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Abstract. One of the bottlenecks of the ontology construction process is the amount
of work required with various figures playing a role in it: domain experts contribute
their knowledge that has to be formalized by knowledge engineers so that it can
be mechanized. As the gap between these roles likely makes the process slow and
burdensome, this problem may be tackled by resorting to machine learning tech-
niques. By adopting algorithms from inductive logic programming, the effort of the
domain expert can be reduced, i.e. he has to label individual resources as instances
of the target concept. From those labels, axioms can be induced, which can then be
confirmed by the knowledge engineer. In this chapter, we survey existing methods
in this area and illustrate three different algorithms in more detail. Some basics like
refinement operators, decision trees and information gain are described. Finally, we
briefly present implementations of those algorithms.
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1. Introduction to Concept Learning

One of the bottlenecks of the ontology construction process is represented by the amount
of work required with various figures playing a role in it: domain experts contribute
their knowledge that is formalized by knowledge engineers so that it can be mechanized.
As the gap between these roles makes the process slow and burdensome, this problem
may be tackled by resorting to machine learning (cf. Lawrynowicz and Tresp [23] in
this volume) techniques. Solutions can be based on relational learning [36] which re-
quires a limited effort from domain experts (labeling individual resources as instances
of the target concepts) and leads to the construction of concepts adopting even very ex-
pressive languages [32]. If the concept learning problem is tackled as a search through
a space of candidate descriptions in the reference representation guided by exemplars
of the target concepts, the same algorithms can be adapted to solve also ontology evo-
lution problems. Indeed, while normally the semantics of change operations has been
considered from the logical and deductive point of view of automated reasoning, a rel-
evant part of information lying in the data that populates ontological knowledge bases
is generally overlooked or plays a secondary role. Early work on the application of ma-
chine learning to Description Logics (DLs) [3] essentially focused on demonstrating the
PAC-learnability for various terminological languages derived from CLASSIC. In par-
ticular, Cohen and Hirsh investigate the CORECLASSIC DL proving that it is not PAC-
learnable [9] as well as demonstrating the PAC-learnability of its sub-languages, such
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as C-CLASSIC [10], through the bottom-up LCSLEARN algorithm. These approaches
tend to cast supervised concept learning to a structural generalizing operator working
on equivalent graph representations of the concept descriptions. It is also worth men-
tioning unsupervised learning methodologies for DL concept descriptions, whose pro-
totypical example is KLUSTER [22], a polynomial-time algorithm for the induction of
BACK terminologies, which exploits the tractability of the standard inferences in this
DL language [3]. More recently, approaches have been proposed that adopt the idea of
generalization as search [33] performed through suitable operators that are specifically
designed for DL languages [4,14,11,15,19,30,32] on the grounds of the previous experi-
ence in the context of ILP. There is a body of research around the analysis of such opera-
tors [30,24] along with applications to various problems [31,20] and studies on the prac-
tical scalability of algorithms using them [17,18,27]. Supervised (resp., unsupervised)
learning systems, such as YINYANG [19] and DL-Learner [25], have been implemented
and adoptions implemented for the ontology learning use case [7,27,8,26].

Learning alternative models such as logical decision trees offers another option for
concept induction. The induction of decision trees is among the most well-known ma-
chine learning techniques [34], also in its more recent extensions that are able to work
with more expressive logical representations in clausal form [5]. A new version of the
FOIL algorithm [35] has been implemented, resulting in the DL-FOIL system [12]. The
general framework has been extended to cope with logical representations designed for
formal Web ontologies [13]. The induction of terminological decision trees [13], i.e. log-
ical decision trees test-nodes represented with DL concept descriptions, adopts a clas-
sical top-down divide-and-conquer strategy [6] which differs from previous DL con-
cept learning methods based on sequential covering or heuristic search, with the use of
refinement operators for DL concept descriptions [19,12,32]. The main components of
this new systems are 1) a set of refinement operators borrowed from other similar sys-
tems [19,31]; 2) a specific information-gain function which must take into account the
open-world assumption, namely, many instances may be available which cannot be as-
cribed to the target concept nor to its negation. This requires a different setting, similar
to learning with unknown class attributes [16], requiring a special treatment of the unla-
beled individuals. Once a terminological tree is induced, similarly to the logical decision
trees, a definition of the target concepts can be drawn exploiting the nodes in the tree
structure. The algorithm has also a useful side-effect: the suggestion of new intermediate
concepts which may have no definition in the current ontology.

2. Learning as Search in Description Logics

2.1. Learning Problem

In this section, the learning problem in the DL setting is formally defined.

Definition 2.1 (learning problem) Let K = (T ,A) be a DL knowledge base.

Given

• a (new) target concept name C
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• a set of positive and negative examples1 for C:

∗ Ind+
C(A) = {a ∈ Ind(A) | C(a) ∈ A} ⊆ RK(C) instance retrieval of C

∗ Ind−C(A) = {b ∈ Ind(A) | ¬C(b) ∈ A} ⊆ RK(¬C)

Find a concept definition C ≡ D such that

• K |= D(a) ∀a ∈ Ind+
D(A) and

• K |= ¬D(b) ∀b ∈ Ind−C(A) (resp. K 6|= C(b) ∀b ∈ Ind−C(A))

We prefer the first form for a correct definition w.r.t. negative examples (K |= ¬D(b))
because that seems more coherent with the explicit indication given by the expert. Other
settings assume (K 6|= C(b)) which implicitly makes it a binary learning problem.

The definition given above can be interpreted as a generic supervised concept learn-
ing problem. In case a previous definition D′ for C is already available in K and
∃a ∈ Ind+

C(A) s.t. K 6|= D′(a) or ∃b ∈ Ind−C(A) s.t. K 6|= ¬D′(b) then the problem
can be cast as a refinement problem which would amount to searching for a solution D
starting from the approximation D′.

2.2. Refinement Operators

The solution of the learning problem stated above can be cast as a search for a correct
concept definition in an ordered space (Σ,�). In such a setting, one can define suitable
operators to traverse the search space. Refinement operators can be formally defined as:

Definition 2.2 (refinement operator) Given a quasi-ordered2 search space (Σ,�)

• a downward refinement operator is a mapping ρ : Σ→ 2Σ such that

∀α ∈ Σ ρ(α) ⊆ {β ∈ Σ | β � α}

• an upward refinement operator is a mapping δ : Σ→ 2Σ such that

∀α ∈ Σ δ(α) ⊆ {β ∈ Σ | α � β}

Definition 2.3 (properties of DL refinement operators) A refinement operator ρ is

• (locally) finite iff ρ(C) is finite for all concepts C.
• redundant iff there exists a refinement chain from a concept C to a concept D,

which does not go through some concept E and a refinement chain from C to a
concept equal to D, which does go through E.

• proper iff for all concepts C and D, D ∈ ρ(C) implies C 6≡ D.

A downward refinement operator ρ is called

• complete iff for all concepts C,D with C @ D we can reach a concept E with
E ≡ C from D by ρ.

• weakly complete iff for all concepts C @ > we can reach a concept E with
E ≡ C from > by ρ.

The corresponding notions for upward refinement operators are defined dually.

1Note that Ind+
C(A) ∪ Ind−C(A) ⊆ Ind(A) where Ind(A) is the set of all individuals occurring inA.

2A quasi-ordering is a reflexive and transitive relation.
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In the following, we will consider a space of concept definitions ordered by the sub-
sumption relationship v which induces a quasi-order on the space of all the possible
concept descriptions [4,11]. In particular, given the space of concept definitions in the
reference DL language, say (L,v), ordered by subsumption, there is an infinite number
of generalizations and specializations. Usually one tries to devise operators that can tra-
verse efficiently throughout the space in pursuit of one of the correct definitions (w.r.t.
the examples that have been provided).

2.2.1. Refinement Operator for DL-FOIL

In the definition of refinement operators, the notion of normal form for ALC concept
descriptions is given. Preliminarily, a concept is in negation normal form iff negation
only occurs in front of concept names. Now, some notation is needed to name the differ-
ent parts of an ALC description: prim(C) is the set of all the concepts at the top-level
conjunction of C; if there exists a universal restriction ∀R.D on the top-level of C then
valR(C) = {D} (a singleton description because many such restrictions can be col-
lapsed into a single one with a conjunctive filler concept) otherwise valR(C) = {>}. Fi-
nally, exR(C) is the set of the concept descriptionsE appearing in existential restrictions
∃R.E at the top-level conjunction of C.

Definition 2.4 (ALC normal form) A concept description D is in ALC normal form iff
D is ⊥ or > or if D = D1 t · · · tDn with

Di =
l

A∈prim(Di)

A u
l

R∈NR

 l

V ∈valR(Di)

∀R.V u
l

E∈exR(Di)

∃R.E


where, for all i = 1, . . . , n, Di 6≡ ⊥ and for any R, every sub-description in exR(Di)
and valR(Di) is in normal form.

We will consider two theoretical refinement operators [19] that, given a starting
incorrect definition (too weak or too strong) for the target concept in the search space, can
compute one (or some) of its generalizations / specializations. Both are defined (w.l.o.g.)
for ALC descriptions in normal form.

Definition 2.5 (downward operator ρ) Let ρ = (ρt, ρu) be a downward refinement
operator, where:
[ρt] given a description in ALC normal form D = D1 t · · · tDn:

• D′ ∈ ρt(D) if D′ =
⊔

1≤i≤n
i6=j

Di for some j ∈ {1, . . . , n}
• D′ ∈ ρt(D) if D′ = D′i t

⊔
1≤i≤n

i6=j
Di for some j ∈ {1, . . . , n} and D′j ∈

ρu(Dj)

[ρu] given a conjunctive description C = C1 u · · · u Cm:

• C ′ ∈ ρu(C) if C ′ = C u Cm+1 for some Cm+1 such that ⊥ @ C ′ v C
• C ′ ∈ ρu(C) if C ′ =

d
1≤i≤m

i6=k
Ci u C ′k for some k ∈ {1, . . . ,m}, where:

∗ C ′k v Ck if Ck ∈ prim(C) or
∗ C ′k = ∃R.D′ if Ck = ∃R.D and D′ ∈ ρt(D) or
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∗ C ′k = ∀R.D′ if Ck = ∀R.D and D′ ∈ ρt(D)

Note that a difference operator for concepts is used to single out the subconcepts to
be refined. Further possibilities may be explored using the operator defined C − D =
C t ¬D [38].

The operator for disjunctive concepts ρt simply drops one top-level disjunct or re-
places it with a downward refinement obtained with ρu. ρu adds new conjuncts or re-
places one with a refinement obtained by specializing a primitive concept or the sub-
concepts in the scope of a universal or existential restriction (again through ρt). Note that
successive applications of the operator may require intermediate normalization steps.

Definition 2.6 (upward operator δ) Let δ = (δt, δu) be a downward refinement oper-
ator, where:
[δt] given a description in ALC normal form D = D1 t · · · tDn:

• D′ ∈ δt(D) if D′ = D tDn+1 for some Dn+1 such that Dn+1 6v D
• D′ ∈ δt(D) if D′ = D′j t

⊔
1≤i≤n

i6=j
Di for some j ∈ {1, . . . .n}, D′j ∈ δu(Dj)

[δu] given a conjunctive description C = C1 u · · · u Cm:

• C ′ ∈ δu(C) if C ′ =
d

1≤i≤m
i6=k

Ci for some k ∈ {1, . . . .m}
• C ′ ∈ δu(C) if C ′ =

d
1≤i≤m

i6=k
Ci u C ′k for some k ∈ {1, . . . ,m}, where:

∗ C ′k w Ck if Ck ∈ prim(C) or
∗ C ′k = ∃R.D′ if Ck = ∃R.D and D′ ∈ δt(D) or
∗ C ′k = ∀R.D′ if Ck = ∀R.D and D′ ∈ δt(D)

δt and δu simply perform dual operations w.r.t. ρt and ρu, respectively. Some examples
of their application can be found in [19].

These operators follow the definition of the ALC normal form. Hence they cannot
be complete for more expressive DLs (see [30] for an analysis of refinement operators in
DLs). However, instead of such operators that likely lead to overfit the data (e.g. a gen-
eralizing operator based on the computation of the Least Common Subsumer (LCS) [10]
would amount to a simple union of the input descriptions in ALC) it may be preferable
to search the space (incompletely) using the non-ALC restrictions as atomic features
(concepts). Moreover, other operators have been designed to exploit also the knowledge
conveyed by the positive and negative examples in order to prune the possible candidate
refinements yielded by a single generalization / specialization step and to better direct the
search for suitable problem solutions [19]. Even more so, instead of using the examples
in a mere generate-and-test strategy based on these operators, they could be exploited
more directly3, in order to influence the choices made during the refinement process.

2.2.2. A refinement operator for CELOE

Designing a refinement operator ρ needs to make decisions on which properties are most
useful in practice regarding the underlying learning algorithm. Considering the prop-
erties completeness, weak completeness, properness, finiteness, and non-redundancy an

3E.g. using the most specific concepts [3] as their representatives to the concept level. But their exact com-
putation is feasible only for very simple DLs.
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extensive analysis in [30] has shown that the most feasible property combination for our
setting is {weakly complete, complete, proper}, which we will justify briefly. Only for
less expressive description logics like EL, ideal, i.e. complete, proper and final, opera-
tors exist [29]. (Weak) Completeness is considered a very important property, since an
incomplete operator may fail to converge at all and thus may not return a solution even
if one exists. Reasonable, weakly complete operators are often complete. Consider, for
example, the situation where a weakly complete operator ρ allows to refine a concept C
to C uD with some D ∈ ρ(>). Then it turns out that this operator is already complete.

Concerning finiteness, having an infinite operator is less critical from a practical per-
spective since this issue can be handled algorithmically. So it is preferable not imposing
finiteness, which allows to develop a proper operator. As for non-redundancy, this ap-
pears to be very difficult to achieve for more complex operators. Consider, for example,
the concept A1 u A2 which can be reached from > via the chain >  A1  A1 u A2,
For non-redundancy, the operator would need to make sure that this concept cannot be
reached via the chain >  A2  A2 u A1. While there are methods to handle this
in such simple cases via normal forms, it becomes more complex for arbitrarily deeply
nested structures, where even applying the same replacement leads to redundancy. In the
following example, A1 is replaced by A1 uA2 twice in different order in each chain:

> ∀r1.A1 t ∀r2.A1  ∀r1.A1 t ∀r2.(A1 uA2)

 ∀r1.(A1 uA2) t ∀r2.(A1 uA2)

> ∀r1.A1 t ∀r2.A1  ∀r1.(A1 uA2) t ∀r2.A1

 ∀r1.(A1 uA2) t ∀r2.(A1 uA2)

To avoid this, an operator would need to regulate when A1 can be replaced by A1 uA2,
which appears not to be achievable by syntactic replacement rules. Alternatively, a com-
putationally inexpensive redundancy check can be used, which seems to be sufficiently
useful in practice.

We now define the refinement operator ρ: For each A ∈ NC , we define (sh stands
for subsumption hierarchy):

sh↓(A) ={A′ ∈ NC | A′ @ A, there is no A′′ ∈ NC with A′ @T A′′ @T A}

sh↓(>) is defined analogously for > instead of A. sh↑(A) is defined analogously for
going upward in the subsumption hierarchy. We do the same for roles, i.e. :

sh↓(r) ={r′ | r′ ∈ NR, r
′ @ r, there is no r′′ ∈ NR with r′ @T r′′ @T r}

domain(r) denotes the domain of a role r and range(r) the range of a role r. A range
axiom links a role to a concept. It asserts that the role fillers must be instances of a given
concept. Domain axioms restrict the first argument of role assertions to a concept. We
define:

ad(r) = an A with A ∈ {>} ∪NC and domain(r) v A

and there does not exist an A′ with domain(r) v A′ @ A
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ar(r) is defined analogously using range instead of domain. ad stands for atomic domain
and ar stands for atomic range. We assign exactly one atomic concept as domain/range
of a role. Since using atomic concepts as domain and range is very common, domain and
ad as well as range and ar will usually coincide. The set appB of applicable properties
with respect to an atomic concept B is defined as:

appB = {r|r ∈ NR, ad(r) = A,A uB 6≡ ⊥}

To give an example, for the concept Person, we have that the role hasChild with
ad(hasChild) = Person is applicable, but the role hasAtomwith ad(hasAtom) =
ChemicalCompound is not applicable (assuming Person and ChemicalCompound
are disjoint). We will use this to restrict the search space by ruling out unsatisfiable con-
cepts. The index B describes the context in which the operator is applied, e.g. >  
Person is a refinement step of ρ. However, ∃hasAtom.>  ∃hasAtom.Person is
not a refinement step of ρ assuming ar(hasAtom) and Person are disjoint. The set of
most general applicable roles mgrB with respect to a concept B is defined as:

mgrB = {r | r ∈ appB , there is no r′ with r @ r′, r′ ∈ appB}

MB with B ∈ {>} ∪NC is defined as the union of the following sets:

• {A | A ∈ NC , A uB 6≡ ⊥, A uB 6≡ B, there is no A′ ∈ NC with A @ A′}
• {¬A | A ∈ NC ,¬AuB 6≡ ⊥,¬AuB 6≡ B, there is no A′ ∈ NC with A′ @ A}
• {∃r.> | r ∈ mgrB}
• {∀r.> | r ∈ mgrB}

The operator ρ is defined in Figure 1. Note that ρ delegates to an operator ρB with
B = > initially. B is set to the atomic range of roles contained in the input concept
when the operator recursively traverses the structure of the concept. The index B in the
operator (and the set M above) is used to rule out concepts which are disjoint with B.

Example 2.1 (ρ refinements) Since the operator is not easy to understand at first
glance, we provide some examples. Let the following knowledge base be given:

K = {Man @ Person;Woman @ Person;SUV @ Car;Limo @ Car;

Person u Car ≡ ⊥; domain(hasOwner) = Car; range(hasOwner) = Person}

Then the following refinements of > exist:

ρ(>) = {Car,Person,¬Limo,¬SUV,¬Woman,¬Man,

∃hasOwner.>,∀hasOwner.>,Car t Car,Car t Person, . . . }

This illustrates how the set M> is constructed. Note that refinements like CartCar are
incorporated in order to reach e.g. SUVtLimo later in a possible refinement chain. The
concept Car u ∃hasOwner.Person has the following refinements:
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ρ(C) =

{
{⊥} ∪ ρ>(C) if C = >
ρ>(C) otherwise

ρB(C) =



∅ if C = ⊥
{C1 t · · · t Cn | Ci ∈MB (1 ≤ i ≤ n)} if C = >
{A′ | A′ ∈ sh↓(A)} if C = A (A ∈ NC)

∪{A uD | D ∈ ρB(>)}
{¬A′ | A′ ∈ sh↑(A)} if C = ¬A (A ∈ NC)

∪{¬A uD | D ∈ ρB(>)}
{∃r.E | A = ar(r), E ∈ ρA(D)} if C = ∃r.D
∪ {∃r.D u E | E ∈ ρB(>)}
∪ {∃s.D | s ∈ sh↓(r)}

{∀r.E | A = ar(r), E ∈ ρA(D)} if C = ∀r.D
∪ {∀r.D u E | E ∈ ρB(>)}
∪ {∀r.⊥ |

D = A ∈ NC and sh↓(A) = ∅}
∪ {∀s.D | s ∈ sh↓(r)}

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn | if C = C1 u · · · u Cn

D ∈ ρB(Ci), 1 ≤ i ≤ n} (n ≥ 2)

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn | if C = C1 t · · · t Cn

D ∈ ρB(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 t · · · t Cn) uD |
D ∈ ρB(>)}

Figure 1. Definition of the refinement operator ρ.

ρ(Car u ∃hasOwner.Person) = {Car u ∃hasOwner.Man,

Car u ∃hasOwner.Woman,

SUV u ∃hasOwner.Person,

Limo u ∃hasOwner.Person, . . . }

Note the traversal of the subsumption hierarchy, e.g. Car is replaced by SUV.

Proposition 2.1 (Downward Refinement of ρ) ρ is an ALC downward refinement op-
erator.

A distinguishing feature of ρ compared to other DL refinement operators [4,11], is
that it makes use of the subsumption and role hierarchy, e.g. for concepts A2 @ A1,
we reach A2 via >  A1  A2. This way, we can stop the search if A1 is already
too weak and, thus, make better use of TBox knowledge. The operator also uses domain
and range of roles to reduce the search space. This is similar to mode declarations in
Aleph, Progol, and other ILP programs. However, in DL knowledge bases and OWL
ontologies, domain and range are usually explicitly given, so there is no need to define
them manually. Overall, the operator supports more structures than those in [4,11] and
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tries to intelligently incorporate background knowledge. In [32] further extensions of the
operator are described, which increase its expressivity such that it can handle most OWL
class expressions. Note that ρ is infinite. The reason is that the set MB is infinite and we
put no bound on the number of elements in the disjunctions, which are refinements of the
top concept. Furthermore, the operator requires reasoner requests for calculating MB .
However, the number of requests is fixed, so – assuming the results of those requests
are cached – the reasoner is only needed in an initial phase, i.e. during the first calls
to the refinement operator. This means that, apart from this initial phase, the refinement
operator performs only syntactic rewriting rules.

3. CELOE

Figure 2. Outline of the gen-
eral learning approach in
CELOE: One part of the
algorithm is the generation
of promising class expres-
sions taking the available
background knowledge into
account. Another part is a
heuristic measure of how
close an expression is to be-
ing a solution of the learn-
ing problem. Figure adapted
from [17,18].

Figure 2 gives an overview of our algorithm CELOE (standing for “class expression
learning for ontology engineering”), which follows the common “generate and test“ ap-
proach in ILP. Learning is seen as a search process and several class expressions are gen-
erated and tested against a background knowledge base. Each of those class expressions
is evaluated using a heuristic [27]. A challenging part of a learning algorithm is to decide
which expressions to test. Such a decision should take the computed heuristic values and
the structure of the background knowledge into account. For CELOE, we use the ap-
proach described in [31,32] as base, where this problem has been analysed, implemented,
and evaluated. It is based on the refinement operator introduced in Sect. 2.2.2.

The approach we used is a top-down algorithm based on refinement operators as il-
lustrated in Figure 3. This means that the first class expression, which will be tested is the
most general expression (>), which is then mapped to a set of more specific expressions
by means of a downward refinement operator. The refinement operator can be applied to
the obtained expressions again, thereby spanning a search tree. The search tree can be
pruned when an expression does not cover sufficiently many instances of the class A we
want to describe. One example for a path in a search tree spanned up by a downward
refinement operator is the following ( denotes a refinement step):

> Person Person u takesPartinIn.>

 Person u takesPartIn.Meeting
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>

Person

Person u ∃takesPartIn.>

Person u ∃takesPartIn.Meeting . . .

. . .

Car Building . . .

Figure 3. Illustration of a search tree in a top down refinement approach.

The heart of such a learning strategy is to define a suitable refinement operator and an
appropriate search heuristics for deciding which nodes in the search tree should be ex-
panded. The refinement operator in the considered algorithm is defined in [32]. It is based
on [31] which in turn is build on theoretical foundations in [30]. It has been shown to
be the best achievable operator with respect to a set of properties (not further described
here), which are used to assess the performance of refinement operators. The learning al-
gorithm supports conjunction, disjunction, negation, existential and universal quantifiers,
cardinality restrictions, hasValue restrictions as well as boolean and double datatypes.

While the major change compared to other supervised learning algorithms for OWL
is the previously described heuristic, there are also further modifications. The goal of
those changes is to adapt the learning algorithm to the ontology engineering scenario:
For example, the algorithm was modified to introduce a strong bias towards short class
expressions. This means that the algorithm is less likely to produce long class expres-
sions, but is almost guaranteed to find any suitable short expression (see [8] for an al-
ternative approach to achieve this). The rationale behind this change is that knowledge
engineers can understand short expressions better than more complex ones and it is es-
sential not to miss those. We also introduced improvements to enhance the readability of
suggestions: Each suggestion is reduced, i.e. there is a guarantee that they are as succinct
as possible. For example, ∃hasLeader.> u Capital is reduced to Capital if the
background knowledge allows to infer that a capital is a city and each city has a leader.
This reduction algorithm uses the complete and sound Pellet reasoner, i.e. it can take
any possible complex relationships into account by performing a series of subsumption
checks between class expressions. A caching mechanism is used to store the results of
those checks, which allows to perform the reduction very efficiently after a warm-up
phase. We also make sure that “redundant” suggestions are omitted. If one suggestion
is longer and subsumed by another suggestion and both have the same characteristics,
i.e. classify the relevant individuals equally, the more specific suggestion is filtered. This
avoids expressions containing irrelevant subexpressions and ensures that the suggestions
are sufficiently diverse.

4. DL-FOIL

In this section, DL-FOIL [12] algorithm is presented. The main aim of this work was
conceiving a learning algorithm that could overcome two limitation of the current DL
concept learning systems, namely avoiding the computation of the most specific con-
cepts (which is also language-dependent) and the excessive (syntactic) complexity of the
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Algorithm 1 GENERALIZE(Positives, Negatives, Unlabeled): Generalization
Require: Positives, Negatives, Unlabeled: positive, negative and unlabeled individuals
Ensure: Generalization: concept definition solving the learning problem

1: Generalization← ⊥
2: PositivesToCover← Positives
3: while PositivesToCover 6= ∅ do
4: PartialDef← >
5: CoveredNegatives← Negatives
6: while CoveredNegatives 6= ∅ do
7: PartialDef← SPECIALIZE(PartialDef,PositivesToCover,CoveredNegatives,Unlabeled)
8: CoveredNegatives← {n ∈ Negatives | K |= ¬PartialDef(n)}
9: end while

10: CoveredPositives← {p ∈ PositivesToCover | K |= PartialDef(p)}
11: Generalization← Generalization t PartialDef
12: PositivesToCover← PositivesToCover \ CoveredPositives
13: end while
14: return Generalization

resulting generalizations. For instance, the algorithm presented in [19] requires lifting
the instances to the concept level through a suitable approximate MSC operator and then
start learning from such extremely specific concept descriptions. This setting has the
disadvantages of approximation and language-dependency. In DL-LEARNER [31] these
drawbacks are partly mitigated because a learning procedure grounded on a genetic pro-
gramming based on refinement operators is adopted, whose fitness is computed on the
grounds of the covered instances (retrieval). More heuristics and approximated retrieval
procedures are further investigated in [17].

The DL-FOIL algorithm essentially adapts the original FOIL algorithm [35] to the
different learning problem with DL knowledge bases. Together with a sequential cov-
ering procedure, it exploits the (downward) refinement operators defined in Sect. 2.2.1
and a heuristic similar to the information gain to select among candidate specialization.
Various search strategies have been experimented as well as evaluation measures. Those
that we will present in the following are those which gave the best results. A sketch of
the main routine of the learning procedure is reported as Alg. 1. Like in the original FOIL
algorithm, the generalization routine computes (partial) generalizations as long as they
do not cover any negative example. If this occurs, the specialization routine is invoked
for solving these sub-problems. This routine applies the idea of specializing using the
(incomplete) refinement operator defined in the previous section. The specialization con-
tinues until no negative example is covered (or a very limited amount4 of them). The par-
tial generalizations built on each outer loop are finally grouped together in a disjunction
which is an allowed constructor for more expressive logics than (or equal to) ALC. Also
the outer while-loop can be exited before covering all the positive examples for avoiding
overfitting generalizations.

The specialization function SPECIALIZE (reported as Alg. 2) is called from within
the inner loop of the generalization procedure in order to specialize an overly general
partial generalization. The function searches for proper refinements that provide at least
a minimal gain (see below) fixed with a threshold (MINGAIN). Specializations are ran-

4The actual exit-condition for the inner loop may be: 1 − |CoveredNegatives|/|Negatives| < ε, for some
small constant ε.
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Algorithm 2 SPECIALIZE(PartialDef, Positives, Negatives, Unlabeled): Refinement
Require:

PartialDef : concept definition
Positives, Negatives, Unlabeled: (positive, negative and unlabeled) individuals

Ensure: Refinement: concept definition
1: const:

MINGAIN: minimal acceptable gain;
NUMSPECS: number of specializations to be generated

2: bestGain← 0
3: while bestGain < MINGAIN do
4: for i← 1 to NUMSPECS do
5: Specialization← GETRANDOMREFINEMENT(ρ,PartialDef)
6: CoveredPositives← {p ∈ Positives | K |= Specialization(p)}
7: CoveredNegatives← {n ∈ Negatives | K |= ¬Specialization(n)}
8: thisGain← GAIN(CoveredPositives,CoveredNegatives,Unlabeled,Positives,Negatives)
9: if thisGain > bestGain then

10: bestConcept← Specialization
11: bestGain← thisGain
12: end if
13: end for
14: end while
15: return Refinement

domly generated using the ρ operator defined in Sect. 2.2.1, especially ρu is exploited
with the addition of new conjuncts or the specialization of primitive concepts or role
restrictions. This is similar to the original FOIL algorithm, where new random literals
are appended to clauses’ antecedents. A first random choice is made between atomic
concepts or role restrictions. In the latter case another random choice is made between
existential and universal restriction. In all cases the required concept and roles names are
also randomly selected. This may give a way to impose some further bias to the form of
the concept descriptions to be induced.

As regards the heuristic employed to guide the search, it was shown [21] that the gain
function has to take into account incomplete examples. Similarly to a semi-supervised
learning setting, the gain value g that is computed in GAIN() for selecting the best refine-
ment is obtained as follows:

g = p1 ·
[
log

p1 + u1w1

p1 + n1 + u1
− log

p0 + u0w0

p0 + n0 + u0

]
where p1, n1 and u1 represent, resp., the number of positive, negative and unlabeled ex-
amples covered by the specialization; p0, n0 and u0 stand for the number of positive, neg-
ative and unlabeled examples covered by the former definition, the weights w0, w1 can
be determined by an estimate of the prior probability of the positive examples, resp., in
the current and former concept definition. To avoid the case of null numerators, a further
correction of the probabilities is performed by resorting to an m-estimate procedure.

The overall complexity of the algorithm is largely determined by the calls to reason-
ing services, namely subsumption (satisfiability) and instance-checking. If we consider
only concepts expressed in ALC logic, the complexity of these inferences is P-space.
However, should the considered knowledge base contain definitions expressed in more
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∃hasPart.>

∃hasPart.Worn

∃hasPart.(Worn u ¬Replaceable)

SendBack ¬SendBack (v Fix)

¬SendBack (v Ok)

¬SendBack (v Machine)

Figure 4. A TDT whose leftmost path corresponds to the DL concept definition
SendBack ≡ ∃hasPart.(Worn u ¬Replaceable). Other definitions can be associated to the paths to leaves
labeled with ¬SendBack that are related to other (disjoint) concepts.

complex languages which require more complex reasoning procedures. The inductive
algorithm can be thought as a means for building (upper) ALC-approximations of the
target concepts. The number of nodes visited during the traversal of the search space
grows with richness of the vocabulary, yet not with the expressiveness of the underlying
DL, because the algorithm searches a sub-space of the actual search space induced by
the language.

5. Learning Terminological Decision Trees

First-order logical decision trees (FOLDTs) [5] are binary decision trees in which

1. the nodes contain tests in the form of conjunctions of literals;
2. left and right branches stand, resp., for the truth-value (resp. true and false) de-

termined by the test evaluation;
3. different nodes may share variables, yet a variable that is introduced in a certain

node must not occur in the right branch of that node.

Terminological decision trees (TDTs) extend the original definition, allowing DL concept
descriptions as (variable-free) node tests. Fig. 4 shows a TDT denoting also the definition
of the SendBack concept as in the problem described in [5].

5.1. Classification

The TDTs can be used for classifying individuals. Alg. 3 shows the related classification
procedure. It uses other functions: LEAF() to determine whether a node is a leaf of the
argument tree, ROOT() which returns the root node of the input tree, and INODE() which
retrieves the test concept and the left and right subtrees branching from a given internal
node. Given an individual a, starting from the root node, the algorithm checks the class-
membership w.r.t. the test concept Di in the current node, i.e. K |= Di(a), sorting a to
the left branch if the test is successful while the right branch is chosen if K |= ¬Di(a).
Eventually the classification is found as a leaf-node concept.

Note that the open-world semantics may cause unknown answers (failure of both
left and right branch tests) that can be avoided by considering a weaker (default) right-
branch test: K 6|= Di(a). This differs from the FOLDTs where the test actually consists
of several conjunctions that occur in the path from the root to the current node.
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Algorithm 3 Classification with TDTs.
CLASSIFY(a: individual, T : TDT, K: KB): concept;
1. N ← ROOT(T );
2. while ¬LEAF(N,T ) do

(a) (D,Tleft, Tright)← INODE(N);
(b) if K |= D(a) then N ← ROOT(Tleft)
(c) elseif K |= ¬D(a) then N ← ROOT(Tright)
(d) else return >

3. (D, ·, ·)← INODE(N);
4. return D;

5.2. From Terminological Decision Trees to Concept Descriptions

Note that each node in a path may be used to build a concept description through special-
izations. This can be given 1) by adding a conjunctive concept description, 2) by refining
a sub-description in the scope of an existential, universal or number restriction or 3) by
narrowing a number restriction (which may be allowed by the underlying language, e.g.
ALN orALCQ). No special care5 is to be devoted to negated atoms and their variables.

For each target concept name C it is possible to derive a single concept definition
from a TDT. The algorithm (see Alg. 4) follows all the paths leading to success nodes
i.e. leaves labeled with C (the heads of the clauses in the original setting) collecting the
intermediate test concepts (formerly, the body literals). In this way, each path yields a
different conjunctive concept description that represents a different version of the target
concept in conjunctive form Di = Di

1 u · · · u Di
l . The final single description for the

target concept is obtained as the disjunctive description built with concepts from this
finite set S = {Di}Mi=1. Hence, the final definition is C ≡

⊔M
i=1Di. As an example,

looking at the TDT depicted in Figure 4, a concept definition that may be extracted is
Ok ≡ ∃hasPart.> u ¬∃hasPart.Worn ≡ ∃hasPart.> u ∀hasPart.¬Worn

i.e. something that has exclusively parts which are not worn.
Like in the original logic tree induction setting, also internal nodes may be utilized

to induce new intermediate concepts.

5.3. Induction of TDTs

The subsumption relationship v induces a partial order on the space of DL concept de-
scriptions. Then, as seen above, the learning task can be cast as a search for a solution of
the problem in the partially ordered space. In such a setting, suitable operators to traverse
the search space are required [19,32]. While existing DL concept induction algorithms
generally adopt a separate-and-conquer covering strategy, the TDT-learning algorithm
adopts a divide-and-conquer strategy [6]. It also tries to cope with the limitations of the
other learning systems, namely approximation and language-dependence. Indeed, since
the early works [10], instances are required to be transposed to the concept level before
the learning can start. This is accomplished by resorting to the computation, for each
training individual, of the related MSC the individual belongs to [3], which need not ex-

5We are considering expressive (and decidable) DL languages likeALCQ, that are endowed with full nega-
tion, hence the situation is perfectly symmetric.
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Algorithm 4 Mapping a TDT onto a DL concept description.
DERIVEDEFINITION(C: concept name, T : TDT): concept description;

1. S ← ASSOCIATE(C, T,>);
2. return

⊔
D∈S D;

ASSOCIATE(C: concept name; T : TDT; Dc: current concept description): set of descriptions;

1. N ← ROOT(T );
2. (Dn, Tleft, Tright)← INODE(N);
3. if LEAF(N,T ) then

(a) if Dn = C then
return {Dc};

else
return ∅;

else

(a) Sleft ← ASSOCIATE(C, Tleft, Dc uDn);
(b) Sright ← ASSOCIATE(C, Tright, Dc u ¬Dn);
(c) return Sleft ∪ Sright;

ist, especially for expressive DLs, and thus has to be approximated. Even in an approx-
imated version, the MSCs turn out to be extremely specific descriptions which affects
both the efficiency of learning and the effectiveness of the learned descriptions as this
specificity easily leads to overfitting the data [19].

The algorithms implemented by DL-LEARNER [32] partly mitigate these disad-
vantages being based on stochastic search using refinement operators and a heuristic
computed on the grounds of the covered individuals (and a syntactic notion of concept
length). Generate-and-test strategies may fall short when considering growing search
spaces determined by more expressive languages. This drawback is hardly avoidable and
it has been tackled by allowing more interaction with the knowledge engineer which can
be presented with partial solutions and then decide to stop further refinements.

Our TDT-induction algorithm adapts the classic schema implemented by C4.5 [34]
and TILDE [5]. A sketch of the main routine is reported as Alg. 5. It reflects the standard
tree induction algorithms with the addition of the treatment of unlabeled training indi-
viduals. The three initial conditions take care of the base cases of the recursion, namely:

1. no individuals got sorted to the current subtree root then the resulting leaf is de-
cided on the grounds of the prior probabilities of positive and negative instances
(resp. Pr+ and Pr−);

2. no negative individual yet a sufficient rate (w.r.t. the threshold θ) of positive ones
got sorted to the current node, then the leaf is labeled accordingly;

3. dual case w.r.t. to the previous one.

The second half of the algorithm (randomly) generates a set Specs of (satisfiable)
candidate descriptions (calling GENERATENEWCONCEPTS), that can specialize the cur-
rent description D when added as a conjunction. Then, the best one (Dbest ) is selected
in terms of an improvement of the purity of the subsets of individuals resulting from a
split based on the test description. The (im)purity measure is based on the entropic infor-
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Algorithm 5 The main routine for inducing terminological decision trees
INDUCETDTREE(C: concept name; D: current description; Ps, Ns, Us: set of (positive,
negative, unlabeled) training individuals): TDT;

1: const θ; {purity threshold}
2: Initialize new TDT T ;
3: if |Ps| = 0 and |Ns| = 0 then
4: if Pr+ ≥ Pr− then
5: T.root← C
6: else
7: T.root← ¬C;
8: end if
9: return T ;

10: end if
11: if |Ns| = 0 and |Ps|/(|Ps|+ |Us|) > θ then
12: T.root← C; return T ;
13: end if
14: if |Ps| = 0 and |Ns|/(|Ns|+ |Us|) > θ then
15: T.root← ¬C; return T ;
16: end if
17: Specs← GENERATENEWCONCEPTS(D,Ps,Ns);
18: Dbest ← SELECTBESTCONCEPT(Specs,Ps,Ns,Us);
19: ((P l, N l, U l), (P r, Nr, Ur))← SPLIT(Dbest ,Ps,Ns,Us);
20: T.root← Dbest ;
21: T.left← INDUCETDTREE(C,D uDbest , P

l, N l, U l);
22: T.right← INDUCETDTREE(C,D u ¬Dbest , P

r, Nr, Ur);
23: return T ;

mation gain [34] or on the Gini index which was finally preferred. In the DL setting the
problem is made more complex by the presence of instances which cannot be labelled as
positive or negative (see [12]) whose contributions are considered as proportional to the
prior distribution of positive and negative examples.

Once the best descriptionDbest has been selected (calling SELECTBESTCONCEPT),
it is installed as the current subtree root and the sets of individuals sorted to this node
are subdivided according to their classification w.r.t. such a concept. Note that unlabeled
individuals must be sorted to both subtrees. Finally the recursive calls for the construc-
tion of the subtrees are made, passing the proper sets of individuals and the concept
descriptions D uDbest and D u ¬Dbest related to either path.

The resulting system, TERMITIS (TERMInological Tree Induction System), ver.
1.2, was applied, for comparative purposes, to ontologies that have been considered in
previous experiments with other DL learning systems [13].

6. Implementation

6.1. The Protégé Plugin

After implementing and testing the learning algorithm described in Sect. 3, it has been
integrated into Protégé and OntoWiki. We extended the Protégé 4 plugin mechanism
to be able to integrate the DL-Learner plugin as an additional method to create class
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Figure 5. A screenshot of the
DL-Learner Protégé plugin. It is
integrated as additional tab to cre-
ate class expressions in Protégé.
The user is only required to press
the “suggest equivalent class ex-
pressions” button and within a few
seconds they will be displayed or-
dered by accuracy. If desired, the
knowledge engineer can visualize
the instances of the expression to
detect potential problems. At the
bottom, optional expert configura-
tion settings can be adopted.

expressions. The plugin has also become part of the official Protégé 4 repository. A
screenshot of the plugin is shown in Fig. 5. To use the plugin, the knowledge engineer
is only required to press a button, which then starts a new thread, in the background,
that executes the learning algorithm. The used algorithm is an anytime algorithm, i.e. at
each point in time we can always see the currently best suggestions. The GUI updates
the suggestion list each second until the maximum runtime – 10 seconds per default –
is reached. For each suggestion, the plugin displays its accuracy. When clicking on a
suggestion, it is visualized by displaying two circles: One stands for the instances of the
class to describe and another circle for the instances of the suggested class expression.
Ideally, both circles overlap completely, but in practice this will often not be the case.
Clicking on the plus symbol in each circle shows its list of individuals. Those individuals
are also presented as points in the circles and moving the mouse over such a point shows
information about the respective individual. Red points show potential problems, where
it is important to note that we use a closed world assumption to detect those. If there
is not only a potential problem, but adding the expression would render the ontology
inconsistent, the suggestion is marked red and a warning message is displayed. Accepting
such a suggestion can still be a good choice, because the problem often lies elsewhere in
the knowledge base, but was not obvious before, since the ontology was not sufficiently
expressive for reasoners to detect it. This is illustrated by a screencast available from the
plugin homepage,6 where the ontology becomes inconsistent after adding the axiom, and
the real source of the problem is fixed afterwards. Being able to make such suggestions
can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings. Those settings
include the maximum suggestion search time, the number of results returned and settings
related to the desired target language., e.g. the knowledge engineer can choose to stay

6http://dl-learner.org/wiki/ProtegePlugin
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within the OWL 2 EL profile or enable/disable certain class expression constructors. The
learning algorithm is designed to be able to handle noisy data and the visualisation of the
suggestions will reveal false class assignments so that they can be fixed afterwards.

6.2. The OntoWiki Plugin

Analogous to Protégé, we created a similar plugin for OntoWiki [2,1]. OntoWiki is a
lightweight ontology editor, which allows distributed and collaborative editing of knowl-
edge bases. The DL-Learner plugin is technically realized by implementing an OntoWiki
component, which contains the core functionality, and a module, which implements the
UI embedding. The DL-Learner plugin can be invoked from several places in OntoWiki,
for instance through the context menu of classes. The plugin accesses DL-Learner func-
tionality through its WSDL-based web service interface. Jar files containing all neces-
sary libraries are provided by the plugin. If a user invokes the plugin, it scans whether
the web service is online at its default address. If not, it is started automatically.

Figure 6. Extraction with three starting instances. The circles represent different recursion depths. The circles
around the starting instances signify recursion depth 0. The larger inner circle represents the fragment with
recursion depth 1 and the largest outer circle with recursion depth 2. Figure taken from [17].

A major technical difference compared to the Protégé plugin is that the knowledge
base is accessed via SPARQL, since OntoWiki is a SPARQL-based web application. In
Protégé, the current state of the knowledge base is stored in memory in a Java object.
As a result, we cannot easily apply a reasoner on an OntoWiki knowledge base. To over-
come this problem, we use the DL-Learner fragment selection mechanism described in
[17]. Starting from a set of instances, the mechanism extracts a relevant fragment from
the underlying knowledge base up to some specified recursion depth. Fig. 6 provides an
overview of the fragment selection process. The fragment has the property that learn-
ing results on it are similar to those on the complete knowledge base. For a detailed de-
scription see [17]. The fragment selection is only performed for medium to large-sized
knowledge bases. Small knowledge bases are retrieved completely and loaded into the
reasoner. While the fragment selection can cause a delay of several seconds before the
learning algorithm starts, it also offers flexibility and scalability. For instance, we can
learn class expressions in large knowledge bases such as DBpedia in OntoWiki. Fig. 7
shows a screenshot of the OntoWiki plugin applied to the SWORE [37] ontology. Sug-
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Figure 7. Screenshot of the result table of the DL-Learner plugin in OntoWiki.

gestions for learning the class “customer requirement” are shown in Manchester OWL
Syntax. Similar to the Protégé plugin, the user is presented a table of suggestions along
with their accuracy value. Additional details about the instances of “customer require-
ment” covered by a suggested class expressions and additionally contained instances can
be viewed via a toggle button. The modular design of OntoWiki allows rich user interac-
tion: Each resource, e.g. a class, property, or individual, can be viewed and subsequently
modified directly from the result table as shown for “design requirement” in the screen-
shot. For instance, a knowledge engineer could decide to import additional information
available as Linked Data and run the CELOE algorithm again to see whether different
suggestions are provided with additional background knowledge.

7. Conclusions

Ontology construction may be a burdensome and time consuming task. To cope with
this problem, the usage of machine learning techniques has been proposed. Specifically,
the problem is regarded as a (supervised) concept learning problem where, given a set
of individual resources labeled as instances of a target concept, the goal is to find an
intensional concept description for them. Particularly, from those labels, axioms can be
induced, which can then be confirmed by the knowledge engineer. The concept learning
problem is tackled as a search through a space of candidate descriptions in the reference
representation guided by exemplars of the target concepts. Those techniques are also ap-
plicable in other domains, e.g. question answering [28]. After surveyed existing methods
and some basics on refinement operators, three different algorithms have been presented
and compared in more detail: DL-FOIL, CELOE and TERMITIS.
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