is a typical task of industrial software life cycles.

The experiments showed the applicability of our approach on a synthetic and,
more importantly, a real-world Linked Data set. Finally, CROCUS has already
been successfully used on a travel domain-specific productive environment com-
prising more than 630.000 instances (the dataset cannot be published due to its
license).

In the future, we aim at a more extensive evaluation on domain specific
knowledge bases. Furthermore, CROCUS will be extended towards a pipeline

comprising a change management and semantic versioning of the underlying
data. Additionally, a guided constraint derivation for laymen will be added.

Acknowledgments This work has been partly
supported by the ESF and the Free State of Saxony
and by grants from the European Union’s 7th Framework Programme provided
for the project GeoKnow (GA no. 318159). Sincere thanks to Christiane Lemke.

References

1. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-
scale, multilingual knowledge base extracted from wikipedia. SWJ (2014)

2. Zaveri, A., Kontokostas, D., Sherif, M.A., Bühmann, L., Morsey, M., Auer, S.,
Lehmann, J.: User-driven quality evaluation of dbpedia. In Sabou, M., Blomqvist,
E., Noia, T.D., Sack, H., Pellegrini, T., eds.: I-SEMANTICS, ACM (2013) 97–104

3. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: DBpedia - a crystallization point for the web of data. Web Semantics:
Science, Services and Agents on the World Wide Web 7(3) (2009) 154 – 165

4. Lehmann, J.: DL-learner: Learning concepts in description logics. Journal of
Machine Learning Research 10 (2009) 2639–2642

5. Buhmann, L., Lehmann, J.: Pattern based knowledge base enrichment. In: 12th
ISWC, 21-25 October 2013, Sydney, Australia. (2013)

6. Fürber, C., Hepp, M.: Swiqa - a semantic web information quality assessment
framework. In Tuunainen, V.K., Rossi, M., Nandhakumar, J., eds.: ECIS. (2011)

7. Böhm, C., Naumann, F., Abedjan, Z., Fenz, D., Grutze, T., Hefenbrock, D., Pohl,
M., Sonnabend, D.: Profiling linked open data with ProLOD. Data Engineering
Workshops ICDEW 2010 IEEE 26th International Conference on (2010) 175–178

8. Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic
web. In Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M., eds.: LDOW. Volume
628 of CEUR Workshop Proceedings., CEUR-WS.org (2010)

9. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen,
R., Zaveri, A.J.: Test-driven evaluation of linked data quality. In: Proceedings of
the 23rd international conference on World Wide Web. (2014) to appear.

10. Wang, R.Y., Strong, D.M.: Beyond accuracy. what data quality means to data
consumers. Journal of Management Information Systems (4) 5–33

11. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S., Hitzler,
P.: Quality assessment methodologies for linked open data. Submitted to SWJ
(2013)

12. Quilitz, B., Leser, U.: Querying distributed rdf data sources with sparql. In Bech-
hofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M., eds.: The Semantic Web:
Research and Applications. Volume 5021 of Lecture Computer Science. Springer
Berlin Heidelberg (2008) 524–538

13. Stickler, P.: Cbd-concise bounded description. W3C Member Submission 3 (2005)
14. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discov-

ering clusters in large spatial databases with noise. In: KDD. Volume 96. (1996)
226–231

15. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide Web
3(2–3) (2005) 158 – 182

