
Perspectives on Ontology Learning

Jens Lehmann and Johanna Völker (Eds.)

Informatics Institute, University of Leipzig, Germany
Data & Web Science Research Group, University of Mannheim,

Germany

IOS Press

Foreword

Philipp CIMIANO a,
a Semantic Computing Group, Bielefeld University

Equipping machines with commonsense as well as domain-specific knowledge in
order to endow them with human-like understanding of certain problem domains has
been and still is a main goal of artificial intelligence research. In this context, a crucial
question is how high the cost actually is for encoding all the relevant knowledge in such
a way that it can be exploited by machines for automatic reasoning, inconsistency detec-
tion, etc. While there has been some recent work on developing methodologies allowing
us to estimate the cost of knowledge engineering projects [12], it is legitimate to assume
that not all the relevant knowledge can be encoded manually. Techniques that can extract
and discover knowledge by analyzing human behaviour and data produced as a result
thereof can offer an important contribution in this respect.

The field of ontology learning, a term coined by Alexander Mädche and Steffen
Staab in 2001 [7], is concerned with the development of methods that can induce relevant
ontological knowledge from data. The field can by now look back into more than ten
years of intense research. Early research in the field focused on applying shallow meth-
ods to term and concept extraction as well as hierarchical and non-hierarchical relation
extraction [7]. Later on, in my PhD thesis with the title “Ontology Learning and Pop-
ulation from Text: Algorithms, Evaluation and Applications”, I defined ontology learn-
ing as the acquisition of a domain model from data and attempted to provide a system-
atic overview of ontology learning tasks by introducing the so called ontology learn-
ing layer cake, which has received wide attention since then. In recent years, several re-
searchers have attempted to increase the expressivity of the ontologies learned from text
data, in particular by attempting to extract deeper axiomatic knowledge (e.g. see [13],
[14] and [4]). Some contributions along these lines can also be found in this volume,
e.g. aiming at learning OWL axioms by applying inductive techniques (cf. Lehmann et
al. [5] and Lisi [6] in this volume).

The problem of ontology learning has turned out to be much more difficult than ex-
pected. The main reason for this is, in my view, that an ontology always reflects a way of
conceptualizing the world or a given domain, while the results of an ontology learning al-
gorithm that learns from a set of data essentially reflects the idiosyncrasies of the dataset
in question. As such, turning the results of an ontology algorithm into an ontology that
actually reflects the conceptualization one has of a domain can be more costly than actu-
ally building the ontology from scratch. The problem of ontology learning has turned out
to be much more difficult than expected. The main reason for this is, in my view, that an
ontology always reflects a way of conceptualizing the world or a given domain, while the
results of an ontology learning algorithm that learns from a set of data essentially reflects
the idiosyncrasies of the dataset in question. As such, turning the results of an ontology

vi Cimiano / Foreword

learning algorithm into an ontology that actually reflects the conceptualization one has
of a domain can be more costly than actually building the ontology from scratch.

A second problem so far has been the lack of applications for automatically learned
ontologies. While Hotho, Bloehdorn and myself [2] showed some positive impacts of au-
tomatically learned ontologies on classification and clustering tasks, not many other con-
vincing applications were at sight at that stage. Recently, ontology learning has, however,
seen interesting applications for inducing the semantics of tags used in social media data
and folksonomies [1]. Recently, Meilicke et al. have shown that automatically induced
knowledge, disjointeness axioms in particular, can be deployed to debug ontology map-
pings [9]. The fact that such applications are emerging is clearly a good sign that there
is definitely progress in the field. A further interesting and very promising application
potential for ontology learning lies in the field of Linked Data. Learning from Linked
Data will allow us to induce schemata in a bottom-up fashion and let the schema evolve
with the data. Ontology population will also continue to play a crucial role in taming
and structuring the large amount of unstructured data available, e.g. in Scientific Publi-
cations. In many applications domains, one needs to consider all data together in order
to extract key facts and knowledge, structure this knowledge in the form of a database in
order to aggregate and summarize the data and provide analytical procedures that support
decision making by experts.

In the mid-term, I foresee two very interesting research directions for ontology
learning. When modelling knowledge, it is relatively easy to model “the obvious” and
straightforward knowledge in a particular domain. However, the “not-so-obvious” and
more complex relationships are harder to come up with for a knowledge engineer. This
is where algorithms that induce more complex and non-trivial relationships from data
can assist a human in the process of modelling more complex axioms. This is especially
relevant and valuable in the Linked Data era where not many people seem to want to put
effort into axiomatizing the vocabulary used in their datasets.

This is tightly related to the second future direction I regard as crucial within the
field of ontology learning. So far, there has not been too much focus on how humans
and machines can collaborate on the task of modelling relevant knowledge for a given
domain. The role of machine agents should be to derive interesting axioms and relation-
ships from data, generating hypotheses induced from data and asking the human for val-
idation and clarification of them. Humans would then rely on their domain knowledge to
confirm the induced knowledge or reject it by providing counter-examples. Methodolo-
gies that define and clarify the role of machines and humans in ontology engineering and
ontology learning are urgently needed in order to exploit the capabilities of both humans
and machines optimally. In this volume, for instance, there is one contribution by Simperl
et al. [11] that shows how humans can be involved in the process of ontology learning
through games with a purpose. Unless we have good methodologies incorporating the
human in the loop, I dare to predict that major breakthroughs in ontology learning can
not be expected.

Concerning applications, in my view there is one very important application for on-
tology learning, i.e. natural language processing (NLP). Given that language processing
inherently requires world knowledge to guide the interpretation process [3], it strikes that
so far – at least to my knowledge – there have not been too many convincing applica-
tions of proper OWL ontologies within NLP. We may wonder why this is the case. Is the
field of NLP not aware of the techniques developed in the Semantic Web community?

Cimiano / Foreword vii

Or are existing ontology learning techniques too noisy for researchers that are used to
work with highly curated, hand-crafted resources such as WordNet, FrameNet etc.? Or
is it simply the case that the knowledge contained in OWL ontologies and produced by
state-of-the-art ontology learning tools is not adequate for NLP purposes? Being far from
knowing the answer, let me speculate a bit about the reasons:

• Lack of coverage: domain ontologies – whether learned or not – typically have a
limited coverage and scope, whereas NLP researchers are typically used to work
with domain-independent resources such as WordNet, FrameNet, etc. An NLP
researcher would have to work with many, possibly overlapping ontologies.

• Limited quality: Automatically learned ontologies might be noisy, but still use-
ful as some applications have been shown. This requires also a paradigm shift
towards working with non-perfect, possibly noisy, incomplete or even logically
inconsistent ontologies.

• Limitations of crisp knowledge: In human language, the meaning of words is
often vague so that prototypes or distributions might be better suitable for NLP
applications.rather than crisp knowledge representations formalisms.

• No need for expressive knowledge (yet!): With the statistical turn in the 80s and
90s, NLP focused mainly on statistical approaches to natural language processing,
moving away from purely symbolic approaches. However, one observes a move
back into symbolic approaches as people realize more and more that inference is
crucial for NLP. New models such as Markov Logic Networks [10] that combine
statistic with symbolic, first-order theories have received in fact wide attention in
the NLP and Semantic Web communities. They might, thus, offer a point of con-
vergence for both communities. Concentrating on learning probabilistic knowl-
edge will thus be an important avenue for future work.

• Lack of awareness: For sure, the NLP community is not particularly aware of
what is going on in the Semantic Web and ontology learning communities. This
is clearly corroborated by the fact that only few NLP researchers attend Seman-
tic Web conferences. The number of references to Semantic Web related work
in NLP papers at major NLP conference converges practically to zero, as an in-
formal empirical study by Josef van Genabith showed1. For sure, there is a lot
that the Semantic Web community could do about this, i.e. organizing tutorials
and workshops at NLP conferences, but also regarding NLP as a potential con-
sumer of ontologies – whether learned or not. A number of recent activities in the
Semantic Web field, such as the development of NIF (Hellmann et. al, this vol-
ume) or lemon2, a model for the lexicon-ontology interface [8] have contributed
already to creating important synergies between and to the convergence of both
communities.

In the future, ontology learning research should in my opinion not only concentrate
on what we can learn, but also for which purpose or which applications the learned
knowledge might be useful. Only then will we be able to create a strong case for Semantic
Web technologies, ontology learning techniques in particular, outside the Semantic Web

1Josef van Genabith presented this observation at the Dagstuhl Seminar on the “Multilingual Semantic Web”
in September of 2012

2See also the standardization activities by the ontolex group: http://www.w3.org/community/
ontolex

viii Cimiano / Foreword

community. Having said this, I kindly invite you as reader to immerse into the current
state-of-the-art in ontology learning research and enjoy the great book that Jens Lehmann
and Johanna Völker have compiled together. For sure, there is no better book to learn
about recent developments in ontology learning research. Thanks to Jens and Johanna
for editing this great book and for working on this topic so enthusiastically in order to
contribute to the further evolution of this (still) very exciting and important field.

References

[1] Dominik Benz, Christian Körner, Andreas Hotho, Gerd Stumme, and Markus Strohmaier. One tag to
bind them all : Measuring term abstractness in social metadata. In Grigoris Antoniou, Marko Grobelnik,
Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Jeff Pan, and Pieter De Leenheer, editors, Proceed-
ings of the 8th Extended Semantic Web Conference (ESWC 2011), 2011.

[2] Stephan Bloehdorn, Philipp Cimiano, and Andreas Hotho. Learning ontologies to improve text cluster-
ing and classification. In Myra Spiliopoulou, Rudolf Kruse, Andreas Nürnberger, Christian Borgelt, and
Wolfgang Gaul, editors, From Data and Information Analysis to Knowledge Engineering: Proceedings
of the 29th Annual Conference of the German Classification Society (GfKl 2005), March 9-11, 2005,
Magdeburg, Germany, volume 30, pages 334–341. Springer, Berlin–Heidelberg, Germany, 2006.

[3] Philipp Cimiano, Christina Unger, and John McCrae. Ontology-based Interpretation of Natural Lan-
guage. Synthesis Lectures on Human Language Technology. Morgan & Claypool Publishers. to appear.

[4] Daniel Fleischhacker, Johanna Völker, and Heiner Stuckenschmidt. Mining rdf data for property axioms.
In Proceedings of the Confederated International Conferences (OTM), pages 718–735, 2012.

[5] Jens Lehmann, Nicola Fanizzi, and Claudia d’Amato. Concept learning. In Jens Lehmann and Johanna
Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2014.

[6] Francesca Lisi. Learning onto-relational rules with inductive logic programming. In Jens Lehmann
and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2014.

[7] Alexander Maedche and Steffen Staab. Ontology learning for the semantic web. IEEE Intelligent
Systems, 16(2):72–79, 2001.

[8] J. McCrae, G. Aguado-de Cea, P. Buitelaar, P. Cimiano, T. Declerck, A. Gómez-Pérez, J. Gracia,
L. Hollink, E. Montiel-Ponsoda, D. Spohr, and T. Wunner. Interchanging lexical resources on the Se-
mantic Web. Language Resources and Evaluation, 2012.

[9] Christian Meilicke, Johanna Völker, and Heiner Stuckenschmidt. Learning disjointness for debugging
mappings between lightweight ontologies. In Proceedings of the 16th International Conference on
Knowledge Engineering: Practice and Patterns, pages 93–108, 2008.

[10] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1-2):107–
136, 2006.

[11] Elana Simperl, Stephan Wölger, Stefan Thaler, and Katharina Siorpaes. Learning ontologies via games
with a purpose. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning,
Studies on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[12] Elena Simperl, Tobias Bürger, Simon Hangl, Stephan Wörgl, and Igor O. Popov. Ontocom: A reliable
cost estimation method for ontology development projects. Journal of Web Semantics, 16:1–16, 2012.

[13] Johanna Völker, Pascal Hitzler, and Philipp Cimiano. Acquisition of owl dl axioms from lexical re-
sources. In Proceedings of the 4th European Semantic Web Conference (ESWC), pages 670–685, 2007.

[14] Johanna Völker, Denny Vrandecic, York Sure, and Andreas Hotho. Learning disjointness. In Proceed-
ings of the 4th European Semantic Web Conference (ESWC), pages 175–189, 2007.

An Introduction to Ontology Learning

Jens LEHMANN a and Johanna VÖLKER b,1

a Informatics Institute, University of Leipzig, Germany
b Data & Web Science Research Group, University of Mannheim, Germany

Ever since the early days of Artificial Intelligence and the development of the first
knowledge-based systems in the 70s [32] people have dreamt of self-learning machines.
When knowledge-based systems grew larger and the commercial interest in these tech-
nologies increased, people became aware of the knowledge acquisition bottleneck and
the necessity to (partly) automatize the creation and maintenance of knowledge bases.
Today, many applications which exhibit ’intelligent’ behavior thanks to symbolic knowl-
edge representation and logical inference rely on ontologies and the standards provided
by the World Wide Web Committee (W3C). Supporting the construction of ontologies
and populating them with instantiations of both concepts and relations, commonly re-
ferred to as ontology learning.

Early research in ontology learning has concentrated on the extraction of facts or
schema-level knowledge from textual resources building upon earlier work in the field
of computational linguistics and lexical acquisition. However, as we will show in this
book, ontology learning is a very diverse and interdisciplinary field of research. Ontol-
ogy learning approaches are as heterogeneous as the sources of data on the web, and as
different from one another as the types of knowledge representations called “ontologies”.

In the remainder of this introduction, we briefly summarize the state-of-the-art in
ontology learning and elaborate on what we consider as the key challenges for current
and future ontology learning research.

Ontology-based Knowledge Representation

Ontologies in computer science are usually regarded as formal representations of knowl-
edge – often restricted to a particular domain. There is, however, no general agreement
on which requirements the formal representation needs to satisfy in order to be appro-
priately be called an ontology. Depending on the particular point of view, ontologies can
be simple dictionaries, taxonomies, thesauri, or richly axiomatized top-level formalisa-
tions. In this book, we do not limit ourselves to a particular definition of the term on-
tology, since use case specific requirements determine the needed expressivity of knowl-
edge bases: the contributions range from approaches to learning lightweight structures to
methods for generating complex definitions of classes.

Ontologies play a central role in data and knowledge integration. By providing a
shared schema, they facilitate query answering and reasoning over disparate data sources.

1Johanna Völker is financed by a Margarete-von-Wrangell scholarship of the European Social Fund (ESF)
and the Ministry of Science, Research and the Arts Baden-Württemberg.

x Lehmann and Völker / An Introduction to Ontology Learning

Since the amount of data on the web as well as in corporate intranets, for example, is
growing quickly, structured access to data becomes more important. In addition to data
integration, reasoning and querying scenarios, ontologies are also a means to document
the structure of a particular domain, which helps to develop a common understanding of
its concepts.

However, the construction of ontologies is a highly expensive task which crucially
hinges on the availability of scarce expert resources [39]. In order to build a formal on-
tology for a particular domain of interest, for instance, specialized domain knowledge
needs to be acquired and formalized in a way that automated inference will yield the ex-
pected results. This goal can only be achieved if domain experts collaborate with skilled
ontology engineers familiar with the theory and practice of knowledge representation
– and once the ontology has been constructed, evolving knowledge and application re-
quirements will demand for continuous maintenance efforts.

Ontology Learning

It is more than ten years now that Mädche and Staab [29] coined the term “ontology
learning” for a newly emerging field of research aiming at nothing less than the automatic
generation of ontologies. The first ontology learning workshop2, held in 2000 and co-
organized by Claire Nédellec and Peter Wiemer-Hastings, brought together people from
very different research communities. Looking into the proceedings, we can distinguish
works based on ripple down rules, word sense clustering, and information extraction, for
example. It is remarkable that there were only few contributions from the field of concept
learning at that time, although researchers have investigated the use of inductive logic
programming for learning logical theories since the mid 80s. From today’s perspective,
ontology learning is a use case for concept learning, but the collaboration and exchange
between this and other parts of the ontology learning community is still limited. Ten
years after the first ontology learning workshop, we tried to compile a book which brings
together the most diverse works in the area of ontology learning including contributions
by the concept learning community as well as “classical” works on ontology learning
from text or other semi-structured resources. It is designed to give an overview of a broad
range of ontology learning approaches, logical and statistical ones, and to outline the
synergies that may arise from bringing together the various methods and methodologies.

While we do not intend to draw a sharp line between different types of ontology
learning, approaches can be roughly classified into the following areas:

Ontology Learning from Text mostly focuses on the automatic or semi-automatic gen-
eration of lightweight taxonomies by means of text mining and information ex-
traction. Many of the methods used in ontology learning from text (e.g. lexico-
syntactic patterns for hyponymy detection or named-entity classification) are in-
spired by previous work in the field of computational linguistics, essentially de-
signed in order to facilitate the acquisition of lexical information from corpora.
Some ontology learning approaches do not derive schematic structures, but focus
on the data level. Such ontology population methods derive facts from text. A pop-
ular example is the Never-Ending Language Learning (NELL) project [10], which
reads the web to add statements to its knowledge base and improves its perfor-
mance over time, e.g. via user feedback.

2http://ol2000.aifb.uni-karlsruhe.de

Lehmann and Völker / An Introduction to Ontology Learning xi

Linked Data Mining refers to the process of detecting meaningful patterns in RDF
graphs. One of the motivations behind this research area is that Linked Data pub-
lishers sometimes do not create an explicit schema for their dataset upfront, but
focus on publishing data first. Being able to detect the structure within published
RDF graphs can, on the one hand, simplify the later creation of schemata and, on
the other hand, allow to detect interesting associations between elements in the
RDF graph. This can be achieved via statistical schema induction [7,8,43] or sta-
tistical relational learning methods, which mine frequent patterns and correlations
in large data sets. In Linked Data mining, clustering approaches can be used to
group related resources and provide an enhanced structure for the underlying data.

Concept Learning in Description Logics and OWL is a direction of research that
aims at learning schema axioms, such as definitions of classes, from existing on-
tologies and instance data. Most methods in this area are based on Inductive Logic
Programming methods [33]. While many algorithms, such as DL-FOIL [16] and
OCEL [25] are generic supervised machine learning approaches for description
logics, there are also specific adaptations to ontology learning [22], e.g., in terms
of performance and usability. Closely related to concept learning in Description
Logics is onto-relational learning, which combines methods for learning OWL
axioms with rule learning approaches [27].

Crowdsourcing ontologies is an interesting alternative to purely automatic approaches
as it combines the speed of computers with the accuracy of humans. Provided that
the task to be completed is simple enough, it only requires the right incentives for
people to contribute. Examples of crowdsourcing in the field of ontology learning
include taxonomy construction via Amazon mechanical turk, and games with a
purpose for ontology population (see, e.g., [12,19]).

Other approaches include, e.g., transfer learning and ontology re-use, which try to
adapt existing ontologies to new domains by partially re-using existing schematic struc-
tures. Furthermore, apart from the above mentioned combination of rules and ontologies,
direct representations of uncertainty, e.g. via Markov Logic Networks, are also investi-
gated.

Major and minor distinctions between these approaches make it difficult to come up
with a formal definition [41], or a breakdown into concrete subtasks (see, e.g., the ontol-
ogy learning layer cake [35]) which is neither too general nor limited to one particular
type of approach [15,29,45]. However, it is this variety that makes the ontology learning
community so rich and inspiring. A lot of progress has been made in each of the above-
mentioned fields, and we can observe a trend towards hybrid and integrated approaches.
For this book, we assembled contributions by researchers addressing some of the key
challenges in ontology learning:

Heterogeneity. Data on the web differs largely, e.g., with respect to formats, lan-
guages, domains and quality.3 Approaches to learning from heterogeneous sources of ev-
idence [9] can effectively leverage this huge variety by increasing the accuracy as well as
the coverage of learned ontologies. However, neither the integration of methods nor the
homogenization of data has attracted high attention within the ontology learning commu-

3See [28] for an early attempt to categorize the different types of data that can serve as input to ontology
learning approaches.

xii Lehmann and Völker / An Introduction to Ontology Learning

nity so far and remains to be a challenge for the application of ontology learning methods
in practice.

Uncertainty. Low-quality or unstructured data, which is hard to interpret by computa-
tional means, as well as inherently imperfect methods for learning ontologies can lead
to results that are less likely to be correct. Thus, many ontology learning methods are
designed in a way that they associate each individual outcome with a certainty value
reflecting the methods’ confidence with regard to the correctness of particular results.
Uncertainty values and other types of provenance information such as timestamps or
authorship annotations are especially important when it comes to manual or automatic
debugging of learned ontologies [14].

Reasoning. Often, ontologies are learned or manually created for applications which
are based on logical inference. In case these applications require the ontology to be logi-
cally consistent, ontology learning approaches should be capable of generating consistent
(and coherent) ontologies. Therefore, not only methods for concept learning in descrip-
tion logics, but also other ontology learning approaches rely on logical reasoning. Exper-
iments have shown that a tight coupling between ontology debugging, i.e. inconsistency
diagnosis and repair, and ontology learning may be beneficial [31,23].

Scalability. Extracting knowledge from the growing amounts of data on the web – un-
structured, textual data on the one hand and structured data such as databases, linked
data4 or ontologies on the other hand – requires scalable and efficient approaches. Es-
pecially when it comes to learning from distributed, loosely interconnected data and
the integration of knowledge from multiple sources, ontology learning methods face big
challenges. In order to address these challenges, various strategies are currently being
developed, such as distributed computation for horizontally scaling ontology learning,
incremental learning approaches for re-using existing knowledge, or sampling [17] and
modularization to improve the efficiency of ontology learning algorithms.

Quality. We can measure the quality of an automatically generated ontology as we can
measure the quality of any ontology, be it learned or manually engineered. However, on-
tology evaluation is not an easy task (see [44] for a comprehensive overview of the state-
of-the-art in ontology evaluation). Formal correctness, completeness and consistency are
only a few of many possible criteria for judging the quality of an ontology, and it is the
application context of an ontology which ultimately determines the choice of evaluation
criteria as well as the required quality standard. Ideally, each step of an ontology learning
process, including the choice of input data as well as preprocessing and relation extrac-
tion, for example, should thus be optimized with regard to the particular domain or ap-
plication context that the learned ontology will be used for. Ontology learning method-
ologies [40] and the adoption of ontology design patterns [4] can help to further improve
the results.

Interactivity. In practice, the quality of a learned ontology often depends on the degree
of automation. The lesser the extent to which humans are involved in a semi-automatic
ontology generation process, the lower the quality we can expect. An ontology insuffi-
cient for the intended application in terms of quality, e.g., after having been generated
in a fully automatic way, will eventually require a significant amount of post-processing.

4See http://stats.lod2.eu and http://lod-cloud.net.

Lehmann and Völker / An Introduction to Ontology Learning xiii

While the revision of learned ontologies is not generally considered part of the actual on-
tology learning process, methods for automatic ontology generation can support this sort
of post-processing by providing detailed provenance information. Provenance informa-
tion acquired in the course of ontology learning typically comprises, for example, con-
fidence and relevance values for individual axioms as well as time stamps and key facts
about the employed learning procedure. Nevertheless, the amount of post-processing can
be a significant burden for knowledge engineers, and innovative methods are required
in order to overcome the so-called knowledge acquisition bottleneck. Generally, it is ad-
visable to integrate methods for ontology learning and revision into popular ontology
engineering frameworks, in order to reduce the overhead for human participation in the
overall process [22,37]. Crowdsourcing and games with a purpose can help to lower the
costs of revising learned ontologies by involving non-experts, but translating their in-
teractions into ontology modeling decisions is a non-trivial problem. Systematic expert
interrogation, known as relational exploration, has been found to be an efficient way of
asking people the right questions, while at the same time reducing the overall number
of decisions to be made [2]. Finally, experiments have shown that ontology design pat-
terns, which capture the knowledge and experience of human ontology engineers, can
beneficially be integrated into the ontology learning process [5].

About this Book

In the following, we describe the structure of the book and give an outline of the content
of individual chapters.

Foundations This part of the book covers the most basic concepts which are important
to understand state-of-the-art ontology learning approaches. First, Krötzsch et al. [20]
give a primer on description logics, the family of knowledge representation formalisms
which underly most of the learned ontologies. The second chapter contributed by
Jentzsch, Vrandečić and Usbeck [18] introduces RDF and the Linked Data principles as
well as fundamental semantic web technologies such as SPARQL, for example. It is fol-
lowed by an overview of typical machine learning approaches which are applied in on-
tology learning (see Ławrynowicz and Tresp [21]). Finally, as the vast majority of ontol-
ogy learning algorithms still relies on textual input, Maynard and Bontcheva [30] cover
the most relevant natural language processing techniques.

Logical Learning The second part of this book focuses on approaches which have been
developed to derive ontologies from structured knowledge. Logical learning methods are
introduced by Lehmann et al. [24], who cover the foundations of learning description
logic concepts, as well as by Francesca Lisi [26] who contributed a chapter on learning
onto-relational rules. The presented methods are based on the assumption that schema
axioms, such as concept definitions, can be learned from existing instance level knowl-
edge.

Lexical Learning Given the vast amounts of textual contents on the web it is not aston-
ishing that previous research in ontology learning mainly concentrated on the acquisition
of ontologies from unstructured data. In this part of the book, we therefore present con-
tributions to ontology learning from natural language text based on information extrac-
tion and text mining techniques. The first chapter (cf. Coppola et al. [13]) introduces a
methodology for generating domain-specific ontologies by specializing and instantiating

xiv Lehmann and Völker / An Introduction to Ontology Learning

frames from the FrameNet lexicon. In the second chapter, Fabian Suchanek [42] gives
an overview of well-known methods for acquiring facts and taxonomies from Wikipedia
articles, while putting an emphasis on the synergies between ontological reasoning and
information extraction. Finally, the chapter contributed by Nováček and Handschuh [34]
outlines a layered ontology learning framework, which facilitates the integration of facts
extracted from textual documents with existing schema-level knowledge.

Learning from Web Data The increasing amounts of data available through the web
and the growing need for automatic approaches to the access and usage of information
on the web, pose particular challenges to ontology learning methods. This part of the
book is therefore dedicated to methods which take into account the specific characteris-
tics of web data, such as heterogeneity, volume, decentralization and a large variety of
different formats. A part of the world wide web, which has seen a tremendous rise in
importance over the past decade, are social websites and crowdsourced tagging applica-
tions. The first chapter in this part of the book gives a systematic overview over the trends
and future developments in the area of knowledge extraction from tagging systems or
folksonomies (see Benz and Hotho [3]). Spatial applications and annotations of points
of interests are investigated by Alves and Pereira [1] in the second chapter, which deals
with approaches to semantically enrich the descriptions of spatial objects. Finally, in the
last chapter in this part, Cerbah and Lammari [11] address the problem of web applica-
tion backends. Motivated by the fact that the vast majority of web applications are driven
by relational databases, they present methods for deriving ontologies from schemata of
relational databases.

Dynamics and User Interaction In many cases, purely automatic learning approaches
will fail to generate ontologies which are good enough for a particular, e.g. reasoning-
based, application. For this reason, we would like to emphasize the role users and knowl-
edge engineers can play in an ontology learning process. The first chapter of this part
written by Simperl et al. [38] explains how games with a purpose can help to leverage
human resources for learning ontologies. A completely different approach to “putting the
human in the loop” is presented by Rudolph and Sertkaya [36], who introduce formal
concept analysis as a means to interactive ontology learning and as an effective way to
minimize the required human effort. Last, but not least, Blomqvist et al. [6] elaborate
on key challenges in ontology learning and how those can be addressed by the use of
ontology design patterns, which encode best-practices in ontology engineering.

References

[1] Ana Oliveira Alves and Francisco Camara Pereira. Semantic enrichment of places: From public places
descriptions to linked data. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology
Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[2] Franz Baader, Bernhard Ganter, Barış Sertkaya, and Ulrike Sattler. Completing Description Logic
knowledge bases using Formal Concept Analysis. In Manuela M. Veloso, editor, Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pages 230–235, 2007.

[3] Dominik Benz and Andreas Hotho. Capturing emergent semantics from social tagging systems. In Jens
Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic
Web. AKA Heidelberg / IOS Press, 2014.

[4] Eva Blomqvist. Ontocase – a pattern-based ontology construction approach. In Robert Meersman and
Zahir Tari, editors, On the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA,
and IS, volume 4803 of Lecture Notes in Computer Science, pages 971–988. Springer Berlin Heidelberg,
2007.

Lehmann and Völker / An Introduction to Ontology Learning xv

[5] Eva Blomqvist. Semi-automatic Ontology Construction based on Patterns. PhD thesis, Linköping
University, Department of Computer and Information Science at the Institute of Technology, 2009.

[6] Eva Blomqvist, Aldo Gangemi, and Francesco Draicchio. Ontology design patterns in ontology learn-
ing. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the
Semantic Web. AKA Heidelberg / IOS Press, 2014.

[7] Lorenz Bühmann and Jens Lehmann. Universal OWL axiom enrichment for large knowledge bases. In
Proceedings of EKAW 2012, pages 57–71. Springer, 2012.

[8] Lorenz Buhmann and Jens Lehmann. Pattern based knowledge base enrichment. In 12th International
Semantic Web Conference, 21-25 October 2013, Sydney, Australia, 2013.

[9] Paul Buitelaar, Philipp Cimiano, Anette Frank, Matthias Hartung, and Stefania Racioppa. Ontology-
based information extraction and integration from heterogeneous data sources. Journal on Human-
Computer Studies, 66(11):759–788, 2008.

[10] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka Jr, and T.M. Mitchell. Toward an architec-
ture for never-ending language learning. In Proceedings of the 24th Conference on Artificial Intelligence
(AAAI), volume 2, pages 1306–1313, 2010.

[11] Farid Cerbah and Nadira Lammari. Ontology learning from databases: Some efficient methods to dis-
cover semantic patterns in data. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology
Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[12] Lydia B. Chilton, Greg Little, Darren Edge, Daniel S. Weld, and James A. Landay. Cascade: Crowd-
sourcing taxonomy creation. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’13, pages 1999–2008, New York, NY, USA, 2013. ACM.

[13] Bonaventura Coppola, Aldo Gangemi, Alfio Gliozzo, Davide Picca, and Valentina Presutti. Learning
domain ontologies by corpus-driven framenet specialization. In Jens Lehmann and Johanna Völker,
editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press,
2014.

[14] Paulo Cesar G. da Costa, Kathryn B. Laskey, Kenneth J. Laskey, and Michael Pool, editors. International
Semantic Web Conference, ISWC 2005, Galway, Ireland, Workshop 3: Uncertainty Reasoning for the
Semantic Web, 7 November 2005, 2005.

[15] X.Y. Du, M. Li, and S. Wang. A survey on ontology learning research. Journal of Software, 17(9):1837–
1847, 2006.

[16] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL: Concept learning in description
logics. In F. Zelezný and N. Lavrac, editors, Proceedings of the 18th International Conference on
Inductive Logic Programming (ILP), volume 5194 of LNAI, pages 107–121. Springer, 2008.

[17] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL class descriptions on very large
knowledge bases. International Journal on Semantic Web and Information Systems, 5(2):25–48, 2009.

[18] Anja Jentzsch, Ricardo Usbeck, and Denny Vrandečić. An incomplete and simplifying introduction to
linked data. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning, Studies
on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[19] Dimitris Karampinas and Peter Triantafillou. Crowdsourcing taxonomies. In Proceedings of the 9th
International Conference on The Semantic Web: Research and Applications, ESWC’12, pages 545–559,
Berlin, Heidelberg, 2012. Springer-Verlag.

[20] Markus Krötzsch, Frantisek Simančík, and Ian Horrocks. A description logic primer. In Jens Lehmann
and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2014.

[21] Agnieszka Ławrynowicz and Volker Tresp. Introducing machine learning. In Jens Lehmann and Johanna
Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2014.

[22] Jens Lehmann, Sören Auer, Lorenz Bühmann, and Sebastian Tramp. Class expression learning for
ontology engineering. Journal of Web Semantics, 9:71 – 81, 2011.

[23] Jens Lehmann and Lorenz Bühmann. ORE – a tool for repairing and enriching knowledge bases. In
Proceedings of the 9th International Semantic Web Conference (ISWC), Lecture Notes in Computer
Science, Berlin / Heidelberg, 2010. Springer.

[24] Jens Lehmann, Nicola Fanizzi, and Claudia d’Amato. Concept learning. In Jens Lehmann and Johanna
Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2014.

[25] Jens Lehmann and Pascal Hitzler. Concept learning in description logics using refinement operators.

xvi Lehmann and Völker / An Introduction to Ontology Learning

Machine Learning journal, 78(1-2):203–250, 2010.
[26] Francesca Lisi. Learning onto-relational rules with inductive logic programming. In Jens Lehmann

and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2014.

[27] Francesca A. Lisi and Floriana Esposito. Nonmonotonic onto-relational learning. In Luc De Raedt,
editor, ILP, volume 5989 of Lecture Notes in Computer Science, pages 88–95. Springer, 2009.

[28] Alexander Mädche. Ontology Learning for the Semantic Web. PhD thesis, Universität Karlsruhe (TH),
Germany, 2001.

[29] Alexander Mädche and Steffen Staab. Ontology learning for the semantic web. IEEE Intelligent Systems,
16(2):72–79, 2001.

[30] Diana Maynard and Kalina Bontcheva. Natural language processing. In Jens Lehmann and Johanna
Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2014.

[31] Christian Meilicke, Johanna Völker, and Heiner Stuckenschmidt. Learning disjointness for debugging
mappings between lightweight ontologies. In Aldo Gangemi and Jerome Euzenat, editors, Knowledge
Engineering: Practice and Patterns, volume 5268 of Lecture Notes in Computer Science, pages 93–108.
Springer Berlin Heidelberg, 2008.

[32] M. Minsky. A framework for representing knowledge. In P. Winston, editor, The Psychology of Com-
puter Vision, pages 211–277. McGraw-Hill, New York, 1975.

[33] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf, editors. Foundations of Inductive Logic Program-
ming, volume 1228 of Lecture Notes in Computer Science. Springer, 1997.

[34] Vit Novacek and Siegfried Handschuh. Empirically grounded emergent knowledge. In Jens Lehmann
and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2014.

[35] Bernardo Magnini Paul Buitelaar, Philipp Cimiano. Ontology Learning from Text: Methods, Evaluation
and Applications. IOS Press, 2008.

[36] Sebastian Rudolph and Baris Sertkaya. Formal concept analysis methods for interactive ontology learn-
ing. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the
Semantic Web. AKA Heidelberg / IOS Press, 2014.

[37] Barış Sertkaya. OntoComP: A protégé plugin for completing OWL ontologies. In The Semantic Web:
Research and Applications, volume 5554 of LNCS, pages 898–902. Springer Berlin Heidelberg, 2009.

[38] Elana Simperl, Stephan Wölger, Stefan Thaler, and Katharina Siorpaes. Learning ontologies via games
with a purpose. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning,
Studies on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[39] Elena Simperl, Tobias Buerger, Simon Hangl, Stephan Woelger, and Igor Popov. Ontocom: A reliable
cost estimation method for ontology development projects. Web Semantics: Science, Services and Agents
on the World Wide Web, 16(0):1 – 16, 2012.

[40] Elena Simperl, Christoph Tempich, and Denny Vrandečić. A methodology for ontology learning. In
Proceedings of the Workshop on Ontology Learning and Population: Bridging the Gap between Text
and Knowledge, pages 225–249. IOS Press, 2008.

[41] Michael Sintek, Paul Buitelaar, and Daniel Olejnik. A formalization of ontology learning from text.
In Proceedings of the Workshop on Evaluation of Ontology-based Tools (EON) at the International
Semantic Web Conference (ISWC), 2004.

[42] Fabian Suchanek. Information extraction for ontology learning. In Jens Lehmann and Johanna Völker,
editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press,
2014.

[43] Johanna Völker and Mathias Niepert. Statistical schema induction. In Grigoris Antoniou, Marko Gro-
belnik, Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Z.
Pan, editors, The Semantic Web: Research and Applications - 8th Extended Semantic Web Conference
(ESWC), Heraklion, Crete, Greece, May 29-June 2, 2011, Proceedings, volume 6643 of Lecture Notes
in Computer Science, pages 124–138. Springer, 2011.

[44] Denny Vrandečić. Ontology evaluation. In Steffen Staab and Rudi Studer, editors, Handbook on On-
tologies, International Handbooks on Information Systems, pages 293–313. Springer, 2009.

[45] W. Wong, W. Liu, and M. Bennamoun. Ontology learning from text: A look back and into the future.
ACM Computing Surveys (CSUR), 44(4):20, 2012.

Contents

I Foundations . 1

II Logical Learning 69

III Lexical Learning 113

IV Learning from Web Data 173

V Methodology and User Interaction. 223

Part I

Foundations

A Description Logic Primer

Markus KRÖTZSCH, František SIMANČÍK, Ian HORROCKS
Department of Computer Science, University of Oxford, UK

Abstract. This chapter provides a self-contained first introduction to description
logics (DLs). The main concepts and features are explained with examples before
syntax and semantics of the DL SROIQ are defined in detail. Additional sections
review light-weight DL languages, discuss the relationship to the Web Ontology
Language OWL and give pointers to further reading.

Keywords. Description Logics, OWL Web Ontology Language, Knowledge
Representation, Ontological Modelling, SROIQ

Introduction

Description logics (DLs) are a family of knowledge representation languages that are
widely used in ontological modelling. An important practical reason for this is that they
provide one of the main underpinnings for the OWL Web Ontology Language as stan-
dardised by the World Wide Web Consortium (W3C). However, DLs have been used in
knowledge representation long before the advent of ontological modelling in the context
of the Semantic Web, tracing back to first DL modelling languages in the mid 1980s.

As their name suggests, DLs are logics (in fact most DLs are decidable fragments
of first-order logic), and as such they are equipped with a formal semantics: a precise
specification of the meaning of DL ontologies. This formal semantics allows humans and
computer systems to exchange DL ontologies without ambiguity as to their meaning, and
also makes it possible to use logical deduction to infer additional information from the
facts stated explicitly in an ontology – an important feature that distinguishes DLs from
other modelling languages such as UML.

The capability of inferring additional knowledge increases the modelling power of
DLs but it also requires some understanding on the side of the modeller and, above all,
good tool support for computing the conclusions. The computation of inferences is called
reasoning and an important goal of DL language design has been to ensure that reasoning
algorithms of good performance are available. This is one of the reasons why there is not
just a single description logic: the best balance between expressivity of the language and
complexity of reasoning depends on the intended application.

In this chapter we provide a self-contained first introduction to description logics.
We start by explaining the basic way in which knowledge is modelled in DLs in Section 1
and continue with an intuitive introduction to the most important DL modelling features
in Section 2. This leads us to the rather expressive DL called SROIQ, the syntax of
which we summarise in Section 3. In Section 4, we explain the underlying ideas of DL
semantics and use it to define the meaning of SROIQ ontologies. Many DLs can be
obtained by omitting some features of SROIQ and in Section 5 we review some of the

4 Krötzsch et al. / Description Logic Primer

most important DLs obtained in this way. In particular, this includes various lightweight
description logics that allow for particularly efficient reasoning. In Section 6 we discuss
the relationship of DLs to the OWL Web Ontology Language. We conclude with pointers
to further reading in Section 7.

1. Basic Building Blocks of DL Ontologies

Description logics (DLs) provide means to model the relationships between entities in a
domain of interest. In DLs there are three kinds of entities: concepts, roles and individual
names.1 Concepts represent sets of individuals, roles represent binary relations between
the individuals, and individual names represent single individuals in the domain. Readers
familiar with first-order logic will recognise these as unary predicates, binary predicates
and constants.

For example, an ontology modelling the domain of people and their family relation-
ships might use concepts such Parent to represent the set of all parents and Female to
represent the set of all female individuals, roles such as parentOf to represent the (bi-
nary) relationship between parents and their children, and individual names such as julia
and john to represent the individuals Julia and John.

Unlike a database, a DL ontology does not fully describe a particular situation or
“state of the world”; rather it consists of a set of statements, called axioms, each of
which must be true in the situation described. These axioms typically capture only partial
knowledge about the situation that the ontology is describing, and there may be many dif-
ferent states of the world that are consistent with the ontology. Although, from the point
of view of logic, there is no principal difference between different types of axioms, it is
customary to separate them into three groups: assertional (ABox) axioms, terminological
(TBox) axioms and relational (RBox) axioms.

1.1. Asserting Facts with ABox Axioms

ABox axioms capture knowledge about named individuals, i.e., the concepts to which
they belong and how they are related to each other. The most common ABox axioms are
concept assertions such as

Mother(julia), (1)

which asserts that Julia is a mother or, more precisely, that the individual named julia is
an instance of the concept Mother.

Role assertions describe relations between named individuals. The assertion

parentOf(julia, john), (2)

for example, states that Julia is a parent of John or, more precisely, that the individual
named julia is in the relation that is represented by parentOf to the individual named john.
The previous sentence shows that it can be rather cumbersome to explicitly point out that
the relationships expressed by an axiom are really relationships between the individuals,

1In OWL concepts and roles are respectively known as classes and properties; see Section 6.

Krötzsch et al. / Description Logic Primer 5

sets and relations that are represented by the respective individual names, concepts and
roles. Assuming that this subtle distinction between syntactic identifiers and semantic
entities is understood, we will thus often adopt a more sloppy and readable formulation.
Section 4 below explains the underlying semantics with greater precision.

Although it is intuitively clear that Julia and John are different individuals, this fact
does not logically follow from what we have stated so far. DLs do not make the unique
name assumption, so different names might refer to the same individual unless explicitly
stated otherwise. The individual inequality assertion

julia 0 john (3)

is used to assert that Julia and John are actually different individuals. On the other hand,
an individual equality assertion, such as

john ≈ johnny, (4)

states that two different names are known to refer to the same individual. Such situations
can arise, for example, when combining knowledge about the same domain from several
different sources, a task that is known as ontology alignment.

1.2. Expressing Terminological Knowledge with TBox Axioms

TBox axioms describe relationships between concepts. For example, the fact that all
mothers are parents is expressed by the concept inclusion

Mother v Parent, (5)

in which case we say that the concept Mother is subsumed by the concept Parent. Such
knowledge can be used to infer further facts about individuals. For example, (1) and (5)
together imply that Julia is a parent.

Concept equivalence asserts that two concepts have the same instances, as in

Person ≡ Human. (6)

While synonyms are an obvious example of equivalent concepts, in practice one more
often uses concept equivalence to give a name to complex expressions as introduced in
Section 2.1 below. Furthermore, such additional concept expressions can be combined
with equivalence and inclusion to describe more complex situations such as the disjoint-
ness of concepts, which asserts that two concepts do not share any instances.

1.3. Modelling Relationships between Roles with RBox Axioms

RBox axioms refer to properties of roles. As for concepts, DLs support role inclusion
and role equivalence axioms. For example, the inclusion

parentOf v ancestorOf (7)

6 Krötzsch et al. / Description Logic Primer

states that parentOf is a subrole of ancestorOf, i.e., every pair of individuals related by
parentOf is also related by ancestorOf. Thus (2) and (7) together imply that Julia is an
ancestor of John.

In role inclusion axioms, role composition can be used to describe roles such as
uncleOf. Intuitively, if Charles is a brother of Julia and Julia is a parent of John, then
Charles is an uncle of John. This kind of relationship between the roles brotherOf,
parentOf and uncleOf is captured by the complex role inclusion axiom

brotherOf ◦ parentOf v uncleOf. (8)

Note that role composition can only appear on the left-hand side of complex role inclu-
sions. Furthermore, in order to retain decidability of reasoning (see the end of Section 4
for a discussion on decidability), complex role inclusions are governed by additional
structural restrictions that specify whether or not a collection of such axioms can be used
together in one ontology.

Nobody can be both a parent and a child of the same individual, so the two roles
parentOf and childOf are disjoint. In DLs we can write disjoint roles as follows:

Disjoint(parentOf, childOf). (9)

Further RBox axioms include role characteristics such as reflexivity, symmetry and
transitivity of roles. These are closely related to a number of other DL features and we
will discuss them again in more detail in Section 2.5.

2. Constructors for Concepts and Roles

The basic types of axioms introduced in Section 1 are rather limited for accurate mod-
elling. To describe more complex situations, DLs allow new concepts and roles to be
built using a variety of different constructors. We distinguish concept and role construc-
tors depending on whether concept or role expressions are constructed. In the case of
concepts, one can further separate basic Boolean constructors, role restrictions and nom-
inals/enumerations. At the end of this section, we revisit the additional kinds of RBox
axioms that have been omitted in Section 1.3.

2.1. Boolean Concept Constructors

Boolean concept constructors provide basic Boolean operations that are closely related to
the familiar operations of intersection, union and complement of sets, or to conjunction,
disjunction and negation of logical expressions.

For example, concept inclusions allow us to state that all mothers are female and that
all mothers are parents, but what we really mean is that mothers are exactly the female
parents. DLs support such statements by allowing us to form complex concepts such as
the intersection (also called conjunction)

Female u Parent, (10)

Krötzsch et al. / Description Logic Primer 7

which represents the set of individuals that are both female and parents. A complex
concept can be used in axioms in exactly the same way as an atomic concept, e.g., in the
equivalence Mother ≡ Female u Parent.

Union (also called disjunction) is the dual of intersection. For example, the concept

Father tMother (11)

describes those individuals that are either fathers or mothers. Again, it can be used in an
axiom such as Parent ≡ Father tMother, which states that a parent is either a father or
a mother (and vice versa).

Sometimes we are interested in individuals that do not belong to a certain concept,
e.g., in women who are not married. These could be described by the complex concept

Female u ¬Married, (12)

where the complement (also called negation) ¬Married represents the set of all individu-
als that are not married.

It is sometimes useful to be able to make a statement about every individual, e.g., to
say that everybody is either male or female. This can be accomplished by the axiom

> v Male t Female, (13)

where the top concept > is a special concept with every individual as an instance; it
can be viewed as an abbreviation for C t ¬C for an arbitrary concept C. Note that this
modelling is rather coarse as it presupposes that every individual has a gender, which
may not be reasonable for instances of a concept such as Computer. We will see more
useful applications for > later on.

To express that, for the purposes of our modelling, nobody can be both a male and
a female at the same time, we can declare the set of male and the set of female individ-
uals to be disjoint. While ontology languages like OWL provide a basic constructor for
disjointness, it is naturally captured in DLs with the axiom

Male u Female v ⊥, (14)

where the bottom concept ⊥ is the dual of >, that is the special concept with no individ-
uals as instances; it can be seen as an abbreviation for C u ¬C for an arbitrary concept
C. The above axiom thus says that the intersection of the two concepts is empty.

2.2. Role Restrictions

So far we have seen how to use TBox and RBox axioms to express relationships between
concepts and roles, respectively. The most interesting feature of DLs, however, is their
ability to form statements that link concepts and roles together. For example, there is an
obvious relationship between the concept Parent and the role parentOf, namely, a parent
is someone who is a parent of at least one individual. In DLs, this relationship can be
captured by the concept equivalence

Parent ≡ ∃parentOf.>, (15)

8 Krötzsch et al. / Description Logic Primer

where the existential restriction ∃parentOf.> is a complex concept that describes the set
of individuals that are parents of at least one individual (instance of >). Similarly, the
concept ∃parentOf.Female describes those individuals that are parents of at least one
female individual, i.e., those that have a daughter.

To represent the set of individuals all of whose children are female, we use the
universal restriction

∀parentOf.Female. (16)

It is a common error to forget that (16) also includes those individuals that have no
children at all. More accurately (and less naturally), the axiom can be said to describe
the set of all individuals that have “no children other than female ones,” i.e., that have
“no children that are not female.” Following this wording, the concept (16) could indeed
be equivalently expressed as ¬∃parentOf.¬Female. If this meaning is not intended, one
can describe the individuals who have at least one child and with all their children being
female by the concept (∃parentOf.>) u (∀parentOf.Female).

Existential and universal restrictions are useful in combination with the top concept
for expressing domain and range restrictions on roles; that is, restrictions on the kinds of
individual that can be in the domain and range of a given role. To restrict the domain of
sonOf to male individuals we can use the axiom

∃sonOf.> v Male, (17)

and to restrict its range to parents we can write

> v ∀sonOf.Parent. (18)

In combination with the assertion sonOf(john, julia), these axioms would then allow us to
deduce that John is male and Julia is a parent. It is interesting to note how this behaviour
contrasts with the meaning of constraints in databases. Constraints would also allow
us to state, e.g., that all sons must be male. However, given only the fact that John is
a son of Julia, such a constraint would simply be violated (leading to an error) rather
than implying that John is male. Mistaking DL axioms for constraints is a very common
source of modelling errors.

Number restrictions allow us to restrict the number of individuals that can be reached
via a given role. For example, we can form the at-least restriction

>2 childOf.Parent (19)

to describe the set of individuals that are children of at least two parents, and the at-most
restriction

62 childOf.Parent (20)

for those that are children of at most two parents. The axiom Person v >2 childOf.Parent
u 62 childOf.Parent then states that every person is a child of exactly two parents.

Krötzsch et al. / Description Logic Primer 9

Finally, local reflexivity can be used to describe the set of individuals that are related
to themselves via a given role. For example, the set of individuals that talk to themselves
is described by the concept

∃talksTo.Self . (21)

2.3. Nominals

As well as defining concepts in terms of other concepts (and roles), it may also be useful
to define a concept by simply enumerating its instances. For example, we might define
the concept Beatle by enumerating its instances: john, paul, george, and ringo. Enumer-
ations are not supported natively in DLs, but they can be simulated in DLs using nomi-
nals. A nominal is a concept that has exactly one instance. For example, {john} is the con-
cept whose only instance is (the individual represented by) john. Combining nominals
with union, the enumeration in our example could be expressed as

Beatle ≡ {john} t {paul} t {george} t {ringo}. (22)

It is interesting to note that, using nominals, a concept assertion Mother(julia) can be
turned into a concept inclusion {julia} v Mother and a role assertion parentOf(julia, john)
into a concept inclusion {julia} v ∃parentOf.{john}. This illustrates that the distinction
between ABox and TBox does not have a deeper logical meaning.

2.4. Role Constructors

In contrast to the variety of concept constructors, DLs provide only few constructors for
forming complex roles. In practice, inverse roles are the most important such constructor.
Intuitively, the relationship between the roles parentOf and childOf is that, for example,
if Julia is a parent of John, then John is a child of Julia and vice versa. More formally,
parenfOf is the inverse of childOf, which in DLs can be expressed by the equivalence

parentOf ≡ childOf−, (23)

where the complex role childOf− represents the inverse of childOf.
In analogy to the top concept, DLs also provide the universal role, represented by U,

which always relates all pairs of individuals. It typically plays a minor role in modelling,2

but it establishes symmetry between roles and concepts w.r.t. a top element. Similarly,
an empty role that corresponds to the bottom concept is also available in OWL but has
rarely been introduced as a constructor in DLs; however, we can define any role R to be
empty using the axiom > v ¬∃R.> (“all things do not relate to anything through R”).
Interestingly, the universal role cannot be defined by TBox axioms using the constructors
introduced above, and in particular universal role restrictions cannot express that a role
is universal.

2Although there are a few interesting things that could be expressed with U, such as concept products [17],
tool support is rarely sufficient for using this feature in practice.

10 Krötzsch et al. / Description Logic Primer

2.5. More RBox Axioms: Role Characteristics

In Section 1.3 we introduced three forms of RBox axioms: role inclusions, role equiv-
alences and role disjointness. OWL provides a variety of others, namely role transi-
tivity, symmetry, asymmetry, reflexivity and irreflexivity. These are sometimes consid-
ered as basic axiom types in DLs as well, using some suggestive notation such as
Trans(ancestorOf) to express that the role ancestorOf is transitive. However, such ax-
ioms are just syntactic sugar; all role characteristics can be expressed using the features
of DLs that we have already introduced.

Transitivity is a special form of complex role inclusion. For example, transitivity of
ancestorOf can be captured by the axiom ancestorOf ◦ ancestorOf v ancestorOf. A
role is symmetric if it is equivalent to its own inverse, e.g., marriedTo ≡ marriedTo−, and
it is asymmetric if it is disjoint from its own inverse, as in Disjoint(parentOf, parentOf−).
If desired, global reflexivity can be expressed by imposing local reflexivity on the top
concept as in > v ∃knows.Self . A role is irreflexive if it is never locally reflexive, as in
the case of > v ¬∃marriedTo.Self .

3. The Description Logic SROIQ

In this section, we summarise the various features that have been introduced informally
above to provide a comprehensive definition of DL syntax. Doing so yields the descrip-
tion logic called SROIQ, which is one of the most expressive DLs commonly consid-
ered today. It also largely agrees in expressivity with the ontology language OWL 2 DL,
though there are still some differences as explained in Section 6.

Formally, every DL ontology is based on three finite sets of signature symbols: a set
NI of individual names, a set NC of concept names and a set NR of role names. Usually
these sets are assumed to be fixed for some application and are therefore not mentioned
explicitly. Now the set of SROIQ role expressions R (over this signature) is defined by
the following grammar:

RF U | NR | NR
−

where U is the universal role (Section 2.4). Based on this, the set of SROIQ concept
expressions C is defined as:

CF NC | (CuC) | (CtC) | ¬C | > | ⊥ | ∃R.C | ∀R.C | >n R.C | 6n R.C | ∃R.Self | {NI}

where n is a non-negative integer. As usual, expressions like (C u C) represent any ex-
pression of the form (C u D) with C,D ∈ C. It is common to omit parentheses if this
cannot lead to confusion with expressions of different semantics. For example, parenthe-
ses do not matter for A t B t C whereas the expressions A u B t C and ∃R.A u B are
ambiguous.

Using the above sets of individual names, roles and concepts, the axioms of SROIQ
can be defined to be of the following basic forms:

Krötzsch et al. / Description Logic Primer 11

ABox: C(NI) R(NI ,NI) NI ≈ NI NI 0 NI

TBox: C v C C ≡ C

RBox: R v R R ≡ R R ◦ R v R Disjoint(R,R)

with the intuitive meanings as explained in Section 1 and 2.
Roughly speaking, a SROIQ ontology (or knowledge base) is simply a set of such

axioms. To ensure the existence of reasoning algorithms that are correct and terminating,
however, additional syntactic restrictions must be imposed on ontologies. These restric-
tions refer not to single axioms but to the structure of the ontology as a whole, hence they
are called structural restrictions. The two such conditions relevant for SROIQ are based
on the notions of simplicity and regularity. Notably, both are automatically satisfied for
ontologies that do not contain complex role inclusion axioms.

A role R in an ontologyO is called non-simple if some complex role inclusion axiom
(i.e., one that uses role composition ◦) in O implies instances of R; otherwise it is called
simple. A more precise definition of the non-simple role expressions of the ontology O
is given by the following rules:

• if O contains an axiom S ◦ T v R, then R is non-simple,
• if R is non-simple, then its inverse R− is also non-simple,3

• if R is non-simple and O contains any of the axioms R v S , S ≡ R or R ≡ S , then
S is also non-simple.

All other roles are called simple.4 Now for a SROIQ ontology it is required that the
following axioms and concepts contain simple roles only:

Restricted axioms: Disjoint(R,R)

Restricted concept expressions: ∃R.Self >n R.C 6n R.C.

The other structural restriction that is relevant for SROIQ is called regularity and is
concerned with RBox axioms only. Roughly speaking, the restriction ensures that cyclic
dependencies between complex role inclusion axioms occur only in a limited form. For
details, please see the pointers given in Section 7. For the introductory treatment in this
chapter, it suffices to note that regularity, just like simplicity, is a property of the ontology
as a whole that cannot be checked for each axiom individually. An important practical
consequence is that the union of two regular ontologies may no longer be regular. This
must be taken into account when merging ontologies in practice.

4. Description Logic Semantics

The formal meaning of DL axioms is given by their model-theoretic semantics. In par-
ticular, the semantics specifies what the logical consequences of an ontology are. The
formal semantics is therefore the main guideline for every tool that computes logical
consequences of DL ontologies, and a basic understanding of its working is vital to make

3If R = S − already is an inverse role, then R− should be read as S . We do not allow expressions like S −−.
4Whether the universal role U is simple or not is a matter of preference that does not affect the computational

properties of the logic [18]. However, the universal role in OWL 2 is considered non-simple.

12 Krötzsch et al. / Description Logic Primer

reasonable modelling choices and to comprehend the results given by software applica-
tions. Luckily, the semantics of description logics is not difficult to understand provided
that some common misconceptions are avoided.

Intuitively speaking, an ontology describes a particular situation in a given domain
of discourse. For example, the axioms in Sections 1 and 2 describe a particular situation
in the “families and relationships” domain. However, ontologies usually cannot fully
specify the situation that they describe. On the one hand, there is no formal relationship
between the symbols we use and the objects that they represent: the individual name
julia, for example, is just a syntactic identifier with no intrinsic meaning. Indeed, the
intended meaning of the identifiers in our ontologies has no influence on their formal
semantics: what we know about them stems only from the ontological axioms. On the
other hand, the axioms in an ontology typically do not provide complete information. For
example, (3) and (4) in Section 1.1 state that some individuals are equal and that others
are unequal, but in many other cases this information might be left unspecified.

Description logics have been designed to deal with such incomplete information.
Rather than making default assumptions in order to fully specify one particular interpre-
tation for each ontology, the DL semantics generally considers all the possible situations
(i.e., states of the world) where the axioms of an ontology would hold (we also say:
where the axioms are satisfied). This characteristic is sometimes called the Open World
Assumption since it keeps unspecified information open.5 A logical consequence of an
ontology is an axiom that holds in all interpretations that satisfy the ontology, i.e., some-
thing that is true in all conceivable states of the world that agree with what is said in the
ontology. The more axioms an ontology contains, the more specific are the constraints
that it imposes on possible interpretations, and the fewer interpretations exist that sat-
isfy all of the axioms. Conversely, if fewer interpretations satisfy an ontology, then more
axioms hold in all of them, and more logical consequences follow from the ontology.
The previous two sentences imply that the semantics of description logics is monotonic:
additional axioms always lead to additional consequences, or, more informally, the more
knowledge we feed into a DL system the more results it returns.

An extreme case is when an ontology is not satisfied in any interpretation. The ontol-
ogy is then called unsatisfiable or inconsistent. In this case every axiom holds vacuously
in all of the (zero) interpretations that satisfy the ontology. Such an ontology is clearly of
no utility, and avoiding inconsistency (and checking for it in the first place) is therefore
an important task during modelling.

We have outlined above the most important ideas of DL semantics. What remains
to be done is to define what we really mean by an “interpretation” and which conditions
must hold for particular axioms to be satisfied by an interpretation. For this, we closely
follow the intuitive ideas established above: an interpretation I consists of a set ∆I called
the domain of I and an interpretation function ·I that maps each atomic concept A to a
set AI ⊆ ∆I, each atomic role R to a binary relation RI ⊆ ∆I × ∆I, and each individual
name a to an element aI ∈ ∆I. The interpretation of complex concepts and roles follows
from the interpretation of the basic entities. Table 1 shows how to obtain the semantics
of each compound expression from the semantics of its parts. By “RI-successor of x” we
mean any individual y such that 〈x, y〉 ∈ RI. The definition should confirm the intuitive

5A Closed World Assumption “closes” the interpretation by assuming that every fact not explicitly stated
to be true is actually false. Both terms are not formally specified and rather outline the general flavour of a
semantics than any particular definition.

Krötzsch et al. / Description Logic Primer 13

Table 1. Syntax and semantics of SROIQ constructors

Syntax Semantics

Individuals:

individual name a aI

Roles:

atomic role R RI

inverse role R− {〈x, y〉 | 〈y, x〉 ∈ RI}
universal role U ∆I × ∆I

Concepts:

atomic concept A AI

intersection C u D CI ∩ DI

union C t D CI ∪ DI

complement ¬C ∆I \CI

top concept > ∆I

bottom concept ⊥ ∅
existential restriction ∃R.C {x | some RI-successor of x is in CI}
universal restriction ∀R.C {x | all RI-successors of x are in CI}
at-least restriction >n R.C {x | at least n RI-successors of x are in CI}
at-most restriction 6n R.C {x | at most n RI-successors of x are in CI}
local reflexivity ∃R.Self {x | 〈x, x〉 ∈ RI}
nominal {a} {aI}
where a, b ∈ NI are individual names, A ∈ NC is a concept name, C,D ∈ C are concepts, R ∈ R is a role

Table 2. Syntax and semantics of SROIQ axioms

Syntax Semantics

ABox:

concept assertion C(a) aI ∈ CI

role assertion R(a, b) 〈aI, bI〉 ∈ RI

individual equality a ≈ b aI = bI

individual inequality a 0 b aI , bI

TBox:

concept inclusion C v D CI ⊆ DI

concept equivalence C ≡ D CI = DI

RBox:

role inclusion R v S RI ⊆ S I

role equivalence R ≡ S RI = S I

complex role inclusion R1 ◦ R2 v S RI1 ◦ RI2 ⊆ S I

role disjointness Disjoint(R, S) RI ∩ S I = ∅

explanations given for each case in Section 2. For example, the semantics of Female u
Parent is indeed the intersection of the semantics of Female and Parent.

Since an interpretation I fixes the meaning of all entities, we can unambiguously
say for each axiom whether it holds in I or not. An axiom α holds in I (we also say I
satisfies α and write I |= α) if the corresponding condition in Table 2 is met. Again, these
definitions fully agree with the intuitive explanations given in Section 1. If all axioms
in an ontology O hold in I (i.e., if I satisfies O, written I |= O), then I is a model

14 Krötzsch et al. / Description Logic Primer

of O. Thus a model is an abstraction of a state of the world that satisfies all axioms in
the ontology. An ontology is consistent if it has at least one model. An axiom α is a
consequence of an ontology O (or O entails α, written O |= α) if α holds in every model
of O. In particular, an inconsistent ontology entails every axiom.

A noteworthy consequence of this semantics is the meaning of individual names in
DL ontologies. We already remarked that DLs do not usually make the Unique Name
Assumption, and indeed our formal definition allows two individual names to be inter-
preted as the same individual (element of the domain). Possibly even more important is
the fact that the domain of an interpretation is allowed to contain many individuals that
are not represented by any individual name. A common confusion in modelling arises
from the implicit assumption that interpretations must only contain individuals that are
represented by individual names (such individuals are also called named individuals).
For example, one could wrongly assume the ontology consisting of the axioms

parentOf(julia, john) manyChildren(julia) manyChildren v >3 parentOf.>

to be inconsistent since it requires Julia to have at least 3 children when only one (John)
is given. However, there are many conceivable models where Julia does have three chil-
dren, even though only one of the children is explicitly named. A significant number of
modelling errors can be traced back to similar misconceptions that are easy to prevent if
the general open world assumption of DLs is kept in mind.

Another point to note is that the above specification of the semantics does not pro-
vide any hint as to how to compute the relevant entailments in practical software tools.
There are infinitely many possible interpretations, each of which may have an infinite
domain (in fact there are some ontologies that are satisfied only by interpretations with
infinite domains). Therefore it is impossible to test all interpretations to see if they model
a given ontology, and impossible to test all models of an ontology to see if they entail a
given axiom. Rather, one has to devise deduction procedures and prove their correctness
with respect to the above specification. The interplay of certain expressive features can
make reasoning algorithms more complicated and in some cases it can even be shown
that no correct and terminating algorithm exists at all (i.e., that reasoning is undecid-
able). For our purposes it suffices to know that entailment of axioms is decidable for
SROIQ (with the structural restrictions explained in Section 3) and that a number of
free and commercial tools are available. Such tools are typically optimised for more spe-
cific reasoning problems, such as consistency checking, the entailment of concept sub-
sumptions (subsumption checking) or of concept assertions (instance checking). Many
of these standard inferencing problems can be expressed in terms of each other, so they
can be handled by very similar reasoning algorithms.

5. Important Fragments of SROIQ

Many different description logics have been introduced in the literature. Typically, they
can be characterised by the types of constructors and axioms that they allow, which are
often a subset of the constructors in SROIQ. For example, the description logic ALC
is the fragment of SROIQ that allows no RBox axioms and only u, t, ¬, ∃ and ∀ as its
concept constructors. The extension ofALCwith transitive roles is traditionally denoted

Krötzsch et al. / Description Logic Primer 15

by the letter S. Some other letters used in DL names hint at a particular constructor, such
as inverse roles I, nominals O, qualified number restrictions Q, and role hierarchies (role
inclusion axioms without composition) H . So, for example, the DL named ALCHIQ
extends ALC with role hierarchies, inverse roles and qualified number restrictions. The
letter R most commonly refers to the presence of role inclusions, local reflexivity Self ,
and the universal role U, as well as the additional role characteristics of transitivity, sym-
metry, asymmetry, role disjointness, reflexivity, and irreflexivity. This naming scheme
explains the name SROIQ.

In recent years, fragments of DLs have been specifically developed in order to ob-
tain favourable computational properties. For this purpose, ALC is already too large,
since it only admits reasoning algorithms that run in worst-case exponential time. More
lightweight DLs can be obtained by further restricting expressivity, while at the same
time a number of additional SROIQ features can be added without loosing the good
computational properties. The three main approaches for obtaining lightweight DLs are
EL, DLP and DL-Lite, which also correspond to language fragments OWL EL, OWL RL
and OWL QL of the Web Ontology Language.

The EL family of description logics is characterised by allowing unlimited use of
existential quantifiers and concept intersection. The original description logic EL allows
only those features and > but no unions, complements or universal quantifiers, and no
RBox axioms. Further extensions of this language are known as EL+ and EL++. The
largest such extension allows the constructors u, >, ⊥, ∃, Self , nominals and the univer-
sal role, and it supports all types of axioms other than role symmetry, asymmetry and
irreflexivity. Interestingly, all standard reasoning tasks for this DL can still be solved in
worst-case polynomial time. One can even drop the structural restriction of regularity that
is important for SROIQ. EL has been used to model large but lightweight ontologies
that consist mainly of terminological data, in particular in the life sciences. A number of
reasoners are specifically optimised for handling EL-type ontologies, the most recent of
which is the ELK reasoner for OWL EL.6

DLP is short for Description Logic Programs and comprises various DLs that are
syntactically restricted in such a way that axioms could also be read as rules in first-order
Horn logic without function symbols. Due to this, DLP-type logics can be considered as
kinds of rule languages (hence the name OWL RL) contained in DLs. To accomplish this,
one has to allow different syntactic forms for subconcepts and superconcepts in concept
inclusion axioms. We do not provide the details here. While DLs in general may require
us to consider domain elements that are not represented by individual names, for DLP
one can always restrict attention to models in which all domain elements are represented
by individual names. This is why DLP is often used to augment databases (interpreted as
sets of ABox axioms), e.g., in an implementation of OWL RL in the Oracle 11g database
management system.

DL-Lite is a family of DLs that is also used in combination with large data collec-
tions and existing databases, in particular to augment the expressivity of a query lan-
guage that retrieves such data. This approach, known as Ontology Based Data Access,
considers ontologies as a language for constructing views or mapping rules on top of
existing data. The core feature of DL-Lite is that data access can be realised with stan-
dard query languages such as SQL that are not aware of the DL semantics. Ontological

6http://elk-reasoner.googlecode.com/

16 Krötzsch et al. / Description Logic Primer

information is merely used in a query preprocessing step. Like DLP, DL-Lite requires
different syntactic restrictions for subconcepts and superconcepts. We do not present the
details here.

6. Relationship to OWL

The OWL Web Ontology Language is a knowledge representation language standardised
by the World Wide Web Consortium (W3C). OWL is one of the most important appli-
cations of description logics today. In this section, we briefly outline the relationship of
the two languages. A comprehensive treatment is beyond the scope of this chapter; see
Section 7 for pointers to further reading. The current version of the OWL specification is
OWL 2 as standardised in 2009. This supersedes the earlier OWL 1 standard of 2004.

The main building blocks of OWL are indeed very similar to those of DLs, with
the main difference that concepts are called classes and roles are called properties. It is
therefore not surprising that description logics have had a major influence on the devel-
opment of OWL and the expressive features that it provides. Historically, however, OWL
has also been conceived as an extension to RDF, a Web data modelling language whose
expressivity is comparable to DL ABoxes. The formal semantics of RDF is subtly differ-
ent from that of DLs, even though both lead to the same consequences in many common
cases. Extending the RDF semantics to the expressive features of OWL improves the
compatibility between the two, but it also makes reasoning undecidable. Therefore, it has
been decided to specify both styles of formal semantics for OWL: the Direct Semantics
based on DLs and the RDF-based Semantics.

In this section, we are therefore mainly interested in the Direct Semantics of OWL.
This semantics is only defined for OWL ontologies that abide by certain syntactic re-
strictions (essentially the restriction that the OWL axioms can be read as SROIQ ax-
ioms for which the structural restrictions of Section 3 are satisfied). This syntactic frag-
ment of OWL is called OWL DL.7 Under the Direct Semantics, large parts of OWL DL
can indeed be considered as a syntactic variant of SROIQ. For example, the axiom
Mother ≡ Female u Parent would be written as follows in OWL:

EquivalentClasses(Mother ObjectIntersectionOf(Female Parent))

where the symbols Mother, Female and Parent would be identifier strings that conform
to the OWL specification.8 The above example illustrates the close relationship between
the syntax of SROIQ and that of OWL. In many cases, it is indeed enough to translate
an operator symbol of SROIQ into the corresponding operator name in OWL, which is
then written in prefix notation like a function. This is also why the above form of syntax
is called Functional-Style Syntax. The OWL standard provides a number of syntactic
forms that can be used to express OWL ontologies. The most prominent among these
is the RDF/XML serialisation since it is the only format that all conforming OWL tools

7In contrast, the OWL language without any syntactic constraints is called OWL Full. It comprises ontologies
that can only be interpreted under the RDF-based Semantics.

8Entity names in OWL are generally based on Uniform Resource Identifiers (URIs). The details are not
relevant here. Additional information can be found in the chapter on linked data included in this volume [10].

Krötzsch et al. / Description Logic Primer 17

need to understand. On the other hand, it is more difficult for humans to read and we do
not present it here.

It is interesting to note that there are still a few differences between OWL DL under
the Direct Semantics and SROIQ. On a syntactic level, OWL provides a lot more oper-
ators that, though logically redundant, can be convenient as shortcuts for compound DL
axioms. For example, OWL has special constructs for specifying domain and range of
a property, even though these could equally well be expressed as in Section 2.2. These
kinds of features also include the empty (bottom) property, which can easily be defined
but is not included as a language feature in DLs.

However, OWL also includes some expressive features that we did not include in
our treatment of SROIQ above. Most notably, this includes support for datatypes and
datatype literals. These behave like classes and individual names but come with a fixed,
pre-defined interpretation. For example, the datatype for Boolean values has exactly two
elements – true and false – in any interpretation. This can also be introduced in DLs
by so-called concrete domains, i.e., pre-defined interpretation domains. Both DLs and
OWL in this case strictly distinguish roles/properties that relate to “abstract” individuals
from those that relate to values from some datatype. In OWL, the constructs that relate to
datatypes include “Data” in their name while constructs that relate to abstract individu-
als include “Object.” For example, OWL distinguishes ObjectIntersectionOf (used
above) from DataIntersectionOf (the intersection of datatypes).

The only other logical feature that is missing in DLs are so-called Keys. These are
special forms of rules that can be used for data integration. Roughly speaking, a key spec-
ifies that two named individuals are entailed to be equal if they agree on certain property
values and class memberships, similar to key constraints in databases. For example, the
combination of nationality and registration number might be treated as a key for (i.e.,
sufficient to uniquely identify) motor vehicles.

Besides the logical features, OWL also includes a number of other aspects that are
not considered in description logics at all. For example, it includes means of naming
an ontology and of importing ontological axioms from one ontology into another. Fur-
ther extra-logical features include a simple form of meta-modelling called punning, non-
logical axioms to declare identifiers, and the possibility to add annotations to arbitrary
axioms and entities similar to comments in a programming language.

7. Further Reading

This chapter can only provide a first introduction to description logics and OWL. More
detailed introductory texts can be found in the lecture notes of the Reasoning Web Sum-
mer School: Rudolph provides a detailed discussion of DL semantics and modelling [16],
Baader gives a general overview with extended historical notes [1], and Sattler focusses
on tableau-based reasoning methods [19]. An extensive introduction to lightweight de-
scription logics is given by Krötzsch [11].

For a more detailed coverage of OWL and its relationship to DL, we recommend
the textbook Foundations of Semantic Web Technologies [8]. This introductory text also
treats the relationship of DLs to first-order logic, DL query answering and extensions for
rule-based modelling (related to keys in OWL), which we have omitted here. An in-depth
treatment of description logics and related research topics is provided by the Description

18 Krötzsch et al. / Description Logic Primer

Logic Handbook [3], which also covers interesting aspects of deduction algorithms and
computational complexity that are beyond the scope of this chapter.

A number of research papers focus on specific topics in DLs. Closely related to this
chapter is the original article on SROIQ, which also provides the details on regularity
conditions that have been skipped above [9]. A detailed discussion of OWL datatypes
and their description logic semantics is given by Motik and Horrocks [14]. There are also
various works that focus on EL [2,12], DLP/OWL RL [6,13] and DL-Lite [4]. Current
developments in DL research are discussed at the annual DL Workshop9 and at the major
Semantic Web and Artificial Intelligence conferences.

The primary resources on OWL 2 are the online documents of the specification [15]
where the OWL Primer provides a first introduction [7]. The differences of the 2009
OWL 2 standard to its predecessor are explained in [5].

Many related tools such as reasoners and ontology editors are available. The most
popular free ontology editor is Protégé,10 which can be used with a variety of OWL
reasoners. Pointers to current OWL reasoners are best found online.11 Popular systems
for large parts of OWL 2 DL (SROIQ) include FaCT++, HermiT, Pellet and Racer-
Pro. Some typical lightweight systems are ELK (OWL EL), jCEL (OWL EL), Owlgress
(OWL QL), OWLIM (OWL RL and QL), Quonto (OWL QL) and Snorocket (OWL EL).
Details about these tools and related publications can be found on the respective home-
pages.

Acknowledgements We thank Fernando Bobillo, Peter Patel-Schneider and Evgeny
Zolin for helpful comments on an earlier version of this text.

References

[1] Franz Baader. Description logics. In Sergio Tessaris, Enrico Franconi, Thomas Eiter, Claudio Gutier-
rez, Siegfried Handschuh, Marie-Christine Rousset, and Renate A. Schmidt, editors, Reasoning Web.
Semantic Technologies for Information Systems – 5th International Summer School, 2009, volume 5689
of LNCS, pages 1–39. Springer, 2009. Available at http://lat.inf.tu-dresden.de/research/
papers.html.

[2] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL envelope. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI’05), pages
364–369. Professional Book Center, 2005.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, second edition, 2007.

[4] Diego Calvanese, Guiseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Auto-
mated Reasoning, 39(3):385–429, 2007.

[5] Bernardo Cuenca Grau, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and Ulrike Sat-
tler. OWL 2: The next step for OWL. J. of Web Semantics, 6:309–322, 2008.

[6] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description logic programs: com-
bining logic programs with description logic. In Proc. 12th Int. Conf. on World Wide Web (WWW’03),
pages 48–57. ACM, 2003.

9See http://dl.kr.org/ for proceedings.
10http://protege.stanford.edu/
11A list of reasoners can be found, e.g., at http://semanticweb.org/wiki/Category:Reasoner.

Krötzsch et al. / Description Logic Primer 19

[7] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and Sebastian Rudolph, editors.
OWL 2 Web Ontology Language: Primer. W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-primer/.

[8] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009.

[9] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible SROIQ. In Patrick Doherty,
John Mylopoulos, and Christopher A. Welty, editors, Proc. 10th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’06), pages 57–67. AAAI Press, 2006.

[10] Anja Jentzsch, Ricardo Usbeck, and Denny Vrandečić. An incomplete and simplifying introduction to
linked data. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning, Studies
on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[11] Markus Körtzsch. OWL 2 Profiles: An introduction to lightweight ontology languages. In Thomas
Eiter and Thomas Krennwallner, editors, Proceedings of the 8th Reasoning Web Summer School, Vienna,
Austria, September 3–8 2012, volume 7487 of LNCS, pages 112–183. Springer, 2012. Available at
http://korrekt.org/page/OWL_2_Profiles.

[12] Markus Krötzsch. Efficient rule-based inferencing for OWL EL. In Toby Walsh, editor, Proc. 22nd Int.
Conf. on Artificial Intelligence (IJCAI’11), pages 2668–2673. AAAI Press/IJCAI, 2011.

[13] Markus Krötzsch. The not-so-easy task of computing class subsumptions in OWL RL. In Philippe
Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat, Manfred Hauswirth,
Josiane Xavier Parreira, Jim Hendler, Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors,
Proc. 11th Int. Semantic Web Conf. (ISWC’12), volume 7649 of LNCS, pages 279–294. Springer, 2012.

[14] Boris Motik and Ian Horrocks. OWL datatypes: Design and implementation. In Amit Sheth, Steffen
Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, and Krishnaprasad Thirunarayan,
editors, Proc. 7th Int. Semantic Web Conf. (ISWC’08), volume 5318 of LNCS, pages 307–322. Springer,
2008.

[15] W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C Recommen-
dation, 27 October 2009. Available at http://www.w3.org/TR/owl2-overview/.

[16] Sebastian Rudolph. Foundations of description logics. In Axel Polleres, Claudia d’Amato, Marcelo
Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossowski, and Peter F. Patel-Schneider, editors,
Reasoning Web. Semantic Technologies for the Web of Data – 7th International Summer School 2011,
volume 6848 of LNCS, pages 76–136. Springer, 2011. Available at http://www.aifb.kit.edu/web/
Incollection3026/en.

[17] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. All elephants are bigger than all mice. In
Franz Baader, Carsten Lutz, and Boris Motik, editors, Proc. 21st Int. Workshop on Description Logics
(DL’08), volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[18] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. Cheap Boolean role constructors for descrip-
tion logics. In Steffen Hölldobler, Carsten Lutz, and Heinrich Wansing, editors, Proc. 11th European
Conf. on Logics in Artificial Intelligence (JELIA’08), volume 5293 of LNAI, pages 362–374. Springer,
2008.

[19] Ulrike Sattler. Reasoning in description logics: Basics, extensions, and relatives. In Grigoris Antoniou,
Uwe Aßmann, Cristina Baroglio, Stefan Decker, Nicola Henze, Paula-Lavinia Patranjan, and Robert
Tolksdorf, editors, Reasoning Web – 3rd International Summer School, 2007, volume 4636 of LNCS,
pages 154–182. Springer, 2007.

An Incomplete and Simplifying
Introduction to Linked Data

Anja JENTZSCH a, Ricardo USBECK c and Denny VRANDEČIĆ b

aHasso-Plattner-Institut, Potsdam, Germany;
E-mail: Anja.Jentzsch@hpi.uni-potsdam.de

bWikimedia Deuschland, Germany;
cAgile Knowledge Engineering and Semantic Web (AKSW), Leipzig University,

Leipzig, Germany; E-mail: ricardo.usbeck@informatik.uni-leipzig.de

Abstract. Linked Data is becoming an increasingly popular method to

publish data. It is based on a simple set of rules and a number of widely

adopted standards. This introductory article aims at capturing the sim-
plicity of Linked Data, and the concepts behind the related standards.

It will help the reader to understand the basic elements of Linked Data
and its related technologies. Using the example of a calendar app, we

will highlight the practical advantages of using Linked Data for writing

apps and publishing data in a completely decoupled way.

1. Introduction

Linked Data is a method to publish data on the Web, so that it can be connected
to other datasets and create a Web of Data. Four rules need to be followed in
order to publish data as Linked Data [7]:

1. Use URIs to name things
2. Use HTTP URIs so that they can be looked up
3. On lookup, provide useful information in standard formats
4. Provide links to other things

This chapter will describe the standards around Linked Data and their basic
concepts. Instead of focusing on completeness and technical correctness, we want
to achieve an intuitive understanding in the interested but so far uninformed
reader. We refer to more comprehensive primers and the technical specifications
in each section, so that the reader interested in more details can further deepen
their knowledge.

Prerequisites for this chapter are merely a basic understanding of how the
Web works. It would be helpful if the reader was exposed to some basic ideas
from data management, data structures, and knowledge representation.

Throughout the chapter we will use the example of writing a calendar appli-
cation. Our app will be able to deal with different time zones: if the user enters
a meeting like ”Meeting at 9am in Atlanta” the calendar tool should be able to

22 Jentzsch et. al / Introduction to Linked Data

translate the time to the local time zone, even if the meeting is being entered in
Istanbul and shared with participants in Athens.

The chapter is structured as follows: Section 2 explains the connection be-
tween Linked Data and the Semantic Web Vision. Section 3 introduces the basic
notions of RDF, especially the idea of an RDF graph and RDF triples. Section 4
describes URIs, the basic building blocks for such triples, and how they refer to
the Web. Section 5 then discusses how the Web is used for the distributed pub-
lishing of knowledge using the HTTP standard. Secton 6 extends the very simple
expressivity of RDF, and discusses how languages like RDFS, OWL, and RIF are
layered on top of it. Section 7 introduces SPARQL, a query language for RDF
graphs. In Section 8 we then go into more detail about the question how RDF
is and can be serialized, before we devote Section 9 to the sometimes confusing
relationship of RDF and XML. We close in Section 10 with a resumé on the state
of Linked Data and an outlook on current developments.

2. Vision of the Semantic Web

Linked Data and Semantic Web are sometimes used synonymously, although these
two are rather different concepts. The Semantic Web [36] is a movement from the
Web of Documents to the Web of Data. The intention is to develop a Web that
enables humans as well as machines to interact and work on existing data in way
that creates an additional value. To achieve this the data needs to be machine
understandable, human manageable, linkable and storable in a standardized way.
Linked Data is the materialized implementation of the Semantic Web vision,
executed by technologies like RDF, SPARQL, ontologies and many more decribed
below.

Further readings: To get to know more about the Semantic Web vision we
refer to the book [2] or the W3C Semantic Web website at http://www.w3.org/
standards/semanticweb/.

3. RDF: The basics

RDF is a standardized model used for representing knowledge on the Web. Knowl-
edge representation in general enables to separate what a system does from what
it knows [12], i.e., to make its knowledge explicit and not simply implicit in the
program. Decoupling knowledge from a program has several advantages, for ex-
ample, it allows the knowledge base to be maintained externally, so that changes
in the world may not even affect the code.

In the calendar app, one approach to deal with the different time zones would
be to code the information into the program itself. We could simply have a func-
tion that, given a country or city name, returns the offset, implemented with a
lot of switch or if then else statements. A change in the timezone of a coun-
try would require rewriting the function and recompiling the whole application.
Instead, we could externalize the knowledge about countries and cites and their

Jentzsch et. al / Introduction to Linked Data 23

time zones. The application would then load the knowledge base whenever it is
needed, and behave accordingly.

There are many different ways to represent the knowledge in a way that the
application can read it. For example, we could have a database with tables of
cities and countries and associated time zones. We could have comma separated
lists of cities for each time zone. Or we could gather a consortium and define a
standard for expressing time zone information, so that different developers can
independently access this knowledge in their apps.1

RDF provides a generic, standardized model for representing knowledge.
Generic means, that it can be used in any domain, be it time zones, geographic
data, genes, books, or anything else. Standardized means that RDF has been
specified in an explicit, reimplementable way, so that everyone can create software
that can correctly read and write RDF documents.

The basic notions of RDF are triples and graphs. Triples are used to express
the given knowledge, piece by piece. Each triple is built of three elements: a
subject, a predicate, and an object. In our example, a piece of knowledge could
be expressed with the following triple:

Turkey timezone EET .

The subject in this triple is Turkey, the predicate is timezone, and the object
EET. The triple can intuitively be understood as having the same meaning as the
English sentence ”Turkey is in the timezone EET.”.

A graph consists of a set of triples. It is called a graph, because the subjects
and objects can be understood as nodes, connected with directed edges labeled
with the given property. The following example graph is visualized in Figure 1.

Turkey timezone EET .

Greece timezone EET .

Georgia timezone GET .

EET borders GET .

EET offset "2"^^int .

GET offset "4"^^int .

The last two triples in the example graph demonstrate the use of literal values
in the object position: instead of a named node, that refers to an entity, we have
a typed literal value. The type in this case is int, which means that the values
should be interpreted as integers. The types available in RDF cover numbers,
strings, booleans, dates, time durations, URIs, XML, and others.

Further readings: If you want to get deeper into the formalisms behind RDF
have a look at the the RDF specification [25], the RDF primer [27], the specifi-
cation for XSD datatype [30]. Relevant concepts we did not introduce are blank
nodes, reification, named graphs and extensible datatypes cf. [15,27].

1For time zones, this is roughly what happened, in form of the tz database.

24 Jentzsch et. al / Introduction to Linked Data

Figure 1. Example of Linked Data used for the calender application

4. URIs: The words of the language

The big advantage of a graph-based model is that they can be easily be merged,
by simply regarding a merger as a union of the triples in both graphs. Many
other models for knowledge representations, like tables or XML files, do not allow
for such a generic merging. But in order to provide a knowledge representation
language that allows these kind of mergers, naming conflicts must be avoided. In
our example, Georgia refers to the caucasian country. But now consider a second
knowledge base about US states:

Georgia timezone EST .

SouthCarolina timezone EST .

EST offset "-5"^^int .

Since both Georgias – the caucasian country and the US state – are named
the same, we would not be able to differentiate them. Georgia now seems to be
both in the timezone GET and EST!

To avoid this situation, all entities in Linked Data have to be referred to
by unique names. To achieve this, the names are given as URIs, most often
HTTP URIs (just like websites). The advantage of URIs is that anyone can
register a prefix, and then create new names with this prefix. The owner of
the prefix is responsible for what the given name means. So, the country Geor-
gia could be named http://example.org/countries#Georgia and the us state
could be http://example.org/usstates#Georgia. As long as everyone defines
new names in their own namespace only, naming conflicts can be avoided without
constant coordination between all parties.

As URIs can be quite lengthy, often qualified names (or QNames) are
used. They have the form prefix:localName. Prefixes are defined locally to
expand to a certain namespace, e.g., in our example we could define that the
prefix us means the namespace http://example.org/usstates#, and thus we
could use the qualified name us:Georgia in order to refer to the complete URI
http://example.org/usstates#Georgia.

Jentzsch et. al / Introduction to Linked Data 25

Further readings: To find more about the specification of URIs, see [6] and
for to get to know how to register a new URI scheme, have a look at [22]. We
did not speak about IRIs [18] and other protocols besides HTTP, like FTP [31]
or URN [34].

5. HTTP: Distributed knowledge

The second rule for publishing linked data is to use HTTP URIs. The advantage is,
that HTTP is a widely implemented protocol, that can be used over the Internet
for accessing resources with a given HTTP URI. For example, the above knowl-
edge base could have itself the name http://example.org/countries. Now a
simple HTTP GET command like

GET http://example.org/countries

will return the knowledge base (it can be tried by entering the URI in a
browser, but it is suggested for later as the result might be confusing at this
point).

All entities are named with URIs, and the third rule of Linked Data asks to
return information about the entity identified with a given URI when the URI is
being dereferenced via HTTP. This way, the Web can be used as vast knowledge
space, where everyone can publish what they know about a given entity.

We can also use the URIs of others – we do not have to pub-
lish URIs for all entities that we want to use ourselves. For exam-
ple, DBpedia is a widely used resource that publishes Linked Data
based on Wikipedia’s infoboxes [10]. DBpedia offers URIs for all enti-
ties that have a Wikipedia page. For example, Greece’ Wikipedia page is
http://en.wikipedia.org/wiki/Greece and, based on that, DBpedia defines
the URI for Greece to be http://dbpedia.org/resource/Greece. If this is en-
tered into a browser, the browser redirects the user to a Web page about Greece
in DBpedia. If a Semantic Web application would have asked, DBpedia (prefix
dbpedia) would have returned the RDF data instead.

So we could replace

countries:Greece tz:timezone tz:EET .

with using the DBpedia URI for Greece and get

dbpedia:Greece tz:timezone tz:EET .

This would have the advantage that now we can learn much more about
Greece: the name of the country in different languages and alphabets, its pop-
ulation, the name of the head of state, etc. Suddenly, our application can use
knowledge from all over the Web.

Instead of simply replacing the URI, in our case we actually state that the
URIs refer to the same entity, like this:

countries:Greece owl:sameAs dbpedia:Greece .

26 Jentzsch et. al / Introduction to Linked Data

We see, that also properties can be reused from all over the Web. In this case
we use the term sameAs from the OWL vocabulary, which we will look at in the
next section.

One advantage of using the Web as a knowledge base is that much knowledge
is already published: whereas our knowledge bases had information on some coun-
tries, Websites like Geonames or DBpedia offer lists of cities, and in which coun-
tries or US states they are located. So regarding the cities we mentioned in the
beginning of the article, the Web already offers the following pieces of knowledge:

dbpedia:Istanbul dbo:country dbpedia:Turkey .

dbpedia:Athens dbo:country dbpedia:Greece .

dbpedia:Atlanta dbo:isPartOf dbpedia:Georgia_(U.S._state) .

This allows us to just reuse the knowledge about cities from the Web of Data,
for very little cost.

Further readings: For a deeper introduction of the HTTP protocol have a
look at the HTTP specification [20].

6. RDFS, OWL and others: Adding expressivity

RDF allows us to express triples directly. A very powerful method is to allow
for implicit triples, by using more expressive semantics than simple triples. We
have seen one example already: owl:sameAs states that two URIs refer to the
same entity. That means that anything we say about dbpedia:Greece is also
true about countries:Greece. So now that we learnt that dbpedia:Athens is in
dbpedia:Greece, we know that it is also in our own countries:Greece.

A number of languages build on top of RDF and extend it with more expres-
sive semantics. We will look at three of them, that are standardized by the W3C:
RDFS, OWL, and RIF.

RDFS is the simplest one of them. It allows us to describe class and property
hierarchies: for example, we have found on the Web cities connected to countries
resp. US states. The connection to the country was done using the dbo:country,
to the state with dbo:isPartOf. Now we can also define that everything that is
connected via the former should also be connected through the latter. In RDFS
we do that with the following triple:

dbo:country rdfs:subPropertyOf dbo:isPartOf .

Now a reasoner who follows the RDFS semantics can infer that

dbpedia:Istanbul dbo:isPartOf dbpedia:Turkey .

is true, even though it was never stated explicitly.
OWL is much more expressive regarding the description of classes and prop-

erties: for example, we can state that every city has to be in exactly one time
zone, or that nothing can be both a U.S. state and a country, which could have
helped to discover the error with the two Georgias automatically.

Jentzsch et. al / Introduction to Linked Data 27

Since RDF allows only triples, such more complex statements need to be
broken down to triples. The statement ”Every city is in exactly one time zone.”
translates in RDF to the following four triples:

x:statement1 rdf:type owl:Restriction .

x:statement1 owl:onProperty tz:timezone .

x:statement1 owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger .

x:statement1 owl:onClass dbo:City .

Although this might seem a bit daunting, in reality these kind of triples are
hidden either by more high-level syntaxes (see Section 8) or query tools (see
Section 7).

RIF is a different beast. Whereas OWL is an expressive language to describe
classes and properties, RIF is a way to express rules of them form if. . . then. . . .
In our example, we might want to state that whenever a city is part of a country
or state, and the country or state has a time zone, this is also the time zone of
the city. Or, using the variables ?x, ?y, and ?z:2

If

?x dbo:isPartOf ?y .

?y tz:timezone ?z .

then

?x tz:timezone ?z .

RDFS, OWL, and RIF can, at least in theory, be all used together. It depends
on the used tools if a given semantics is understood: some reasoners support
parts of OWL (so called fragments), some support only RDFS, other RIF, and
a very few claim to support interesting combinations of all three languages, and
sometimes beyond.

Further readings: The whole formalism can be found in the specifications
for RDFS [14], OWL [4], and RIF [11],but especially at the OWL primer in this
book [24]. We did not discuss questions of how to reason and about the complexity
and decidability of reasoning. This is a big research topic, and in the last few
years, it was advanced tremendously. We point to the DL Handbook as an entry
point into this topic [3]. We also did not mention the different fragments of OWL,
RIF, and the differences between OWL and OWL2, which can all be found in
detail in the respective standards. Besides the languages presented here, other
languages like SKOS [28] or WSML [26] exist, that can define other semantics.

7. SPARQL: Querying RDF

So far, we have described how to express knowledge: both simple facts (with RDF)
and more expressive statements that enrich the knowledge base (in the previous
section). SPARQL provides a query language for RDF knowledge bases.

2We will not show how the rule is represented in RDF, as this looks even worse than the

OWL statement above.

28 Jentzsch et. al / Introduction to Linked Data

For example, assume that we have all the triples we have mentioned so far
in one graph that we can query via SPARQL. Let’s also assume that the system
providing the SPARQL endpoint understands the semantics of RDFS, OWL, and
RIF. Now we can ask for the offset for Athens:

SELECT ?offset WHERE {

dbpedia:Athens tz:timezone ?tz .

?tz tz:offset ?offset .

}

The system will return as a result the integer 2.
Athens is in the country Greece. We know that from the Web. Due to the

OWL subproperty triple, we also know that to be in a country means to be part
of it. Because of the RIF rule, we can infer that if something is part of something,
it also has the same timezone. Based on this, the following two triples, the first
one implicit, the second given explicitly, are in our knowledge base:

dbpedia:Athens tz:timezone tz:EET .

tz:EET tz:offset "2"^^xsd:int .

A SPARQL query describes a triple pattern (similar to the one in the if -part
of RIF), where symbols with a leading question mark are variables. A SPARQL
processor now tries to find values for the variables, so that the whole SPARQL
pattern can be fulfilled by the knowledge base. The SPARQL processors then
returns a list of all possible answers for the selected variables,3 i.e. in this case
for all values that ?offset can have so that the SPARQL query pattern matches
in the knowledge base. Given our query pattern, the two triples above are the
only match in our knowledge base, and thus the result, "2"^^xsd:int will be
returned as the only possible value for ?offset.

SPARQL can be regarded as the main interface to access knowledge on the
Web of Data. Currently, the usual workflow to work with Linked Data is to find
and gather trustworthy data from the Web, include some knowledge created for
the task or tying together the data from the Web, put it all in one knowledge
base, and then use SPARQL to get answers to the queries of interest to the given
task.

Further readings: To find out more about SPARQL look at the specification
for SPARQL [32]. We did not discuss that SPARQL is not only a query language
but also a protocol of how to acccess SPARQL endpoints. We also did not discuss
other types of queries: DESCRIBE, ASK, and CONSTRUCT, nor the powerful features
of SPARQL to count, do math, regular expressions, named graphs, etc.

8. RDFa and Co.: Serializations of RDF

What is a serialization? To send around RDF graphs through the Web, we need
somehow to write them down in documents, i.e. to serialize them in a sequence of

3That is, all variables following the introductory SELECT keyword, in this case ?offset.

Jentzsch et. al / Introduction to Linked Data 29

tokens. Throughout this chapter we have used a slightly simplified, triple-based
serialization, N3 [8]. N3 has the advantage, that the triple structure of the graph
is very obvious. Although, it is widely used, it has the disadvantage of not being
standard.

There are a confusing number of serializations of RDF around, mostly due to
the fact that the orginally standardized serialization in RDF/XML is considered
to be not very pleasing. Soon, further syntaxes were created, some of them also
in XML (like TriX [16]), some of them not (like N3 and its constrained version
N-Triples [21]. Expressions in other languages like OWL and RIF were often very
cumbersome to be translated to RDF (as shown in Section 6), and thus introduced
serializations of their own, like the OWL Functional Syntax [29], the OWL XML
presentation syntax (a serialization of OWL directly in XML, instead of going
through RDF [23]), the RIF syntaxes [11], etc. Lately, JSON became a more
prominent serialization format on the Web, and standards to represent the RDF
data model in JSON are being worked on [35].

Besides serializations for pure RDF, there has been a second strand of em-
bedding RDF in other file formats. One of the main use cases for RDF is to pro-
vide flexible metadata about a file. Embedding that metadata in the file itself has
the advantage that the metadata is easier retained if the file gets moved, shared,
changed, etc. A growing number of file formats, like Adobe’s (PDF, Photoshop,
etc.) allow to embed RDF [17].

The most relevant file format for the Web is obviously HTML itself, the
language to describe Web pages and applications. The RDFa standard offers how
to markup and annotate elements of a Web page with RDF. This allows a tool
understanding RDFa to directly extract structured data out of a Website: a page
about an event can be pulled into a calendar, a restaurant can be automatically
filtered with the allergies of the user, different shopping Websites can be thrown
into one knowledge base and be compared directly, etc.

Further readings: If you want to find more serializations have a look at the
specifications of RDFa [1], RDF in JSON [35], and RDF/XML [5]. Also relevant is
the ongoing conversation between the communities supporting Microformats [9],
Microdata [33], and RDFa.

9. XML: The confusing older brother

XML became the de-facto lingua france for data on the Web and beyond. So
it was natural, that it was assumed that RDF would be build on top of XML.
But in reality, the two are very different beasts: XML describes a tree-based
model, with a single root element, that has child elements in a strict order, and,
who in turn, might have further child elements, in strict orders too, all strictly
hierarchical. RDF describes a graph-based model, where the order of the edges
does not matter, and that is expressed as a simple set of triples. XML schema
defines a strict grammar for the elements in an XML documents, determining if
an XML file is valid or not. RDF schemas provide additional knowledge to infer
implicit knowledge from a given RDF file, and can hardly be used to check the

30 Jentzsch et. al / Introduction to Linked Data

validity of an RDF file. It is often easier to deal with valid XML files than with
RDF files, because the developer has guarantees about the structure of the file. On
the other hand, RDF files are much easier to extend: one can simply add further
triples, and, as long as they don’t contradict the existing triples, the knowledge
simply grows. Two RDF files can always be simply merged automatically. For
XML files in general, such an operation makes no sense.

With the benefit of hindsight, forcing RDF into an XML-based serialization
was bound to lead to numerous problems without gaining the hoped-for advan-
tages. Many of the existing XML tools and workflows were actually unable to deal
with RDF/XML files, so that the existing huge pool of experience and software
could not be used to kickstart the Web of Data.

Today, XML does not play a prominent role for the Web of Data anymore.
Even if it gets further used as the main serialization format for RDF, its data
model and the tools used with XML are loosing relevance. It is an open question if
this might change again, or if the rich set of software and experiences surrounding
the XML world can be unlocked in favor of the Web of Data – or the other way
around.

Further readings: For more information about XML, see the XML specifica-
tion [13] or the XML Schema primer [19].

10. Conclusions and outlook

RDF is increasingly becoming the standard way to share data on the Web. Using
and publishing RDF is not an academic exercise anymore. The flexibility and ex-
tensibility of RDF, together with the possibility to merge arbitrary RDF graphs,
gives it a unique advantage compared to other wide spread data models. Con-
fusions surrounding its several serializations, especially the ill-received standard
RDF/XML-serialization, a maybe too early focus on OWL, and the late availabil-
ity of SPARQL, have probably hampered uptake. Meanwhile, simple standards
like Microformats and JSON have received considerable uptake.

The advantages and the genericity of Linked Data standards are being in-
creasingly recognized. Instead of introducing hundreds, if not thousands of APIs
and heterogeneous formats, one common data model and query language can
substantially decrease costs of data integration and data reuse.

End user interfaces to the Web of Data are still missing – but maybe they
always will. Maybe the role of Linked Data is to be background technology: no
one asks for generic interfaces for end-users to SQL databases. Maybe the Web
of Data has a similar fate.

Still several practical issues remain unresolved:

• In general, SPARQL is too powerful and too expensive for the Web. It is
far too easy to bring a SPARQL endpoint down with a few queries.

• The multitude of serialization formats in practical use combined with the
lack of standard formats besides RDF/XML hampers teaching about RDF
and its uptake.

Jentzsch et. al / Introduction to Linked Data 31

• For a number of wide-spread use cases, no standards or even widely ac-
knowledged best practices exist: how to express numbers with units, espe-
cially imperial units? How to express data that was valid at a given point
in time? How to express time spans? How to deal with numerical preci-
sion? How to work with simple geographical and temporal reasoning, like
inclusion?

• The current standards allow fine-grained provenance information only
through reification, a method, that is often strongly discouraged for several
reasons.

• The semantics break down under inconsistencies. There is currently no
accepted way to deal with diversity in knowledge bases, even though this
will play a crucial role on the Web. This ties in with questions of trust that
have not yet been sufficiently tackled: given diverse data about an entity,
maybe even contradictions, how to choose which sources to trust? How to
make this trust transferable to the user?

The Web of Data, as part of the Web, is getting increasingly tangled with
all aspects of our lives. The growing number of intelligent apps and devices in
our environment will have an ever-growing need to communicate with each other.
Imagining a future where our calendar app can support the flight finder app by
restricting the departure and arrival times based on our agenda and the locations
of our meetings and the airport, has become much easier today than it used to be
only a few years ago. Such a future is much easier to achieve when the applications
and devices can all communicate in the same common and standard data model,
and using the same interfaces.

Acknowledgements

We thank the students, who listened to previous versions of the contents of this
chapters, during courses given at KIT and FU Berlin, and during several sum-
mer school courses (ESWC summer school, Berkeley Summer School for Seman-
tic Technologies, Asian Summer School for the Semantic Web). Their questions
and the discussions with them helped enormously in sharpening the didactic ap-
proach and our own ideas of the topic. Writing of this chapter was partially funded
by the EU project RENDER (FP7 Grant agreement ICT-257790-STREP).4

This work has been supported by the ESF and the Free
State of Saxony.

References

[1] B. Adida, I. Herman, M. Sporny, and M. Birbeck. Rdfa 1.1 Primer. Technical re-

port, World Wide Web Consortium, http://www.w3.org/TR/2012/NOTE-rdfa-primer-
20120607/, June 2012.

[2] Grigoris Antoniou and Frank vanHarmelen. A Semantic Web Primer. MIT Press, Cam-

bridge, MA, USA, 2004.

4http://www.render-project.eu

32 Jentzsch et. al / Introduction to Linked Data

[3] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.

Patel-Schneider. The description logic handbook: theory, implementation, and applica-

tions. Cambridge University Press, New York, NY, USA, 2003.
[4] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuin-

ness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology Language
Reference. Technical report, W3C, http://www.w3.org/TR/owl-ref/, February 2004.

[5] David Beckett. RDF/XML Syntax Specification (Revised). Technical report, W3C,

http://www.w3.org/TR/REC-rdf-syntax/, February 2004.
[6] T. Berners-Lee, R. Fielding, and L. Masinter. Rfc 3986, uniform resource identifier (uri):

Generic syntax, 2005.

[7] Tim Berners-Lee. Linked data. World wide web design issues, July 2006.
[8] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syntax. Technical

report, W3C, http://www.w3.org/TeamSubmission/n3/, January 2008.

[9] Frances Berriman, Dan Cederholm, Dan Tantek Çelik, Dan Rohit Khare, Dan Ryan King,
Dan Kevin Marks, and Dan Ben Ward. Microformats, 2004.

[10] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard

Cyganiak, and Sebastian Hellmann. Dbpedia - a crystallization point for the web of data.
Web Semant., 7(3):154–165, 2009.

[11] Harold Boley, Gary Hallmark, Michael Kifer, Adrian Paschke, Axel Polleres, and
Dave Reynolds. RIF Core Dialect (Second Edition). Technical report, W3C,

http://www.w3.org/TR/rif-core/, February 2013.

[12] Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[13] Tim Bray, Jean Paoli, C. Michael Sperberg-McQueen, Eve Maler, and François Yergeau.

Extensible markup language (xml) 1.0 (fifth edition), November 2008.
[14] Dan Brickley and Ramanathan V. Guha. Rdf vocabulary description language 1.0: Rdf

schema. Technical report, http://www.w3.org/TR/rdf-schema/, 2004.

[15] Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs, prove-
nance and trust. In Proceedings of the 14th international conference on World Wide Web,

WWW ’05, pages 613–622, http://doi.acm.org/10.1145/1060745.1060835, 2005. ACM.

[16] Jeremy J. Carroll and Patrick Stickler. Trix: Rdf triples in xml. Technical Report HPL-
2004-56, HP Labs, May 2004.

[17] Adobe Corp. Xmp specification. Technical report,
http://partners.adobe.com/public/developer/en/xmp/sdk/XMPspecification.pdf, 2005.

[18] M. Duerst and M. Suignard. RFC 3987: Internationalized Resource Identifiers (IRIs),

January 2005.
[19] David C. Fallside and Priscilla Walmsley. XML Schema part 0: Primer second edition.

Technical report, http://www.w3.org/TR/xmlschema-0/, October 2004.

[20] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee.
Rfc 2616, hypertext transfer protocol – http/1.1, 1999.

[21] J. Grant and D. Beckett. RDF test cases, February 2004.

[22] T. Hansen, T. Hardie, and L. Masinter. RFC 4395: Guidelines and Registration Procedures
for New URI Schemes, 2006.

[23] Masahiro Hori, Jérôme Euzenat, and Peter F. Patel-Schneider. OWL Web Ontology Lan-

guage - XML Presentation Syntax. Technical report, W3C, http://www.w3.org/TR/owl-
xmlsyntax/, June 2003.

[24] Markus Krötzsch, Frantǐsek Simanč́ık, and Ian Horrocks. A description logic primer.
CoRR, abs/1201.4089, 2012.

[25] Ora Lassila, Ralph R. Swick, World Wide, and Web Consortium. Resource description

framework (rdf) model and syntax specification. 1998.
[26] Holger Lausen, Jos de Bruijn, Axel Polleres, and Dieter Fensel. Wsml - a language frame-

work for semantic web services. In W3C Workshop on Rule Languages for Interoperability,

2005.
[27] Frank Manola and Eric Miller. RDF primer. Technical report,

http://www.w3.org/TR/rdf-primer/, 2004.

[28] Alistair Miles and José R. Pérez-Agüera. Skos: Simple knowledge organisation for the

Jentzsch et. al / Introduction to Linked Data 33

web. Cataloging & Classification Quarterly, 43(3):69–83, 2007.

[29] Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, Conrad Bock, Achille Fokoue, Peter

Haase, Rinke Hoekstra, Ian Horrocks, Alan Ruttenberg, Uli Sattler, and Michael Smith.
OWL 2 Web Ontology Language - Structural Specification and Functional-Style Syntax

(Second Edition). Technical report, W3C, http://www.w3.org/TR/owl2-syntax/, Decem-
ber 2012.

[30] David Peterson, Shudi (Sandy) Gao, Ashok Malhotra, C. M. Sperberg-McQueen, Henry S.

Thompson, Paul V. Biron, and Ashok Malhotra. W3C XML schema definition language
(XSD) 1.1 part 2: Datatypes. Technical report, http://www.w3.org/TR/xmlschema11-2/,

2012.

[31] J. Postel and J. K. Reynolds. RFC 959: File transfer protocol, 1985.
[32] Eric Prud’hommeaux and Andy Seaborne. Sparql query language for rdf. Technical report,

http://www.w3.org/TR/rdf-sparql-query/, January 2008.

[33] Jason Ronallo. HTML5 Microdata and Schema.org. The Code4Lib Journal, (16), 2012.
schema.org.

[34] Karen Sollins and Larry Masinter. Functional requirements for uniform resource names.

Internet RFC 1737, December 1994.
[35] Manu Sporny, Gregg Kellogg, and Markus Lanthaler. Json-ld syntax 1.0. Technical report,

http://json-ld.org/spec/latest/json-ld-syntax/, December 2012.
[36] W3C. Semantic Web, 2013.

Introducing Machine Learning

Agnieszka ŁAWRYNOWICZ a and Volker TRESP b

a Institute of Computing Science, Poznan University of Technology, Poznań, Poland;
E-mail: alawrynowicz@cs.put.poznan.pl

b Siemens AG, Corporate Technology, München, Germany;
E-mail: volker.tresp@siemens.com

Abstract. In this chapter we provide an overview on some of the main issues in
machine learning. We discuss machine learning both from a formal and a statistical
perspective. We describe some aspects of machine learning such as concept learn-
ing, support vector machines, and graphical models in more detail. We also present
example machine learning applications to the Semantic Web.

Keywords. Machine Learning, Data Mining, Inductive Inference, Models

Introduction

The goal of Machine Learning (ML) is to construct computer programs that can learn
from data. The inductive inference of machine learning, i.e. the generalizations from a set
of observed instances, can be contrasted to early Artificial Intelligence (AI) approaches
that dealt mostly with deductive inference (cf. Krötzsch et al. [24] in this volume), i.e., the
derivation of theorems from axioms. Although ML is considered a subfield of AI it also
intersects with many other scientific disciplines such as statistics, cognitive science, and
information theory1. An area, closely related to ML is data mining [11,12] which deals
with the discovery of new and interesting patterns from large data sets. Although ML and
data mining are often used interchangeably, one might state that ML is more focused on
adaptive behavior and operational use, whereas data mining focusses on handling large
amounts of data and the discovery of previously unknown patterns (implicit knowledge,
regularities) in the data. Most of this chapter discusses ML in the context of a formal AI
system, although when suitable, as in the discussion of graphical models, we assume a
more statistical perspective.

ML approaches can be distinguished in terms of representation and adaptation. A
machine learning system needs to store the learned information in some knowledge rep-
resentation structure which is called (an inductive) hypothesis and is typically of the form
of a model. Following the Ockham’s razor principle, the hypothesis should generalize the
training data giving preference for the simplest hypothesis; to obtain valid generaliza-
tion, the hypothesis should be simpler than the data itself. A learning algorithm specifies
how to update the learned hypothesis with new experience (i.e. training data) such that
the performance measure with regard to the task is being optimized (see Figure 1).

1Certainly there are many different perspectives on machine learning: some researchers see the strongest
link with statistics and even claim that both fields are identical.

36 Ławrynowicz and Tresp / Introduction to Machine Learning

Learning	 algorithm	
Model	

Training	 data	

Goal/Task	

Figure 1. A generic machine learning method.

Over the years, machine learning methods have been applied to solve many real-
world problems such as spoken language recognition, fraud detection, customer relation-
ship management, gene function prediction etc. To provide a concrete example where
machine learning has been effective on a Web service, consider the task of categorizing
email messages as spam or non-spam, where the performance of the machine learning
method is assessed by the percentage of email messages correctly classified. The training
experience in this problem may come in the form of the database of emails that has been
labeled as spam or no-spam by humans.

The rest of this chapter is organized as follows. In the next Section we discuss some
basic aspects of machine learning and in Section 2 we discuss concept learning, the
support vector machine and graphical models. In Section 3 we discuss applications of
machine learning to the Semantic Web and Section 4 contains our conclusions.

1. Machine Learning Basics

In this section, we introduce the basic components of a machine learning problem. We
discuss that learning algorithms are typically implemented as some kind of search and lo-
cal optimization. The following Section 2 then describes three important machine learn-
ing approaches in more detail.

1.1. Tasks

1.1.1. Classification and Regression

The tasks of classification and regression deal with the prediction of the value of one
field (the target) based on the values of the other fields (attributes or features). If the
target is discrete (e.g. nominal or ordinal) then the given task is called classification. If
the target is continuous, the task is called regression. Classification or regression nor-
mally are supervised procedures: based on a previously correctly labeled set of training
instances, the model learns to correctly label new unseen instances.

An example classification problem may consist in predicting whether to grant or not
to grant a credit to a customer. The values of the class c in this problem could be formed
by a set {yes, no} representing a positive and a negative decision, respectively. The input
to the classification method (that is, to a classifier) would consist of information about
a customer. In particular, if the hypothesis space consists of rules, the output may be
formed by a set of learned rules such as the one presented in Figure 2a.

Ławrynowicz and Tresp / Introduction to Machine Learning 37

1.1.2. Learning Associations

An association describes a relation between objects, or measured quantities, that is the
result of some interaction or of a dependency between the objects. Typically, the learned
associations are in the form of association rules or sets of frequent items. The motivation
for this type of task has been provided by market basket analysis where the methods for
finding associations between products bought by customers are studied. For example,
consider that customers who buy X (e.g. beer) typically also buy Y (e.g. chips); then, if
we encounter a customer who buys X but does not buy Y, we may target this customer
via cross-selling as a potential customer for Y. An itemset is called frequent if it appears
in at least a given percentage (called support) of all transactions. Frequent itemsets are
often the prerequisite for the learning of association rules.

1.1.3. Clustering

Clustering is an unsupervised task, whose aim is to group a set of objects into classes of
similar objects. A cluster is a collection of objects that are similar to each other within
the same cluster, and dissimilar to the objects in other clusters. Therefore, an important
notion in clustering (also known as cluster analysis in statistics) is the notion of similar-
ity (or distance). In conceptual clustering, a symbolic representation of each cluster is
extracted and we may consider each cluster to be a concept, closely related to a class in
classification.

1.1.4. Other Machine Learning Tasks

Some examples of other machine learning tasks are: reinforcement learning, learning to
rank and structured prediction.

The reinforcement learning task consists of learning sequential control strategies. It
deals with situations, where the output of the system is a sequence of actions that are
performed to achieve some goal. An example may be game playing, where the complete
sequence of moves is important, rather than a single move.

Learning to rank is a type of a (semi-)supervised learning problem where the goal
is an automatic construction of a ranking model from training data, e.g., to learn to rank
the importance of returned Web pages in a search application.

Structured prediction deals with prediction problems in which the output is a com-
plex structure. Such problems arise in disciplines such as computational linguistics, e.g.
in natural language parsing, speech, vision, and biology.

1.2. Training Data

One distinguishes three important classes of feedback: feedback in the form of labeled
examples, feedback in the form of unlabeled examples, or feedback in the form of reward
and punishment, as in reinforcement learning.

Supervised learning consists of learning a function from training examples, based
on their attributes (inputs) and labels (outputs). Each training example is a pair (x, f(x)),
where x is the input, and f(x) is the output of the underlying unknown function. The
aim of supervised learning is: given a set of examples of f , return a function h that best
approximates f . For example, given symptoms and corresponding diagnoses for patients,

38 Ławrynowicz and Tresp / Introduction to Machine Learning

the goal is to learn a prediction model to make a diagnose based on symptoms for a new
patient.

Unsupervised learning is concerned with learning patterns in the input, without any
output values available for training. Continuing our example, only symptoms of patients
may be available and the goal may be to discover groups of similar patients.

In semi-supervised learning, both labeled and unlabeled data is used for training,
with typically only a small amount of labeled data, but a large amount of unlabeled data.
In the clinical example, diagnoses might be available for only a few patients, and the goal
would be to use this information for making most probable diagnoses for all patients.

In reinforcement learning, input/output pairs are not available to the learning system.
Instead, the learning system receives some sort of a reward after each action, and the
goal is to maximize the cumulative reward for the whole process. For example, in case
of treatment planning, the learning system may receive reinforcement from the patient
(e.g., feels better, feels worse, cured) as an effect of actions taken during a treatment.

Typically, a training data set comes in the simple form of attribute-value data ta-
ble. However, more complex input data has also been studied, for example sequences,
time series or graphs. From the point of view of this book, an interesting setting is pre-
sented by Inductive Logic Programming (ILP) [33,36], originally defined as a subfield
of machine learning that assumes Logic Programming as a representation formalism of
hypotheses and background knowledge. Since then ILP has been further refined to a
broader definition that considers not only Logic Programs as a representation, but also
other subsets of the first-order logic. In particular, its methodology is well-suited for the
tasks where Description Logics are used as representation formalism. The distinguishing
feature of the ILP methods is their ability to take into account background knowledge,
that is the knowledge generally valid in some domain, represented, for example, in the
form of ontologies.

1.3. Models

Machine learning hypotheses may come in a variety of knowledge representation forms,
such as equations, decision trees, rules, distances and partitions, probabilistic and graph-
ical models. Classically, a division is made between symbolic and sub-symbolic forms of
knowledge representation. The first category consists of representation systems in which
the atomic building blocks are formal symbolic representations, often easily readable
by a human. Such representation systems have compositional syntax and semantics, and
their components may be assigned an interpretation. The system may, for example, be
composed of a set of rules such as the one presented in Figure 2a. A good example of a
symbolic system is an interpreted logical theory.

In turn, the components of a sub-symbolic representation system do not have a clear
interpretation, and are not formal representations by themselves. Knowledge in this ap-
proach is represented as numerical patterns determining the computation of an output
when being presented a given input. Good examples of sub-symbolic systems are neu-
ral networks, where the patterns are represented in the form of interconnected groups of
simple artificial neurons.

Figure 2 provides an illustration of the distinction between symbolic and sub-
symbolic representations.

Typical machine learning algorithms induce models, that is hypotheses that charac-
terize globally an entire data set.

Ławrynowicz and Tresp / Introduction to Machine Learning 39

IF income > 1500 THEN c = yes
(a)

(b)

Figure 2. An illustration of a) symbolic and b) sub-symbolic representation.

1.4. Generative and Discriminative Models

So far the discussion was oriented towards a formal description of a learning problem.
Here we describe a statistical view based on the concepts of generative and discriminative
probabilistic models.

Generative models simulate a data generating process. In an unsupervised learning
problem, this would involve a model for P (X), i.e., a probabilistic model for generating
the data.2 In supervised learning, such as classification, one might assume that a class
Y ∈ {0, 1} is generated with some probability P (Y) and the class-specific data is gen-
erated via the conditional probability P (X|Y). Models are learned for both P (Y) and
P (X|Y) and Bayes rule is employed to derive P (Y |X), i.e., the class label probability
for a new input X . In contrast, discriminative models model the conditional probability
distribution P (Y |X) directly, they learn a direct mapping from inputs X to class label
probabilities. To illustrate the difference between generative and discriminative models
let us discuss an example task consisting in determining the language of a given speaker.
In a generative modeling approach this task would be solved by learning language mod-
els for each language under consideration, i.e. by learning P (X|Y) for each language
Y and by then applying Bayes rule to infer the language for a new text x. A discrimi-
nate model would not bother modeling the distribution of texts but would focus on the
task of language classification directly and could focus on only the differences between
languages. Popular examples of generative models are Naive Bayes, Bayesian Networks
and Hidden Markov Models. Popular examples of discriminative probabilistic models
are logistic regression and support vector machines.

1.5. Training Generative Models

Since our description of graphical models is based on a generative modeling approach for
an unsupervised model P (X), we briefly discuss the training of such models. In a simple
maximum likelihood model, one assumes a model P (X|w), i.e. a probabilistic model for
generating a data point given parameter vector w. The maximum likelihood parameters
estimate is then defined by the parameters that maximize the likelihood, where the likeli-
hood is L(w) defined as the product of the probabilities of generating theN independent
training data points given the parameters and assumes the form

L(w) =
N∏

i=1

P (Xi = xi|w)

2In the discussion on generative models, X and Y stand for random variables.

40 Ławrynowicz and Tresp / Introduction to Machine Learning

In a Bayesian approach the model is completed with an a priori distribution over models
P (M) and a prior distribution over parameters given model, i.e., P (w|M). Based on
observed data D, one can now calculate the most likely model as the one that maximizes

P (M |D) =
P (D|M)P (M)

P (D)

or the parameter distributions given model and data as

P (w|D,M) =
L(w)P (w|M)

P (D|M)

A maximum a posteriori (MAP) estimate is achieved by taking the most likely model
and selecting the parameters that maximize P (w|D,M). A more truthfully Bayesian ap-
proach would consider the uncertainties in the estimates by integrating over unobserved
quantities in the prediction.

2. An Overview of Selected ML Approaches

In this section, we provide an introduction to selected ML approaches, in particular to
those that will be further referred to throughout the book.

2.1. Concept Learning

Concept learning consists of inducing the general definition of some concept (a category)
given training examples labeled as members (positive examples) and nonmembers (neg-
ative examples) of the concept. Each training example consists of an instance x ∈ X and
its target concept value f(x). Thus, a training example can be described by the ordered
pair (x, f(x)). A learned concept is often represented as a boolean valued function. An
example is called a positive one if f(x) = 1, and a negative one if f(x) = 0. Concept
learning can be posed as a problem of searching the space of hypotheses to find a hy-
pothesis best fitting the training data. The concept learning task may be thus formulated
as follows [32]. Given instances x ∈ X , a target concept f to be learned (X → {0, 1}),
hypotheses H , described by a set of constraints they impose on instances, training exam-
ples D (positive, and negative examples of the target function), determine a hypothesis
h ∈ H , such that h = f(x) for all x ∈ X . Such a hypothesis, if learned on sufficiently
large set of training examples, should also approximate the target concept well for new
examples.

By choosing the hypothesis representation, one determines the space of all hypothe-
ses that can ever be learned by the given method. The hypothesis space may be ordered
by a generality relation�g . Let hi and hj be two hypotheses. Then hi is more general or
equal to hj (written hi �g hj) if and only if any instance satisfying hj , also satisfies hi,
where an instance x ∈ X is said to satisfy h ∈ H if and only if h(x) = 1. The relation
�g is a partial order (i.e., it is reflexive, antisymmetric and transitive) over the hypoth-
esis space. Therefore, there may be also cases where two hypotheses are incomparable
with �g , what happens if the sets of instances satisfied by the hypotheses are disjoint or
intersect (are not subsumed by one another).

Ławrynowicz and Tresp / Introduction to Machine Learning 41

(a) (b)

Figure 3. An illustration of SVMs. a) a non-linear, circular concept b) linearly separable instances, margin,
and support vectors (with thicker border).

A hypothesis h is called consistent with a set of training examples D if it correctly
classifies all these examples that is if and only if h(x) = f(x) for each training example
(x, f(x)) in D. The set of all hypotheses consistent with the training examples is called
the version space V S with respect to H and the training examples D. The version space
V S may be represented by the sets of its maximally specific and maximally general
hypotheses that delimit the entire set of hypotheses consistent with the data forming the
boundaries of V S.

Concept learning algorithms utilize a structure imposed over the hypothesis space
by the relation �g to efficiently search for relevant hypotheses. For example, Find-S al-
gorithm [32] performs the search from most specific to most general hypotheses in order
to find the most specific hypothesis consistent with the training examples, while Candi-
date Elimination algorithm [32] exploits this general-to-specific ordering to compute the
version space by an incremental computation of the sets of maximally specific and maxi-
mally general hypotheses. The search for hypotheses is steered also by the inductive bias
of a concept learning algorithm, that is the set of assumptions representing the nature
of the target function used by the algorithm to predict outputs given previously unseen
inputs. The learning algorithm implicitly makes assumptions on the correct output for
unseen examples to select one consistent hypothesis over another.

Some of concept learning algorithms proposed in the context of ILP that are relevant
for this book are FOIL [39], and PROGOL [34]. They both induce first-order rules similar
to Horn clauses. Concept learning is a very useful technique for ontology learning, and
will be discussed in this context in more detail in (cf. Lehmann et al. [28] in this volume).

2.2. Support Vector Machines

Support Vector Machines (or SVMs) [2,3] may be used for binary classification or for
regression. In binary classification, they construct a linear hyperplane (a decision bound-
ary) to separate instances of one class from the other class. The separation between the
classes is optimized by obtaining the separating hyperplane which is defined as the plane
having the largest distance or margin to the nearest training data points of any class. Fig-
ure 3 illustrates the general concept of SVMs. Mathematically, the separating hyperplane
may be defined by the equation:

42 Ławrynowicz and Tresp / Introduction to Machine Learning

w · x+ b = 0

where w is a weight vector, b is a scalar, and w ·x is the inner product between w and x.
The distance of the closest points to the decision boundaries defines the margin,

which is maximized during training. The optimization problem solved by SVMs may be
formulated as follows:

minw,bw ·w
where ∀x ∈ D : f(x)(w · x+ b) ≥ 1,
D is a set of examples, and f(x) = 1 for ci = 1, and f(x) = −1 for ci = 0

It can be shown that the margin is 1
||w|| , where ||w|| is the Euclidean norm of w. Thus

minimizing ||w||, maximizes the margin. The optimization problem is usually not solved
as posed in the Equation 1, but rewritten into a dual problem known as a constrained
(convex) quadratic optimization problem, that can be solved by public domain quadratic
programming solvers (for the details see for example [9]).

A new input x can be labeled as positive (1) or negative (0) based on whether it falls
on or “above” the hyperplane:

w · x+ b ≥ 0, for ci = 1, and
w · x+ b ≤ 0, for ci = 0

SVMs can also form nonlinear classification boundaries. For this purpose, the origi-
nal input data is transformed into a higher dimensional space by a nonlinear mapping φ,
and a linear separating hyperplane in this new space is formed. Fortunately, the nonlinear
mapping function φ does not need to be specified explicitly. While solving the quadratic
optimization problem of the linear SVM, the training tuples occur only in the form of dot
products, φ(xi) · φ(xj). Then, instead of computing the dot product on the transformed
tuples, it is mathematically equivalent to apply a kernel functionK(xi,xj) to the original
input data, where the kernel is defined as:

K(xi,xj) = φ(xi) · φ(xj)

SVMs have attracted a lot of attention in recent years since they are less likely to suffer
from overfitting than other methods. A drawback is that training scales unfavorable with
the size of the training data set. This section mainly followed [11,40]. A good introduc-
tion to SVM methods may be also found in [3].

2.3. Learning in Graphical Models

Given a set of M features or random variables, X1, . . . , XM , graphical models are a
means to efficiently describe their joint probability distribution P (X1, . . . , XM) by ex-
ploiting independencies in P (·). We can consider graphical models as generative models,
modeling the statistical dependencies among a potentially large number of variables. In
terms of a knowledge representation, Xi might stand for the truth value of a statement,
and Xi = 1 if the statement is true and Xi = 0 otherwise.

In graphical models, independencies in the model can be displayed in form of a
graph. We will consider the two most important subclasses of graphical models here,
i.e., Bayesian networks (a.k.a directed graphical models) and Markov networks (a.k.a
undirected graphical models).

Ławrynowicz and Tresp / Introduction to Machine Learning 43

2.3.1. Bayesian Networks

The Basics Any probability distribution of M random variables can be decomposed in
product form as

P (X1, . . . , XM) =
M∏

i=1

P (Xi|{Xj}j<i)

where the order of the variables is arbitrary.
Bayesian networks exploit the fact that the set of all predecessors can be reduced to

a set of parent nodes

M∏

i=1

P (Xi|{Xj}j<i) =
M∏

i=1

P (Xi|par(Xi))

where par(Xi) ⊆ {Xj}j<i, thus exploiting independencies in a domain. In a graphical
representation, nodes represent the random variables and one draws directed links from
parent nodes to child node. Although the decomposition is possible in any order, most
independencies are typically exploited when a causal ordering is observed, i.e, when the
parents of a node also correspond to its direct causal probabilistic factors. It is of great
importance to exploit domain independencies, since otherwise inference and other oper-
ations would require resources exponential in the number of variables. Consider, as an
example, a diagnostic setting, where the random variables stand for diagnosis, symptoms
and influencing factors. Influencing factors (e.g., smoking) are probabilistic causal fac-
tors for diseases, and diseases are probabilistic causal factors for symptoms. After the
conditional probabilities P (Xi|par(Xi)) are defined by a medical expert, probabilistic
inference can be used to calculate the probabilities of a disease given symptoms and
given influencing factors.

One typically has the case that a certain probabilistic dependency appears several
times in the training data. For example, this could describe the dependency of fever given
flue, and this dependency is assumed identical for all patients. We use P k(Xi|par(Xi))
where i ∈ I(k) to indicate that the dependency between Xi and its parents is of type k
and where P k(·) now stands for a parameterized function.

Learning can assume varying complexity. In the simplest case, the causal structure
and all variables are known in training and the log-likelihood can be written as

l(w) = logL(w) =
∑

k

∑

i∈I(k)
logP k(Xi|par(Xi), w)

where w are model parameters. As we see, the log-likelihood nicely decomposes into
sums which greatly simplifies the learning task. Typical learning approaches are max-
imum likelihood learning, penalized maximum likelihood learning, and fully Bayesian
learning.

In the next level of complexity, some variables are unknown in the training data and
some form of EM (expectation maximization) learning is typically applied.

Finally, we might also assume that the causal structure is unknown. In the most com-
mon approach one defines a cost function (e.g., Bayesian Information Criterion (BIC)

44 Ławrynowicz and Tresp / Introduction to Machine Learning

or marginal likelihood) and one does heuristic search by removing and adding directed
links to find a structure that is at least locally optimal. Alternatively one performs statis-
tical testing to discover independencies in the domain and one defines Bayesian network
structures consistent with those (constraint-based approach). Care must be taken, that no
directed loops are introduced in the Bayesian network in modeling or structural learning.
A large number of models used in machine learning can be considered special cases of
Bayesian networks, e.g., Hidden Markov models, Kalman filters, which is the reason for
the great importance of Bayesian networks. Readers, who are interested to learn more
should consult the excellent tutorial [13].

Modeling Relationships Traditionally, Bayesian networks have mostly been applied to
attribute-based representations. Recently, there has been increasing interest to applying
Bayesian networks to domains with object-to-object relationships for which the term sta-
tistical relational learning (SRL) is used. Relationships add to complexity. In an attribute-
based setting, one often assumes that objects are sampled independently, which greatly
simplifies inference. For example the wealth of a person can be predicted from income
and value of the person’s home but, given this independence sampling assumption, is in-
dependent from the wealth of other people (given parameters). As a consequence, infer-
ence can be performed separately for each person. In SRL, one could also consider the
wealth of this person’s friends. As a consequence, random variables become globally de-
pendent and inference often has to be performed globally as well, in this example poten-
tially considering the wealth of all persons in the domain. A second issue is that directed
loops become more problematic: I cannot easily model that my wealth depends on my
friends’s wealth and vice versa without introducing directed loops, which are forbidden
in Bayesian networks. Finally, aggregation plays a more important role. For example, I
might want to model that a given teacher is a good teacher, if the teacher’s students get
good grades in the classes the teacher teaches. This last quantity is probably not repre-
sented in the raw data as a random variable but needs to be calculated in a preprocessing
step. As one might suspect, aggregation tends to make structural learning more complex.

Probabilistic Relational Models (PRMs) were one of the first published approaches
for SRL with Bayesian networks and found great interest in the statistical machine learn-
ing community [23,10]. PRMs combine a frame-based logical representation with prob-
abilistic semantics based on directed graphical models. Parameter learning in PRMs is
likelihood based or based on empirical Bayesian learning. Structural learning typically
uses a greedy search strategy, where one needs to guarantee that the ground Bayesian
network does not contain directed loops.

Another important approach is presented by the infinite hidden relational model
(IHRM) [50].3 Here each object is represented by a discrete latent variable. The parents
of a node representing a statement are the latent variables of all the objects involved.
Thus, if Xu,m stands for the statement that user u likes movie m, then we would obtain
the term P (Xu,m|X l

u, X
l
u) where X l

u is the latent variable for user u and where X l
m is

the latent variable for user m. The resulting network has by construction no loops. Also
the need for aggregation is alleviated since information can propagate in the network of
latent variables. Finally, no structural learning is required as the structure is given by the
typed relations in the domain. The IHRM is applied in the context of a Dirichlet process
mixture model where the number of states is automatically tuned in the sampling pro-

3Kemp et al. [20] presented an almost identical model independently.

Ławrynowicz and Tresp / Introduction to Machine Learning 45

cess. In [42] it was shown how ontological class information can be integrated into the
IHRM and in [44] it is shown how OWL constraints can be integrated.

Bayesian networks are also being used in ILP where they form the basis for combi-
nations of rule representations with SRL. A Bayesian logic program is defined as a set
of Bayesian clauses [21]. A Bayesian clause specifies the conditional probability distri-
bution of a random variable given its parents on a template level, i.e. in a node-class.
A special feature is that, for a given random variable, several such conditional proba-
bility distributions might be given. For each clause there is one conditional probability
distribution and for each Bayesian predicate (i.e., node-class) there is one combination
rule. Relational Bayesian networks [17] are related to Bayesian logic programs and use
probability formulae for specifying conditional probabilities.

2.3.2. Markov Networks

The Basics The most important parameterization of the probability distribution of a
Markov network is

P (X1, . . . , XM) =
1

Z
exp

∑

k

wkfk({X}k)

where the feature functions fk can be any real-valued function, where {X}k ⊆
{X1, . . . , XM} and where wk ∈ R. Z normalizes the distribution. In a graphical rep-
resentation, all variables in {X}k would be mutually connected by undirected links and
thus would form cliques in the resulting graph.

We consider first that the feature functions fk(.) are given. Learning then consists
of estimating the wk. The log-likelihood is

l(w) = − logZ +
∑

k

wkfk({X}k)

Even a simple maximum likelihood estimate leads to a non-trivial optimization problem,
since Z is a function of all the parameters in the model.

The more complex question is, how application specific feature functions fk(.) can
be defined. In Markov logic networks, as described next, the feature functions are derived
from logical constraints.

Markov Logic Networks (MLN) Let us consider a simple example with two friends A
and B. Let XA,r = 1 and XB,r = 1 stand for the facts that person A is rich, respec-
tively person B. Let XA,p = 1 and XB,p = 1 stand for the facts that person A is poor,
respectively person B. Then we define the feature function fr,r(XA,r, XA,r) which is
only equal to one if XA,r = 1 and XB,r = 1 and is equal to zero else. Similarly, we
define fp,p, fp,r, fr,p. After training, we might obtain the weights wr,r = 10, wp,p = 10,
wr,p = −5, wp,r = −5. Thus a situation where both friends are both rich or both are
poor is much more likely (for example, P (XA,r = 1, XB,r = 1, XA,p = 0, XB,p =
0) = Z−1 exp 10) than the situation where only one of the is rich and the other one is
poor (for example, P (XA,r = 1, XB,r = 0, XA,p = 0, XB,p = 1) = Z−1 exp−5). We
can consider that the features were derived from the logical expressions, XA,r ∧ XB,r,
XA,p ∧XB,p, XA,r ∧XB,p, XA,p ∧XB,r. Obviously this knowledge-base is not even
consistent, but for MLNs this would not hurt. After learning, only the true statements

46 Ławrynowicz and Tresp / Introduction to Machine Learning

would survive with w → ∞. Even better, statements which are often but not always
true would obtain weights which reflect this frequency. This basic ideas is formalized in
MLNs.

Let Fk be a formula of first-order logic and let wk ∈ R be a weight attached to each
formula. Then a MLN L is defined as a set of pairs (Fk, wk) [45] [7]. One introduces a
binary node for each possible grounding of each predicate appearing in L, given a set of
constants c1, . . . , c|C|. The state of the node is equal to 1 if the ground atom/statement is
true, and 0 otherwise (for an Q-ary predicate there are |C|Q such nodes). A grounding
of a formula is an assignment of constants to the variables in the formula (considering
formulas that are universally quantified). If a formula contains Q variables, then there
are |C|Q such assignments. The nodes in the Markov network ML,C are the grounded
predicates. In addition the MLN contains one feature for each possible grounding of
each formula Fk in L. The value of this feature is 1 if the ground formula is true, and
0 otherwise. wk is the weight associated with Fk in L. A Markov network ML,C is a
grounded Markov logic network of L with

P ({X} = ~x) =
1

Z
exp

(∑

k

wknk(~x)

)

where nk(~x) is the number of formula groundings that are true for Fk. MLN makes
the unique names assumption, the domain closure assumption and the known function
assumption, but all these assumptions can be relaxed.

A MLN puts weights on formulas: the larger the weight, the higher is the confidence
that a formula is true. When all weights are equal and become infinite, one strictly en-
forces the formulas and all worlds that agree with the formulas have the same probability.

The simplest form of inference concerns the prediction of the truth value of a
grounded predicate given the truth values of other grounded predicates (conjunction of
predicates) for which the authors present an efficient algorithm. In the first phase, the
minimal subset of the ground Markov network is returned that is required to calculate
the conditional probability. It is essential that this subset is small since in the worst case,
inference could involve alle nodes. In the second phase Gibbs sampling in this reduced
network is used.

Learning consists of estimating the wk. In learning, MLN makes a closed-world
assumption and employs a pseudo-likelihood cost function, which is the product of the
probabilities of each node given its Markov blanket. Optimization is performed using a
limited memory BFGS algorithm.

Finally, there is the issue of structural learning, which, in this context, defines the
employed first order formulae. Some formulae are typically defined by a domain expert a
priori. Additional formulae can be learned by directly optimizing the pseudo-likelihood
cost function or by using ILP algorithms. For the latter, the authors use CLAUDIEN [41],
which can learn arbitrary first-order clauses (not just Horn clauses, as many other ILP
approaches).

Ławrynowicz and Tresp / Introduction to Machine Learning 47

3. Applications of ML to the Semantic Web

The interest of applying ML techniques in the Semantic Web context has been growing
over recent years, and at the main Semantic Web conferences special ML tracks and
workshops have been formed4.

One of the applications of ML techniques that is discussed throughout this book is
ontology learning. ML techniques may be used to both learn ontologies from scratch
and enrich already existing ontologies. Learning data originates, e.g., from Linked Data,
social networks, tags, textual data [30,8,27]. Another popular use of ML is the learning
of the mapping from one ontology to another (e.g. based on association rules [5], or
similarity-based methods [6]).

A number of proposed approaches for Learning from the Semantic Web are based
on ILP methods (e.g., classification [27] or association learning [19,26]). This kind of
approach is supported by recently developed tools for ontology-based data mining such
as DL-Learner [27]5, RMonto [38]6) or SDM-Toolkit [49]7. An interesting application
of this kind was realized within the project e-LICO8. It consisted of optimizing knowl-
edge discovery processes through ontology-based meta-learning, that is machine learn-
ing from meta data of executed past experiments, where meta data was represented with
background ontologies [14]9. [29] describes a perspective of ILP for the Semantic Web.

Ontology learning and ILP assume deterministic or close-to-deterministic depen-
dencies. The increase of interest in ML techniques has arisen largely due to the open,
distributed and inherently incomplete nature of the Semantic Web. Such a context makes
it hard to apply purely deductive techniques, which traditionally have been dominating
reasoning approaches for ontological data. As part of the LarKC project10 a scalable ma-
chine learning approach has been developed that works well with the high-dimensional,
sparse, and noisy data one encounters in those domains [47,15]. The approach is based
on matrix factorization and has shown superior performance on a number of Seman-
tic Web data sets [16]. Extensions have been developed that can take into account tem-
poral effects and can model sequences [48] and can include ontological background
and textual information [18]. The approach was part of the winning entry in the ISWC
2011 Semantic Web Challenge11. Tensor factorization is another promising direction,
since the subject-predicate-object structure of the Semantic Web matches perfectly to the
modes of a three-way tensor [35]. Another light-weighted approach is presented by [22],
where the authors describe SPARQL-ML, a framework for adding data mining support
to SPARQL. The approach uses relational bayes classifier (RBC) and relational proba-
bilistic trees (RPT). In turn, [25] proposes to semantically group SPARQL query results
via conceptual clustering.

An overview on early work on the application of ML to the Semantic Web can
be found in [46] with applications described in [37]. Data mining perspectives for the

4Inductive Reasoning and Machine Learning for the Semantic Web (IRMLeS) workshops, http://
irmles.di.uniba.it

5http://aksw.org/Projects/DLLearner
6http://semantic.cs.put.poznan.pl/RMonto
7http://sourceforge.net/p/sdmtoolkit/
8http://www.e-lico.eu
9http://www.dmo-foundry.org
10http://www.larkc.eu
11http://challenge.semanticweb.org

48 Ławrynowicz and Tresp / Introduction to Machine Learning

Semantic Web have been described by [1,31]. More recent overviews are presented in
[4] and in [43].

4. Conclusions

In this chapter we have discussed machine learning as the basis for the remaining chap-
ters in this book. With an increasing amount of data published in the format of the Seman-
tic Web, we feel that the number of machine learning applications will certainly grow.
Due to space limitations we could only cover a few aspects we felt are most relevant. By
now machine learning is a large research areas with a multitude of theories, approaches
and algorithms. We feel that there will not be one dominating approach towards machine
learning on the Semantic Web but that we can expect creative solutions from different
machine learning research areas.

References

[1] Bettina Berendt, Andreas Hotho, and Gerd Stumme. Towards Semantic Web Mining. In Proc. of the
First International Semantic Web Conference on The Semantic Web, ISWC ’02, pages 264–278, London,
UK, 2002. Springer-Verlag.

[2] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin
classifiers. In Proc. of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, pages
144–152, New York, NY, USA, 1992. ACM.

[3] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, Cambridge, UK, March 2000.

[4] Claudia d’Amato, Nicola Fanizzi, and Floriana Esposito. Inductive learning for the Semantic Web:
What does it buy? Semantic Web, 1(1-2):53–59, 2010.

[5] Jérôme David, Fabrice Guillet, and Henri Briand. Matching directories and OWL ontologies with
AROMA. In Proc. of the 15th ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’06, pages 830–831, New York, NY, USA, 2006. ACM.

[6] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Y. Halevy. Ontology matching: A machine
learning approach. In Steffen Staab and Rudi Studer, editors, Handbook on Ontologies, pages 385–404.
Springer, 2004.

[7] Pedro Domingos and Matthew Richardson. Markov logic: A unifying framework for statistical relational
learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning. MIT
Press, 2007.

[8] Nicola Fanizzi, Claudia D’Amato, and Floriana Esposito. DL-FOIL concept learning in description
logics. In Proc. of the 18th International Conference on Inductive Logic Programming, ILP ’08, pages
107–121, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] Roger Fletcher. Practical methods of optimization; (2nd ed.). Wiley-Interscience, New York, NY, USA,
1987.

[10] Lise Getoor, Nir Friedman, Daphne Koller, Avi Pferrer, and Ben Taskar. Probabilistic relational models.
In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning. MIT Press, 2007.

[11] Jiawei Han and Micheline Kamber. Data Mining. Concepts and Techniques. Morgan Kaufmann, 2nd
edition, 2006.

[12] David J. Hand, Padhraic Smyth, and Heikki Mannila. Principles of data mining. MIT Press, Cambridge,
MA, USA, 2001.

[13] David Heckerman. A tutorial on learning with Bayesian Networks. Technical report, Microsoft Re-
search, 1995.

[14] Melanie Hilario, Phong Nguyen, Huyen Do, Adam Woznica, and Alexandros Kalousis. Ontology-
based meta-mining of knowledge discovery workflows. In Norbert Jankowski, Wlodzislaw Duch,
and Krzysztof Grabczewski, editors, Meta-Learning in Computational Intelligence, pages 273–316.
Springer, 2011.

Ławrynowicz and Tresp / Introduction to Machine Learning 49

[15] Yi Huang, Volker Tresp, Markus Bundschus, Achim Rettinger, and Hans-Peter Kriegel. Multivariate
prediction for learning on the semantic web. In Proc. of the 20th International Conference on Inductive
Logic Programming, ILP’10, pages 92–104, Berlin, Heidelberg, 2011. Springer-Verlag.

[16] Yi Huang, Volker Tresp, Maximilian Nickel, Achim Rettinger, and Hans-Peter Kriegel. A scalable ap-
proach for statistical learning in semantic graphs. Semantic Web Interoperability, Usability, Applicability
(SWJ), 2012.

[17] Manfred Jaeger. Relational bayesian networks. In Proceedings of the 13th Conference on Uncertainty
in Artificial Intelligence (UAI), 1997.

[18] Xueyan Jiang, Yi Huang, Maximilian Nickel, and Volker Tresp. Combining information extraction, de-
ductive reasoning and machine learning for relation prediction. In Proc. of the 9th International Confer-
ence on the Semantic Web: Research and Applications, ESWC’12, pages 164–178, Berlin, Heidelberg,
2012. Springer-Verlag.

[19] Joanna Józefowska, Agnieszka Ławrynowicz, and Tomasz Lukaszewski. The role of semantics in min-
ing frequent patterns from knowledge bases in description logics with rules. TPLP, 10(3):251–289,
2010.

[20] Charles Kemp, Joshua B. Tenenbaum, Thomas L. Griffiths, Takeshi Yamada, and Naonori Ueda. Learn-
ing systems of concepts with an infinite relational model. In Proc. of the 21st National Conference on
Artificial Intelligence - Volume 1, AAAI’06, pages 381–388. AAAI Press, 2006.

[21] Kristian Kersting and Luc De Raedt. Bayesian logic programs. Technical report, Albert-Ludwigs Uni-
versity at Freiburg, 2001.

[22] Christoph Kiefer, Abraham Bernstein, and André Locher. Adding data mining support to SPARQL
via statistical relational learning methods. In Proc. of the 5th European Semantic Web Conference,
ESWC’08, pages 478–492, Berlin, Heidelberg, 2008. Springer-Verlag.

[23] Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In Proc. of the Fifteenth Na-
tional/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence,
AAAI ’98/IAAI ’98, pages 580–587, Menlo Park, CA, USA, 1998. American Association for Artificial
Intelligence.

[24] Markus Krötzsch, Frantisek Simančík, and Ian Horrocks. A description logic primer. In Jens Lehmann
and Johanna Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2014.

[25] Agnieszka Ławrynowicz. Grouping results of queries to ontological knowledge bases by conceptual
clustering. In Ngoc Thanh Nguyen, Ryszard Kowalczyk, and Shyi-Ming Chen, editors, ICCCI, volume
5796 of LNCS, pages 504–515. Springer, 2009.

[26] Agnieszka Ławrynowicz and Jedrzej Potoniec. Fr-ONT: An algorithm for frequent concept mining with
formal ontologies. In Marzena Kryszkiewicz, Henryk Rybinski, Andrzej Skowron, and Zbigniew W.
Ras, editors, ISMIS, volume 6804 of LNCS, pages 428–437. Springer, 2011.

[27] Jens Lehmann. DL-learner: Learning concepts in description logics. Journal of Machine Learning
Research, 10:2639–2642, 2009.

[28] Jens Lehmann, Nicola Fanizzi, and Claudia d’Amato. Concept learning. In Jens Lehmann and Johanna
Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2014.

[29] Francesca A. Lisi and Floriana Esposito. An ILP perspective on the Semantic Web. In Semantic Web
Applications and Perspectives, Proceedings of the 2nd Italian Semantic Web Workshop, 2005.

[30] Alexander Maedche and Steffen Staab. Ontology learning. In Steffen Staab and Rudi Studer, editors,
Handbook on Ontologies, pages 173–190. Springer, 2004.

[31] Peter Mika. Social Networks and the Semantic Web. Springer, 2007.
[32] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.
[33] Stephen Muggleton. Inductive logic programming. New Generation Computing, 8(3):295–318, 1991.
[34] Stephen Muggleton. Inverse entailment and PROGOL. New Generation Computing, 13:245–286, 1995.
[35] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning

on multi-relational data. In Lise Getoor and Tobias Scheffer, editors, Proc. of the 28th International
Conference on Machine Learning (ICML-11), ICML ’11, pages 809–816, New York, NY, USA, June
2011. ACM.

[36] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Foundations of inductive logic programming, volume
1228 of LNAI. Springer, 1997.

[37] Hector Oscar Nigro, Sandra Gonzalez Cisaro, and Daniel Hugo Xodo. Data Mining With Ontologies:

50 Ławrynowicz and Tresp / Introduction to Machine Learning

Implementations, Findings and Frameworks. Information Science Reference - Imprint of: IGI Publish-
ing, Hershey, PA, 2007.

[38] Jedrzej Potoniec and Agnieszka Ławrynowicz. RMonto: Ontological extension to RapidMiner. In Poster
and Demo Session of the 10th International Semantic Web Conference, Bonn, Germany, 2011.

[39] J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266, 1990.
[40] Luc De Raedt. Logical and relational learning. Cognitive Technologies. Springer, 2008.
[41] Luc De Raedt and Luc Dehaspe. Clausal discovery. Machine Learning, 26, 1997.
[42] Stefan Reckow and Volker Tresp. Integrating ontological prior knowledge into relational learning. Tech-

nical report, Siemens, 2007.
[43] Achim Rettinger, Uta Lösch, Volker Tresp, Claudia d’Amato, and Nicola Fanizzi. Mining the semantic

web - statistical learning for next generation knowledge bases. Data Min. Knowl. Discov., 24(3):613–
662, 2012.

[44] Achim Rettinger, Matthias Nickles, and Volker Tresp. Statistical relational learning with formal on-
tologies. In Proc. of the European Conference on Machine Learning and Knowledge Discovery in
Databases: Part II, ECML PKDD ’09, pages 286–301, Berlin, Heidelberg, 2009. Springer-Verlag.

[45] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1-2), 2006.
[46] Gerd Stumme, Andreas Hotho, and Bettina Berendt. Semantic Web Mining: State of the art and future

directions. J. Web Sem., 4(2):124–143, 2006.
[47] Volker Tresp, Yi Huang, Markus Bundschus, and Achim Rettinger. Materializing and querying learned

knowledge. In Proceedings of the First ESWC Workshop on Inductive Reasoning and Machine Learning
on the Semantic Web, 2009.

[48] Volker Tresp, Yi Huang, Xueyan Jiang, and Achim Rettinger. Graphical models for relations - modeling
relational context. In Joaquim Filipe and Ana L. N. Fred, editors, KDIR, pages 114–120. SciTePress,
2011.

[49] Anže Vavpetič and Nada Lavrač. Semantic subgroup discovery systems and workflows in the SDM-
Toolkit. The Computer Journal, 2012.

[50] Zhao Xu, Volker Tresp, Kai Yu, and Hans-Peter Kriegel. Infinite hidden relational models. In Uncer-
tainty in Artificial Intelligence (UAI), 2006.

Natural Language Processing

Diana MAYNARD and Kalina BONTCHEVA
Dept. of Computer Science, University of Sheffield, UK

diana@dcs.shef.ac.uk

Abstract. This chapter provides a high-level overview of the various NLP pro-
cesses typically required for an ontology learning system,ranging from low-level
linguistic pre-processing, through parsing, term recognition and information extrac-
tion. Since ontology learning research tends to reuse many existing NLP tools, this
chapter also discusses some of the most widely used, open-source ones, providing
references to further reading materials.

Keywords. Natural Language Processing, term recognition

Introduction

Natural Language Processing (NLP) is concerned with building algorithms that under-
stand and generate natural language text (also often referred to as unstructured content).
Since ontology learning methods automatically derive (parts of) an ontology from tex-
tual sources, they tend to make use of NLP tools and techniques in order to help with
the text analysis. The aim of this chapter is to provide a high-level overview of the var-
ious NLP tasks, ranging from low-level linguistic pre-processing, through parsing, term
recognition and information extraction. Since ontology learning research tends to reuse
many existing NLP tools, this chapter also discusses some of the most widely used,
open-source ones, providing references to further reading materials. We have, however,
focused primarily on the GATE architecture [23] because, in our opinion, it offers one
of the most flexible infrastructures for incorporating NLP components, and provides the
widest variety of plugins for different NLP tasks.

As the chapter progresses, the NLP tasks and algorithms become progressively more
complex and, consequently, more error-prone. For instance, tokenisation, sentence split-
ting and part of speech (POS) tagging are typically performed with 95-98% accuracy, en-
tity recognition between 90-95%, and even less for parsing. Domain adaptation is also a
major issue, and again performance in different domains varies more widely as the tasks
become more complex. Consequently, there is a trade-off between the sophistication of
the linguistic analysis and its accuracy, especially on unseen, noisier types of text. As a
result, it is advisable, as an integral part of system development, to carry out rigorous
quantitative evaluation against a gold standard dataset. It is through such experiments
that it is possible to establish the usefulness of each of the NLP processing steps for the
ontology learning results. On large datasets, computational complexity and implementa-
tion efficiency would also need to be considered.

In general, the easiest way to carry out such quantitative experimentation is to build
easily reconfigurable NLP pipelines. A typical NLP pipeline consists of a number of

52 Natural Language Processing

tools applied in sequence (tokenisation, sentence splitting, part-of-speech tagging, entity
recognition, etc). To help with the pipeline building and quantitative evaluation tasks,
researchers typically use a general purpose NLP infrastructure. Some of the most popular
ones are open-source and come with a large number of already implemented NLP tools
(e.g. GATE [23], NLTK [46], OpenNLP1, UIMA [32]). The advantages of reusing NLP
tools from such an infrastructure are several:

• They support a variety of text formats including HTML, XML, RTF, email, plain
text and in some cases Word, PDF and Excel files. When a document is processed,
the format is analysed transparently to the user and converted into a single unified
model of annotations. Multilingual support is well-tested and based on Unicode.

• All low-level components within an infrastructure are designed to be interopera-
ble and, consequently, there is no overhead in putting them together into a single
pipeline.

• Results storage, evaluation tools, and other facilities are taken care of by the
infrastructure. In the case of GATE, this also comes with a graphical develop-
ment environment, called GATE Developer, which makes it easy to build and test
pipelines visually.

Since GATE integrates OpenNLP low-level processing components, it is also pos-
sible to mix and match GATE modules and OpenNLP modules, as well as visually and
quantitatively (i.e. using precision, recall, and f-measure) compare the performance of
these alternative implementations, from within the GATE Developer user interface or
programmatically via the GATE API.

NLTK [46] is suitable when Python is preferred as a programming language. Given
that NLTK was primarily developed for the purpose of teaching NLP, the efficiency
of some of the implementations might not be suitable for the processing of very large
datasets.

1. Linguistic Pre-Processing Tasks

There are a number of low-level linguistic tasks which form the basis of more com-
plex language processing and ontology learning algorithms. This section will provide an
overview and point to some existing open-source implementations which can easily be
reused and, in some cases, are easily adaptable as well.

1.1. Tokenisation

Tokenisation is the task of splitting the input text into very simple units, called tokens.
Tokenisation is a required step in any linguistic processing application, since more com-
plex algorithms typically work on tokens as their input, rather than using the raw text.
Consequently, it is important to use a high-quality tokeniser, as errors are likely to affect
the results of all subsequent NLP algorithms.

Commonly distinguished types of tokens are numbers, symbols (e.g., $, %), punc-
tuation and words of different kinds, e.g., uppercase, lowercase, mixed case. Tokenis-
ing well-written text is generally reliable and reusable, since it tends to be domain-

1http://incubator.apache.org/opennlp/

Natural Language Processing 53

independent. However, such general purpose tokenisers typically need to be adapted to
work correctly with, for example, chemical formulae, twitter messages, and other more
specific text types.

One widely used tokeniser is bundled in the open-source ANNIE system in GATE
[24]. Similar to the way in which programming languages are tokenised, the ANNIE
Tokeniser relies on a set of regular expression rules which are then compiled into a finite-
state machine. This differs from most other tokenisers in that it maximises efficiency by
doing only very light processing, and enabling greater flexibility by placing the burden of
deeper processing on the grammar rules, which are more adaptable (see Section 3). For
example, there is a specialised set of rules for tokenisation of English, which deals with
expressions such as “don’t” which would by default be tokenised as 3 tokens, whereas
for correct POS tagging and syntactic processing they need to be tokenised as “do” and
“n’t” as the short form of not. If Python is preferred, NLTK has several similar tokenisers,
one based on regular expressions.

Another freely-available tokeniser is the OpenNLP TokenizerME2, which is a train-
able maximum entropy tokeniser. It uses a statistical model, based on a training corpus.
There is a method also for re-training the tokeniser on new data. However, this depen-
dency on training data means that tokeniser adaptation to new types of text, e.g., twitter
messages, is likely to be expensive, as it would require a substantial amount of training
data.

In our experience, human readable tokenisation rules such as those used in the AN-
NIE and OpenNLP tokenisers tend to be easier to adapt to new languages and text types
than those built from statistical models. For example, the following tokeniser rule is from
the ANNIE Tokeniser:

‘UPPERCASE_LETTER’ ‘LOWERCASE_LETTER’* >
Token;orth=upperInitial;kind=word;

It states that the sequence must begin with an uppercase letter, followed by zero or more
lowercase letters. This sequence will then be annotated as type ‘Token’. The attribute
‘orth’ (orthography) has the value ‘upperInitial’; the attribute ‘kind’ has the value ‘word’.

1.2. Sentence Splitting

Sentence detection (or sentence splitting) is the task of separating text into its constituent
sentences. For plain text, sentence splitting is concerned pretty much solely with deter-
mining whether a punctuation token (e.g. “.”, “?”, “:”) marks the end of a sentence or not.
More complex cases arise when the text being processed contains tables, titles, formulae,
or other formatting markup (e.g. HTML tags, hashtags in tweets).

The GATE sentence splitter is a cascade of finite-state transducers which segment
the text into sentences, based on a set of rules. This module is required for the POS tag-
ger in GATE, and is often necessary for other low-level processing. It is domain- and
application-independent, although some adaptation to text formats might be required.
Each sentence is annotated with the type ‘Sentence’ and a separate sentence break anno-
tation is also produced.

2http://incubator.apache.org/opennlp/documentation/manual/opennlp.html

54 Natural Language Processing

GATE also offers a RegEx splitter, which is based on regular expressions, using the
default Java implementation. This has the advantage of being easily customisable by Java
programmers. It has three sets of patterns for:

• sentence splits that are part of the sentence, such as sentence-ending punctuation;
• sentence splits that are not part of the sentence, such as 2 consecutive new lines;
• text fragments that might be seen as splits but which should be ignored (such as

full stops occurring inside abbreviations).

The OpenNLP Sentence Detector is designed to run prior to tokenisation and is
a trainable one. Punctuation marks are required as indicators for sentence boundaries.
Conquently, it cannot identify sentence boundaries based on new lines, markup tags, or
sentence content, e.g. titles, whereas the GATE ones are more flexible in that respect. The
Sentence Detector takes a trained model file as input and produces an array of sentences.
Similar to the OpenNLP tokeniser, this might make it harder to adapt to new types of
text, compared with the regular expression and rule-based ones, which can be changed
directly.

While generally a simple problem for humans, automatic sentence splitting is not
without challenges. For instance, abbreviations need to be recognised and dealt with
properly, as well as carriage returns and newlines. Some splitters ignore these com-
pletely, requiring a punctuation mark as a sentence boundary. Others use two consec-
utive newlines/carriage returns as an indication of a sentence end, while there are also
cases when even a single newline/carriage return character would indicate end of a sen-
tence (e.g. comments in software code or lists which have one entry per line). HTML
formatting tags, Twitter hashtags, wiki syntax, and other such special text types are also
somewhat problematic for general-purpose sentence splitters which have been trained on
well-written corpora, typically newspaper texts.

1.3. POS Tagging

Part-of-Speech (POS) tagging is concerned with tagging words with their part of speech,
by taking into account the word itself, as well as the context in which it appears. A key
part of this task is the tagset used and the distinctions that it makes. The main categories
are verb, noun, adjective, adverb, preposition, etc. However, tagsets tend to be much
more specific, e.g. distinguishing between singular and plural nouns. One commonly
used tagset is the Penn treebank one [47].

In terms of approaches, researchers have achieved excellent results with Hidden
Markov models, rule-based approaches, maximum entropy, and many other methods.
GATE’s English POS tagger [40] is a modified version of the Brill transformational rule-
based tagger [7], which produces a part-of-speech tag as an annotation on each word or
symbol, using the Penn treebank tagset. The tagger uses a default lexicon and ruleset (the
result of training on a large corpus taken from the Wall Street Journal). Both of these can
be modified manually if necessary.

Similarly, the OpenNLP POS tagger uses a model learnt from a training corpus to
predict the correct POS tag from the Penn treebank tagset. During training, it is possible
to build either a maximum entropy or a perceptron-based model.

For Python, NLTK also has an implementation of the Brill tagger, as well as the
TNT statistical tagger [6] and the Stanford POS tagger [65].

Natural Language Processing 55

The accuracy of these general purpose, reusable taggers is typically excellent (97-
98%) on texts similar to those on which the taggers have been trained (mostly news
articles). Consequently, when presented with new text types or noisier data, the accuracy
declines. In some cases, changes to the tagger rules and/or re-training might be required.
For instance, Hearst patterns (see Section 6), which are widely used in ontology learning,
need reliable POS tags in order to produce high-quality results.

1.4. Stemming and Morphological Analysis

Another set of useful low-level processing components are stemmers and morphological
analysers. Stemmers produce the stem form of each word, e.g. “driving” and “drivers”
have the stem “drive”, whereas morphological analysis tends to produce the root/lemma
forms of the words and their affixes, e.g. “drive” and “driver” for the above examples,
with affixes “ing” and “s” respectively.

GATE provides a wrapper for the widely used, open-source Snowball stemmers,
which cover 11 European languages (Danish, Dutch, English, Finnish, French, German,
Italian, Norwegian, Portuguese, Russian, Spanish and Swedish) and makes them straight-
forward to combine with the other low-level linguistic components. The stemmers are
rule-based [59] and easy to modify, following the suffix-stripping approach of Porter.
NLTK also provides an implementation of the Snowball stemmers for Python.

The English morphological analyser in GATE is also rule-based, with the rule lan-
guage supporting rules and variables that can be used in regular expressions in the rules.
POS tags can taken into account if desired, depending on a configuration parameter. At
the time of writing, OpenNLP and NLTK do not provide morphological analysers.

2. Named entity recognition

Named entity recognition (NER) is used to automatically derive the semantics from tex-
tual content, using linguistic and/or statistical knowledge. It consists of the identification
of proper names in texts, and their classification into a set of predefined categories of
interest. The core set of traditional named entities are Person, Organisation, Location
and Date and Time expressions, such as "John Smith", "IBM", "London", "4th August
2011" etc. respectively. Various other types of named entity are frequently included, as
appropriate to the application, e.g. newspapers, ships, monetary amounts, percentages
etc. NER provides a foundation from which to build more complex IE systems. For ex-
ample, extracting the relations between entities can provide the means for entity tracking
(finding co-references), ontological information (e.g. distinguishing between “Athens,
Georgia” and “Athens, Greece”), and scenario building.

Approaches can be divided into pattern-based and statistical extraction [16], al-
though quite often the two techniques are mixed (see e.g. [58][17][63]). Most informa-
tion extraction (IE) techniques rely on some form of human supervision, with the ex-
ception of purely structural IE techniques performing unsupervised machine learning on
unannotated documents, e.g. [22]. A survey of information extraction methods from web
data is presented in [12]. Language engineering platforms such as GATE enable the mod-
ular implementation of techniques and algorithms for information extraction, and allow
repeatable experimentation and evaluation of their results.

56 Natural Language Processing

Linguistic rule-based methods for NER, such as those used in ANNIE, GATE’s in-
formation extraction system, comprise a combination of gazetteer lists and hand-coded
pattern-matching rules which use contextual information to help determine whether can-
didate entities are valid, or to extend the set of candidates. The gazetteer lists act as a
starting point from which to establish, reject, or refine the final entity to be extracted. A
typical processing pipeline consists of linguistic pre-processing (tokenisation, sentence
splitting, POS tagging), entity finding (using gazetteers and grammars), co-reference, and
finally some kind of export of the results to a database or ontology. Section 3 discusses
in more detail some of the techniques for pattern-based rule writing used for NER.

Learning methods for NER can be classified broadly into two main categories: rule
learning and statistical learning. The former methods induce a set of rules from training
examples, e.g. SRV [34], RAPIER [9], WHISK [64], BWI [35], and LP 2 [18]. Statis-
tical systems learn statistical models or classifiers, such as HMMs [55], Maximum En-
tropy [15], SVM [42] [48] [44] and Perceptron [10][45]. Methods differ widely in the
NLP features that they use, including simple features such as token string and capitali-
sation information, linguistic features such as part-of-speech, semantic information from
gazetteer lists, and genre-specific information such as document structure.

The general approach consists of three stages: linguistic pre-processing to obtain the
feature vectors, training or applying classifiers, and finally post-processing the results to
tag the documents. There are advantages and disadvantages to the Machine Learning ap-
proach compared with a knowledge engineering, rule-based approach. First, large quan-
tities of training data are required, which can be problematic, especially as these need to
be relevant to the domain and the set of entities required. If any criteria change (such as
a new entity type), then the whole training set may need to be reannotated. On the other
hand, ML techniques have the advantage of not requiring specialist language engineers
to develop hand-coded rules, which can be time-consuming to develop.

GATE’s general purpose named entity recognition system is ANNIE, which was de-
signed for traditional NER on news texts, but which, being easily adaptable, can form
the starting point for new NER applications in other languages and for other domains.
Other well known systems are UIMA3, developed by IBM, which focuses more on ar-
chitectural support and processing speed, and offers a number of similar resources to
GATE; OpenCalais4, which provides a web service for semantic annotation of text for
traditional named entity types, and LingPipe5 which provides a (limited) set of Machine
Learning models for various tasks and domains: while these are very accurate, they are
not easily adaptable to new applications. Components from all these tools are actually
included in GATE, so that a user can mix and match various resources as needed, or
compare different algorithms on the same corpus.

3. Pattern-based rule writing

Using pattern matching for Named Entity Recognition (NER) requires the develop-
ment of patterns over multi-faceted structures that consider many different token proper-
ties (e.g orthography, morphology, part of speech information etc.). Traditional pattern-

3http://uima.apache.org
4http://www.opencalais.com/
5http://alias-i.com/lingpipe/index.html

Natural Language Processing 57

matching languages such as PERL get “hopelessly long-winded and error prone” [4],
when used for such complex tasks. Therefore, attribute-value notations are normally
used, which allow for conditions to refer to token attributes arising from multiple anal-
ysis levels. Examples of these are the NEA notation [4] and JAPE [23], both of which
are declarative notations that allow for context-sensitive rules to be written and for non-
deterministic pattern matching to be performed. NEA was used in FACILE, a named
entity recognition tool used in the early MUC evaluations, and was then adapted to the
needs of the CONCERTO project [3,56]. while JAPE is the standard rule-writing mech-
anism used in GATE.

Traditional rule-based NER is based on a set of linguistic patterns which aim to
identify the relevant entities in text. These rely largely on gazetteer lists which provide all
or part of the entity, or clues to its existence, in combination with linguistic patterns. For
example, a typical rule to identify a person’s name consists of matching the first name of
the person via a gazetteer entry (e.g. John), followed by an unknown proper noun (e.g.
Smith, which is POS-tagged as a proper noun). In this section we introduce the concept
of pattern-based rule writing, using the example of the JAPE language.

3.1. JAPE

JAPE (Java Annotations Pattern Engine) is a language for writing regular expressions
over annotations and for using pattern matching as a basis for creating or manipulating
annotations. It is based on the Common Pattern Specification Language (CPSL), devel-
oped in the TIPSTER Program. The rules are divided into phases which run sequentially,
constituting a cascade of Finite State Transducers over annotations. Each phase consists
of rules for the same entity types (e.g "Person") or rules that have the same specific re-
quirements for being run (e.g. rules that cover elision cases; this phase needs to run after
normal full-entity expressions have been recognised).

Basic rules in JAPE are of the form:

(Optional Context)
(Entity to be recognised):label
(Optional Context)
-->
:label.EntityType={annotation attributes}

At the beginning of each phase, one needs to specify the set of input annotations
on which the current rule phase relies for the matching, and the matching style, which
constrains the priorities about which rule should be fired when more than one satisfies
the match (e.g. longest first, shortest first, explicit priority statements, and so on). The
LHS of the rule contains the pattern to be matched in the text: this is always specified in
terms of annotations (and optionally features and values) and regular expression iteration
operators. The RHS of the rule contains information about the annotation to be generated
or other action to be performed. Arbitrary Java code may also be used here for more
complex procedures, e.g. feature percolation and manipulation.

3.2. Development and reuse of grammars

The application for which the NER task is designed clearly has an impact on the devel-
opment of the grammars. It can involve considerable effort to adapt a grammar to a new

58 Natural Language Processing

domain or task, particulary if different entity types are needed, or if the same entities
have different structures and syntactic behaviour in their new context. However, adding
rules for new entity types and changing some other rules for the needs of a new domain or
text type/genre is less effort and time consuming than building everything from scratch.
There should always be some subset of a purpose-built NE recognition grammar set that
is application independent; this part can be used as a basis for creating a new grammar
set for a new application, no matter how different one application is from another. This
set of core rules might correspond to the basic named entities (person, organisation, loca-
tion names) and fixed data structures (date, time and monetary expressions), traditionally
identified by any NER system, which are largely domain independent. There are many
examples of adapting grammars to new domains and languages: see for example [49,51].

4. Term recognition

Automatic term recognition (also known as term extraction) is a crucial component of
many knowledge-based applications such as automatic indexing, knowledge discovery,
terminology mining and monitoring, knowledge management and so on. It is particularly
important in the healthcare and biomedical domains, where new terms are emerging
constantly, and often goes hand in hand with named entity recognition, especially for
applications such as ontology learning. The main aim of term recognition is to determine
whether a word or a sequence of words is a term that characterises the target domain. This
involves the identification and filtering of term candidates for the purpose of identifying
domain-relevant terms or entities. Most term extraction methods use a combination of
linguistic filtering (e.g. possible sequences of part of speech tags) and statistical measures
(e.g. tf.idf [61]), to determine the salience of each term candidate for each document in
the corpus [27,54].

Named entity recognition and automatic term recognition are not entirely mutually
exclusive. A "term" refers to a specific concept characteristic of a domain, so while a
named entity such as Person or Location is generic across all domains, a technical term
such as "myocardial infarction" is only considered a relevant term when it occurs in a
medical domain. If we were interested in sporting terms then it would probably not be
considered a relevant term, even if it occurred in a sports article. As with named enti-
ties, however, terms are generally formed from noun phrases (in some contexts, verbs
may also be considered terms). As we have already discussed, however, term extrac-
tion generally makes use of frequency-based information whereas typically named entity
recognition uses a more linguistic basis.

Term recognition has been performed on the basis of various criteria. The main dis-
tinction we can make is between algorithms that only take the distributional properties
of terms into account, such as frequency and tf.idf, and extraction techniques that use the
contextual information associated with terms. In very small and/or specialised domains,
as are typically used as a testbed for term recognition, statistical information may be
skewed due to data sparsity. On the other hand, it is also difficult to extract suitable se-
mantic information from such specialised corpora, particularly as appropriate linguistic
resources may be lacking. Although contextual information has been used, e.g. in gen-
eral language [36], and in the NC-Value method [33], it only consists of very shallow
semantic information. Ranging from basic statistical methods for term recognition, such

Natural Language Processing 59

as the tf.idf score, methods tend to build on this with further linguistic and contextual
information. For example, the NC-Value method which includes part-of-speech informa-
tion about the candidate term, along with information about frequency of co-occurrence
with context words. TRUCKS [53] extends this by also measuring, amongst other things,
the strength of association of contextual words with relevant candidate terms.

Unlike many of the other tools described in this chapter, there are many techniques,
but few complete open-source off-the-shelf tools available for term recognition that can
be easily incorporated into existing frameworks. Some of the more well-known tools
for term recognition are LEXTER [5] for French, ACABIT [25], which has been suc-
cessfully used for English, French and Japanese amongst others, and TERMINO [37], a
large-scale terminological resource for text processing in the biomedical domain, avail-
able as a web service.

5. Parsing and Chunking

Syntactic parsing is concerned with analysing sentences to derive their syntactic struc-
ture according to a grammar, e.g. finding the subject and object of a verb. There are many
different syntactic theories in computational linguistics research, but due to space limita-
tions here we will discuss briefly several general-purpose, wide-coverage parsers which
have been used for ontology learning, such as the Minipar6 dependency parser, the RASP
[8] statistical parser, and the Stanford [43] statistical parser. These are all available within
GATE, so using GATE Developer’s user interfact to experiment with them is one of the
easiest ways to compare them and determine which is the most appropriate one for the
task at hand.

Parsing algorithms can be computationally expensive and tend to work best on the
kinds of texts that they are trained on. In addition, accuracy of parsing is significantly
worse than that of the lower level pre-processing tools. Consequently, using a syntac-
tic parser could introduce significant errors and thus limit the gains in terms of ontol-
ogy learning performance. Therefore, it is advisable to carry out some cost-benefit ex-
periments in order to determine whether using a parser is worthwhile for the particular
ontology learning problem.

In some cases, ontology learning algorithms need to focus only on analysing noun
phrases or verb phrases, without taking into account syntactic relationships between
them. Shallow parsing (also called chunking) is concerned only with finding the bound-
aries of phrases without deducing their attachment and internal structure. This makes
chunking more efficient and also less error-prone on new types of text.

5.1. Large-coverage, Reusable Syntatic Parsers

Syntactic parsers are widely used to help ontology learning. Due to space limitations,
below we cover only some of them in more detail. Other popular parsers are Bikel’s
statistical parser [2], the Collins statistical parser [20], and Charniak’s parser [13].

Minipar is a dependency parser, i.e. it determines the dependency relationships be-
tween the words in a sentence. In more detail, it identifies the head modified by each
word and the name of the dependency relationship between the two. Examples of depen-

6http://www.cs.ualberta.ca/~lindek/minipar.htm

60 Natural Language Processing

dency relations are things like apposition, relative clauses, subjects and objects of verbs,
and determiners. Minipar processes the text one sentence at a time and thus only needs a
sentence splitter as a prerequisite.

The RASP statistical parser [8] is a domain-independent, robust parser for English.
It comes also with its own tokeniser, POS tagger, and morphological analyser included.
As with Minipar, it requires the text to be already segmented into sentences. RASP is
available under the LGPL license and can thus be used also in commercial applications.

The Stanford statistical parser7 [43] is a probabilistic parsing system. It provides
either a dependency output or a phrase structure output. The latter can be viewed in its
own GUI or through the user interface of GATE Developer. The Stanford parser comes
with data files for parsing Arabic, Chinese, English, and German and is licensed under
GNU GPL.

5.2. Reusable Chunkers

The GATE verb chunker is based on a number of grammar rules for English [19] [1], and
contains 68 rules for the identification of non-recursive verb groups. The rules cover finite
(‘is investigating’), non-finite (‘to investigate’), participles (investigated’), and special
verb constructs (‘is going to investigate’). All the forms may include adverbials and
negatives. The rules have been implemented in JAPE (see Section 3.1) and use the output
of the POS tagger as well as information about the identity of the tokens (e.g. the token
‘might’ is used to identify modals).

The GATE Noun Phrase (NP) Chunker is a Java implementation of the Ramshaw
and Marcus BaseNP chunker [60] which marks noun phrases in text, based on their
POS tags. The output from this version should be identical to the output of the original
C++/Perl version. The one major difference is in the assumption that if a POS tag is
not in the mapping file then it is tagged as ‘I’. The original algorithm simply fails if an
unknown POS tag is encountered.

Both chunkers require that the text is first processed with a tokeniser, sentence split-
ter, and a POS tagger.

OpenNLP also provides a chunker with a pre-packaged English maximum entropy
chunker model. The OpenNLP chunker chunks all tokens of a sentence, based on their
POS tags (using the Penn Treebank tagset). In other words, it produces NP and VP
chunks in one pass, instead of as two separate components, as in GATE. The OpenNLP
chunker is trainable and requires a tagged training corpus, one word per line, with POS
tag and a chunk type assigned (e.g. B-NP marks the first word of an NP chunk and I-NP
is used for all subsequent words in that chunk).

Given that different chunkers tend to produce different kinds of chunks (e.g. include
prepositional phrases within noun phrase chunks or not), it is advisable to compare the
outputs of several different chunkers on the texts to be analysed and then decide which
is the best one to use, given the concrete ontology learning task at hand.

5.3. Shallow Semantic Parsing

Shallow semantic parsing (or semantic role labelling) is concerned with assigning seman-
tic role information to the arguments of a verb in a sentence. Research has been driven

7http://nlp.stanford.edu/software/lex-parser.shtml

Natural Language Processing 61

by the PropBank corpus [57], which has manually annotated semantic role labels (e.g.
agent, theme) to Wall Street Journal articles. Another relevant resource is FrameNet8,
which is a large lexical database, srtuctured around semantic frames. It is also available
in languages other than English, e.g. German, Spanish.

Some freely available tools for shallow semantic parsing are the probabilistic frame-
based SEMAFOR parser[14] and Shalmaneser [28].

In the context of ontology learning, shallow semantic parsing is used for many tasks,
including domain adaptation (see [21] in this volume).

6. Lexico-Syntactic Patterns

The extraction of lexico-syntactic patterns from text is frequently used to identify re-
lationships between terms and entities. For the purposes of ontology creation, these
can also then be re-engineered into concepts and instances. An increasing number of
atomic ontology editing operations are associated with lexico-syntactic patterns, accord-
ing to the ontological information these patterns and the participating entities contribute.
The flexibility of this association enables the transformation of linguistic structures into
lightweight ontological knowledge, performed in an incremental fashion.

Lexico-syntactic pattern-based ontology population has proven to be reasonably suc-
cessful for a variety of tasks (see e.g. [29] for more details). The idea of acquiring seman-
tic infomration from texts dates back to the early 1960s with Harris’ distributional hy-
pothesis [38] and Hirschman and Sager’s work in the 1970s [41], which focused on deter-
mining sets of sublanguage-specific word classes using syntactic patterns from domain-
specific corpora. A detailed description and comparison of lexical and syntactic pattern
matching can be found in [52], In particular, research in this area has been used in spe-
cific domains such as medicine, where a relatively small number of syntactic structures
is often found, for example in patient reports. Here the structures are also quite simple,
with short and relatively unambiguous sentences typically found: this makes syntactic
pattern matching much easier.

6.1. Hearst patterns

One of the most common sets of lexico-syntactic patterns that indicate hyponymic re-
lations are known as the Hearst patterns [39], and have been widely used for relation
finding and ontology creation tasks. Typically they achieve a very high level of preci-
sion, but quite low recall: in other words, they are very accurate but only cover a small
subset of the possible patterns for finding hyponyms and hypernyms. The patterns can be
described by the following 5 rules, where NP stands for a Noun Phrase and the regular
expression symbols have their usual meanings9:

1. such NP as (NP,)* (or|and) NP
Example: . . . works by such authors as Herrick, Goldsmith, and Shakespeare.

2. NP (, NP)* , or other NP
Example: Bruises, wounds, broken bones or other injuries

8http://framenet.icsi.berkeley.edu/
9() for grouping; | for disjunction; *, +, and ? for iteration.

62 Natural Language Processing

3. NP (, NP)* , and other NP
Example: temples, treasuries, and other important civic buildings.

4. NP (,) including (NP,)* (or | and) NP
Example: all common-law countries, including Canada and England

5. NP (,) especially (NP,)* (or | and) NP
Example: most European countries, especially France, England, and Spain.

Hearst defines the relations as hyponym-hypernym; however, if translating this to an
ontology, we need to be more specific as the pairs could represent either instance-class or
subclass-superclass relations. There are a number of ways in which this distinction could
be made, depending on the ontology. For example, instances are generally represented
by proper nouns, so one strategy could be to use POS tagging to indicate this. How-
ever, some POS taggers may mistag capitalised common nouns (e.g. at the beginning of
sentences) as proper nouns frequently enough that it cannot be relied on as a strategy.
Another method could be to look at the presence or absence of a determiner preceding
the noun (since proper nouns in English are rarely accompanied by determiners) and
whether the noun is singular or plural, but this still leaves the problem of the sentence-
initial nouns. A safer solution might be to first recognise named entities in the text, and
then only consider certain types of named entities (e.g. Person, Location, Organization)
as candidates for instances; all other NPs are then considered to be classes. The exact
strategy will depend on the requirements for the ontology, however.

6.2. Other lexico-syntactic patterns

Because the Hearst patterns are very specific, they do not typically achieve wide cover-
age, so it is likely that further patterns will be necessary to supplement them. KnowItAll
is a hybrid named-entity extraction system [30] that finds lists of instances of classes
from the web using a search engine, combining Hearst patterns and learned patterns. An-
other possibility for adding to the Hearst patterns is the set of Lexico-Syntactic Patterns
(LSPs) corresponding to Ontology Design Patterns (ODPs) [26]. We give some examples
below, implemented in the SPRAT tool [50]. In these rules, <sub> and <super> are
like variable names for the subclasses and superclasses to be generated; CN means class
of, group of, etc.; CATV is a classification verb10; PUNCT is punctuation; NPlist is a
conjoined list of NPs (“X, Y and Z”).

1. Subclass rules

• NP<sub> be NP<super>
• NPlist<sub> be CN NP<super>
• NPlist<sub> (group (in|into|as) | (fall into) |
(belong to)) [CN] NP<super>

• NP<super> CATV CV? CN? PUNCT? NPlist<sub>

Example: Frogs and toads are kinds of amphibian.
2. Equivalence rules

• NP<class> be (the same as|equivalent to|equal to|like)
NP<class>

10e.g. classify in/into, comprise, contain, compose (of), group in/into, divide in/into, fall in/into, belong (to).

Natural Language Processing 63

• NP<class> (call | denominate | (designate by|as) |
name) NP<class> (where the verb is passive)

• NP<class> have (the same|equal) (characteristic |
feature | attribute | quality | property) as NP<class>

Example: Poison dart frogs are also called poison arrow frogs.
3. Properties

• NP<class> have NP<property>
• NP<instance> have NP <property>

Example: Birds have feathers.

While these patterns are quite productive (for example X is a Y), most of them are
potentially ambiguous and susceptible to overgeneration. For example, in the following
sentence:

Mistakenly, some artists and writers have penguins based at the North Pole.

clearly we do not want to recognise penguin as a property of writer. The difficulty is
deciding where to draw the line between acceptable patterns and those that just overgen-
erate.

6.3. Pattern refinement

One method of pattern refinement, to reduce overgeneration, is to add some semantic
restrictions, e.g. using semantic categories from WordNet[31] and/or VerbNet[62]. The
idea behind this is to look for verbal patterns connecting terms in a sentence, and to
restrict the kinds of noun phrase extracted. This not only reduces the number of errors,
but also eliminates the kind of general relations which while not incorrect, are not very
useful. For example, knowing that a turtle is a local creature is not of much interest unless
more contextual information is provided (i.e. to which region it is local). Combining
statistically derived collocational information with lexico-syntactic patterns is another
technique which has been proven to improve precision and recall [11].

Restrictions can be applied to various categories: for example, a noun phrase can be
prevented from matching if it contains a stop word. The list of stop words might include
some very common words which we do not want to recognise as adjectives, and can be
determined either heuristically or using frequency analysis. Restrictions on properties is
another very useful addition: for example, a pattern such as "X has a Y" is very general
and can overgenerate massively. By adding semantic restrictions we can limit this, e.g.
we can state that if X is an animal then Y must be a body part. Another restriction is the
type of thing that can be considered a property, for example one can restrict the range
of the property to certain semantic categories from WordNet, e.g. plant, shape, food,
substance, object, body, animal, possession, artifact etc.

7. Summary

In this chapter, we have provided an overview of the main NLP tasks and techniques that
are used to build up an application for language processing from unstructured text, as

64 Natural Language Processing

a prerequisite to ontology learning. We have discussed some of the most widely used,
open source tools, although we have focused primarily on the GATE architecture. As
we have described in this chapter, an NLP system is typically composed of a pipeline of
processing resources, which can be adapted for any particular application, language, or
domain by adding, removing, replacing or editing individual components as necessary.
For example, for adapting an NLP system to a new language, some components may
be language-independent (such as tokenisers and sentence splitters), while others such
as gazetteers and grammars may need to be modified or retrained for the new language.
GATE, in particular, provides an easy mechanism for this, and also enables conditional
processing so that the system can automatically choose the relevant resource for a text
in a multilingual corpus based on the language of each text. We should stress also that
no one system or component should be considered “bes”, but only “best for a particular
application, domain or task”. This is why rigorous evaluation procedures and a good
testbed are necessary when choosing an NLP system or a set of resources.

References

[1] S. Azar. Understanding and Using English Grammar. Prentice Hall Regents, 1989.
[2] Daniel M. Bikel. Design of a multi-lingual, parallel-processing statistical parsing engine. In Proceedings

of the second international conference on Human Language Technology Research, HLT ’02, pages 178–
182, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

[3] B. Black, J. McNaught, F. Rinaldi, M. Ferraro, L. Gilardoni, S. Mazza, G.P. Zarri, A. Brasher, and
A. Persidis. Detailed specification of the text extraction and concept recognition components of the
concerto architecture. Deliverable 6, version 1.2, CONCERTO Consortium, 1999.

[4] W. Black, F. Rinaldi, and D. Mowatt. Facile: Description of the named entity system used for muc-7. In
Proceedings of the 7th MUC, 1998.

[5] D. Bourigault. Surface grammatical analysis for the extraction of terminological noun phrases. In Proc.
of 14th International Conference on Computational Linguistics (COLING), pages 977–981, Nantes,
France, 1992.

[6] Thorsten Brants. Tnt: a statistical part-of-speech tagger. In Proceedings of the sixth conference on
Applied Natural Language Processing, ANLP ’00, pages 224–231, 2000.

[7] E. Brill. A simple rule-based part-of-speech tagger. In Proceedings of the Third Conference on Applied
Natural Language Processing, Trento, Italy, 1992.

[8] Ted Briscoe, John Carroll, and Rebecca Watson. The second release of the rasp system. In Proceedings
of the COLING/ACL on Interactive presentation sessions, pages 77–80, 2006.

[9] M. Califf and R. Mooney. Relational learning of pattern-match rules for information extraction. Working
Papers of the ACL-97 Workshop in Natural Language Learning, pages 9–15, 1997.

[10] X. Carreras, L. Màrquez, and L. Padró. Learning a perceptron-based named entity chunker via online
recognition feedback. In Proceedings of CoNLL-2003, pages 156–159. Edmonton, Canada, 2003.

[11] S. Cederberg and D. Widdows. Using LSA and noun coordination information to improve the precision
and recall of automatic hyponymy extraction. In Proceedings of the 7th conference on Natural language
learning at HLT-NAACL, pages 111–118, Morristown, NJ, 2003.

[12] C.H. Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan. A survey of web information extraction systems.
IEEE transactions on knowledge and data engineering, pages 1411–1428, 2006.

[13] Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st North American chap-
ter of the Association for Computational Linguistics conference, pages 132–139. Morgan Kaufmann
Publishers Inc., 2000.

[14] Desai Chen, Nathan Schneider, Dipanjan Das, and Noah A Smith. Semafor: Frame argument resolution
with log-linear models. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages
264–267. Association for Computational Linguistics, 2010.

[15] H. L. Chieu and H. T. Ng. Named entity recognition with a maximum entropy approach. In Wal-
ter Daelemans and Miles Osborne, editors, Proceedings of CoNLL-2003, pages 160–163. Edmonton,
Canada, 2003.

Natural Language Processing 65

[16] P. Cimiano, S. Handschuh, and S. Staab. Towards the Self-Annotating Web. In Proc. of the 13th
International Conference on World Wide Web (WWW’04), 2004.

[17] P. Cimiano, M. Hartung, and E. Ratsch. Learning the appropriate generalization level for relations
extracted from the Genia corpus. In Proc. of the 5th Language Resources and Evaluation Conference
(LREC), 2006.

[18] F. Ciravegna. (LP)2, an Adaptive Algorithm for Information Extraction from Web-related Texts. In
Proceedings of the IJCAI-2001 Workshop on Adaptive Text Extraction and Mining, Seattle, 2001.

[19] Collins Cobuild, editor. English Grammar. Harper Collins, 1999.
[20] Michael Collins. Head-driven statistical models for natural language parsing. Computational linguistics,

29(4):589–637, 2003.
[21] Bonaventura Coppola, Aldo Gangemi, Alfio Gliozzo, Davide Picca, and Valentina Presutti. Learning

domain ontologies by corpus-driven framenet specialization. In Johanna Völker and Jens Lehmann,
editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press,
2012.

[22] V. Crescenzi, G. Mecca, P. Merialdo, et al. Roadrunner: Towards automatic data extraction from large
web sites. In Proceedings of the international conference on very large data bases, pages 109–118.
Citeseer, 2001.

[23] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani, I. Roberts, G. Gorrell, A. Funk,
A. Roberts, D. Damljanovic, T. Heitz, M.A. Greenwood, H. Saggion, J. Petrak, Y. Li, and W. Peters.
Text Processing with GATE (Version 6). The University of Sheffield, 2011.

[24] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. Gate: an architecture
for development of robust hlt applications. In Proceedings of the 40th Annual Meeting on Association
for Computational Linguistics, 7–12 July 2002, ACL ’02, pages 168–175, Stroudsburg, PA, USA, 2002.
Association for Computational Linguistics.

[25] B. Daille. Study and implementation of combined techniques for automatic extraction of terminology.
The Balancing Act: Combining Symbolic and Statistical Approaches to Language, 1:49–66, 1996.

[26] G. Aguade de Cea, A. Gómez-Pérez, E. Montiel Ponsoda, and M-C. Suárez-Figueroa. Natural language-
based approach for helping in the reuse of ontology design patterns. In Proceedings of the 16th In-
ternational Conference on Knowledge Engineering and Knowledge Management Knowledge Patterns
(EKAW 2008), Acitrezza, Italy, September 2008.

[27] Paul Deane. A nonparametric method for extraction of candidate phrasal terms. In Proceedings of the
43rd Annual Meeting on Association for Computational Linguistics, pages 605–613, 2005.

[28] Katrin Erk and Sebastian Pado. Shalmaneser – a flexible toolbox for semantic role assignment. In
Proceedings of LREC, volume 6, 2006.

[29] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale Information Extraction in KnowItAll. In Proceedings of WWW-2004, 2004.
http://www.cs.washington.edu/research/knowitall/papers/www-paper.pdf.

[30] O. Etzioni, M. Cafarella, D. Downey, A.M. Popescu, T. Shaked, S. Soderland, D.S. Weld, and A. Yates.
Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence,
165(1):91–134, 2005.

[31] Christiane Fellbaum, editor. WordNet - An Electronic Lexical Database. MIT Press, 1998.
[32] D. Ferrucci and A. Lally. UIMA: An Architectural Approach to Unstructured Information Processing

in the Corporate Research Environment. Natural Language Engineering, 10(3-4):327–348, 2004.
[33] K.T. Frantzi and S. Ananiadou. The C-Value/NC-Value domain independent method for multi-word

term extraction. Journal of Natural Language Processing, 6(3):145–179, 1999.
[34] D. Freitag. Information extraction from html: Application of a general learning approach. Proceedings

of the Fifteenth Conference on Artificial Intelligence AAAI-98, pages 517–523, 1998.
[35] Dayne Freitag and Nicholas Kushmerick. Boosted Wrapper Induction. In Seventeenth National Con-

ference on Artificial Intelligence (AAAI-2000): Twelfth Innovative Applications of Artificial Intelligence
Conference (IAAI-2000)., pages 577–583, 2000.

[36] G. Grefenstette. Explorations in Automatic Thesaurus Discovery. Kluwer Academic Publishers, 1994.
[37] Hepple M Harkema H, Gaizauskas R. A large scale terminology resource for biomedical text processing.

In Proceedings of the HLT-NAACL Workshop: BioLINK 2004, Linking Biological Literature, Ontologies
and Databases, 2004.

[38] Z.S. Harris. Mathematical Structures of Language. Wiley (Interscience), New York, 1968.
[39] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Conference on Computa-

66 Natural Language Processing

tional Linguistics (COLING’92), Nantes, France, 1992. Association for Computational Linguistics.
[40] M. Hepple. Independence and Commitment: Assumptions for Rapid Training and Execution of Rule-

based Part-of-Speech Taggers. In Proceedings of the 38th Annual Meeting of the Association for Com-
putational Linguistics, Hong Kong, October 2000.

[41] L. Hirschman, R. Grishman, and N. Sager. Grammatically based automatic word class formation. In-
formation Processing and Retrieval, 11:39–57, 1975.

[42] H. Isozaki and H. Kazawa. Efficient Support Vector Classifiers for Named Entity Recognition. In
Proceedings of the 19th International Conference on Computational Linguistics (COLING’02), pages
390–396, Taipei, Taiwan, 2002.

[43] D. Klein and C. Manning. Accurate unlexicalized parsing. In Proceedings of the 41st Meeting of the
Association for Computational Linguistics, 2003.

[44] Y. Li, K. Bontcheva, and H. Cunningham. Using Uneven Margins SVM and Perceptron for Information
Extraction. In Proceedings of Ninth Conference on Computational Natural Language Learning (CoNLL-
2005), 2005.

[45] Yaoyong Li, Kalina Bontcheva, and Hamish Cunningham. Adapting SVM for Data Sparseness and
Imbalance: A Case Study on Information Extraction. Natural Language Engineering, 15(2):241–271,
2009.

[46] E. Loper and S. Bird. NLTK: The Natural Language Toolkit. In ACL Workshop on Effective Tools and
Methodologies in Teaching NLP, 2002.

[47] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1994.

[48] J. Mayfield, P. McNamee, and C. Piatko. Named Entity Recognition Using Hundreds of Thousands of
Features. In Proceedings of CoNLL-2003, pages 184–187. Edmonton, Canada, 2003.

[49] D. Maynard, H. Cunningham, K. Bontcheva, and M. Dimitrov. Adapting a robust multi-genre NE system
for automatic content extraction. In Proceedings of the 10th International Conference on Artificial
Intelligence: Methodology, Systems, Applications (AIMSA’02), Varna, Bulgaria, Sep 2002.

[50] D. Maynard, A. Funk, and W. Peters. SPRAT: a tool for automatic semantic pattern-based ontology
population. In International Conference for Digital Libraries and the Semantic Web, Trento, Italy,
September 2009.

[51] D. Maynard, V. Tablan, K. Bontcheva, H. Cunningham, and Y.Wilks. Multi-source entity recognition –
an information extraction system for diverse text types. Research Memorandum CS–03–02, Department
of Computer Science, University of Sheffield, April 2003.

[52] D. G. Maynard. Term Recognition Using Combined Knowledge Sources. PhD thesis, Manchester
Metropolitan University, UK, 2000.

[53] D.G. Maynard and S. Ananiadou. Identifying terms by their family and friends. In Proc. of 18th
International Conference on Computational Linguistics (COLING), Saarbrücken, Germany, 2000.

[54] Diana Maynard, Yaoyong Li, and Wim Peters. NLP Techniques for Term Extraction and Ontology
Population. In P. Buitelaar and P. Cimiano, editors, Bridging the Gap between Text and Knowledge -
Selected Contributions to Ontology Learning and Population from Text. IOS Press, 2008.

[55] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy markov models for information extraction
and segmentation. In Proceedings of the Seventeenth International Conference on Machine Learning,
pages 591–598. Citeseer, 2000.

[56] J. McNaught, W. Black, F. Rinaldi, E. Bertino, A. Brasher, D. Deavin, B. Catania, D. Silvestri, B. Ar-
mani, A. Persidis, G. Semerano, F. Esposito, V. Candela, G.P. Zarri, and L. Gilardoni. Integrated docu-
ment and knowledge management for the knowledge-based enterprise. In Proceedings of the 3rd Inter-
national Conference on the practical application of Knowledge Management. The paractical application
company, 2000.

[57] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An annotated corpus of
semantic roles. Computational Linguistics, 31(1):71–106, 2005.

[58] P. Pantel and M. Pennacchiotti. Automatically harvesting and ontologizing semantic relations. In Pro-
ceeding of the 2008 conference on Ontology Learning and Population: Bridging the Gap between Text
and Knowledge, pages 171–195. IOS Press, 2008.

[59] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
[60] L. Ramshaw and M. Marcus. Text Chunking Using Transformation-Based Learning. In Proceedings of

the Third ACL Workshop on Very Large Corpora, 1995.
[61] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, 1983.

Natural Language Processing 67

[62] Karin Kipper Schuler. VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis, University
of Pennsylvania, 2005.

[63] A. Schutz and P. Buitelaar. Relext: A tool for relation extraction from text in ontology extension. The
Semantic Web–ISWC 2005, pages 593–606, 2005.

[64] S. Soderland. Learning information extraction rules for semi-structured and free text. Machine Learning,
34(1):233–272, 1999.

[65] Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. Feature-rich part-
of-speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational Linguistics on Human Language
Techn@articleAsur2010, annote = Tests the informativeness of twitter when predicting performance of
new film releases at the box office. Both simple tweet counts and a classifier are used. The classifier is
trained using mechanical turk. A performance of 98% was reported for the classifier. They found that
classifying sentiment only lead to a slight improvement over the tweet count., author = Asur, Sitaram
and Huberman, Bernardo A, journal = CoRR, keywords = Sentiment, mendeley-tags = Sentiment, title
= Predicting the Future with Social Media, url = http://arxiv.org/abs/1003.5699, volume = abs/1003.5,
year = 2010 ology, NAACL ’03, pages 173–180, 2003.

Part II

Logical Learning

Concept Learning

Jens LEHMANN a and Nicola FANIZZI b and Lorenz BÜHMANN a

and Claudia D’AMATO b

a Univ. Leipzig, Germany
b Univ. Bari, Italy

Abstract. One of the bottlenecks of the ontology construction process is the amount
of work required with various figures playing a role in it: domain experts contribute
their knowledge that has to be formalized by knowledge engineers so that it can
be mechanized. As the gap between these roles likely makes the process slow and
burdensome, this problem may be tackled by resorting to machine learning tech-
niques. By adopting algorithms from inductive logic programming, the effort of the
domain expert can be reduced, i.e. he has to label individual resources as instances
of the target concept. From those labels, axioms can be induced, which can then be
confirmed by the knowledge engineer. In this chapter, we survey existing methods
in this area and illustrate three different algorithms in more detail. Some basics like
refinement operators, decision trees and information gain are described. Finally, we
briefly present implementations of those algorithms.

Keywords. Refinement operators, Decision Trees, Information Gain

1. Introduction to Concept Learning

One of the bottlenecks of the ontology construction process is represented by the amount
of work required with various figures playing a role in it: domain experts contribute
their knowledge that is formalized by knowledge engineers so that it can be mechanized.
As the gap between these roles makes the process slow and burdensome, this problem
may be tackled by resorting to machine learning (cf. Lawrynowicz and Tresp [23] in
this volume) techniques. Solutions can be based on relational learning [36] which re-
quires a limited effort from domain experts (labeling individual resources as instances
of the target concepts) and leads to the construction of concepts adopting even very ex-
pressive languages [32]. If the concept learning problem is tackled as a search through
a space of candidate descriptions in the reference representation guided by exemplars
of the target concepts, the same algorithms can be adapted to solve also ontology evo-
lution problems. Indeed, while normally the semantics of change operations has been
considered from the logical and deductive point of view of automated reasoning, a rel-
evant part of information lying in the data that populates ontological knowledge bases
is generally overlooked or plays a secondary role. Early work on the application of ma-
chine learning to Description Logics (DLs) [3] essentially focused on demonstrating the
PAC-learnability for various terminological languages derived from CLASSIC. In par-
ticular, Cohen and Hirsh investigate the CORECLASSIC DL proving that it is not PAC-
learnable [9] as well as demonstrating the PAC-learnability of its sub-languages, such

72 Lehmann et al. / Concept Learning

as C-CLASSIC [10], through the bottom-up LCSLEARN algorithm. These approaches
tend to cast supervised concept learning to a structural generalizing operator working
on equivalent graph representations of the concept descriptions. It is also worth men-
tioning unsupervised learning methodologies for DL concept descriptions, whose pro-
totypical example is KLUSTER [22], a polynomial-time algorithm for the induction of
BACK terminologies, which exploits the tractability of the standard inferences in this
DL language [3]. More recently, approaches have been proposed that adopt the idea of
generalization as search [33] performed through suitable operators that are specifically
designed for DL languages [4,14,11,15,19,30,32] on the grounds of the previous experi-
ence in the context of ILP. There is a body of research around the analysis of such opera-
tors [30,24] along with applications to various problems [31,20] and studies on the prac-
tical scalability of algorithms using them [17,18,27]. Supervised (resp., unsupervised)
learning systems, such as YINYANG [19] and DL-Learner [25], have been implemented
and adoptions implemented for the ontology learning use case [7,27,8,26].

Learning alternative models such as logical decision trees offers another option for
concept induction. The induction of decision trees is among the most well-known ma-
chine learning techniques [34], also in its more recent extensions that are able to work
with more expressive logical representations in clausal form [5]. A new version of the
FOIL algorithm [35] has been implemented, resulting in the DL-FOIL system [12]. The
general framework has been extended to cope with logical representations designed for
formal Web ontologies [13]. The induction of terminological decision trees [13], i.e. log-
ical decision trees test-nodes represented with DL concept descriptions, adopts a clas-
sical top-down divide-and-conquer strategy [6] which differs from previous DL con-
cept learning methods based on sequential covering or heuristic search, with the use of
refinement operators for DL concept descriptions [19,12,32]. The main components of
this new systems are 1) a set of refinement operators borrowed from other similar sys-
tems [19,31]; 2) a specific information-gain function which must take into account the
open-world assumption, namely, many instances may be available which cannot be as-
cribed to the target concept nor to its negation. This requires a different setting, similar
to learning with unknown class attributes [16], requiring a special treatment of the unla-
beled individuals. Once a terminological tree is induced, similarly to the logical decision
trees, a definition of the target concepts can be drawn exploiting the nodes in the tree
structure. The algorithm has also a useful side-effect: the suggestion of new intermediate
concepts which may have no definition in the current ontology.

2. Learning as Search in Description Logics

2.1. Learning Problem

In this section, the learning problem in the DL setting is formally defined.

Definition 2.1 (learning problem) Let K = (T ,A) be a DL knowledge base.

Given

• a (new) target concept name C

Lehmann et al. / Concept Learning 73

• a set of positive and negative examples1 for C:

∗ Ind+
C(A) = {a ∈ Ind(A) | C(a) ∈ A} ⊆ RK(C) instance retrieval of C

∗ Ind−C(A) = {b ∈ Ind(A) | ¬C(b) ∈ A} ⊆ RK(¬C)

Find a concept definition C ≡ D such that

• K |= D(a) ∀a ∈ Ind+
D(A) and

• K |= ¬D(b) ∀b ∈ Ind−C(A) (resp. K 6|= C(b) ∀b ∈ Ind−C(A))

We prefer the first form for a correct definition w.r.t. negative examples (K |= ¬D(b))
because that seems more coherent with the explicit indication given by the expert. Other
settings assume (K 6|= C(b)) which implicitly makes it a binary learning problem.

The definition given above can be interpreted as a generic supervised concept learn-
ing problem. In case a previous definition D′ for C is already available in K and
∃a ∈ Ind+

C(A) s.t. K 6|= D′(a) or ∃b ∈ Ind−C(A) s.t. K 6|= ¬D′(b) then the problem
can be cast as a refinement problem which would amount to searching for a solution D
starting from the approximation D′.

2.2. Refinement Operators

The solution of the learning problem stated above can be cast as a search for a correct
concept definition in an ordered space (Σ,�). In such a setting, one can define suitable
operators to traverse the search space. Refinement operators can be formally defined as:

Definition 2.2 (refinement operator) Given a quasi-ordered2 search space (Σ,�)

• a downward refinement operator is a mapping ρ : Σ→ 2Σ such that

∀α ∈ Σ ρ(α) ⊆ {β ∈ Σ | β � α}
• an upward refinement operator is a mapping δ : Σ→ 2Σ such that

∀α ∈ Σ δ(α) ⊆ {β ∈ Σ | α � β}

Definition 2.3 (properties of DL refinement operators) A refinement operator ρ is

• (locally) finite iff ρ(C) is finite for all concepts C.
• redundant iff there exists a refinement chain from a concept C to a concept D,

which does not go through some concept E and a refinement chain from C to a
concept equal to D, which does go through E.

• proper iff for all concepts C and D, D ∈ ρ(C) implies C 6≡ D.

A downward refinement operator ρ is called

• complete iff for all concepts C,D with C @ D we can reach a concept E with
E ≡ C from D by ρ.

• weakly complete iff for all concepts C @ > we can reach a concept E with
E ≡ C from > by ρ.

The corresponding notions for upward refinement operators are defined dually.

1Note that Ind+
C(A) ∪ Ind−C(A) ⊆ Ind(A) where Ind(A) is the set of all individuals occurring inA.

2A quasi-ordering is a reflexive and transitive relation.

74 Lehmann et al. / Concept Learning

In the following, we will consider a space of concept definitions ordered by the sub-
sumption relationship v which induces a quasi-order on the space of all the possible
concept descriptions [4,11]. In particular, given the space of concept definitions in the
reference DL language, say (L,v), ordered by subsumption, there is an infinite number
of generalizations and specializations. Usually one tries to devise operators that can tra-
verse efficiently throughout the space in pursuit of one of the correct definitions (w.r.t.
the examples that have been provided).

2.2.1. Refinement Operator for DL-FOIL

In the definition of refinement operators, the notion of normal form for ALC concept
descriptions is given. Preliminarily, a concept is in negation normal form iff negation
only occurs in front of concept names. Now, some notation is needed to name the differ-
ent parts of an ALC description: prim(C) is the set of all the concepts at the top-level
conjunction of C; if there exists a universal restriction ∀R.D on the top-level of C then
valR(C) = {D} (a singleton description because many such restrictions can be col-
lapsed into a single one with a conjunctive filler concept) otherwise valR(C) = {>}. Fi-
nally, exR(C) is the set of the concept descriptionsE appearing in existential restrictions
∃R.E at the top-level conjunction of C.

Definition 2.4 (ALC normal form) A concept description D is in ALC normal form iff
D is ⊥ or > or if D = D1 t · · · tDn with

Di =
l

A∈prim(Di)

A u
l

R∈NR

 l

V ∈valR(Di)

∀R.V u
l

E∈exR(Di)

∃R.E

where, for all i = 1, . . . , n, Di 6≡ ⊥ and for any R, every sub-description in exR(Di)
and valR(Di) is in normal form.

We will consider two theoretical refinement operators [19] that, given a starting
incorrect definition (too weak or too strong) for the target concept in the search space, can
compute one (or some) of its generalizations / specializations. Both are defined (w.l.o.g.)
for ALC descriptions in normal form.

Definition 2.5 (downward operator ρ) Let ρ = (ρt, ρu) be a downward refinement
operator, where:
[ρt] given a description in ALC normal form D = D1 t · · · tDn:

• D′ ∈ ρt(D) if D′ =
⊔

1≤i≤n
i6=j

Di for some j ∈ {1, . . . , n}
• D′ ∈ ρt(D) if D′ = D′i t

⊔
1≤i≤n

i6=j
Di for some j ∈ {1, . . . , n} and D′j ∈

ρu(Dj)

[ρu] given a conjunctive description C = C1 u · · · u Cm:

• C ′ ∈ ρu(C) if C ′ = C u Cm+1 for some Cm+1 such that ⊥ @ C ′ v C
• C ′ ∈ ρu(C) if C ′ =

d
1≤i≤m

i6=k
Ci u C ′k for some k ∈ {1, . . . ,m}, where:

∗ C ′k v Ck if Ck ∈ prim(C) or
∗ C ′k = ∃R.D′ if Ck = ∃R.D and D′ ∈ ρt(D) or

Lehmann et al. / Concept Learning 75

∗ C ′k = ∀R.D′ if Ck = ∀R.D and D′ ∈ ρt(D)

Note that a difference operator for concepts is used to single out the subconcepts to
be refined. Further possibilities may be explored using the operator defined C − D =
C t ¬D [38].

The operator for disjunctive concepts ρt simply drops one top-level disjunct or re-
places it with a downward refinement obtained with ρu. ρu adds new conjuncts or re-
places one with a refinement obtained by specializing a primitive concept or the sub-
concepts in the scope of a universal or existential restriction (again through ρt). Note that
successive applications of the operator may require intermediate normalization steps.

Definition 2.6 (upward operator δ) Let δ = (δt, δu) be a downward refinement oper-
ator, where:
[δt] given a description in ALC normal form D = D1 t · · · tDn:

• D′ ∈ δt(D) if D′ = D tDn+1 for some Dn+1 such that Dn+1 6v D
• D′ ∈ δt(D) if D′ = D′j t

⊔
1≤i≤n

i6=j
Di for some j ∈ {1,n}, D′j ∈ δu(Dj)

[δu] given a conjunctive description C = C1 u · · · u Cm:

• C ′ ∈ δu(C) if C ′ =
d

1≤i≤m
i6=k

Ci for some k ∈ {1,m}
• C ′ ∈ δu(C) if C ′ =

d
1≤i≤m

i6=k
Ci u C ′k for some k ∈ {1, . . . ,m}, where:

∗ C ′k w Ck if Ck ∈ prim(C) or
∗ C ′k = ∃R.D′ if Ck = ∃R.D and D′ ∈ δt(D) or
∗ C ′k = ∀R.D′ if Ck = ∀R.D and D′ ∈ δt(D)

δt and δu simply perform dual operations w.r.t. ρt and ρu, respectively. Some examples
of their application can be found in [19].

These operators follow the definition of the ALC normal form. Hence they cannot
be complete for more expressive DLs (see [30] for an analysis of refinement operators in
DLs). However, instead of such operators that likely lead to overfit the data (e.g. a gen-
eralizing operator based on the computation of the Least Common Subsumer (LCS) [10]
would amount to a simple union of the input descriptions in ALC) it may be preferable
to search the space (incompletely) using the non-ALC restrictions as atomic features
(concepts). Moreover, other operators have been designed to exploit also the knowledge
conveyed by the positive and negative examples in order to prune the possible candidate
refinements yielded by a single generalization / specialization step and to better direct the
search for suitable problem solutions [19]. Even more so, instead of using the examples
in a mere generate-and-test strategy based on these operators, they could be exploited
more directly3, in order to influence the choices made during the refinement process.

2.2.2. A refinement operator for CELOE

Designing a refinement operator ρ needs to make decisions on which properties are most
useful in practice regarding the underlying learning algorithm. Considering the prop-
erties completeness, weak completeness, properness, finiteness, and non-redundancy an

3E.g. using the most specific concepts [3] as their representatives to the concept level. But their exact com-
putation is feasible only for very simple DLs.

76 Lehmann et al. / Concept Learning

extensive analysis in [30] has shown that the most feasible property combination for our
setting is {weakly complete, complete, proper}, which we will justify briefly. Only for
less expressive description logics like EL, ideal, i.e. complete, proper and final, opera-
tors exist [29]. (Weak) Completeness is considered a very important property, since an
incomplete operator may fail to converge at all and thus may not return a solution even
if one exists. Reasonable, weakly complete operators are often complete. Consider, for
example, the situation where a weakly complete operator ρ allows to refine a concept C
to C uD with some D ∈ ρ(>). Then it turns out that this operator is already complete.

Concerning finiteness, having an infinite operator is less critical from a practical per-
spective since this issue can be handled algorithmically. So it is preferable not imposing
finiteness, which allows to develop a proper operator. As for non-redundancy, this ap-
pears to be very difficult to achieve for more complex operators. Consider, for example,
the concept A1 u A2 which can be reached from > via the chain > A1 A1 u A2,
For non-redundancy, the operator would need to make sure that this concept cannot be
reached via the chain > A2 A2 u A1. While there are methods to handle this
in such simple cases via normal forms, it becomes more complex for arbitrarily deeply
nested structures, where even applying the same replacement leads to redundancy. In the
following example, A1 is replaced by A1 uA2 twice in different order in each chain:

> ∀r1.A1 t ∀r2.A1 ∀r1.A1 t ∀r2.(A1 uA2)

 ∀r1.(A1 uA2) t ∀r2.(A1 uA2)

> ∀r1.A1 t ∀r2.A1 ∀r1.(A1 uA2) t ∀r2.A1

 ∀r1.(A1 uA2) t ∀r2.(A1 uA2)

To avoid this, an operator would need to regulate when A1 can be replaced by A1 uA2,
which appears not to be achievable by syntactic replacement rules. Alternatively, a com-
putationally inexpensive redundancy check can be used, which seems to be sufficiently
useful in practice.

We now define the refinement operator ρ: For each A ∈ NC , we define (sh stands
for subsumption hierarchy):

sh↓(A) ={A′ ∈ NC | A′ @ A, there is no A′′ ∈ NC with A′ @T A′′ @T A}

sh↓(>) is defined analogously for > instead of A. sh↑(A) is defined analogously for
going upward in the subsumption hierarchy. We do the same for roles, i.e. :

sh↓(r) ={r′ | r′ ∈ NR, r
′ @ r, there is no r′′ ∈ NR with r′ @T r′′ @T r}

domain(r) denotes the domain of a role r and range(r) the range of a role r. A range
axiom links a role to a concept. It asserts that the role fillers must be instances of a given
concept. Domain axioms restrict the first argument of role assertions to a concept. We
define:

ad(r) = an A with A ∈ {>} ∪NC and domain(r) v A
and there does not exist an A′ with domain(r) v A′ @ A

Lehmann et al. / Concept Learning 77

ar(r) is defined analogously using range instead of domain. ad stands for atomic domain
and ar stands for atomic range. We assign exactly one atomic concept as domain/range
of a role. Since using atomic concepts as domain and range is very common, domain and
ad as well as range and ar will usually coincide. The set appB of applicable properties
with respect to an atomic concept B is defined as:

appB = {r|r ∈ NR, ad(r) = A,A uB 6≡ ⊥}

To give an example, for the concept Person, we have that the role hasChild with
ad(hasChild) = Person is applicable, but the role hasAtomwith ad(hasAtom) =
ChemicalCompound is not applicable (assuming Person and ChemicalCompound
are disjoint). We will use this to restrict the search space by ruling out unsatisfiable con-
cepts. The index B describes the context in which the operator is applied, e.g. >
Person is a refinement step of ρ. However, ∃hasAtom.> ∃hasAtom.Person is
not a refinement step of ρ assuming ar(hasAtom) and Person are disjoint. The set of
most general applicable roles mgrB with respect to a concept B is defined as:

mgrB = {r | r ∈ appB , there is no r′ with r @ r′, r′ ∈ appB}

MB with B ∈ {>} ∪NC is defined as the union of the following sets:

• {A | A ∈ NC , A uB 6≡ ⊥, A uB 6≡ B, there is no A′ ∈ NC with A @ A′}
• {¬A | A ∈ NC ,¬AuB 6≡ ⊥,¬AuB 6≡ B, there is no A′ ∈ NC with A′ @ A}
• {∃r.> | r ∈ mgrB}
• {∀r.> | r ∈ mgrB}
The operator ρ is defined in Figure 1. Note that ρ delegates to an operator ρB with

B = > initially. B is set to the atomic range of roles contained in the input concept
when the operator recursively traverses the structure of the concept. The index B in the
operator (and the set M above) is used to rule out concepts which are disjoint with B.

Example 2.1 (ρ refinements) Since the operator is not easy to understand at first
glance, we provide some examples. Let the following knowledge base be given:

K = {Man @ Person;Woman @ Person;SUV @ Car;Limo @ Car;

Person u Car ≡ ⊥; domain(hasOwner) = Car; range(hasOwner) = Person}

Then the following refinements of > exist:

ρ(>) = {Car,Person,¬Limo,¬SUV,¬Woman,¬Man,
∃hasOwner.>,∀hasOwner.>,Car t Car,Car t Person, . . . }

This illustrates how the set M> is constructed. Note that refinements like CartCar are
incorporated in order to reach e.g. SUVtLimo later in a possible refinement chain. The
concept Car u ∃hasOwner.Person has the following refinements:

78 Lehmann et al. / Concept Learning

ρ(C) =

{
{⊥} ∪ ρ>(C) if C = >
ρ>(C) otherwise

ρB(C) =

∅ if C = ⊥
{C1 t · · · t Cn | Ci ∈MB (1 ≤ i ≤ n)} if C = >
{A′ | A′ ∈ sh↓(A)} if C = A (A ∈ NC)

∪{A uD | D ∈ ρB(>)}
{¬A′ | A′ ∈ sh↑(A)} if C = ¬A (A ∈ NC)

∪{¬A uD | D ∈ ρB(>)}
{∃r.E | A = ar(r), E ∈ ρA(D)} if C = ∃r.D
∪ {∃r.D u E | E ∈ ρB(>)}
∪ {∃s.D | s ∈ sh↓(r)}

{∀r.E | A = ar(r), E ∈ ρA(D)} if C = ∀r.D
∪ {∀r.D u E | E ∈ ρB(>)}
∪ {∀r.⊥ |

D = A ∈ NC and sh↓(A) = ∅}
∪ {∀s.D | s ∈ sh↓(r)}

{C1 u · · · u Ci−1 uD u Ci+1 u · · · u Cn | if C = C1 u · · · u Cn

D ∈ ρB(Ci), 1 ≤ i ≤ n} (n ≥ 2)

{C1 t · · · t Ci−1 tD t Ci+1 t · · · t Cn | if C = C1 t · · · t Cn

D ∈ ρB(Ci), 1 ≤ i ≤ n} (n ≥ 2)

∪ {(C1 t · · · t Cn) uD |
D ∈ ρB(>)}

Figure 1. Definition of the refinement operator ρ.

ρ(Car u ∃hasOwner.Person) = {Car u ∃hasOwner.Man,
Car u ∃hasOwner.Woman,
SUV u ∃hasOwner.Person,
Limo u ∃hasOwner.Person, . . . }

Note the traversal of the subsumption hierarchy, e.g. Car is replaced by SUV.

Proposition 2.1 (Downward Refinement of ρ) ρ is an ALC downward refinement op-
erator.

A distinguishing feature of ρ compared to other DL refinement operators [4,11], is
that it makes use of the subsumption and role hierarchy, e.g. for concepts A2 @ A1,
we reach A2 via > A1 A2. This way, we can stop the search if A1 is already
too weak and, thus, make better use of TBox knowledge. The operator also uses domain
and range of roles to reduce the search space. This is similar to mode declarations in
Aleph, Progol, and other ILP programs. However, in DL knowledge bases and OWL
ontologies, domain and range are usually explicitly given, so there is no need to define
them manually. Overall, the operator supports more structures than those in [4,11] and

Lehmann et al. / Concept Learning 79

tries to intelligently incorporate background knowledge. In [32] further extensions of the
operator are described, which increase its expressivity such that it can handle most OWL
class expressions. Note that ρ is infinite. The reason is that the set MB is infinite and we
put no bound on the number of elements in the disjunctions, which are refinements of the
top concept. Furthermore, the operator requires reasoner requests for calculating MB .
However, the number of requests is fixed, so – assuming the results of those requests
are cached – the reasoner is only needed in an initial phase, i.e. during the first calls
to the refinement operator. This means that, apart from this initial phase, the refinement
operator performs only syntactic rewriting rules.

3. CELOE

Figure 2. Outline of the gen-
eral learning approach in
CELOE: One part of the
algorithm is the generation
of promising class expres-
sions taking the available
background knowledge into
account. Another part is a
heuristic measure of how
close an expression is to be-
ing a solution of the learn-
ing problem. Figure adapted
from [17,18].

Figure 2 gives an overview of our algorithm CELOE (standing for “class expression
learning for ontology engineering”), which follows the common “generate and test“ ap-
proach in ILP. Learning is seen as a search process and several class expressions are gen-
erated and tested against a background knowledge base. Each of those class expressions
is evaluated using a heuristic [27]. A challenging part of a learning algorithm is to decide
which expressions to test. Such a decision should take the computed heuristic values and
the structure of the background knowledge into account. For CELOE, we use the ap-
proach described in [31,32] as base, where this problem has been analysed, implemented,
and evaluated. It is based on the refinement operator introduced in Sect. 2.2.2.

The approach we used is a top-down algorithm based on refinement operators as il-
lustrated in Figure 3. This means that the first class expression, which will be tested is the
most general expression (>), which is then mapped to a set of more specific expressions
by means of a downward refinement operator. The refinement operator can be applied to
the obtained expressions again, thereby spanning a search tree. The search tree can be
pruned when an expression does not cover sufficiently many instances of the class A we
want to describe. One example for a path in a search tree spanned up by a downward
refinement operator is the following (denotes a refinement step):

> Person Person u takesPartinIn.>
 Person u takesPartIn.Meeting

80 Lehmann et al. / Concept Learning

>

Person

Person u ∃takesPartIn.>

Person u ∃takesPartIn.Meeting . . .

. . .

Car Building . . .

Figure 3. Illustration of a search tree in a top down refinement approach.

The heart of such a learning strategy is to define a suitable refinement operator and an
appropriate search heuristics for deciding which nodes in the search tree should be ex-
panded. The refinement operator in the considered algorithm is defined in [32]. It is based
on [31] which in turn is build on theoretical foundations in [30]. It has been shown to
be the best achievable operator with respect to a set of properties (not further described
here), which are used to assess the performance of refinement operators. The learning al-
gorithm supports conjunction, disjunction, negation, existential and universal quantifiers,
cardinality restrictions, hasValue restrictions as well as boolean and double datatypes.

While the major change compared to other supervised learning algorithms for OWL
is the previously described heuristic, there are also further modifications. The goal of
those changes is to adapt the learning algorithm to the ontology engineering scenario:
For example, the algorithm was modified to introduce a strong bias towards short class
expressions. This means that the algorithm is less likely to produce long class expres-
sions, but is almost guaranteed to find any suitable short expression (see [8] for an al-
ternative approach to achieve this). The rationale behind this change is that knowledge
engineers can understand short expressions better than more complex ones and it is es-
sential not to miss those. We also introduced improvements to enhance the readability of
suggestions: Each suggestion is reduced, i.e. there is a guarantee that they are as succinct
as possible. For example, ∃hasLeader.> u Capital is reduced to Capital if the
background knowledge allows to infer that a capital is a city and each city has a leader.
This reduction algorithm uses the complete and sound Pellet reasoner, i.e. it can take
any possible complex relationships into account by performing a series of subsumption
checks between class expressions. A caching mechanism is used to store the results of
those checks, which allows to perform the reduction very efficiently after a warm-up
phase. We also make sure that “redundant” suggestions are omitted. If one suggestion
is longer and subsumed by another suggestion and both have the same characteristics,
i.e. classify the relevant individuals equally, the more specific suggestion is filtered. This
avoids expressions containing irrelevant subexpressions and ensures that the suggestions
are sufficiently diverse.

4. DL-FOIL

In this section, DL-FOIL [12] algorithm is presented. The main aim of this work was
conceiving a learning algorithm that could overcome two limitation of the current DL
concept learning systems, namely avoiding the computation of the most specific con-
cepts (which is also language-dependent) and the excessive (syntactic) complexity of the

Lehmann et al. / Concept Learning 81

Algorithm 1 GENERALIZE(Positives, Negatives, Unlabeled): Generalization
Require: Positives, Negatives, Unlabeled: positive, negative and unlabeled individuals
Ensure: Generalization: concept definition solving the learning problem

1: Generalization← ⊥
2: PositivesToCover← Positives
3: while PositivesToCover 6= ∅ do
4: PartialDef← >
5: CoveredNegatives← Negatives
6: while CoveredNegatives 6= ∅ do
7: PartialDef← SPECIALIZE(PartialDef,PositivesToCover,CoveredNegatives,Unlabeled)
8: CoveredNegatives← {n ∈ Negatives | K |= ¬PartialDef(n)}
9: end while

10: CoveredPositives← {p ∈ PositivesToCover | K |= PartialDef(p)}
11: Generalization← Generalization t PartialDef
12: PositivesToCover← PositivesToCover \ CoveredPositives
13: end while
14: return Generalization

resulting generalizations. For instance, the algorithm presented in [19] requires lifting
the instances to the concept level through a suitable approximate MSC operator and then
start learning from such extremely specific concept descriptions. This setting has the
disadvantages of approximation and language-dependency. In DL-LEARNER [31] these
drawbacks are partly mitigated because a learning procedure grounded on a genetic pro-
gramming based on refinement operators is adopted, whose fitness is computed on the
grounds of the covered instances (retrieval). More heuristics and approximated retrieval
procedures are further investigated in [17].

The DL-FOIL algorithm essentially adapts the original FOIL algorithm [35] to the
different learning problem with DL knowledge bases. Together with a sequential cov-
ering procedure, it exploits the (downward) refinement operators defined in Sect. 2.2.1
and a heuristic similar to the information gain to select among candidate specialization.
Various search strategies have been experimented as well as evaluation measures. Those
that we will present in the following are those which gave the best results. A sketch of
the main routine of the learning procedure is reported as Alg. 1. Like in the original FOIL
algorithm, the generalization routine computes (partial) generalizations as long as they
do not cover any negative example. If this occurs, the specialization routine is invoked
for solving these sub-problems. This routine applies the idea of specializing using the
(incomplete) refinement operator defined in the previous section. The specialization con-
tinues until no negative example is covered (or a very limited amount4 of them). The par-
tial generalizations built on each outer loop are finally grouped together in a disjunction
which is an allowed constructor for more expressive logics than (or equal to) ALC. Also
the outer while-loop can be exited before covering all the positive examples for avoiding
overfitting generalizations.

The specialization function SPECIALIZE (reported as Alg. 2) is called from within
the inner loop of the generalization procedure in order to specialize an overly general
partial generalization. The function searches for proper refinements that provide at least
a minimal gain (see below) fixed with a threshold (MINGAIN). Specializations are ran-

4The actual exit-condition for the inner loop may be: 1 − |CoveredNegatives|/|Negatives| < ε, for some
small constant ε.

82 Lehmann et al. / Concept Learning

Algorithm 2 SPECIALIZE(PartialDef, Positives, Negatives, Unlabeled): Refinement
Require:

PartialDef : concept definition
Positives, Negatives, Unlabeled: (positive, negative and unlabeled) individuals

Ensure: Refinement: concept definition
1: const:

MINGAIN: minimal acceptable gain;
NUMSPECS: number of specializations to be generated

2: bestGain← 0
3: while bestGain < MINGAIN do
4: for i← 1 to NUMSPECS do
5: Specialization← GETRANDOMREFINEMENT(ρ,PartialDef)
6: CoveredPositives← {p ∈ Positives | K |= Specialization(p)}
7: CoveredNegatives← {n ∈ Negatives | K |= ¬Specialization(n)}
8: thisGain← GAIN(CoveredPositives,CoveredNegatives,Unlabeled,Positives,Negatives)
9: if thisGain > bestGain then

10: bestConcept← Specialization
11: bestGain← thisGain
12: end if
13: end for
14: end while
15: return Refinement

domly generated using the ρ operator defined in Sect. 2.2.1, especially ρu is exploited
with the addition of new conjuncts or the specialization of primitive concepts or role
restrictions. This is similar to the original FOIL algorithm, where new random literals
are appended to clauses’ antecedents. A first random choice is made between atomic
concepts or role restrictions. In the latter case another random choice is made between
existential and universal restriction. In all cases the required concept and roles names are
also randomly selected. This may give a way to impose some further bias to the form of
the concept descriptions to be induced.

As regards the heuristic employed to guide the search, it was shown [21] that the gain
function has to take into account incomplete examples. Similarly to a semi-supervised
learning setting, the gain value g that is computed in GAIN() for selecting the best refine-
ment is obtained as follows:

g = p1 ·
[
log

p1 + u1w1

p1 + n1 + u1
− log

p0 + u0w0

p0 + n0 + u0

]

where p1, n1 and u1 represent, resp., the number of positive, negative and unlabeled ex-
amples covered by the specialization; p0, n0 and u0 stand for the number of positive, neg-
ative and unlabeled examples covered by the former definition, the weights w0, w1 can
be determined by an estimate of the prior probability of the positive examples, resp., in
the current and former concept definition. To avoid the case of null numerators, a further
correction of the probabilities is performed by resorting to an m-estimate procedure.

The overall complexity of the algorithm is largely determined by the calls to reason-
ing services, namely subsumption (satisfiability) and instance-checking. If we consider
only concepts expressed in ALC logic, the complexity of these inferences is P-space.
However, should the considered knowledge base contain definitions expressed in more

Lehmann et al. / Concept Learning 83

∃hasPart.>

∃hasPart.Worn

∃hasPart.(Worn u ¬Replaceable)

SendBack ¬SendBack (v Fix)

¬SendBack (v Ok)

¬SendBack (v Machine)

Figure 4. A TDT whose leftmost path corresponds to the DL concept definition
SendBack ≡ ∃hasPart.(Worn u ¬Replaceable). Other definitions can be associated to the paths to leaves
labeled with ¬SendBack that are related to other (disjoint) concepts.

complex languages which require more complex reasoning procedures. The inductive
algorithm can be thought as a means for building (upper) ALC-approximations of the
target concepts. The number of nodes visited during the traversal of the search space
grows with richness of the vocabulary, yet not with the expressiveness of the underlying
DL, because the algorithm searches a sub-space of the actual search space induced by
the language.

5. Learning Terminological Decision Trees

First-order logical decision trees (FOLDTs) [5] are binary decision trees in which

1. the nodes contain tests in the form of conjunctions of literals;
2. left and right branches stand, resp., for the truth-value (resp. true and false) de-

termined by the test evaluation;
3. different nodes may share variables, yet a variable that is introduced in a certain

node must not occur in the right branch of that node.

Terminological decision trees (TDTs) extend the original definition, allowing DL concept
descriptions as (variable-free) node tests. Fig. 4 shows a TDT denoting also the definition
of the SendBack concept as in the problem described in [5].

5.1. Classification

The TDTs can be used for classifying individuals. Alg. 3 shows the related classification
procedure. It uses other functions: LEAF() to determine whether a node is a leaf of the
argument tree, ROOT() which returns the root node of the input tree, and INODE() which
retrieves the test concept and the left and right subtrees branching from a given internal
node. Given an individual a, starting from the root node, the algorithm checks the class-
membership w.r.t. the test concept Di in the current node, i.e. K |= Di(a), sorting a to
the left branch if the test is successful while the right branch is chosen if K |= ¬Di(a).
Eventually the classification is found as a leaf-node concept.

Note that the open-world semantics may cause unknown answers (failure of both
left and right branch tests) that can be avoided by considering a weaker (default) right-
branch test: K 6|= Di(a). This differs from the FOLDTs where the test actually consists
of several conjunctions that occur in the path from the root to the current node.

84 Lehmann et al. / Concept Learning

Algorithm 3 Classification with TDTs.
CLASSIFY(a: individual, T : TDT, K: KB): concept;
1. N ← ROOT(T);
2. while ¬LEAF(N,T) do

(a) (D,Tleft, Tright)← INODE(N);
(b) if K |= D(a) then N ← ROOT(Tleft)
(c) elseif K |= ¬D(a) then N ← ROOT(Tright)
(d) else return >

3. (D, ·, ·)← INODE(N);
4. return D;

5.2. From Terminological Decision Trees to Concept Descriptions

Note that each node in a path may be used to build a concept description through special-
izations. This can be given 1) by adding a conjunctive concept description, 2) by refining
a sub-description in the scope of an existential, universal or number restriction or 3) by
narrowing a number restriction (which may be allowed by the underlying language, e.g.
ALN orALCQ). No special care5 is to be devoted to negated atoms and their variables.

For each target concept name C it is possible to derive a single concept definition
from a TDT. The algorithm (see Alg. 4) follows all the paths leading to success nodes
i.e. leaves labeled with C (the heads of the clauses in the original setting) collecting the
intermediate test concepts (formerly, the body literals). In this way, each path yields a
different conjunctive concept description that represents a different version of the target
concept in conjunctive form Di = Di

1 u · · · u Di
l . The final single description for the

target concept is obtained as the disjunctive description built with concepts from this
finite set S = {Di}Mi=1. Hence, the final definition is C ≡ ⊔M

i=1Di. As an example,
looking at the TDT depicted in Figure 4, a concept definition that may be extracted is

Ok ≡ ∃hasPart.> u ¬∃hasPart.Worn ≡ ∃hasPart.> u ∀hasPart.¬Worn
i.e. something that has exclusively parts which are not worn.

Like in the original logic tree induction setting, also internal nodes may be utilized
to induce new intermediate concepts.

5.3. Induction of TDTs

The subsumption relationship v induces a partial order on the space of DL concept de-
scriptions. Then, as seen above, the learning task can be cast as a search for a solution of
the problem in the partially ordered space. In such a setting, suitable operators to traverse
the search space are required [19,32]. While existing DL concept induction algorithms
generally adopt a separate-and-conquer covering strategy, the TDT-learning algorithm
adopts a divide-and-conquer strategy [6]. It also tries to cope with the limitations of the
other learning systems, namely approximation and language-dependence. Indeed, since
the early works [10], instances are required to be transposed to the concept level before
the learning can start. This is accomplished by resorting to the computation, for each
training individual, of the related MSC the individual belongs to [3], which need not ex-

5We are considering expressive (and decidable) DL languages likeALCQ, that are endowed with full nega-
tion, hence the situation is perfectly symmetric.

Lehmann et al. / Concept Learning 85

Algorithm 4 Mapping a TDT onto a DL concept description.
DERIVEDEFINITION(C: concept name, T : TDT): concept description;

1. S ← ASSOCIATE(C, T,>);
2. return

⊔
D∈S D;

ASSOCIATE(C: concept name; T : TDT; Dc: current concept description): set of descriptions;

1. N ← ROOT(T);
2. (Dn, Tleft, Tright)← INODE(N);
3. if LEAF(N,T) then

(a) if Dn = C then
return {Dc};

else
return ∅;

else

(a) Sleft ← ASSOCIATE(C, Tleft, Dc uDn);
(b) Sright ← ASSOCIATE(C, Tright, Dc u ¬Dn);
(c) return Sleft ∪ Sright;

ist, especially for expressive DLs, and thus has to be approximated. Even in an approx-
imated version, the MSCs turn out to be extremely specific descriptions which affects
both the efficiency of learning and the effectiveness of the learned descriptions as this
specificity easily leads to overfitting the data [19].

The algorithms implemented by DL-LEARNER [32] partly mitigate these disad-
vantages being based on stochastic search using refinement operators and a heuristic
computed on the grounds of the covered individuals (and a syntactic notion of concept
length). Generate-and-test strategies may fall short when considering growing search
spaces determined by more expressive languages. This drawback is hardly avoidable and
it has been tackled by allowing more interaction with the knowledge engineer which can
be presented with partial solutions and then decide to stop further refinements.

Our TDT-induction algorithm adapts the classic schema implemented by C4.5 [34]
and TILDE [5]. A sketch of the main routine is reported as Alg. 5. It reflects the standard
tree induction algorithms with the addition of the treatment of unlabeled training indi-
viduals. The three initial conditions take care of the base cases of the recursion, namely:

1. no individuals got sorted to the current subtree root then the resulting leaf is de-
cided on the grounds of the prior probabilities of positive and negative instances
(resp. Pr+ and Pr−);

2. no negative individual yet a sufficient rate (w.r.t. the threshold θ) of positive ones
got sorted to the current node, then the leaf is labeled accordingly;

3. dual case w.r.t. to the previous one.

The second half of the algorithm (randomly) generates a set Specs of (satisfiable)
candidate descriptions (calling GENERATENEWCONCEPTS), that can specialize the cur-
rent description D when added as a conjunction. Then, the best one (Dbest) is selected
in terms of an improvement of the purity of the subsets of individuals resulting from a
split based on the test description. The (im)purity measure is based on the entropic infor-

86 Lehmann et al. / Concept Learning

Algorithm 5 The main routine for inducing terminological decision trees
INDUCETDTREE(C: concept name; D: current description; Ps, Ns, Us: set of (positive,
negative, unlabeled) training individuals): TDT;

1: const θ; {purity threshold}
2: Initialize new TDT T ;
3: if |Ps| = 0 and |Ns| = 0 then
4: if Pr+ ≥ Pr− then
5: T.root← C
6: else
7: T.root← ¬C;
8: end if
9: return T ;

10: end if
11: if |Ns| = 0 and |Ps|/(|Ps|+ |Us|) > θ then
12: T.root← C; return T ;
13: end if
14: if |Ps| = 0 and |Ns|/(|Ns|+ |Us|) > θ then
15: T.root← ¬C; return T ;
16: end if
17: Specs← GENERATENEWCONCEPTS(D,Ps,Ns);
18: Dbest ← SELECTBESTCONCEPT(Specs,Ps,Ns,Us);
19: ((P l, N l, U l), (P r, Nr, Ur))← SPLIT(Dbest ,Ps,Ns,Us);
20: T.root← Dbest ;
21: T.left← INDUCETDTREE(C,D uDbest , P

l, N l, U l);
22: T.right← INDUCETDTREE(C,D u ¬Dbest , P

r, Nr, Ur);
23: return T ;

mation gain [34] or on the Gini index which was finally preferred. In the DL setting the
problem is made more complex by the presence of instances which cannot be labelled as
positive or negative (see [12]) whose contributions are considered as proportional to the
prior distribution of positive and negative examples.

Once the best descriptionDbest has been selected (calling SELECTBESTCONCEPT),
it is installed as the current subtree root and the sets of individuals sorted to this node
are subdivided according to their classification w.r.t. such a concept. Note that unlabeled
individuals must be sorted to both subtrees. Finally the recursive calls for the construc-
tion of the subtrees are made, passing the proper sets of individuals and the concept
descriptions D uDbest and D u ¬Dbest related to either path.

The resulting system, TERMITIS (TERMInological Tree Induction System), ver.
1.2, was applied, for comparative purposes, to ontologies that have been considered in
previous experiments with other DL learning systems [13].

6. Implementation

6.1. The Protégé Plugin

After implementing and testing the learning algorithm described in Sect. 3, it has been
integrated into Protégé and OntoWiki. We extended the Protégé 4 plugin mechanism
to be able to integrate the DL-Learner plugin as an additional method to create class

Lehmann et al. / Concept Learning 87

Figure 5. A screenshot of the
DL-Learner Protégé plugin. It is
integrated as additional tab to cre-
ate class expressions in Protégé.
The user is only required to press
the “suggest equivalent class ex-
pressions” button and within a few
seconds they will be displayed or-
dered by accuracy. If desired, the
knowledge engineer can visualize
the instances of the expression to
detect potential problems. At the
bottom, optional expert configura-
tion settings can be adopted.

expressions. The plugin has also become part of the official Protégé 4 repository. A
screenshot of the plugin is shown in Fig. 5. To use the plugin, the knowledge engineer
is only required to press a button, which then starts a new thread, in the background,
that executes the learning algorithm. The used algorithm is an anytime algorithm, i.e. at
each point in time we can always see the currently best suggestions. The GUI updates
the suggestion list each second until the maximum runtime – 10 seconds per default –
is reached. For each suggestion, the plugin displays its accuracy. When clicking on a
suggestion, it is visualized by displaying two circles: One stands for the instances of the
class to describe and another circle for the instances of the suggested class expression.
Ideally, both circles overlap completely, but in practice this will often not be the case.
Clicking on the plus symbol in each circle shows its list of individuals. Those individuals
are also presented as points in the circles and moving the mouse over such a point shows
information about the respective individual. Red points show potential problems, where
it is important to note that we use a closed world assumption to detect those. If there
is not only a potential problem, but adding the expression would render the ontology
inconsistent, the suggestion is marked red and a warning message is displayed. Accepting
such a suggestion can still be a good choice, because the problem often lies elsewhere in
the knowledge base, but was not obvious before, since the ontology was not sufficiently
expressive for reasoners to detect it. This is illustrated by a screencast available from the
plugin homepage,6 where the ontology becomes inconsistent after adding the axiom, and
the real source of the problem is fixed afterwards. Being able to make such suggestions
can be seen as a strength of the plugin.

The plugin allows the knowledge engineer to change expert settings. Those settings
include the maximum suggestion search time, the number of results returned and settings
related to the desired target language., e.g. the knowledge engineer can choose to stay

6http://dl-learner.org/wiki/ProtegePlugin

88 Lehmann et al. / Concept Learning

within the OWL 2 EL profile or enable/disable certain class expression constructors. The
learning algorithm is designed to be able to handle noisy data and the visualisation of the
suggestions will reveal false class assignments so that they can be fixed afterwards.

6.2. The OntoWiki Plugin

Analogous to Protégé, we created a similar plugin for OntoWiki [2,1]. OntoWiki is a
lightweight ontology editor, which allows distributed and collaborative editing of knowl-
edge bases. The DL-Learner plugin is technically realized by implementing an OntoWiki
component, which contains the core functionality, and a module, which implements the
UI embedding. The DL-Learner plugin can be invoked from several places in OntoWiki,
for instance through the context menu of classes. The plugin accesses DL-Learner func-
tionality through its WSDL-based web service interface. Jar files containing all neces-
sary libraries are provided by the plugin. If a user invokes the plugin, it scans whether
the web service is online at its default address. If not, it is started automatically.

Figure 6. Extraction with three starting instances. The circles represent different recursion depths. The circles
around the starting instances signify recursion depth 0. The larger inner circle represents the fragment with
recursion depth 1 and the largest outer circle with recursion depth 2. Figure taken from [17].

A major technical difference compared to the Protégé plugin is that the knowledge
base is accessed via SPARQL, since OntoWiki is a SPARQL-based web application. In
Protégé, the current state of the knowledge base is stored in memory in a Java object.
As a result, we cannot easily apply a reasoner on an OntoWiki knowledge base. To over-
come this problem, we use the DL-Learner fragment selection mechanism described in
[17]. Starting from a set of instances, the mechanism extracts a relevant fragment from
the underlying knowledge base up to some specified recursion depth. Fig. 6 provides an
overview of the fragment selection process. The fragment has the property that learn-
ing results on it are similar to those on the complete knowledge base. For a detailed de-
scription see [17]. The fragment selection is only performed for medium to large-sized
knowledge bases. Small knowledge bases are retrieved completely and loaded into the
reasoner. While the fragment selection can cause a delay of several seconds before the
learning algorithm starts, it also offers flexibility and scalability. For instance, we can
learn class expressions in large knowledge bases such as DBpedia in OntoWiki. Fig. 7
shows a screenshot of the OntoWiki plugin applied to the SWORE [37] ontology. Sug-

Lehmann et al. / Concept Learning 89

Figure 7. Screenshot of the result table of the DL-Learner plugin in OntoWiki.

gestions for learning the class “customer requirement” are shown in Manchester OWL
Syntax. Similar to the Protégé plugin, the user is presented a table of suggestions along
with their accuracy value. Additional details about the instances of “customer require-
ment” covered by a suggested class expressions and additionally contained instances can
be viewed via a toggle button. The modular design of OntoWiki allows rich user interac-
tion: Each resource, e.g. a class, property, or individual, can be viewed and subsequently
modified directly from the result table as shown for “design requirement” in the screen-
shot. For instance, a knowledge engineer could decide to import additional information
available as Linked Data and run the CELOE algorithm again to see whether different
suggestions are provided with additional background knowledge.

7. Conclusions

Ontology construction may be a burdensome and time consuming task. To cope with
this problem, the usage of machine learning techniques has been proposed. Specifically,
the problem is regarded as a (supervised) concept learning problem where, given a set
of individual resources labeled as instances of a target concept, the goal is to find an
intensional concept description for them. Particularly, from those labels, axioms can be
induced, which can then be confirmed by the knowledge engineer. The concept learning
problem is tackled as a search through a space of candidate descriptions in the reference
representation guided by exemplars of the target concepts. Those techniques are also ap-
plicable in other domains, e.g. question answering [28]. After surveyed existing methods
and some basics on refinement operators, three different algorithms have been presented
and compared in more detail: DL-FOIL, CELOE and TERMITIS.

References

[1] Sören Auer, Sebastian Dietzold, Jens Lehmann, and Thomas Riechert. OntoWiki: A tool for social, se-
mantic collaboration. In Natalya Fridman Noy, Harith Alani, Gerd Stumme, Peter Mika, York Sure, and

90 Lehmann et al. / Concept Learning

Denny Vrandecic, editors, Proceedings of the Workshop on Social and Collaborative Construction of
Structured Knowledge (CKC 2007) at the 16th International World Wide Web Conference (WWW2007)
Banff, Canada, May 8, 2007, volume 273 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

[2] Sören Auer, Sebastian Dietzold, and Thomas Riechert. Ontowiki - a tool for social, semantic collabora-
tion. In ISWC 2006, volume 4273 of LNCS, pages 736–749. Springer, 2006.

[3] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniel Nardi, and Peter Patel-Schneider, editors.
The Description Logic Handbook. Cambridge University Press, 2003.

[4] Liviu Badea and Shan hwei Nienhuys-Cheng. A refinement operator for description logics. In Proc. of
the Int. Conf. on Inductive Logic Programming, volume 1866 of LNAI, pages 40–59. Springer, 2000.

[5] Hendrik Blockeel and Luc De Raedt. Top-down induction of first-order logical decision trees. Artificial
Intelligence, 101(1-2):285–297, 1998.

[6] Henrik Boström. Covering vs. divide-and-conquer for top-down induction of logic programs. In Proc.
of the Int. Joint Conf. on Artificial Intelligence, IJCAI95, pages 1194–1200. Morgan Kaufmann, 1995.

[7] Lorenz Bühmann and Jens Lehmann. Universal OWL axiom enrichment for large knowledge bases. In
Proceedings of EKAW 2012, 2012.

[8] Lorenz Buhmann and Jens Lehmann. Pattern based knowledge base enrichment. In 12th International
Semantic Web Conference, 21-25 October 2013, Sydney, Australia, 2013.

[9] William W. Cohen and Haym Hirsh. Learnability of description logics. In Proceedings of the Fourth
Annual Workshop on Computational Learning Theory. ACM Press, 1992.

[10] William W. Cohen and Haym Hirsh. Learning the CLASSIC description logic. In Proc. of the Int. Conf.
on Principles of Knowledge Representation and Reasoning, pages 121–133. Morgan Kaufmann, 1994.

[11] Floriana Esposito, Nicola Fanizzi, Luigi Iannone, Ignazio Palmisano, and Giovanni Semeraro.
Knowledge-intensive induction of terminologies from metadata. In The Semantic Web – ISWC 2004:
Third International Semantic Web Conference. Proceedings, pages 441–455. Springer, 2004.

[12] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. DL-FOIL: Concept learning in description
logics. In F. Zelezný and N. Lavrac, editors, Proceedings of the 18th International Conference on
Inductive Logic Programming, ILP2008, volume 5194 of LNAI, pages 107–121. Springer, 2008.

[13] Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito. Induction of concepts in web ontologies
through terminological decision trees. In José L. Balcázar et al., editors, Proceedings of ECML PKDD
2010, Part I, volume 6321 of LNCS/LNAI, pages 442–457. Springer, 2010.

[14] Nicola Fanizzi, Floriana Esposito, Stefano Ferilli, and Giovanni Semeraro. A methodology for the
induction of ontological knowledge from semantic annotations. In Proc. of the Conf. of the Italian
Association for Artificial Intelligence, volume 2829 of LNAI/LNCS, pages 65–77. Springer, 2003.

[15] Nicola Fanizzi, Stefano Ferilli, Luigi Iannone, Ignazio Palmisano, and Giovanni Semeraro. Downward
refinement in theALN description logic. In Proceedings of the 4th International Conference on Hybrid
Intelligent Systems, HIS2004, pages 68–73. IEEE Computer Society, 2005.

[16] Sally A. Goldman, Stephen S. Kwek, and Stephen D. Scott. Learning from examples with unspecified
attribute values. Information and Computation, 180(2):82–100, 2003.

[17] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of OWL class descriptions on very large
knowledge bases. International Journal on Semantic Web and Information Systems, 5(2):25–48, 2009.

[18] Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of owl class expressions on very
large knowledge bases and its applications. In Interoperability Semantic Services and Web Applica-
tions: Emerging Concepts, editors, Learning of OWL Class Expressions on Very Large Knowledge Bases
and its Applications, chapter 5, pages 104–130. IGI Global, 2011.

[19] Luigi Iannone, Ignazio Palmisano, and Nicola Fanizzi. An algorithm based on counterfactuals for con-
cept learning in the semantic web. Applied Intelligence, 26(2):139–159, 2007.

[20] Josué Iglesias and Jens Lehmann. Towards integrating fuzzy logic capabilities into an ontology-based
inductive logic programming framework. In Proc. of the 11th International Conference on Intelligent
Systems Design and Applications (ISDA), 2011.

[21] Nobuhiro Inuzuka, Masakage Kamo, Naohiro Ishii, Hirohisa Seki, and Hidenori Itoh. Tow-down induc-
tion of logic programs from incomplete samples. In Selected Papers from the 6th International Workshop
on Inductive Logic Programming, ILP96, volume 1314 of LNAI, pages 265–282. Springer, 1997.

[22] Jörg Uwe Kietz and Katharina Morik. A polynomial approach to the constructive induction of structural
knowledge. Machine Learning, 14(2):193–218, 1994.

[23] Agnieszka Ławrynowicz and Volker Tresp. Introducing machine learning. In Jens Lehmann and Johanna
Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /

Lehmann et al. / Concept Learning 91

IOS Press, 2014.
[24] Jens Lehmann. Hybrid learning of ontology classes. In Proc. of the 5th Int. Conference on Machine

Learning and Data Mining MLDM, volume 4571 of Lecture Notes in Computer Science, pages 883–898.
Springer, 2007.

[25] Jens Lehmann. DL-Learner: learning concepts in description logics. Journal of Machine Learning
Research (JMLR), 10:2639–2642, 2009.

[26] Jens Lehmann. Learning OWL Class Expressions. PhD thesis, University of Leipzig, 2010. PhD in
Computer Science.

[27] Jens Lehmann, Sören Auer, Lorenz Bühmann, and Sebastian Tramp. Class expression learning for
ontology engineering. Journal of Web Semantics, 9:71 – 81, 2011.

[28] Jens Lehmann and Lorenz Bühmann. Autosparql: Let users query your knowledge base. In Proceedings
of ESWC 2011, 2011.

[29] Jens Lehmann and Christoph Haase. Ideal downward refinement in the el description logic. In Proc. of
the Int. Conf. on Inductive Logic Programming, volume 5989 of LNCS, pages 73–87. Springer, 2009.

[30] Jens Lehmann and Pascal Hitzler. Foundations of refinement operators for description logics. In ILP
2007, volume 4894 of LNCS, pages 161–174. Springer, 2008.

[31] Jens Lehmann and Pascal Hitzler. A refinement operator based learning algorithm for the ALC descrip-
tion logic. In ILP 2007, volume 4894 of LNCS, pages 147–160. Springer, 2008.

[32] Jens Lehmann and Pascal Hitzler. Concept learning in description logics using refinement operators.
Machine Learning journal, 78(1-2):203–250, 2010.

[33] Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18(2):203–226, 1982.
[34] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106, 1986.
[35] J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266, 1990.
[36] Luc De Raedt. Logical and Relational Learning. Springer, 2008.
[37] Thomas Riechert, Kim Lauenroth, Jens Lehmann, and Sören Auer. Towards semantic based require-

ments engineering. In I-KNOW 2007, 2007.
[38] Gunnar Teege. A subtraction operation for description logics. In Proc. of the Int. Conf. on Principles of

Knowledge Representation and Reasoning, pages 540–550. Morgan Kaufmann, 1994.

Learning Onto-Relational Rules with
Inductive Logic Programming

Francesca A. LISI,
Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy

lisi@di.uniba.it

Abstract. Rules complement and extend ontologies on the Semantic Web. We re-
fer to these rules as onto-relational since they combine DL-based ontology lan-
guages and Knowledge Representation formalisms supporting the relational data
model within the tradition of Logic Programming and Deductive Databases. Rule
authoring is a very demanding Knowledge Engineering task which can be auto-
mated though partially by applying Machine Learning algorithms. In this chapter
we show how Inductive Logic Programming (ILP), born at the intersection of Ma-
chine Learning and Logic Programming and considered as a major approach to
Relational Learning, can be adapted to Onto-Relational Learning. For the sake of
illustration, we provide details of a specific Onto-Relational Learning solution to
the problem of learning rule-based definitions of DL concepts and roles with ILP.

Keywords. Inductive Logic Programming, Rule Languages and Systems, Integration
of Rules and Ontologies, Deductive Databases.

Introduction

Rules are widely used in Knowledge Engineering (KE) and Knowledge Representation
(KR) as a powerful way of modeling knowledge. In the broadest sense, a rule could be
any statement which says that a certain conclusion must be valid whenever a certain
premise is satisfied, i.e. any statement that could be read as a sentence of the form “if ..
then ..". Rules have been successfully applied in the fields of Logic Programming (LP)
and Deductive Databases [6]. Rules play also a role in the Semantic Web architecture.
Interest in this area has grown rapidly over recent years as testified by the Rules In-
terchange Format (RIF)1 activity at W3C. Rules from the RIF perspective would allow
the integration, transformation and derivation of data from numerous sources in a dis-
tributed, scalable, and transparent manner. Because of the great variety in rule languages
and rule engine technologies, RIF consists of a core language2 to be used along with a set
of standard and non-standard extensions. These extensions need not all be combinable
into a single unified language. As for the expressive power, two directions are followed:
monotonic extensions towards full First Order Logic (FOL) and non-monotonic (NM)
extensions based on the LP tradition. The debate around a RIF has taken a long time also
due to the controversial issue of having rules on top or aside ontologies [20]. There is

1http://www.w3.org/2005/rules/wiki/RIF_Working_Group
2http://www.w3.org/TR/rif-core/

94 Lisi / Learning Onto-Relational Rules with ILP

a consensus now on the fact that rules complement and extend ontologies. Indeed, rules
can be used in combination with ontologies, or as a means to specify ontologies. They are
also frequently applied over ontologies, to draw inferences, express constraints, specify
policies, react to events, discover new knowledge, transform data, etc. In particular, RIF
rules can refer to RDF and OWL facts. Since the design of OWL has been based on the
SH family of very expressive Description Logics (DLs) (cf. Krötzsch et al. [23] in this
volume), the NM dialects of RIF will most likely be inspired by those hybrid KR systems
that integrate DLs and LP. Such rule formalisms are of interest to this chapter. We shall
refer to them as onto-relational rule languages from now on. Apart from the specific
ontology language, the integration of ontologies and rules is already present in existing
knowledge bases (KBs). Notably the Cyc3 KB consists of terms (which constitute the
vocabulary, i.e. the ontology) and assertions which relate those terms and include both
simple ground assertions and rules [26].

The acquisition of rules for very large KBs like Cyc is a very demanding KE activity.
Indeed, according to an estimate from the Cyc project, human experts produce rules at
the rate of approximately three per hour but can evaluate an average of twenty rules per
hour. Also, for untrained knowledge engineers, while rule authoring may be very diffi-
cult, rule reviewing is feasible (although still difficult). A partial automation of the rule
authoring task, e.g.by applying Machine Learning (ML) algorithms (cf. Lawrynowicz
and Tresp [24] in this volume), can be of help even though the automatically produced
rules are not guaranteed to be correct. In fact, of those rules, some will turn out to be
correct, and some will be found to need editing to be assertible. Yet, as mentioned above,
rule reviewing is less critical than rule authoring. In order to partially automate the au-
thoring of onto-relational rules, the bunch of ML techniques collectively known under
the name of Inductive Logic Programming (ILP) [44] seems particularly promising for
the following reasons. ILP was born at the intersection of ML and LP [43], and is widely
recognized as a major approach to Relational Learning [7]. Apart from the KR frame-
work of LP, the distinguishing feature of ILP, also with respect to other ML forms, is the
use of prior domain knowledge in the form of a logical theory during the induction pro-
cess. In this chapter we take a critical look at ILP proposals for learning relational rules
while having an ontology as the background theory. These proposals try to overcome
the difficulties of accommodating ontologies in Relational Learning. The work of [3] on
using semantic meta-knowledge from Cyc as inductive bias in an ILP system is another
attempt at solving this problem though more empirically. Conversely, we promote an ex-
tension of Relational Learning, called Onto-Relational Learning (ORL), which accounts
for ontologies in a clear, elegant and well-founded manner by resorting to onto-relational
rule languages. In this chapter, for the sake of illustration, we provide details of a specific
ORL solution to the problem of learning rule-based definitions of DL concepts and roles
with ILP.

The chapter is organized as follows. Section 1 is devoted to preliminaries on LP and
its applications to databases and ontologies as well as on ILP. Section 2 provides a state-
of-the-art survey of ILP proposals for learning onto-relational rules. Section 3 describes
in depth the most powerful of these proposals. Section 4 concludes the chapter with final
remarks and outlines directions of future work.

3http://cyc.com/cyc/technology/whatiscyc_dir/

Lisi / Learning Onto-Relational Rules with ILP 95

1. Preliminaries

1.1. Logic Programming and databases

Logic Programming (LP) is rooted into a fragment of Clausal Logics (CLs) known as
Horn Clausal Logic (HCL) [38]. The basic element in CLs is the atom of the form
p(ti, . . . , tki

) such that each p is a predicate symbol and each tj is a term. A term is
either a constant or a variable or a more complex term obtained by applying a functor
to simpler term. Constant, variable, functor and predicate symbols belong to mutually
disjoint alphabets. A literal is an atom either negated or not. A clause is a universally
quantified disjunction of literals. Usually the universal quantifiers are omitted to simplify
notation. Alternative notations are a clause as set of literals and a clause as an implica-
tion. A program is a set of clauses. HCL admits only so-called definite clauses. A definite
clause is an implication of the form

α0 ← α1, . . . , αm

where m ≥ 0 and αi are atoms, i.e. a clause with exactly one positive literal. The right-
hand side α0 and the left-hand side α1, . . . , αm of the implication are called head and
body of the clause, respectively. Note that the body is intended to be an existentially
quantified conjunctive formula ∃α1∧ . . .∧αm. Furthermore definite clauses withm > 0
and m = 0 are called rules and facts respectively. The model-theoretic semantics of
HCL is based on the notion of Herbrand interpretation, i.e. an interpretation in which all
all constants and function symbols are assigned very simple meanings. This allows the
symbols in a set of clauses to be interpreted in a purely syntactic way, separated from any
real instantiation. The corresponding proof-theoretic semantics is based on the Closed
World Assumption (CWA), i.e. the presumption that what is not currently known to be
true, is false. Deductive reasoning with HCL is formalized in its proof theory. In clausal
logic resolution comprises a single inference rule which, from any two clauses having
an appropriate form, derives a new clause as their consequence. Resolution is sound: ev-
ery resolvent is implied by its parents. It is also refutation complete: the empty clause
is derivable by resolution from any set S of Horn clauses if S is unsatisfiable. Negation
As Failure (NAF) is related to the CWA, as it amounts to believing false every predicate
that cannot be proved to be true. Clauses with NAF literals in the body are called normal
clauses. The concept of a stable model, or answer set, is used to define a declarative
semantics for normal logic programs [17]. According to this semantics, a logic program
may have several alternative models (but possibly none), each corresponding to a possi-
ble view of the reality. Also based on the stable model (answer set) semantics, Answer
Set Programming (ASP) is an alternative LP paradigm oriented towards difficult search
problems [39].

Definite clauses played a prominent role in the rise of deductive databases [6]. More
precisely, functor-free non-recursive definite clauses are at the basis of the language Dat-
alog for deductive databases [5]. Generally, it is denoted by DATALOG¬ where ¬ is
treated as NAF. The restriction of Datalog to only positive rules (i.e., rules without NAF
literals) is denoted by DATALOG. Based on the distinction between extensional and in-
tensional predicates, a DATALOG program Π can be divided into two parts. The exten-
sional part, denoted as EDB(Π), is the set of facts of Π involving the extensional predi-
cates, whereas the intensional part IDB(Π) is the set of all other clauses of Π. The main

96 Lisi / Learning Onto-Relational Rules with ILP

reasoning task in DATALOG is query answering. A query Q to a DATALOG program Π
is a DATALOG clause of the form

← α1, . . . , αm

where m > 0, and αi is a DATALOG atom. An answer to a query Q is a substitution θ
for the variables of Q. An answer is correct with respect to the DATALOG program Π if
Π |= Qθ. The answer set to a query Q is the set of answers to Q that are correct w.r.t. Π
and such that Qθ is ground. In other words the answer set to a query Q is the set of all
ground instances of Q which are logical consequences of Π. Answers are computed by
refutation.

Disjunctive Datalog (denoted as DATALOG∨) is a variant of DATALOG where dis-
junctions may appear in the rule heads [10]. Therefore DATALOG∨ can not be considered
as a fragment of HCL. Advanced versions (DATALOG¬∨) also allow for negation in the
bodies, which can be handled according to a semantics for negation in CLs. Defining the
semantics of a DATALOG¬∨ program is complicated by the presence of disjunction in
the rules’ heads because it makes the underlying disjunctive logic programming inher-
ently nonmonotonic, i.e. new information can invalidate previous conclusions. Among
the many alternatives, one widely accepted semantics for DATALOG¬∨ is the extension
of the stable model semantics to the disjunctive case.

1.2. Logic Programming and ontologies

The integration of LP and ontologies follows the tradition of KR research on so-called
hybrid systems, i.e. those systems which are constituted by two or more subsystems deal-
ing with distinct portions of a single KB by performing specific reasoning procedures
[16]. The motivation for investigating and developing such systems is to improve on
two basic features of KR formalisms, namely representational adequacy and deductive
power, by preserving the other crucial feature, i.e. decidability. Indeed DLs and CLs are
FOL fragments incomparable as for the expressiveness [1] and the semantics [46] but
combinable at different degrees of integration: Tight, loose, full.

The semantic integration is tight when a model of the hybrid KB is defined as the
union of two models, one for the DL part and one for the CL part, which share the same
domain. In particular, combining DLs with CLs in a tight manner can easily lead to unde-
cidability if the interaction scheme between the DL and the CL part of a hybrid KB does
not solve the semantic mismatch between DLs and CLs [47]. This requirement is known
as DL-safety [42]. With respect to this property, the hybrid KR system CARIN [27] is
unsafe because the interaction scheme is left unrestricted. Conversely,AL-LOG [8] guar-
antees a safe interaction scheme by means of syntactic restrictions. Finally, DL+LOG¬∨

[48]4 is weakly DL-safe because it relaxes the condition of DL-safety. The distinguishing
features of these three KR frameworks are summarized in Table 1 and further discussed
in Section 1.2.1, 1.2.2, and 1.2.3 respectively.

The semantic integration is loose when the DL part and the CL part are separate
components connected through a minimal interface for exchanging knowledge. An ex-
ample of one such kind of coupling is the integration scheme for ASP and DLs illustrated

4We prefer DL+LOG¬∨ to the original name DL+LOG in order to emphasize the NM features of the lan-
guage.

Lisi / Learning Onto-Relational Rules with ILP 97

Table 1. Three KR frameworks suitable for representing onto-relational rules.

CARIN [27] AL-LOG[8] DL+LOG¬∨[48]

DL language any DL ALC any DL
CL language Horn clauses DATALOG clauses DATALOG¬∨ clauses

integration tight DL-unsafe tight DL-safe tight weakly DL-safe
rule head literals DL/Horn literals DATALOG literal DL/DATALOG literals
rule body literals DL/Horn literals ALC/DATALOG literals (no roles) DL/DATALOG¬ literals

semantics Herbrand models+DL models idem stable models+DL models
reasoning SLD-resolution+tableau calculus idem stable model computation +

Boolean CQ/UCQ containment
decidability only for some instantiations yes for all instantiations with DLs for

which the Boolean CQ/UCQ con-
tainment is decidable

implementation yes, e.g.[19] yes, e.g.[51] unknown

in [11]. It derives from the previous work of the same authors on the extension of ASP
with higher-order reasoning and external evaluations [12] which has been implemented
into the system DLVHEX5.

The semantic integration is full when there is no separation between vocabularies of
the two parts of the hybrid KB. One such kind of coupling is achieved by means of the
logic of Minimal Knowledge and Negation as Failure in [41].

A complete picture of the computational properties of systems combining DL on-
tologies and DATALOG rules can be found in [49]. An updated survey of the literature on
hybrid DL-CL systems [9] is suggested for further reading.

1.2.1. CARIN

A comprehensive study of the effects of combining DLs and CLs (more precisely, Horn
rules) can be found in [27]. Special attention is devoted to the DL ALCNR. The re-
sults of the study can be summarized as follows: (i) answering conjunctive queries over
ALCNR TBoxes is decidable, (ii) query answering in ALCNR extended with non-
recursive DATALOG rules, where both concepts and roles can occur in rule bodies, is
also decidable, as it can be reduced to answering a union of conjunctive queries (UCQ)6,
(iii) if rules are recursive, query answering becomes undecidable, (iv) decidability can be
regained by disallowing certain combinations of constructors in the logic, and (v) decid-
ability can be regained by requiring rules to be role-safe, where at least one variable from
each role literal must occur in some non-DL-atom. The integration framework proposed
in [27] and known as CARIN is therefore DL-unsafe. Reasoning in CARIN is based on
constrained SLD-resolution, i.e. an extension of SLD-resolution with a tableau calculus
for DLs to deal with DL literals in the rules. Constrained SLD-refutation is a complete
and sound method for answering ground queries.

5http://www.kr.tuwien.ac.at/research/systems/dlvhex/
6A UCQ over a predicate alphabet P is a FOL sentence of the form ∃ ~X.conj1(~X) ∨ . . . ∨ conjn(~X),

where ~X is a tuple of variable symbols and each conji(~X) is a set of atoms whose predicates are in P and
whose arguments are either constants or variables from ~X . A CQ is a UCQ with n = 1.

98 Lisi / Learning Onto-Relational Rules with ILP

1.2.2. AL-LOG

AL-LOG is a hybrid KR system that integrates safely the DLALC and DATALOG [8]. In
particular, variables occurring in the body of rules may be constrained withALC concept
assertions to be used as ’typing constraints’. This makes rules applicable only to explic-
itly named objects. As in CARIN, query answering is decided using the constrained SLD-
resolution which however in AL-LOG is decidable and runs in single non-deterministic
exponential time.

1.2.3. DL+LOG¬∨

The hybrid KR framework of DL+LOG¬∨ allows a DL KB, i.e. a KB expressed in any
DL, to be extended with weakly DL-safe DATALOG¬∨ rules [48]. Weak DL-safeness
allows to overcome the main representational limits of the DL-safe approaches, e.g. the
possibility of expressing UCQs, by keeping the integration scheme still decidable. For
DL+LOG¬∨ two semantics have been defined: a FOL semantics and a NM semantics. In
particular, the latter extends the stable model semantics of DATALOG¬∨. According to
it, DL-predicates are still interpreted under OWA, while DATALOG-predicates are inter-
preted under CWA. Notice that, under both semantics, entailment can be reduced to sat-
isfiability and, analogously, that CQ answering can be reduced to satisfiability. The prob-
lem statement of satisfiability for finiteDL+LOG¬∨ KBs relies on the problem known as
the Boolean CQ/UCQ containment problem7 in DL. It is shown that the decidability of
reasoning in DL+LOG¬∨, thus of ground query answering, depends on the decidability
of the Boolean CQ/UCQ containment problem in DL. Currently, SHIQ is one of the
most expressive DLs for which this problem is decidable [18].

1.3. Inductive Logic Programming

Inductive Logic Programming (ILP) was born at the intersection between LP and ML
[43]. From LP it has borrowed the KR framework, i.e. HCL. From ML (more precisely,
from Concept Learning) it has inherited the inferential mechanisms for induction, the
most prominent of which is generalization. However, a distinguishing feature of ILP
with respect to other forms of Concept Learning is the use of prior knowledge of the
domain of interest, called background knowledge (BK). Therefore, induction with ILP
generalizes from individual instances/observations in the presence of BK, finding valid
hypotheses. Validity depends on the underlying setting. At present, there exist several
formalizations of induction in ILP that can be classified according to the following two
orthogonal dimensions: the scope of induction (discrimination vs characterization) and
the representation of observations (ground definite clauses vs ground unit clauses). Dis-
criminant induction aims at inducing hypotheses with discriminant power as required in
tasks like classification. In classification, observations encompass both positive and neg-
ative examples. Characteristic induction is more suitable for finding regularities in a data
set. This corresponds to learning from positive examples only. The second dimension
affects the notion of coverage, i.e. the condition under which a hypothesis explains an
observation. In learning from entailment, hypotheses are clausal theories, observations
are ground definite clauses, and a hypothesis covers an observation if the hypothesis logi-
cally entails the observation. In learning from interpretations, hypotheses are clausal the-

7This problem was called existential entailment in [27].

Lisi / Learning Onto-Relational Rules with ILP 99

ories, observations are Herbrand interpretations (ground unit clauses) and a hypothesis
covers an observation if the observation is a model for the hypothesis.

In Concept Learning, generalization is traditionally viewed as search through a par-
tially ordered space of inductive hypotheses [40]. According to this vision, an inductive
hypothesis in ILP is a clausal theory and the induction of a single clause requires (i)
structuring, (ii) searching and (iii) bounding the space of clauses [44]. First we focus on
(i) by clarifying the notion of ordering for clauses. An ordering allows for determining
which one, between two clauses, is more general than the other. Since partial orders are
considered, uncomparable pairs of clauses are admitted. Given the usefulness of BK, or-
ders have been proposed that reckon with it. Among them, generalized subsumption [2]
is of major interest to this chapter: Given two definite clausesC andD standardized apart
and a definite programK, we say that C �K D iff there exists a ground substitution θ for
C such that (i) head(C)θ = head(D)σ and (ii) K∪ body(D)σ |= body(C)θ where σ is
a Skolem substitution for D with respect to {C} ∪ K. Generalized subsumption is also
called semantic generality in contrast to other orders which are purely syntactic. In the
general case, it is undecidable. However, for DATALOG it is decidable and admits a least
general generalization. Once structured, the space of hypotheses can be searched (ii) by
means of refinement operators. A refinement operator is a function which computes a
set of specializations or generalizations of a clause according to whether a top-down or
a bottom-up search is performed. The two kinds of refinement operator have been there-
fore called downward and upward, respectively. The definition of refinement operators
presupposes the investigation of the properties of the various orderings and is usually
coupled with the specification of a declarative bias for bounding the space of clauses
(iii). Bias concerns anything which constrains the search for theories, e.g. a language
bias specifies syntactic constraints such as linkedness and connectedness on the clauses
in the search space. A definite clause C is linked if each literal li ∈ C is linked. A literal
li ∈ C is linked if at least one of its terms is linked. A term t in some literal li ∈ C
is linked with linking-chain of length 0, if t occurs in head(C), and with linking-chain
of length d + 1, if some other term in li is linked with linking-chain of length d. The
link-depth of a term t in li is the length of the shortest linking-chain of t. A clause C is
connected if each variable occurring in head(C) also occurs in body(C).

2. ILP for Onto-Relational Rule Learning: State of the Art

Hybrid KR systems combining DLs and CLs with a tight integration scheme have very
recently attracted some attention in the ILP community: [50] chooses CARIN-ALN , [28]
resorts to AL-LOG, and [32] builds upon SHIQ+LOG. A comparative analysis of the
three is reported in Table 2. They can be considered as attempts at accommodating on-
tologies in ILP. Indeed, they can deal with ALN , ALC, and SHIQ ontologies respec-
tively. We remind the reader thatALN andALC are incomparable DLs whereas DLs in
the SH family enrich ALC with further constructors.

Closely related to KR systems integrating DLs and CLs are the hybrid formalims
arising from the study of many-sorted logics, where a FOL language is combined with
a sort language which can be regarded as an elementary DL [14]. In this respect the
study of a sorted downward refinement [15] can be also considered as a contribution to
the problem of interest to this chapter. Finally, some work has been done on discovering
frequent association patterns in the form of DL-safe rules [21].

100 Lisi / Learning Onto-Relational Rules with ILP

2.1. Learning CARIN-ALN rules

The framework proposed in [50] focuses on discriminant induction and adopts the ILP
setting of learning from interpretations. Hypotheses are represented as CARIN-ALN
non-recursive rules with a Horn literal in the head that plays the role of target concept.
The coverage relation of hypotheses against examples adapts the usual one in learning
from interpretations to the case of hybrid CARIN-ALN BK. The generality relation be-
tween two hypotheses is defined as an extension of generalized subsumption. Procedures
for testing both the coverage relation and the generality relation are based on the exis-
tential entailment algorithm of CARIN. Following [50], Kietz studies the learnability of
CARIN-ALN , thus providing a pre-processing method which enables ILP systems to
learn CARIN-ALN rules [22].

2.2. Learning AL-LOG rules

In [28], hypotheses are represented as constrained DATALOG clauses that are linked, con-
nected (or range-restricted), and compliant with the bias of Object Identity (OI)8. Unlike
[50], this framework is general, meaning that it is valid whatever the scope of induction
is. The generality relation for one such hypothesis language is an adaptation of general-
ized subsumption, named B-subsumption, to the AL-LOG KR framework. It gives raise
to a quasi-order and can be checked with a decidable procedure based on constrained
SLD-resolution [35]. Coverage relations for both ILP settings of learning from interpre-
tations and learning from entailment have been defined on the basis of query answering
in AL-LOG [31]. As opposed to [50], the framework has been implemented in an ILP
system [37,30]. More precisely, an instantiation of it for the case of characteristic in-
duction from interpretations has been considered. Indeed, the system supports a variant
of a very popular data mining task - frequent pattern discovery - where rich prior con-
ceptual knowledge is taken into account during the discovery process in order to find
patterns at multiple levels of description granularity. The search through the space of
patterns represented as unary conjunctive queries in AL-LOG and organized according
to B-subsumption is performed by applying an ideal downward refinement operator [36].

2.3. Learning SHIQ+LOG rules

The ILP framework presented in [32] represents hypotheses as SHIQ+LOG rules and
organizes them according to a generality ordering inspired by generalized subsumption.
The resulting hypothesis space can be searched by means of refinement operators either
top-down or bottom-up. Analogously to [28], this framework encompasses both scopes
of induction but, differently from [28], it assumes the ILP setting of learning from en-
tailment only. Both the coverage relation and the generality relation boil down to query
answering in SHIQ+LOG, thus can be reformulated as satisfiability problems. Com-
pared to [50] and [28], this framework shows an added value which can be summarized
as follows. First, it relies on a more expressive DL, i.e. SHIQ. Second, it allows for
inducing definitions for new DL concepts, i.e. rules with a SHIQ literal in the head.

8The OI bias can be considered as an extension of the UNA from the semantic level to the syntactic one
of AL-LOG. It can be the starting point for the definition of either an equational theory or a quasi-order for
constrained DATALOG clauses.

Lisi / Learning Onto-Relational Rules with ILP 101

Table 2. Three ILP frameworks suitable for learning onto-relational rules.
Learning CARIN-ALN rules [50] Learning AL-LOG rules [28] Learning SHIQ+LOG rules [32]

prior knowledge CARIN-ALN KB AL-LOG KB SHIQ+LOG KB
ontology language ALN ALC SHIQ

rule language HCL DATALOG DATALOG

hypothesis language CARIN-ALN non-recursive rules AL-LOG non-recursive rules SHIQ+LOG non-recursive rules
target predicate Horn predicate DATALOG predicate SHIQ/DATALOG predicate

logical setting interpretations interpretations/entailment entailment
scope of induction prediction prediction/description prediction/description

generality order extension of [2] to CARIN-ALN extension of [2] to AL-LOG extension of [2] to SHIQ+LOG

coverage test CARIN query answering AL-LOG query answering DL+LOG¬∨ query answering
ref. operators n.a. downward downward/upward

implementation unknown yes, see [30] no
application no yes, see [37] no

Third, it adopts a more flexible form of integration between the DL and the CL part, i.e.
the weakly-safe one.

The work reported in [34,29] generalizes the results of [32] to any decidable instan-
tiation of DL+LOG¬∨. The following section illustrates how learning DL+LOG¬ rules
can support the evolution of ontologies.

3. Learning Rule-based Definitions of DL Concepts and Roles with ILP

In KE, Ontology Evolution is the timely adaptation of an ontology to changed business
requirements, to trends in ontology instances and patterns of usage of the ontology-based
application, as well as the consistent management/propagation of these changes to de-
pendent elements [53]. As opposed to Ontology Modification, Ontology Evolution must
preserve the consistency of the ontology. According to [13] one can distinguish between
conceptual, specification and representation changes.

In this section we consider the conceptual changes of a DL ontology due to exten-
sional knowledge (i.e., facts of the instance level of the ontology) previously unknown
but classified which may become available. In particular, we consider the task of defin-
ing new concepts or roles which provide the intensional counterpart of such extensional
knowledge and show how this task can be reformulated as an ORL problem [33]. For ex-
ample, the new facts LONER(Joe), LONER(Mary), and LONER(Paul) concerning known
individuals may raise the need for having a definition of the concept LONER in the ontol-
ogy. One such definition can be learned from these facts together with prior knowledge
about Joe, Mary and Paul, i.e. facts concerning them and already available in the ontol-
ogy. A crucial requirement is that the definition must be expressed as a DL formula or
similar. In the following we provide the means for learning rule-based definitions of DL
concepts/roles in the KR framework of DL+LOG¬.

3.1. The learning problem

We assume that a DL ontology Σ = 〈T ,A〉 is integrated with a DATALOG¬ database
Π to form a DL+LOG¬ KB B. The problem of inducing rule-based definitions of DL
concepts/roles that do not occur in B can be formalized as follows.

102 Lisi / Learning Onto-Relational Rules with ILP

Definition 1 Given:

• a DL+LOG¬ KB B (background theory)
• a DL predicate name p (target predicate)
• a set E = E+ ∪E− ofDL assertions that are either true or false for p (examples)
• a set L of DL+LOG¬ definitions for p (language of hypotheses)

the problem of building a rule-based definition of p is to induce a setH ⊂ L (hypothesis)
of DL+LOG¬ rules from E and B such that:

Completeness ∀e ∈ E+ : H covers e w.r.t. B
Consistency ∀e ∈ E− : H does not cover e w.r.t. B.

The background theory B in Definition 1 can be split into an intensional part K (i.e.,
the TBox T plus IDB(Π)) and an extensional part F (i.e., the ABoxA plus EDB(Π)).
Also we denote by PC(B), PR(B), and PD(B) the sets of concept, role and DATALOG
predicate names occurring in B, respectively. Note that p 6∈ PC(B) ∪ PR(B).

Example 1 Suppose we have a DL+LOG¬ KB B (adapted from [48]) built upon the al-
phabetsPC(B) = {RICH/1, UNMARRIED/1},PR(B) = {WANTS-TO-MARRY/2, LOVES/2},
and PD(B) = {famous/1, scientist/1, meets/3} and consisting of the following
intensional knowledge K:

[A1] RICHuUNMARRIED v ∃ WANTS-TO-MARRY−.>
[A2] WANTS-TO-MARRY v LOVES

[R1] RICH(X)← famous(X), ¬scientist(X)
[R2] happy(X)← famous(X), WANTS-TO-MARRY(Y,X)

and the following extensional knowledge F:

UNMARRIED(Mary)

UNMARRIED(Joe)

famous(Mary)

famous(Paul)

famous(Joe)

scientist(Joe)

meets(Mary,Paul,Italy)

meets(Mary,Joe,Germany)

meets(Joe,Mary,Italy)

that concerns the individuals Mary, Joe, Paul, Italy, and Germany.

The hypothesis language L in Definition 1 is given as a set of declarative bias con-
straints. It allows for the generation of DL+LOG¬ rules starting from three disjoint al-
phabets PC(L) ⊆ PC(B), PR(L) ⊆ PR(B), and PD(L) ⊆ PD(B). Also we distinguish
between P+

D (L) and P−D (L) in order to specify which DATALOG predicates can occur in
positive and negative literals, respectively. More precisely, we consider DL+LOG¬ rules
of the form

p(~X)← r1(~Y1), . . . , rm(~Ym), s1(~Z1), . . . , sk(~Zk),¬u1(~W1), . . . ,¬uq(~Wq) (1)

Lisi / Learning Onto-Relational Rules with ILP 103

where m, k, q ≥ 0, p(~X) and each rj(~Yj), sl(~Zl), ut(~Wt) is an atom with rj ∈ P+
D (L),

sl ∈ PC(L) ∪ PR(L), and ut ∈ P−D (L). The admissible rules must be compliant with
the following restrictions:

DATALOG-safeness every variable occurring in (1) must appear in at least one of the
atoms r1(~Y1), . . . , rm(~Ym), s1(~Z1), . . . , sk(~Zk);

weak DL-safeness every head variable of (1) must appear in at least one of the atoms
r1(~Y1), . . . , rm(~Ym).

which also guarantee that the conditions of linkedness and connectedness, usually as-
sumed in ILP, are satisfied.

Example 2 Suppose that the target predicate is the DL concept LONER. If LLONER is de-
fined over P+

D (LLONER) ∪ P−D (LLONER) ∪ PC(LLONER) = {famous/1} ∪ {happy/1} ∪
{RICH/1, UNMARRIED/1}, then the following DL+LOG¬ rules

hLONER1 LONER(X)← famous(X)

hLONER2 LONER(X)← famous(X), UNMARRIED(X)
hLONER3 LONER(X)← famous(X), ¬happy(X)

belong to LLONER and represent hypotheses of a definition for LONER.

Example 3 Suppose now that the DL role LIKES is the target predicate and the
set P+

D (LLIKES) ∪ PC(LLIKES) ∪ PR(LLIKES) = {happy/1, meets/3} ∪ {RICH/1} ∪
{LOVES/2, WANTS-TO-MARRY/2} provides the building blocks for the language LLIKES.
The following DL+LOG¬ rules

hLIKES1 LIKES(X,Y)← meets(X,Z,Y)

hLIKES2 LIKES(X,Y)← meets(X,Z,Y), happy(X)
hLIKES3 LIKES(X,Y)← meets(X,Z,Y), RICH(Z)

belonging to LLIKES can be considered hypotheses of a definition for LIKES.

The set E of examples in Definition 1 contains assertions of the kind p(~ai) where
p is the target predicate and ~ai is a tuple of individuals occurring in the ABox A. Note
that, when p is a role name, the tuple ~ai is a pair < a1i , a

2
i > of individuals. We assume

B ∩ E = ∅. However, a possibly incomplete description of each ei ∈ E is in B.

Example 4 With reference to Example 2, suppose that the following concept assertions:

eLONER1 LONER(Mary)

eLONER2 LONER(Joe)

eLONER3 LONER(Paul)

are examples for the target predicate LONER.

Example 5 With reference to Example 3, the following role assertions:

eLIKES1 LIKES(Mary,Italy)

eLIKES2 LIKES(Mary,Germany)

eLIKES3 LIKES(Joe,Italy)

can be assumed as examples for the target predicate LIKES.

104 Lisi / Learning Onto-Relational Rules with ILP

3.2. The ingredients for an ILP solution

In order to solve the learning problem in hand with the ILP methodological approach ,
the language L of hypotheses needs to be equipped with (i) a coverage relation which
defines the mappings from L to the set E of examples, and (ii) a generality order � such
that (L,�) is a search space.

The definition of a coverage relation depends on the representation choice for ex-
amples. The normal ILP setting is the most appropriate to the learning problem in hand
and can be extended to the DL+LOG¬ framework depicted in Definition 1 as follows.

Definition 2 We say that a rule h ∈ L covers (does not cover, resp.) an example ei =
p(~ai) ∈ E w.r.t. a background theory B iff B ∪ h |= p(~ai) (B ∪ h 6|= p(~ai), resp.).

Note that the coverage test can be reduced to query answering w.r.t. a DL+LOG¬∨ KB,
which in turn can be reformulated as a satisfiability problem of the KB.

Example 6 With reference to Example 2 and 4, the rule hLONER1 covers the example eLONER1

because all NM-models for B′ = B ∪ hLONER1 do satisfy famous(Mary). It covers also
eLONER2 and eLONER3 for analogous reasons. The rule hLONER2 covers only eLONER1 and eLONER2

whereas hLONER3 covers eLONER2 and eLONER3 .

Example 7 With reference to Example 3 and 5, the rule hLIKES1 covers the example eLIKES1

because all NM-models for B′ = B∪hLIKES1 do satisfy meets(Mary,Z,Italy). It covers
also eLIKES2 and eLIKES3 for analogous reasons. The rule hLIKES2 covers only eLIKES1 and
eLIKES2 whereas hLIKES3 covers only eLIKES1 and eLIKES3 .

The definition of a generality order for hypotheses in L must consider the peculiar-
ities of the chosen L. Generalized subsumption, subsequently extended in [52] to deal
with NAF literals, is suitable for the problem in hand and can be adapted to the case of
DL+LOG¬ rules. In the following we provide a characterization of the resulting gener-
ality order, denoted by �¬K, that relies on the reasoning tasks known for DL+LOG¬∨and
from which a test procedure can be derived.

Definition 3 Let h1, h2 ∈ L be two DL+LOG¬ rules standardized apart, K a
DL+LOG¬ KB, and σ a Skolem substitution for h2 with respect to {h1} ∪ K. We
say that h1 is more general than h2 w.r.t. K, denoted by h1 �¬K h2, iff there ex-
ists a ground substitution θ for h1 such that (i) head(h1)θ = head(h2)σ and (ii)
K ∪ body(h2)σ |= body(h1)θ. We say that h1 is strictly more general than h2 w.r.t. K,
denoted by h1 �¬K h2, iff h1 �¬K h2 and h2 6�¬K h1. We say that h1 is equivalent to h2
w.r.t. K, denoted by h1 ≡¬K h2, iff h1 �¬K h2 and h2 �¬K h1.

Example 8 Let us consider the rules reported in Example 2 up to variable renaming:

hLONER1 LONER(A)← famous(A)

hLONER2 LONER(X)← famous(X),UNMARRIED(X)

In order to check whether hLONER1 �¬K hLONER2 holds, let σ = {X/a} a Skolem substitution
for hLONER2 with respect to K ∪ hLONER1 and θ = {A/a} a ground substitution for hLONER1 .
The condition (i) is immediately verified. The condition

Lisi / Learning Onto-Relational Rules with ILP 105

(ii) K ∪ {famous(a), UNMARRIED(a)} |= {famous(a)}

is a ground query answering problem inDL+LOG¬. It can be easily proved that all NM-
models for K ∪ {famous(a), UNMARRIED(a)} satisfy famous(a). Thus, it is the case
that hLONER1 �¬K hLONER2 . The viceversa does not hold. Also, hLONER1 �¬K hLONER3 and hLONER3

is incomparable with hLONER2 .

Example 9 With reference to Example 3, it can be proved that hLIKES1 �¬K hLIKES2 and
hLIKES1 �¬K hLIKES3 . Conversely, the rules hLIKES2 and hLIKES3 are incomparable. Note that

hLIKES4 LIKES(X,Y)← meets(X,Z,Y), LOVES(X,Z)
hLIKES5 LIKES(X,Y)← meets(X,Z,Y), WANTS-TO-MARRY(X,Z)

also belong to LLIKES. It can be proved that hLIKES1 �¬K hLIKES4 , hLIKES1 �¬K hLIKES5 , and
hLIKES4 �¬K hLIKES5 .

Note that the decidability of �¬K follows from the decidability of DL+LOG¬. Also
it can be proved that �¬K is a quasi-order (i.e., it is a reflexive and transitive relation) for
DL+LOG¬ rules, therefore the space (L,�¬K) can be searched by refinement operators
like the following one able to traverse the hypothesis space top down.

Definition 4 Let L be a DL+LOG¬ hypothesis language built out of the three finite and
disjoint alphabets PC(L), PR(L), and P+

D (L) ∪ P−D (L). We define a downward refine-
ment operator ρOR for (L,�¬K) such that, for each h ∈ L, the set ρOR(h) contains all
h′ ∈ L that can be obtained from h by applying one of the following refinement rules:

〈AddDataLit_B+〉 body(h′) = body(h) ∪ {rm+1(~Ym+1)} if

1. rm+1 ∈ P+
D (L)

2. rm+1(~Ym+1) 6∈ body(h)
3. var(head(h)) ⊆ var(body(h′))

〈AddOntoLit_B〉 body(h′) = body(h) ∪ {sk+1(~Zk+1)} if

1. sk+1 ∈ PC(L) ∪ PR(L)

2. it does not exist any sl(~Zl) ∈ body(h) such that sk+1 v sl
3. var(head(h)) ⊆ var(body(h′))

〈SpecOntoLit_B〉 body(h′) = (body(h) \ {sl(~Zl)}) ∪ s′l(~Zl) if

1. s′l ∈ PC(L) ∪ PR(L)
2. s′l v sl

〈AddDataLit_B−〉 body(h′) = body(h) ∪ {¬uq+1(~Wq+1)} if

1. uq+1 ∈ P−D (L)

2. uq+1(~Wq+1) 6∈ body(h)

3. ~Wq+1 ⊂ var(body+(h))

106 Lisi / Learning Onto-Relational Rules with ILP

function OR-FOIL(B, p, E+, E−, L):H
1.H := ∅
2. while E+ 6= ∅ do
3. h := {p(~X)←};
4. E−h := E−
5. while E−h 6= ∅ do
6. Q := {h′ ∈ L|h′ ∈ ρOR(h)};
7. h := OR-FOIL-CHOOSEBEST(Q);
8. E−h := {e ∈ E−|B ∪ h |= e};
9. endwhile
10. H := H ∪ {h};
11. E+h := {e ∈ E+|B ∪ h |= e};
12. E+ := E+ \ E+h
13. endwhile
14. returnH

Figure 1. OR-FOIL: A FOIL-like algorithm for learning onto-relational rules

All the rules of ρOR are correct, i.e. the h′’s obtained by applying any of the rules of
ρOR to h ∈ L are such that h �¬K h′. This can be proved intuitively by observing that
they act only on body(h). Thus condition (i) of Definition 3 is satisfied. Furthermore, it
is straightforward to notice that the application of any of the rules of ρOR to h reduces
the number of models of h. In particular, as for 〈SpecOntoLit_B〉, this intuition follows
from the semantics of DLs. So condition (ii) also is fulfilled.

Example 10 With reference to Example 2, applying 〈AddDataLit_B+〉 to

hLONER0 LONER(X)←

produces hLONER1 which can be further specialized by means of 〈AddOntoLit_B〉 and
〈AddDataLit_B−〉. Note that no other refinement rule can be applied to hLONER1 and
that hLONER2 and hLONER3 are among the refinements of hLONER1 .

Example 11 With reference to Example 3, applying 〈AddDataLit_B+〉 to

hLIKES0 LIKES(X,Y)←

produces hLIKES1 which can be further specialized into hLIKES2 , hLIKES3 , hLIKES4 and hLIKES5

by means of 〈AddDataLit_B〉 and 〈AddOntoLit_B〉. Note that no other refinement
rule can be applied to hLIKES1 and that hLIKES5 can be also obtained as refinement from
hLIKES4 via 〈SpecOntoLit_B〉.

3.3. An ILP algorithm

The ingredients identified in the previous section are the starting point for the defini-
tion of ILP algorithms. Figure 1 reports the main procedure of a FOIL-like algorithm,
named OR-FOIL, for learning onto-relational rules. In OR-FOIL, analogously to FOIL9,

9FOIL is a popular ILP algorithm for learning sets of rules to be used as a classifier [45].

Lisi / Learning Onto-Relational Rules with ILP 107

the outer loop (steps 2-12) corresponds to a variant of the sequential covering algorithm,
i.e., it learns new rules one at a time, removing the positive examples covered by the
latest rule before attempting to learn the next rule (steps 11-12). The hypothesis space
search performed by OR-FOIL is best understood by viewing it hierarchically. Each it-
eration through the outer loop (steps 2-13) adds a new rule to its disjunctive hypothesis
H. The effect of each new rule is to generate the current disjunctive hypothesis (i.e.,
to increase the number of instances it classifies as positive), by adding a new disjunct.
Viewed at this level, the search is a bottom-up search through the space of hypotheses,
beginning with the most specific empty disjunction (step 1) and terminating when the
hypothesis is sufficiently general to cover all positive training examples (step 13). The
inner loop (steps 5-9) performs a more fine-grained search to determine the exact defini-
tion of each new rule. This loop searches a second hypothesis space, consisting of con-
junctions of literals, to find a conjunction that will form the body of the new rule. Within
this space, it conducts a top-down, hill-climbing search, beginning with the most general
preconditions possible (step 3), then refining the rule (step 6) until it avoids all negative
examples. To select the most promising specialization from the candidates generated at
each iteration, OR-FOIL-CHOOSEBEST (called at step 7) considers the performance of
each candidate over E and chooses the one which maximizes the information gain. This
measure is computed according to the following formula

GAIN(h′, h) = p ∗ (log2(cf(h′))− log2(cf(h))) , (2)

where p is the number of distinct variable bindings with which positive examples covered
by the rule h are still covered by h′ and cf() is the confidence degree. Thus, the gain
is positive iff h′ is more informative in the sense of Shannon’s information theory (i.e.
iff the confidence degree increases). If there are some literals to add which increase the
confidence degree, the information gain tends to favor the literals that offer the best
compromise between the confidence degree and the number of examples covered.

One may think to use the confidence degree defined for DL-FOIL(cf. Lehmann et.
al [25] in this volume) which takes OWA into account. Indeed, many individuals may be
available which can not be classified as instances of the target concept nor of its negation.
This requires a different setting able to deal with unlabeled individuals.

Example 12 With reference to Example 10 and Example 6, we suppose that

E+ = {eLONER1 , eLONER2 }
E− = {eLONER3 }

The outer loop of OR-FOIL starts from hLONER0 which is further refined through the iter-
ations of the inner loop, more precisely it is first specialized into hLONER1 which in turn,
since it covers negative examples, is then specialized into hLONER2 and hLONER3 out of which
the rule hLONER3 is added to HLONER the hypothesis because it does not cover negative ex-
amples. At this point the algorithm stops becauseHLONER covers both positive examples.

Example 13 Following Example 11 and Example 7, we assume that E+ = {eLIKES1 , eLIKES3 }
and E− = {eLIKES2 }. At the end of the first iteration, hLIKES3 is included into HLIKES since
it does not cover negative examples but only one positive example.

108 Lisi / Learning Onto-Relational Rules with ILP

4. Final Remarks and Directions of Research

Building rules within ontologies poses several challenges not only to KR researchers
investigating suitable hybrid DL-CL formalisms but also to the ML community which
has been historically interested in application areas where the knowledge acquisition
bottleneck is particularly severe. In particular, ORL may open up new opportunities for
KE because it will make systems available to support the knowledge engineer in her
most demanding task, i.e. defining rules that extend or complement an ontology. Thus,
ORL may produce time and cost savings in KE. In this chapter, we have revised the ML
literature addressing the problem of learning onto-relational rules. Very few ILP works
have been found that propose a solution to this problem [50,28,32]. They adopt CARIN-
ALN , AL-LOG and SHIQ+LOG as KR framework, respectively. Note that matching
Table 2 against Table 1 one may figure out what is the state-of-the-art and what are
the directions of research on onto-relational rules from the ML viewpoint. Also he/she
can get suggestions on what is the most appropriate among these ILP frameworks to
be implemented for a certain intended application. The specific solution illustrated in
Section 3 takes advantage from an augmented expressive power thanks to the chosen
DL+LOG¬∨ instantiation [29]. It supports the evolution of ontologies with the creation
of a concept/role, change operations which both boil down to the addition of new rules
to the input KB.

From the comparative analysis of the ILP frameworks reviewed in Section 2, a com-
mon feature emerges: All proposals resort to Buntine’s generalized subsumption and ex-
tend it in a non-trivial way. This choice is due to the fact that, among the semantic gen-
erality orders in ILP, generalized subsumption applies only to definite clauses, therefore
suits well the hypothesis language in all three frameworks. Following these guidelines,
new ILP frameworks can be designed to deal with more or differently expressive hybrid
DL-CL languages according to the DL chosen (e.g., learning CARIN-ALCNR rules),
or the clausal language chosen (e.g., learning recursive CARIN rules), or the integration
scheme (e.g., learning CARIN rules with DL-literals in the head). An important require-
ment will be the definition of a semantic generality relation for hypotheses to take into
account the background knowledge. Of course, generalized subsumption may turn out to
be not suitable for all cases, e.g. for the case of learning DL+LOG∨ rules [29]. Also it
would be interesting to investigate how the nature of rules (i.e., the intended context of
usage) may impact the learning process as for the scope of induction and other variables
in the learning problem statement. For example, the problem of learning AL-LOG rules
for classification purposes differ greatly from the apparently similar learning problem
faced in [37]. Finally, it is worthy to consider hybrid KR formalisms with loose and full
integration scheme.

Besides theoretical issues, most future work will have to be devoted to implementa-
tion and application. When moving to practice, issues like efficiency and scalability be-
come of paramount importance. These concerns may drive the attention of ILP research
towards less expressive hybrid KR frameworks in order to gain in tractability, e.g. in-
stantiations of DL+LOG¬∨ with DL-Lite [4]. Applications can come out of some of the
many use cases for Semantic Web rules specified by the RIF W3C Working Group.

Lisi / Learning Onto-Relational Rules with ILP 109

References

[1] Alexander Borgida. On the relative expressiveness of description logics and predicate logics. Artificial
Intelligence, 82(1–2):353–367, 1996.

[2] Wray Buntine. Generalized subsumption and its application to induction and redundancy. Artificial
Intelligence, 36(2):149–176, 1988.

[3] John Cabral, Robert C. Kahlert, Cynthia Matuszek, Michael J. Witbrock, and Brett Summers. Convert-
ing semantic meta-knowledge into inductive bias. In Stefan Kramer and Bernhard Pfahringer, editors,
Inductive Logic Programming, 15th International Conference, ILP 2005, Bonn, Germany, August 10-13,
2005, Proceedings, volume 3625 of Lecture Notes in Computer Science, pages 38–50. Springer, 2005.

[4] Diego Calvanese, Maurizio Lenzerini, Riccardo Rosati, and Guido Vetere. DL-Lite: Practical Reason-
ing for Rich DLs. In Volker Haarslev and Ralph Möller, editors, Proc. of the 2004 Int. Workshop on
Description Logics, volume 104 of CEUR Workshop Proceedings. CEUR-WS.org, 2004.

[5] Stefano Ceri, Georg Gottlob, and Letizia Tanca. What you always wanted to know about datalog (and
never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1):146–166, 1989.

[6] Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases. Springer, 1990.
[7] Luc De Raedt. Logical and Relational Learning. Springer, 2008.
[8] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. AL-log: Integrating

Datalog and Description Logics. Journal of Intelligent Information Systems, 10(3):227–252, 1998.
[9] Wlodzimierz Drabent, Thomas Eiter, Giovambattista Ianni, Thomas Krennwallner, Thomas

Lukasiewicz, and Jan Maluszynski. Hybrid Reasoning with Rules and Ontologies. In François Bry and
Jan Maluszynski, editors, Semantic Techniques for the Web, The REWERSE Perspective, volume 5500
of Lecture Notes in Computer Science, pages 1–49. Springer, 2009.

[10] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive DATALOG. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

[11] Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web. Artificial Intelligence,
172(12-13):1495–1539, 2008.

[12] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. A uniform integration of
higher-order reasoning and external evaluations in answer-set programming. In Leslie Pack Kaelbling
and Alessandro Saffiotti, editors, IJCAI-05, Proceedings of the Nineteenth International Joint Confer-
ence on Artificial Intelligence, Edinburgh, Scotland, UK, July 30-August 5, 2005, pages 90–96, 2005.

[13] Natalya Fridman Noy and Michel C. A. Klein. Ontology evolution: Not the same as schema evolution.
Knowledge and Information Systems, 6(4):428–440, 2004.

[14] Alan M. Frisch. The substitutional framework for sorted deduction: Fundamental results on hybrid
reasoning. Artificial Intelligence, 49:161–198, 1991.

[15] Alan M. Frisch. Sorted downward refinement: Building background knowledge into a refinement opera-
tor for inductive logic programming. In Saso Džeroski and Peter A. Flach, editors, Inductive Logic Pro-
gramming, 9th International Workshop, ILP-99, Bled, Slovenia, June 24-27, 1999, Proceedings, volume
1634 of Lecture Notes in Computer Science, pages 104–115. Springer, 1999.

[16] Alan M. Frisch and Anthony G. Cohn. Thoughts and afterthoughts on the 1988 workshop on principles
of hybrid reasoning. AI Magazine, 11(5):84–87, 1991.

[17] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9(3/4):365–386, 1991.

[18] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query answering for the
description logic SHIQ. Journal of Artificial Intelligence Research, 31:151–198, 2008.

[19] François Goasdoué, Véronique Lattès, and Marie-Christine Rousset. The Use of CARIN Language and
Algorithms for Information Integration: The PICSEL System. International Journal of Cooperative
Information Systems, 9(4):383–401, 2000.

[20] Ian Horrocks, Jürgen Angele, Stefan Decker, Michael Kifer, Benjamin N. Grosof, and Gerd Wagner.
Where are the rules? IEEE Intelligent Systems, 18:76–83, 2003.

[21] Joanna Józefowska, Agnieszka Lawrynowicz, and Tomasz Lukaszewski. The role of semantics in min-
ing frequent patterns from knowledge bases in description logics with rules. Theory and Practice of
Logic Programming, 10(3):251–289, 2010.

[22] Jörg-Uwe Kietz. Learnability of description logic programs. In Stan Matwin and Claude Sammut, edi-
tors, Inductive Logic Programming, 12th International Conference, ILP 2002, Sydney, Australia, July 9-

110 Lisi / Learning Onto-Relational Rules with ILP

11, 2002. Revised Papers, volume 2583 of Lecture Notes in Computer Science, pages 117–132. Springer,
2003.

[23] Markus Krötzsch, Frantisek Simančík, and Ian Horrocks. A description logic primer. In Johanna Völker
and Jens Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2012.

[24] Agnieszka Ławrynowicz and Volker Tresp. Introducing machine learning. In Johanna Völker and Jens
Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2012.

[25] Jens Lehmann, Nicola Fanizzi, and Claudia d’Amato. Concept learning. In Johanna Völker and Jens
Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2012.

[26] Douglas B. Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt, and Mary Shepherd. Cyc: Toward
programs with common sense. Communications of the ACM, 33(8):30–49, 1990.

[27] Alon Y. Levy and Marie-Christine Rousset. Combining Horn rules and description logics in CARIN.
Artificial Intelligence, 104:165–209, 1998.

[28] Francesca A. Lisi. Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic
Programming. Theory and Practice of Logic Programming, 8(03):271–300, 2008.

[29] Francesca A. Lisi. Inductive Logic Programming in Databases: From Datalog to DL+log. Theory and
Practice of Logic Programming, 10(3):331–359, 2010.

[30] Francesca A. Lisi. AL-QUIN: An Onto-Relational Learning System for Semantic Web Mining. Inter-
national Journal on Semantic Web and Information Systems, 7(3):1–22, 2011.

[31] Francesca A. Lisi and Floriana Esposito. Efficient Evaluation of Candidate Hypotheses in AL-log.
In Rui Camacho, Ross D. King, and Ashwin Srinivasan, editors, Inductive Logic Programming, 14th
International Conference, ILP 2004, Porto, Portugal, September 6-8, 2004, Proceedings, volume 3194
of Lecture Notes in Computer Science, pages 216–233. Springer, 2004.

[32] Francesca A. Lisi and Floriana Esposito. Foundations of Onto-Relational Learning. In Filip Železný and
Nada Lavrač, editors, Inductive Logic Programming, 18th International Conference, ILP 2008, Prague,
Czech Republic, September 10-12, 2008, Proceedings, volume 5194 of Lecture Notes in Computer Sci-
ence, pages 158–175. Springer, 2008.

[33] Francesca A. Lisi and Floriana Esposito. Learning SHIQ+log Rules for Ontology Evolution. In
A. Gangemi, J. Keizer, V. Presutti, and H. Stoermer, editors, Semantic Web Applications and Perspectives
(SWAP2008), volume 426 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[34] Francesca A. Lisi and Floriana Esposito. Nonmonotonic Onto-Relational Learning. In Luc De Raedt,
editor, Inductive Logic Programming, 19th International Conference, ILP 2009, Leuven, Belgium, July
02-04, 2009. Revised Papers, volume 5989 of Lecture Notes in Computer Science, pages 88–95, 2010.

[35] Francesca A. Lisi and Donato Malerba. Bridging the Gap between Horn Clausal Logic and Description
Logics in Inductive Learning. In Amedeo Cappelli and Franco Turini, editors, AI*IA 2003: Advances
in Artificial Intelligence, 8th Congress of the Italian Association for Artificial Intelligence, Pisa, Italy,
September 23-26, 2003, Proceedings, volume 2829 of Lecture Notes in Computer Science, pages 49–60.
Springer, 2003.

[36] Francesca A. Lisi and Donato Malerba. Ideal Refinement of Descriptions in AL-log. In Tamás Horváth
and Akihiro Yamamoto, editors, Inductive Logic Programming: 13th International Conference, ILP
2003, Szeged, Hungary, September 29-October 1, 2003, Proceedings, volume 2835 of Lecture Notes in
Computer Science, pages 215–232. Springer, 2003.

[37] Francesca A. Lisi and Donato Malerba. Inducing Multi-Level Association Rules from Multiple Rela-
tions. Machine Learning, 55:175–210, 2004.

[38] John W. Lloyd. Foundations of Logic Programming. Springer, 2nd edition, 1987.
[39] Victor W. Marek and Miroslaw Truszczynski. Stable models and an alternative logic programming

paradigm. In Krzysztof R. Apt, Victor W. Marek, Miroslaw Truszczynski, and David S. Warren, editors,
The Logic Programming Paradigm: a 25-Year Perspective, pages 169–181. Springer, 1999.

[40] Tom M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.
[41] Boris Motik and Riccardo Rosati. Reconciling description logics and rules. J. ACM, 57(5), 2010.
[42] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with Rules. Journal on

Web Semantics, 3(1):41–60, 2005.
[43] Stephen H. Muggleton. Inductive logic programming. New Generation Computing, 8(4):295–317, 1991.
[44] Shan-Hwei Nienhuys-Cheng and Ronald de Wolf. Foundations of Inductive Logic Programming, vol-

Lisi / Learning Onto-Relational Rules with ILP 111

ume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.
[45] J. Ross Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266, 1990.
[46] Riccardo Rosati. On the decidability and complexity of integrating ontologies and rules. Journal of Web

Semantics, 3(1):61–73, 2005.
[47] Riccardo Rosati. Semantic and computational advantages of the safe integration of ontologies and rules.

In François Fages and Sylvain Soliman, editors, Principles and Practice of Semantic Web Reasoning,
Third International Workshop, PPSWR 2005, Dagstuhl Castle, Germany, September 11-16, 2005, Pro-
ceedings, volume 3703 of Lecture Notes in Computer Science, pages 50–64. Springer, 2005.

[48] Riccardo Rosati. DL+log: Tight Integration of Description Logics and Disjunctive Datalog. In P. Do-
herty, John Mylopoulos, and Christopher A. Welty, editors, Proc. of Tenth International Conference on
Principles of Knowledge Representation and Reasoning, pages 68–78. AAAI Press, 2006.

[49] Riccardo Rosati. On Combining Description Logic Ontologies and Nonrecursive Datalog Rules. In
Diego Calvanese and Georg Lausen, editors, Web Reasoning and Rule Systems, Second International
Conference, RR 2008, Karlsruhe, Germany, October 31-November 1, 2008. Proceedings, volume 5341
of Lecture Notes in Computer Science, pages 13–27. Springer, 2008.

[50] Céline Rouveirol and Véronique Ventos. Towards Learning in CARIN-ALN . In James Cussens and
Alan M. Frisch, editors, Inductive Logic Programming, 10th International Conference, ILP 2000, Lon-
don, UK, July 24-27, 2000, Proceedings, volume 1866 of Lecture Notes in Artificial Intelligence, pages
191–208. Springer, 2000.

[51] Edna Ruckhaus, Vladimir Kolovski, Bijan Parsia, and Bernardo Cuenca Grau. Integrating Datalog
with OWL: Exploring the AL-log Approach. In Sandro Etalle and Miroslaw Truszczynski, editors,
Logic Programming, 22nd International Conference, ICLP 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, volume 4079 of Lecture Notes in Computer Science, pages 455–456. Springer, 2006.

[52] Chiaki Sakama. Nonmonotonic inductive logic programming. In Thomas Eiter, Wolfgang Faber, and
Miroslaw Truszczynski, editors, Logic Programming and Nonmonotonic Reasoning, 6th International
Conference, LPNMR 2001, Vienna, Austria, September 17-19, 2001, Proceedings, volume 2173 of Lec-
ture Notes in Computer Science, pages 62–80. Springer, 2001.

[53] Ljiljana Stojanovic, Alexander Maedche, Boris Motik, and Nenad Stojanovic. User-driven ontology
evolution management. In Asunción Gómez-Pérez and V. Richard Benjamins, editors, Knowledge En-
gineering and Knowledge Management. Ontologies and the Semantic Web, 13th International Confer-
ence, EKAW 2002, Siguenza, Spain, October 1-4, 2002, Proceedings, volume 2473 of Lecture Notes in
Computer Science, pages 285–300. Springer, 2002.

Part III

Lexical Learning

Learning Domain Ontologies by
Corpus-Driven FrameNet Specialization

Bonaventura COPPOLA a,1, Aldo GANGEMI b, Alfio GLIOZZO a, Davide PICCA c,
and Valentina PRESUTTI b

a IBM Thomas J. Watson Research Center, Yorktown Heights, NY
b Semantic Technology Lab - ISTC-CNR, Roma, Italy

c Center for Computational Learning Systems - Columbia University, New York, NY

Abstract. In this chapter we introduce a knowledge engineering methodology to
adapt existing portions of FrameNet to new or specialized domains. Firstly, frame
occurrences are detected in domain texts by a FrameNet-based statistical analyzer.
Secondly, frame arguments are assigned additional semantic types by using a super-
sense tagging tool. Thirdly, the resulting instances are statistically filtered in or-
der to select the most relevant ones for the specific domain. Finally, we represent
the newly created frames as OWL2 ontologies. We exploit state-of-the-art Natural
Language Processing technology for frame detection and super-sense tagging. The
formal semantics behind OWL2 is used overall to back the learning process: the
semantics of frames is discussed, and choices are made to maintain the best from
the two worlds of lexical and formal semantics, also exploiting the Linguistic Meta
Model as a bridge. The proposed methodology is aimed at mostly automatizing the
domain adaptation process performed by a domain expert. We retain a human in-
tervention step for final quality assessment of new frames before their inclusion in
the specialized domain ontology resulting from the process.

Keywords. Frame Semantics, Ontology Learning, FrameNet, Domain Adaptation,
Linguistic Meta Model

Introduction

Ontology learning from text is an important functionality for ontology design, due to the
demand for domain-specific knowledge that supports semantic solutions scaling from
personal knowledge management to large organizations, without requiring substantial
competence from domain experts or expensive assistance from knowledge engineers.
This is specially true if we consider the large number of different domains involved in
modelling knowledge e.g. within an organization or at a Web-wide scale.

The current state of the art in ontology learning from text deals with taxonomical
relations and simple binary domain relations, but research has just started dealing with
more complex domain relations that can be able to answer realistic competency ques-
tions [25], such as who is communicating what to whom and for what reason?. Complex
relations are called semantic frames in linguistics [19], and show interesting analogies

1Corresponding Author: Bonaventura Coppola, IBM Thomas J. Watson Research Center - 19 Skyline Drive,
Hawthorne, NY 10532; E-mail: bcoppola@us.ibm.com

116 Coppola et al. / Learning Domain Ontologies

with other data structures that are known in Artificial Intelligence and the (Semantic)
Web, such as (AI) frames, microformats, microdata, infoboxes, knowledge patterns [23],
etc.

In this chapter we present a methodology to adapt FrameNet [4] to new domains.
This is done by detecting semantic frames [19] and situations (the referents of frame-
annotated sentences, cf. [20,29]) from textual domain corpora, and by using them to gen-
erate domain specific modules of a domain ontology. The methodology aims at special-
izing and/or instantiating a set of frames from the FrameNet lexicon, by extracting and
filtering configurations of data from text corpora. The extracted domain-specific ontolo-
gies show desirable characteristics such as cognitive and linguistic relevance, density,
right granularity level, and inherent capability of being automatically evaluated based on
expert requirements (in the form of competency questions). The ontology patterns chap-
ters from this book describes in some detail the challenges of ontology learning also with
respect to frame-like structures, and relates them to ontology design patterns.

A previous attempt to achieve a similar objective has been reported by [5]. In con-
trast to that work, we have used different text processing technology and knowledge rep-
resentation standards. A previous report about the methods described in this chapter is in
[13].

The chapter is structured as follows. Section 1 describes the general methodology
and shortly introduces the specific functions of the individual components of our work-
flow. A sample use case is also introduced in order to show the end to end process. The
natural language processing technology for detecting occurrences of frames in a text cor-
pus (Frame Detector) is presented in section 2.1. A Knowledge Distiller (Section 2.3)
complements the output of the detector by means of a WordNet Super Sense Tagging
component (Section 2.2), and learns typical patterns from the occurrences in a corpus,
providing initial material to start a domain adaptation process on frames. The specific for-
mal representation chosen for representing such frames (OWL2 [34] with the Linguistic
Meta Model (LMM) vocabulary [30,20]) is presented in Section 3, thus connecting the
acquired information to a stack of reusable lexical-semantic ontologies: FrameNet-OWL
[20][29], WordNet-OWL [22,1], and DBpedia [2]. In Section 4 we show how the LMM
representation of learnt frames is eventually converted into a regular ontology by means
of transformation patterns, and evaluate the effectiveness of the whole process. We mo-
tivate how the methodology is sustainable and cost effective, in that it allows to process
mid-size specialized corpora in a reasonable time. Also, the accuracy of the data distilled
at the end of the acquisition process is good enough to allow for an easy assessment by
an expert with reference to competency questions. In other words, the methodology turns
into a substantial reduction of the manual effort required for designing domain-specific
ontologies that are ready to be evaluated against user requirements.

1. Process Workflow and General Architecture

In Figure 1 we display the processing workflow realizing the proposed methodology. A
text corpus representing a specific domain is provided in input. It is then analyzed ex-
ploiting Natural Language Processing (NLP) technology for frame detection and type

Coppola et al. / Learning Domain Ontologies 117

...
...

Text
Corpus

Supersense
Tagger

Frame
Detector

Knowledge
Distiller

Candidate
Specialized

Frames

Validation &
Selection

Transform.
Pattern

FrameNet
LMM

NLP
Knowledge Engineering

Specialized
Frames

Figure 1.: Architecture

recognition. This is done by parallel execution of two advanced tools: a Frame Detection
system, which recognizes the predicate argument structures appearing in the sentences
and maps them into frame definitions provided by FrameNet. The second system is a
Super Sense Tagger (SST), whose goal is to assign Super Senses (i.e. top level categories
in WordNet like person or group) to frame arguments. Therefore, by analyzing a large
corpus we collect a big number of frame instances enriched with super-sense types for
their frame arguments. Then, we statistically filter them by applying a Knowledge Dis-
tiller, whose function is to select the most relevant frames and argument co-occurrence
patterns, discarding the most noisy ones. After that, some of the distilled frames are not
yet truly significant, requiring a manual validation and selection process performed by a
domain expert. Finally, the selected frames are represented according to the Linguistic
Meta Model, which allows to link the purely lexical semantics of extracted lexical ele-
ments to a formal semantics, eventually encoded in OWL2 [34]. This is done by applying
some transformation patterns.

In the remaining part of this section we will show the application of the NLP section
of the workflow on a real example. In the remaining sections of the chapter, we will
describe each component in detail, present the resulting specialized frame, and eventually
show the application of the transformation patterns on its LMM representation.
Let’s consider the following sentence:

Public opinion and the press nowadays accuse Bush
of being unable to give a response.

118 Coppola et al. / Learning Domain Ontologies

This sentences describes a situation involving a judgment communication frame, whose

definition in FrameNet is reported below:

JudgmentCommunication

Core Elements: Communicator, Evaluee, Expressor, Medium, Reason, Topic

non-Core Elements: Addressee, Frequency, Manner, Place, Time, Manner

Related Frames: Judgment, Statement, Labeling, Bragging

The sentence is parsed by the Frame Detector component using the above frame defini-

tion in order to recognize the exact text spans instantiating the frame’s participating argu-

ments (or Elements). To do that, the target word “evoking” the frame is first identified (in

the example, the verb accuse is a candidate target word for the judgment communication

frame). Then, the arguments of the frame are associated to the elements of the sentence’s

predicate argument structure provided by a syntactic parser. Eventually, the output of

this process in output from the Frame Detector is the following analysis:

[Public opinion and the press]COMMUNICATOR nowadays accuse [Bush]EVALUEE

[of being unable to give a response]REASON

The underlined word accuse is the target word (or lexical unit or predicate) which plays

the role of evoker. Slots marked by square brackets are the corresponding frame elements.

In the next step, the role of the SST is to identify concepts expressed in the text

fragments and to annotate them by using general categories in order to facilitate the pat-

tern acquisition process. To this aim, the SST module recognizes entity boundaries and

provides the critical distinction between instances and concepts. In addition, it assigns

types to each of them. This is practically done by semantically tagging all the relevant

tokens by applying the BOI annotation scheme2. B and I tags are also associated to se-

mantic types (e.g. person, group, artifact). Occurrences of nouns are then subdivided

into instances (denoting proper nouns of actual entities, e.g. Obama, IBM) and concepts

(denoting common nouns, e.g. cat, researcher).

The SST output for our sample sentence is shown below:

2where B stands for Begin, I stands for Inside and O stands for outside.

Coppola et al. / Learning Domain Ontologies 119

Public B-noun.cognition_Concept
opinion I-noun.cognition_Concept
and O
the O
press I-noun.group_Concept
accuse B-verb.communication
Bush B-noun.person_Instance
of O
being B-verb.stative
unable O
to O
give B-verb.possession
a O
response B-noun.phenomenon_Concept

The domain-specific frame patterns are then generated by collecting concepts and
types as recognized by the SST3. The following instance illustrates the result of the
pattern acquisition process after merging the output from the Frame Detector with the
one from the SST system.

Frame: JudgmentCommunication
Target: accuse [communication]
Communicator: public opinion [cognition], press [group] 4

Evaluee: [person] 5

Reason: response [phenomenon] 6

The above process, when applied to the whole text corpus, generates a large quantity
of patterns, many of them being noisy due to the inherent difficulty of the NLP steps.
In addition, some patterns are simply not meaningful for the target domain because they
contain generic frame element instances. For example, in the example above, the slot
filler response for the argument Reason is not domain-specific. Similarly, the type cog-
nition for the frame argument Communicator is not very relevant as well. Therefore,
the goal of the Knowledge Distiller component is to statistically filter a large quantity
of those patterns before proposing them to the human validator. Such whole process is
executed independently for each different frame. After applying the distiller, the instance
above is simplified and the following is generated:

Frame: JudgmentCommunication
Target: accuse
Communicator: public opinion, press, [group]

3Occurrences of Verbs and Proper Nouns recognized by SST are not considered, and only their types are
used.

4When more than one concept is identified in a slot filler, then all them are regarded as separate possible slot
fillers, togheter with their types

5The instance name "Bush" is not acquired, only its type is.
6The full slot filler "of being unable to give a response" is not acquired, only concepts recognized inside are.

120 Coppola et al. / Learning Domain Ontologies

Figure 2.: A summary of the datasets, components, functionalities, and phases of the
frame-based ontology learning method

Evaluee: [person]

Simplified patterns of this very kind are submitted to the domain expert, who can
decide wether to accept them –and therefore including them as specific subframes in the
final ontology, or to reject them. All the accepted frames are then automatically encoded
in OWL2 according to some transformation patterns. Firstly, a newly created frame is
automatically converted in OWL2 according to the LMM-based ontology of FrameNet,
e.g.:

f:JudgmentCommunication s:hasFrameElement fe:Evaluee.judgmentCommunication .
f:JudgmentCommunication s:hasFrameElement fe:Medium.judgmentCommunication .
f:JudgmentCommunication s:hasFrameElement fe:Place.judgmentCommunication .
f:JudgmentCommunication s:hasFrameElement fe:Reason.judgmentCommunication .
f:Judgment_communication s:hasLexUnit lu:blame.v .
f:JudgmentCommunication s:hasSubframe f:Judgment .
f:JudgmentCommunication s:isInheritedBy f:JudgmentDirectAddress .
f:JudgmentCommunication s:uses f:Statement .

Secondly, the frame is transformed into a full-fledged OWL2 ontology according to a
transformation pattern (examples are provided in Section 3, the method and the converted
FrameNet in OWL are described in [29]). The result is a domain-specific ontology that
can be further used to describe the domain of interest, typically events or situations that
comply to the semantics of a frame. As noted before, we emphasize that the only manual
intervention required is a selection/filtering procedure over preprocessed and clustered
patterns, that can be done efficiently by domain experts to improve the quality of the
generated ontology. Figure 2 provides a conceptual summary of such methodology.

Coppola et al. / Learning Domain Ontologies 121

2. The Frame Learning Components

In this section we present the three key NLP components exploited in the processing
workflow described in Figure 1, namely the Frame Detector (Section 2.1), the Super
Sense Tagger (Section 2.2), and the Knowledge Distiller (Section 2.3).

Ontology learning from text is usually performed with three components: a text cor-
pus of an arbitrary size, a set of lexical resources, and some algorithms to extract, rank,
and reengineer selected invariances from texts. Preliminary text classification may be
also performed [6]. In the literature most of the effort has concentrated in learning the
terminology for a specific domain, named entities from a text, taxonomies of concepts
and their instances, relations between instances, trying to augment and adapt the infor-
mation contained in e.g. WordNet with domain-specific data. Unfortunately, this is not
enough for our purposes, since we are trying to learn structures with multiple related
elements in the context of a frame, as occurring in a particular text. Therefore, we need
text processing components that are able to identify occurrences of frames in text as in
[14], and to recognize the corresponding frame elements and their types, also allowing
for the learning of domain-specific specializations and instantiations.

To this aim, we have integrated two advanced text processing components: a Frame
Detector and a Super-Sense Tagger, described in the following subsections. As a result,
portions of text corresponding to lexical units and frame elements can be collected for
each frame, which describe particular framed situations within a text.

2.1. The Frame Detection System

The Frame Detector component takes care of analyzing plain English input text, locating
possible candidate frames invoked along by the terms in a text, and then tagging indi-
vidual Frame Element instances of such frames. Tagging involves both locating the ex-
act text boundary of each Frame Element, and assigning its correct semantic label. The
Berkeley FrameNet Project [4] currently includes the definitions of nearly 800 Frames,
4,000 Frame Elements, and 135,000 annotated English sentences. Recalling the running
example introduced in Section 1, an example of sentence annotation for the Judgment-
Communication would be the following:

[Public opinion and the press]COMMUNICATOR nowadays accuse [Bush]EVALUEE

[of being unable to give a response]REASON

where the underlined word accuse is the target word (or lexical unit or predicate) which
plays the role of evoker for this particular Frame.

To implement a FrameNet-based parsing system we adopted a multi-stage classi-
fication approach over natural language. Foundational studies in this area generally re-
fer to Semantic Role Labeling [24]. In particular, our strategy extends the approaches
in [28] to FrameNet and it is thoroughly described in [15,14,16]. Hence, moving from
previous pattern-based approaches [33], we exploit Support Vector Machines (SVMs)
as a general statistical machine learning framework, in which we plug in Tree Kernels
to obtain a similarity measure capable of working over structured objects as syntactic
trees. Our strategy includes (1) Target Word Detection, where the semantically relevant
words bringing predicative information are detected; (2) Frame Disambiguation, where

122 Coppola et al. / Learning Domain Ontologies

the correct Frame for any target word has to be selected among several candidates; (3)
Boundary Detection, where the sequences of words constituting the Frame Elements
(arguments) are detected; and (4) Role Classification, which assigns semantic labels to
the Frame Elements detected in the previous stage.

We have tested the Frame Detector Component in the natural setting of the FrameNet
Corpus. Version 1.3 of FrameNet was used for both learning and test. After preprocessing
and parsing with the Charniak’s constituency-based syntactic parser we obtained 135,293
annotated and parsed sentences. We split the data considering the part of speech of pred-
icates, ending up with 782 different frames. The overall dataset was then partitioned into
90% training set and 10% test set. We exploited both the SubSet Tree Kernel and the
Polynomial Kernel (degree = 3) respectively over structured features [28] and standard
ones [24]. In this way, with the Polynomial Kernel we also took advantage of previous
liguistic modelling work done for traditional Semantic Role Labeling. Also, their com-
bination was tested, which in fact brought the best results, see [15] for complete eval-
uation details. We computed Precision, Recall and F1 measure of our classifiers for the
step (3) Boundary Detection, and for the sequence of (3+4) Boundary Detection + Role
Classification. The optimal learning configuration with Tree Kernel + Polynomial Kernel
was capable of tagging FrameNet data over noisy syntax with exact boundaries and role
labels (3+4) at 0.75 Precision, 0.55 Recall, and 0.63 F1, which is the component-level
evaluation for the Frame Detector. A performance drop when cross-testing on off-domain
corpora as in the present work is always expected and observed.

2.2. The Super-Sense Tagger

In our methodology, we exploit the Super-Sense Tagger (SST) described in [11] for a
deeper semantic interpretation of texts, finalized to the acquisition of structured knowl-
edge in a frame-based representation. Supersenses are lexicographer’s categories, used to
provide an initial broad classification for the lexicon entries in WordNet [18]. Although
simplistic in many ways, the supersense ontology has several attractive features for ontol-
ogy engineering. In fact, supersenses correspond to the typical high level classes of most
ontologies, reflecting distinctions between persons, locations, organizations, acts, etc. In
this work we use super-senses to characterize the type of Frame Elements. Exploiting
a Super-Sense Tagger, we identify types in frame occurrences by filling the frame slots
that are identified by the frame detection component.

SST7 has been implemented using the SemCor corpus (a fraction of the Brown cor-
pus annotated with WordNet word senses) and can be used for annotating large col-
lections of English texts [10] The tagger implements a Hidden Markov Model, trained
with the perceptron algorithm introduced in [12]. The tagset used by the tagger defines
26 supersense labels for nouns and 15 supersense labels for verbs. The tagger outputs
named entity information, but also covers other relevant categories and attempts lexical
disambiguation at the supersense level. In recent work, we have extended the tagset by
subdividing each category into two sub-categories, Instance and Concept so that now
the term “president" is tagged as noun.person_Concept and the term “Bill Clinton" as
noun.person_Instance.

We evaluated the performances of SST by adopting a n-fold cross validation strat-
egy on the SemCor corpus exploited for training. Precision, Recall and F1 for any Su-

7The tagger is publicly available at: http://sourceforge.net/projects/supersensetag/.

Coppola et al. / Learning Domain Ontologies 123

persense were calculated. We obtained a general F1 of 0.76. For some categories the
F1 is exceptionally high. Some of those best classified categories are really essential for
ontology learning. For example, important labels such as noun.person, noun.group, or
noun.location achieve results higher than 0.70. For some categories we even got a F1

over 0.80: e.g. noun.person_Instance: F1 0.90) or noun.person_Concept: F1 0.81.

2.3. The Knowledge Distilling Component

The output of the Frame Detector component provides a shallow semantic parsing of
text, where text fragments are associated with frame elements, and the lexical units are
identified. After joining these data along with the tagging provided by the SST, the final
output of the text processing components is recalled in the example below:

Frame: JudgmentCommunication
Target: accuse [communication]
Communicator: public opinion [cognition], press [group]
Evaluee: [person]
Reason: response [phenomenon]

Next, we detect the relevant co-occurrence patterns, while avoiding the noise produced
by the errors in the NLP components caused by the language variability. To this aim,
the Knowledge Distiller recognizes a set of possible types for each frame element using
the output of the SST system. Then, it detects the redundant concepts belonging to each
type, and finally matches those concepts to patterns involving the elements recognized
so far. It is implemented in a three-step approach described below:

Type Recognition. Most of the occurring elements that are recognized by the frame de-
tector belong to a typically small number of super-senses (e.g. in a given domain
buyers are either persons or groups, less likely they could be animals). For each
frame element, we count the occurrences of all the different super senses asso-
ciated with the matched arguments, and we filter out those having less that 10
occurrences.

Domain Specialization . This step allows to detect specific concepts that can be used
for assigning types to the frame elements. For each frame element and for each
super-sense detected by the step above, we select a list of (tagged) terms, and sort
them by frequency. This step allows to filter out a significant part of the noise
by exploiting the high redundancy existing in the corpus. Since the SST distin-
guishes between concept-tagging and instance-tagging, we select only the terms
tagged by concept-tagging senses, having more than 3 occurrences. Those can be
regarded as “valid” concepts to be used as semantic types. For example, we have
found that occurrences of the frame element COMMUNICATOR belonging to the
person_concept super-sense include terms like child, woman and civilian, while
occurrences categorized by the noun.state super-sense, e.g. recognition, have a
sensibly lower frequency, and are most likely to be errors.

Frame Detection The result of the two steps above is a list of “qualified”, domain-
oriented semantic types for domain-specific frame elements. Moreover, we are in-
terested in frames involving multiple elements rather than in typing each frame ar-

124 Coppola et al. / Learning Domain Ontologies

gument independently. To this aim, we filter out all those terms that have not been
identified by the domain specialization process from the frames acquired after the
NLP process, and we rank the resulting list of domain frames by frequency. This
procedure aims at detecting frames involving many arguments at the same time, in
order to acquire statistically relevant tuples.

The result of these three steps above is a ranked list of relevant frames for a domain.
This list is then proposed to the domain expert for a manual validation. Let’s recall below
an example of domain frame acquired using the methodology described so far:

Frame: JudgmentCommunication
Target: accuse
Communicator: public opinion
Evaluee: president [person]

The described procedure is fully automatic, and we have adopted the same threshold
uniformly for three case study frames under analysis in this chapter (Section 4). The
results of this method include a set of domain-specific frames that can be candidate data
for answering a competency question, and therefore for implementing those frames as
knowledge patterns in an ontology that fits user requirements.

3. Representing Frames in LMM

Frame Semantics [19] is a linguistic theory that aims at representing the conceptual inter-
face between linguistic and real-world knowledge in the form of semantic frames, which
are structures that describe types of situations along with the roles of their participating
elements. Based on Frame Semantics, FrameNet [4] is a lexical knowledge base, consist-
ing of a set of frames, which have proper frame elements (roles) and lexical units, also
called the textual target of a frame. Frame elements are unique to their frame, and can be
optional or non-typical (‘non-core’). An occurrence of a frame consists in some piece of
text, whose words can be normalized as lexemes, and which have semantic roles provided
by the elements of that frame. A frame usually has only some of its roles actually lexical-
ized in texts. Types of linguistic realizations of a frame are called lexical units. Frames
respectively frame elements are related between them, e.g. through the inheritsFrom or
hasSubFE relations.

The intuition underlying Frame Semantics is not very dissimilar from that described
in [27], but the latter developed in the AI context, and eventually acquired a formal
semantics, as in [9]. The work in [20] is a reconstruction of different semantics of frames,
and how they can be reconciled. As an assumption that can be adopted for different
approaches to frame semantics, in [20] it is suggested that frames can be represented
as (intensional) polymorphic n-ary relations, with typed arguments (either mandatory or
optional). For example,

Desiring(x,y,e) → Agent(x) ∧ Agent(y) ∧ Event(e) (1)

An occurrence of a frame can be straightforwardly treated as an instance of an n-ary
relation, e.g.:

Coppola et al. / Learning Domain Ontologies 125

Desiring(Susan, Marko, ListeningToHer) (2)

The logical representation of frames as n-ary relations is easily generalizable and clear,
but hardly manageable by automated reasoners on large knowledge bases, specially with
semantic web languages like RDF or OWL. A hard design problem is constituted by the
polymorphism of many frames/n-ary relations, which can vary in number of the argu-
ments that can be taken by the relation. For example, the same frame Desiring can be
assumed with four arguments:

Desiring(x,y,e,t) → Agent(x) ∧ Agent(y) ∧

∧ Event(e) ∧ Time(t) (3)

This problem was originally evidenced by Davidson with reference to a logic of events
[17]. A neo-davidsonian approach is actually taken by [8], where an attempt is made to
reconstruct FrameNet in terms of DRT (Discourse Representation Theory), with events
being the DRT correlate of frames, and semantic roles being generic correlates for equiv-
alence classes of frame elements8. A limitation found by [8] lies in the fact that DRT se-
mantic primitives are tightly associated with elements having a given syntactic category
(e.g. it assumes that an event cannot be expressed by an adverb), while FrameNet seman-
tics only requires that any grammatical construction expresses a frame, independently
from its syntactic category. The DRT approach has anyway the (computational) advan-
tage of simplifying some assumptions of Frame Semantics, for example the uniqueness
of frame elements to their frame. A formal semantics for frames that is also computation-
ally manageable has been provided by Description Logics (DL) [3], such as OWL2(DL).
Due to their limited expressive power, description logics represent frames as classes,
with roles (binary relations) that link a class to the types of the arguments of the original
n-ary relation. Those types are classes as well, so that a graph of frames emerges out of
this semantics. The example in (3) can be reengineered in DL as follows:

T v ∀R1.Agent, T v ∀R−
1 .Desiring (4)

T v ∀R2.Agent, T v ∀R−
2 .Desiring (5)

T v ∀R3.Event, T v ∀R−
3 .Desiring (6)

T v ∀R4.Time, T v ∀R−
4 .Desiring (7)

Desiring v (∃R1 u ∃R2 u ∃R3 u ∃R4) (8)

hasKey(Desiring,(R1,R2,R3,R4)) (9)

With Ri being a binary projection of the n-ary relation, R−
i its inverse relation, and

axiom 9 the identification constraint for avoiding duplicates of a same relation tuple after
reification.9 The computational features of description logics make them a reasonable
choice to formally represent linguistic frames, and this is the approach followed e.g.
by [32].10 On the other hand, FrameNet contains many meta-level relations that convey

8Frame elements are assumed to be local to a frame: this is quite complex an assumption for typical semantic
parsers

9This axiom is known as hasKey in OWL2(DL).
10F-logic [26] is another alternative that however has no direct correspondence to current standard semantic

web languages.

126 Coppola et al. / Learning Domain Ontologies

the intended semantics of frames: relations between frames, between frame elements,
and between frames and frame elements, lexical units, and lexemes, between sentences
and words, valences and lexical units, etc. OWL2 is appropriate to encode those meta-
level relation by means of its punning mechanism: when e.g. two frames are related,
their formal interpretation consists of a relation between Individuals and not between
Classes. Clearly, this is not a real representation of full FrameNet semantics, since the
intended reasoning of e.g. subFrame relation between frames requires a proper second-
order semantics which is not attainable by a simple punning mechanism. Moreover, the
alignment between the different lexical data coming from frame detection, super-sense
typing, possible alignments to other lexical resources, etc., requires a proper lexical meta-
model.

The Lexical Meta-Model (LMM) [30] is a formal semiotic vocabulary compliant
with OWL2 punning, which also enables the alignment of heterogeneous lexical re-
sources. LMM is implemented in OWL211. LMM facilitates the integration of heteroge-
neous lexical knowledge resources, such as WordNet [18] and FrameNet12, as well as of
other semi-formal resources (thesauri, subject directories, etc.), with regular ontologies
expressed in a formal language like OWL.

LMM can be considered as a semiotic façade enabling the reengineering of
a lexically-based resource to an ontology resource [20]. In the methodology re-
ported in this chapter, it is used to make different lexical data interoperable, and to
transform the output of the three learning components frame detector, super-sense
tagger, and distiller (see next sections) into an OWL ontology. The core LMM
elements are lmm:Expression, which can lmm:express a lmm:Meaning
(that is lmm:conceptualizedBy lmm:Agent), and which can lmm:denote
a lmm:Reference; in addition, any entity can have a lmm:Context and can be
lmm:representedBy a lmm:FormalExpression. Expressions can be any in-
formation object, and lexical items in particular; references can be any entity; mean-
ings can be any information or conceptual entity that is used to describe or en-
code the (informal, natural) semantics of an expression, i.e. other expressions, con-
cepts from a thesaurus, frames, topics, etc. A rich set of relations is defined in
LMM to associate meanings between them, as well as to associate expressions, mean-
ings, and references to formal constructs. A complete reengineering of FrameNet
as a plugin to LMM can be found in the OWL version of FrameNet13[20] (Fig.
3). A ofn:Frame has some ofn:FrameElement, is lexically realized by some
ofn:LexicalUnit, and all these can be evoked by some ofn:Lexeme, and can
have some ofn:SemanticType. Since semantic types do not cover all frame ele-
ments and lexical units, 14 we use the super-sense tagger component (section 2.2) to infer
WordNet wn:SuperSenses as additional types for frame elements. All mentioned
classes and relations are aligned to LMM; an excerpt of alignments can be found here:15

11http://www.ontologydesignpatterns.org/ont/lmm/lmm1.owl.
12The OWL ontology that encodes the alignment of the FrameNet OWL schema to LMM can be downloaded

at http://www.ontologydesignpatterns.org/ont/lmm/ofn2lmm.owl
13http://www.ontologydesignpattern.org/ont/ofn/ofntb.owl
14In FrameNet 1.3 the majority of frames (719 out of 795) has types for one or more of their frame elements

(4187 out of 7124), while no lexical unit (about 10000) has semantic types assigned to the application of frame
elements in their context

15http://www.ontologydesignpattern.org/ont/lmm/ofn2lmm.owl

Coppola et al. / Learning Domain Ontologies 127

Figure 3.: FrameNet OWL: A full-fledged metamodel for FrameNet

ofn:Lexeme rdfs:subClassOf lmm:Expression (10)

ofn:Frame rdfs:subClassOf lmm:Meaning (11)

ofn:FrameElement rdfs:subClassOf lmm:Meaning (12)

ofn:evokes rdfs:subClassOf lmm:expresses (13)

ofn:FramedSituation rdfs:subClassOf lmm:Reference (14)

A thorough discussion on alternative formal translations of FrameNet is contained in
[20]. A complete translation of the new FrameNet 1.5 version to RDF and OWL linked
data has been performed [29] has been recently produced, and reported in [29]. It does
not change the meta-model substantially however.

4. Process Evaluation and Knowledge Engineering

We have tested our methods on the Europarl corpus16, comprising about 30 million docu-
ments, extracted from the proceedings of the European Parliament. It includes 11 official
languages of the European Union. For our experiments, we have used the English part,
including 1,461,429 sentences and 39,618,240 words.

In step 1, sentences from the text corpus are annotated with super-senses by the SST,
and with frames, frame elements, and lexical units by the Frame Detector component.
For the sake of this experiment, we focused on the annotation of three frames: Killing,
JudgmentCommunication, and Commerce. Results for each frame have been collected
in tables reporting, for each frame occurrence recognized in the corpus, all the frame el-

16http://homepages.inf.ed.ac.uk/pkoehn/publications/europarl-mtsummit05.
pdf

128 Coppola et al. / Learning Domain Ontologies

Communicator TargetVerb Evaluee Reason Validity

people accuse european union - ok

- accused security violations ok

member states blame problems - ok

- blamed fishermen negotiations ok

companies charge price - no

amnesty international cited - torture ok

commission charged - failure ok

- charged authorities crime ok

- charged group report ok

employment charged - - no

Table 1. A sample output of the distiller with manual evaluation.

ements and their types, as recognized by SST. Occurrences of core frame elements show
meaningful frequency in the corpus, so confirming the hypothesis that some elements are
more central than others in the conceptualization of frames. About 1000 occurrences for
each frame have been collected after step 1.

In step 2, the raw frame occurrence data have been filtered by applying the proce-
dure described in section 2.3, consisting of identifying the most frequent super-senses for
each frame element, in order to learn more specific types (e.g. Person or Group, and
to filter out instances having different types (all super-senses can be assumed as disjoint
classes of synsets, therefore multi-typing with super-senses should be avoided). After
applying the automatic distiller procedure based on combined frequency thresholds, data
from only about 100 frame occurrences have been retained as candidate domain-specific
frames for each generic frame. In addition to types, step 2 allows to learn sensible lex-
emes for the domain specialization of frame elements (e.g. people), and sensible lexical
units (e.g. Accuse for the candidate frame specializations. An example of the outcome
of the distiller after evaluation is shown in Table 1. Each distilled domain frame is for-
malized as an owl:NamedIndividual rdf:type ofn:Frame, thus resulting to
be also rdf:type lmm:Meaning because of the LMM alignment, according to the
guidelines provided in section 3. For example, in one filtered occurrence we first special-
ize the generic frame (15), and then add a new super-sense typing over its frame elements
(16).

europarl:AccuseOfViolation lmm:specializes

ofnabox:JudgmentCommunication (15)

ofnabox:Communicator ofn:hasSemType europarl:People (16)

After a manual evaluation on the domain-specific frames detected for the three generic
frames chosen, 62% of distilled domain-specific frames resulted to be valid, where va-
lidity is assumed as respecting the conceptualization of the generic frame, in terms of
extensional interpretation of the classes derived from target verbs, and of properties de-
rived from frame elements. In this section we explain the workflow used to make this
interpretation viable.

The validation of domain-specific frames is performed by assuming a rapid ontol-
ogy design process, where frames are converted into knowledge patterns,[31,23,29] i.e.

Coppola et al. / Learning Domain Ontologies 129

small ontologies that are topologically dense, provide solutions to competency questions
(task orientedness), are linguistically grounded, and cognitively appropriate. Linguistic
groundedness is naturally provided by the corpus, cognitive appropriateness is here in-
herited from FrameNet frames that are specialized (section 3). We will describe here
density and task orientedness of the learnt patterns. In practice, ontology designers act-
ing as evaluators have been asked to validate the detected frames in terms of the density
and task properties. Topological density requires that the ontology corresponding to a
domain-specific frame is (syntactically) a labeled connected graph with nodes labeled
by owl:Class names and edges labeled by owl:ObjectProperty names only.17 Density is
ensured in principle, because the domain-specific frame inherits the conceptual structure
of the generic frame that has been specialized, and all FrameNet frames ensure density
because of their design after conversion (section 3).

On the contrary, ontologies produced by traditional learning methods typically lack
density and do not feature the expected formal structure implicit in experts’ conceptu-
alization of their domain. Experts’ conceptualization as extracted from text is in fact
dependent on the syntactic and semantic dependencies within the text, which are mostly
ignored by traditional ontology learning methods [21].

We remark that frame-based ontology learning has also this desirable property. Since
frames are formally equivalent to n-ary relations at design time (section 3), and com-
petency questions can be formalized as n-ary relations at query time [7], it is straight-
forward to match a linguistic competency question like: what are the reasons for those
events? to the knowledge base of domain-specific frames.18

Domain frames can be used for two different design tasks: the first one is pro-
ducing a traditional TBox domain ontology, e.g. consisting of OWL classes like
AccuseOfViolation; the second one is to classify named entities that instantiate the
domain frame (framed situations), which are formalized as OWL individuals.

The generation of a TBox from the LMM-encoded domain frame and framed situ-
ations is performed by means of customizable transformation patterns [20], which en-
code rules for translating each instance of an LMM type (Meaning, Expression, etc.) into
an OWL element (see also [21]. In other words, a transformation pattern is a recipe to
transform a certain class of logical constructs into another.

As a concrete example, we show a diagram depicting a proposed knowledge pattern
that has been derived from the domain-specific frame AccuseOfViolation (Fig. 4). The
transformation patterns adopted are exemplified here as a set of OWL2Full axioms acting
over the domain of FrameNet OWL schema, and the OWL metamodel:19 OWL2 punning
is again used here.

ofn:Frame trans:transformableTo owl:Class (17)

17Taxonomical (rdfs:subClassOf) and owl:DatatypeProperty links do not contribute to the density of an
ontology.

18Several domain-specific frames can be retrieved which have evidence in the corpus: AccuseOfViolation,
BlameNegotiation, ChargeForFailure, ChargeForCrime, etc.

19Transformation patterns are based on alignments between the FrameNet schema
and LMM (cf. section 3), between LMM and the FormalSemantics vocabulary:
http://ontologydesignpatterns.org/ont/dul/FormalSemantics.owl, and the OWL
meta-model.

130 Coppola et al. / Learning Domain Ontologies

ofn:FrameElement trans:transformableTo owl:ObjectProperty (18)

ofn:SemanticType trans:transformableTo owl:Class (19)

ofn:hasFE trans:transformableTo owl:Restriction (20)

ofn:hasSemType trans:transformableTo rdfs:range (21)

For example, given the previous axioms 15 and 16, and the following axioms extending
FrameNet OWL ABox,20:

europarl:AccuseOfViolation ofn:hasFE ofnabox:Communicator (22)

europarl:AccuseOfViolation ofn:hasFE ofnabox:Reason (23)

ofnabox:Reason ofn:hasSemType europarl:Violation (24)

we obtain the following TBox axioms, after applying the transformation patterns:

T v ∀ofnowl:Communicator.europarl:People (25)

T v ∀ofnowl:Communicator−.europarl:AccuseOfViolation (26)

T v ∀ofnowl:Reason.europarl:Violation (27)

T v ∀ofnowl:Reason−.europarl:AccuseOfViolation (28)

Task-based fitness can be proved by launching a unit-test (cf. [7]) that contains data about
the europarl:AccuseOfViolation competency question: what accuses of viola-
tion people has made for what reason?. From the n-ary relation hypothesis, we know
that a frame has direct translations into competency questions, queries, and ontologies:
if the TBox produced is able to support the proper queries, then the TBox fits the task.
This is the case actually, since the classes and properties that have been built (Fig. 4) are
able to encode the query derived from the competency question:

SELECT DISTINCT ?x ?y ?z WHERE {?x a Accuse . ?y a People .

?z a Violation . ?x :Communicator ?y . ?x :Reason ?z} (29)

5. Conclusions

In this chapter we have presented and implemented a method for frame-based ontology
learning by using components for frame detection and super-sense tagging on a text cor-
pus, the FrameNet and WordNet lexical knowledge bases, and the LMM meta-modelling
framework.

The method can be used to generate candidate domain-specific frames suggested
by qualified corpus evidence, and to populate an ontology with complex facts extracted
from the corpus. The method fits a task-based analysis and evaluation of ontologies, as

20http://www.ontologydesignpatterns.org/ofnframes/accuseofviolation.owl

Coppola et al. / Learning Domain Ontologies 131

Figure 4.: A knowledge pattern derived from the domain-specific frame AccuseOfVio-
lation, based on the transformation patterns.

it has been developed in the NeOn EU project,21 where novel methods for pattern-based
design have been implemented [7].

The presented method shows some significant improvements in terms of functional-
ities and technology with respect to existing ontology learning approaches, not only be-
cause we are acquiring more complex knowledge structures (i.e. frames instead of sim-
ple taxonomies or binary relations) but since we also provide an easier alignment to ex-
isting semantic web resources: the use of LMM makes the results more easily mappable
to different kinds of data, such as datasets from Linked Open Data.

Our experiment proves that we can build a resource of reusable knowledge patterns
by learning them from domain text corpora. There are challenging research issues in this
area of ontology design. An important one is this: since the amount of domain-oriented
patterns can be huge, and FrameNet alone provides around 1000 generic frames, are they
complete, so that all domain patterns specialize them? Should we consider a procedure
to learn patterns without previous knowledge of generic ones? Such questions are being
investigated within the research programme outlined in [23].

References

[1] M. van Assem, A. Gangemi, and G. Schreiber. Conversion of WordNet to a standard RDF/OWL rep-
resentation. In Proc. of the Int. Conference on Language Resources and Evaluation (LREC) , Genoa,
Italy. 2006.

[2] S. Auer, C. Bizer, J. Lehmann, G. Kobilarov, R. Cyganiak, and Z. Ives. DBpedia: A Nucleus for a Web
of Open Data. In Aberer et al. (Eds.): 6th International Semantic Web Conference. Lecture Notes in
Computer Science, Springer, 2007.

[3] F. Baader, editor. The Description Logic Handbook: theory, implementation, and applications. Cam-
bridge University Press, Cambridge, 2003.

[4] C.F. Baker, C.J. Fillmore, and J.B. Lowe. The Berkeley FrameNet Project. In Proceedings of the 17th
international conference on Computational linguistics, pages 86–90, Morristown, NJ, USA, 1998.

[5] R. Basili, C. Giannone, and D. De Cao. Learning domain-specific framenets from texts. In ECAI
Workshop on Ontology Learning and Population, 2008.

[6] R. Basili, A. Moschitti, and M.T. Pazienza. A text classifier based on linguistic processing. In Proceed-
ings of the IJCAI-99 Workshop on Machine Learning for Information Filtering, 1999.

21http://www.neon-project.org

132 Coppola et al. / Learning Domain Ontologies

[7] E. Blomqvist, V. Presutti, A. Gangemi, and E. Daga. Experimenting with extreme design. In In Proceed-
ings of the Conference on Knowledge Engineering and Knowledge Management (EKAW2010), Redondo
Beach, California, USA, 2010. Springer.

[8] J. Bos and M. Nissim. Combining Discourse Representation Theory with FrameNet. In R. Rossini
Favretti, editor, Frames, Corpora, and Knowledge Representation, pages 169–183. Bononia University
Press, 2008.

[9] R.J. Brachman. A Structural Paradigm for Representing Knowledge. Ph.d. thesis, Harvard University,
USA, 1977.

[10] M. Ciaramita and Y. Altun. Broad-coverage sense disambiguation and information extraction with a
supersense sequence tagger. In Proceedings of EMNLP-06, pages 594–602, Sydney, Australia, 2006.

[11] M. Ciaramita and M. Johnson. Supersense tagging of unknown nouns in wordnet. In Proceedings of
EMNLP-03, pages 168–175, Sapporo, Japan, 2003.

[12] M. Collins. Discriminative training methods for hidden markov models: Theory and experiments with
perceptron algorithms. In Proceedings of EMNLP-02, 2002.

[13] B. Coppola, A. Gangemi, A.M. Gliozzo, D. Picca, and V. Presutti. Frame detection over the semantic
web. In Lora Aroyo, Paolo Traverso, Fabio Ciravegna, Philipp Cimiano, Tom Heath, Eero Hyvönen,
Riichiro Mizoguchi, Eyal Oren, Marta Sabou, and Elena Paslaru Bontas Simperl, editors, ESWC, volume
5554 of Lecture Notes in Computer Science, pages 126–142. Springer, 2009.

[14] B. Coppola and A. Moschitti. A general purpose framenet-based shallow semantic parser. In Nicoletta
Calzolari (Conference Chair) et al., editor, Proceedings of the 7th International Conference on Lan-
guage Resources and Evaluation (LREC’10), Valletta, Malta, may 2010. European Language Resources
Association (ELRA).

[15] B. Coppola, A. Moschitti, and D. Pighin. Generalized framework for syntax-based relation mining. In
Proceedings of the IEEE International Conference on Data Mining (ICDM 2008), Pisa, Italy, 2008.

[16] B. Coppola, A. Moschitti, S. Tonelli, and G. Riccardi. Automatic framenet-based annotation of conver-
sational speech. In Proceedings of the IEEE Workshop on Spoken Language Technology (SLT 2008),
Goa, India, 2008.

[17] D. Davidson. The Logical Form of Action Sentences. In The Logic of Decision and Action. University
of Pittsburgh Press, Pittsburgh, 2nd edition, 1967.

[18] C. Fellbaum, editor. WordNet. An Electronic Lexical Database. MIT Press, 1998.
[19] C.J. Fillmore. The Case for Case. In Emmon Bach and Robert T. Harms, editors, Universals in Linguistic

Theory, pages 1–210. Holt, Rinehart, and Winston, New York, 1968.
[20] A. Gangemi. What’s in a schema? A formal metamodel for ECG and FrameNet. Studies in Natural

Language Processing. Cambridge University Press, April 2010.
[21] A. Gangemi. Back to the future: Frame representation and semantic technologies. Cahiers de Lexicolo-

gie, 99(2), 2012.
[22] A. Gangemi, R. Navigli, and P. Velardi. The OntoWordNet Project: Extension and Axiomatization of

Conceptual Relations in WordNet. In ODBASE 2003, 2003.
[23] A. Gangemi and V. Presutti. Towards a Pattern Science for the Semantic Web. Semantic Web, 1(1-2):61–

68, 2010.
[24] D. Gildea and D. Jurafsky. Automatic Labeling of Semantic Roles. Computational Linguistics,

28(3):245–288, 2002.
[25] M. Gruninger and M. Fox. The role of competency questions in enterprise engineering, 1994.
[26] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based Languages.

Journal of Association for Computing Machinery, 42:4:741–843, 1995.
[27] M. Minsky. A Framework for Representing Knowledge. In P. Winston, editor, The Psychology of

Computer Vision. McGraw-Hill, 1975.
[28] A. Moschitti, D. Pighin, and R. Basili. Tree kernels for semantic role labeling. Computational Linguis-

tics, 34(2):193–224, 2008.
[29] A. G. Nuzzolese, A. Gangemi, and V. Presutti. Gathering Lexical Linked Data and Knowledge Patterns

from FrameNet. In Proc. of the 6th International Conference on Knowledge Capture (K-CAP), pages
41–48, Banff, Alberta, Canada, 2011.

[30] D. Picca, A. Gangemi, and A. Gliozzo. LMM: an OWL Metamodel to Represent Heterogeneous Lexical
Knowledge. In Proc. of the International Conference on Language Resources and Evaluation (LREC),
Marrakech, Morocco, 2008.

[31] V. Presutti and A. Gangemi. Content Ontology Design Patterns as Practical Building Blocks for Web

Coppola et al. / Learning Domain Ontologies 133

Ontologies. In Proceedings of the 27th International Conference on Conceptual Modeling (ER 2008),
Berlin, 2008. Springer.

[32] J. Scheffczyk, C. F. Baker, and S. Narayanan. Reasoning over Natural Language Text by means of
FrameNet and Ontologies. In Ontologies and the Lexicon. Cambridge University Press, 2010.

[33] H. Tanev, M. Kouylekov, M. Negri, B. Coppola, and B. Magnini. Multilingual pattern libraries for ques-
tion answering: a case study for definition questions. In Proceedings of LREC 2004, Lisbon, Portugal,
2004.

[34] W3C OWL Working Group. OWL 2 Web Ontology Language, W3C Recommendation, 27 October
2009. http://http://www.w3.org/TR/owl2-overview/, 2009.

Information Extraction
for Ontology Learning

Fabian SUCHANEK
Max Planck Institute for Informatics, Germany

Abstract. In this chapter, we discuss how ontologies can be constructed by ex-
tracting information from Web documents. This is a challenging task, because in-
formation extraction is usually a noisy endeavor, whereas ontologies usually re-
quire clean and crisp data. This means that the extracted information has to be
cleaned, disambiguated, and made logically consistent to some degree. We will dis-
cuss three approaches that extract an ontology in this spirit from Wikipedia (DB-
pedia, YAGO, and KOG). We will also present approaches that aim to extract an
ontology from natural language documents or, by extension, from the entire Web
(OntoUSP, NELL and SOFIE). We will show that information extraction and ontol-
ogy construction can enter into a fruitful reinforcement loop, where more extracted
information leads to a larger ontology, and a larger ontology helps extracting more
information.

Keywords. Information Extraction, Reasoning, Consistency, Taxonomy, Disambiguation

1. Introduction

1.1. Motivation

The World Wide Web provides an enormous source of knowledge. News articles, univer-
sity home pages, scientific papers, personal blogs, commercial Web sites, catalogs such
as the Internet Movie Database, and entire encyclopedias such as Wikipedia are available
online. These sites host information on a wealth of topics, from scientific theories to cur-
rent political events, from digital cameras to endangered wildlife species and from train
schedules to cooking recipes. This information is available as digital documents. This
means that machines can store, display and index these documents. However, machines
do not have a semantic representation of the content of the documents. This means that
machines cannot figure out whether a document contains contradictory information. It
also means that we cannot ask SPARQL queries against the documents. Thus, there is
a gap between the syntactical way in which data is stored on the Web and the semantic
way in which information is stored in RDF/OWL ontologies.

Information Extraction (IE) steps in to bridge that gap. IE is the science of extract-
ing structured data from unstructured or semi-structured documents. For example, given
a natural language document with the sentence “Elvis Presley was born in Tupelo", the
goal of an IE system could be to extract the triple <Elvis, bornIn, Tupelo>. This fact
could then become part of an ontology. If this process could be applied to all the docu-
ments of the Web, then the syntactic information of the Web could become semantically

136 Suchanek / Information Extraction for Ontology Learning

accessible to machines. This chapter will present recent promising work in this direc-
tion. The remainder of this section will first discuss IE in general and for ontologies in
particular. Then, Section 2 will present approaches that extract ontological information
from Wikipedia. Section 3 discusses approaches that target unstructured Web pages, or
the entire Web, before Section 4 concludes.

1.2. Information Extraction

IE is the process of extracting structured information from one or multiple given source
documents. There are literally hundreds of different IE techniques. Some of these tech-
niques have become particularly popular. At first, the document is usually preprocessed.
This may include character set detection or conversion, the removal of special characters,
DOM tree construction for HTML documents and general cleaning, such as the removal
of irrelevant portions of the document. Next, the document is usually segmented into
words or tokens (cf. Maynard and Bontcheva [13], this volume). At the level of tokens,
we can already apply techniques of Named Entity Recognition. NER will identify the
tokens that are dates, numbers and proper names. Some NER techniques can even dis-
tinguish location names, organization names and person names. All approaches that we
will see in this chapter use basic preprocessing of this kind.

After NER, first methods of fact extraction can be applied. If the document is struc-
tured (such as HTML tables, lists, or Web sites that follow a template), we can employ
techniques such as wrapper induction [9] or table annotation [12]. These techniques can
extract tabular information from Web pages. If the document is unstructured (i.e., if it
consists of natural language text), we can apply approaches that seek patterns in the sen-
tences of the text [10]. For example, the pattern “X is a Y” indicates that X could be an
instance of the concept Y (such as in the sentence “Elvis Presley is a rock singer”). The
patterns can either be predefined or learned from examples. Other techniques rely on a
co-occurrence analysis of terms. For example, if Elvis Presley always appears together
with the words guitar and sing, then this may indicate that he is a musician.

If the document contains natural language text, it can also be linguistically analyzed,
as explained by Maynard and Bontcheva [13] (this volume). This may include part-of-
speech tagging and syntactic analysis, such as dependency parsing. Then, linguistic tech-
niques can be applied to deduce the meaning of a sentence and distill the facts it ex-
presses. There are many more approaches, which blend, adapt or use the previously men-
tioned approaches or which take a new perspective altogether. The reader is referred to
[18] for a general survey of techniques.

1.3. IE for Ontologies

Traditional IE concentrated on entity extraction, relation extraction, and fact extraction.
Given a sentence “Elvis married Priscilla Beaulieu”, an IE system aimed to extract that
the relation married holds between Elvis and Priscilla Beaulieu. If this fact is to be used
in an ontology, however, it is not sufficient to extract just these three tokens. Rather, three
more desiderata have to be fulfilled:

1. Canonicity: The entity names have to be disambiguated and mapped to existing
entities of the ontology. In the example, the system has to determine that “Elvis”
refers to the entity Elvis Presley (instead of, say, the singer Elvis Costello). The

Suchanek / Information Extraction for Ontology Learning 137

system may also decide to introduce a new entity if the entity does not yet exist
in the knowledge base. The same applies to class names and relation names.

2. Taxonomic organization: The extracted entities have to be placed in a taxonomy
of classes. In the example, the system has to know that Elvis is a singer and that
this implies that he is a person.

3. Consistency: The extracted facts have to be logically consistent with the ontol-
ogy. In the example, the system may have to check that Priscilla was born before
Elvis died.

These desiderata put an additional burden on the IE system. At the same time, the
ontology can also help the IE process. This can happen on multiple levels. First, the data
that is already present in the ontology can serve as seed data for the IE process. For
example, assume that the ontology already knows that Einstein was married to Mileva
Maric. If the system comes across the sentence “Einstein married Mileva Maric”, the
system can guess the meaning of the pattern “X married Y”. This, in turn, will allow it to
understand the sentence “Elvis married Priscilla Beaulieu”. The ontology can also help
in another way: If the ontology has to be logically consistent, then certain interpretations
of the source document can be excluded. In our sample sentence, the word “Elvis” cannot
refer to Saint Elvis, because this saint lived in the 5th century and cannot have married
Priscilla.

Thus, the more knowledge has already been extracted, the better the system will be
able to extract new information. The better it extracts new information, the more knowl-
edge will be extracted. Much like humans, who learn faster when they know more, and
know more when they learn faster, IE and ontologies could enter a fruitful cycle of knowl-
edge accumulation. We will look at two classes of ontological knowledge extraction sys-
tems that go into this direction. The first class extracts information from Wikipedia. The
second class ventures beyond Wikipedia and extracts information from arbitrary docu-
ments – or targets even the whole Web.

2. IE from Wikipedia

Wikipedia is a multilingual, Web-based encyclopedia. It is written collaboratively by vol-
unteers and is available for free under the terms of the Creative Commons Attribution-
ShareAlike License1. As of February 2011, the English Wikipedia contained more than
3.5 million articles2. Wikipedia suggests itself for ontological information for multiple
reasons. First, Wikipedia articles follow a number of conventions concerning the for-
matting and the content. This makes Wikipedia much more homogeneous than a set of
random Web pages and facilitates IE. Second, Wikipedia is constantly updated and im-
proved by thousands of volunteers, so that it is widely regarded as credible, correct and
authoritative. Wikipedia also covers many different aspects of knowledge, from science
to literature or politics, which makes it useful as a source for a general-purpose ontol-
ogy. Lastly, Wikipedia is a highly structured resource, which contains not just natural
language texts, but also standardized tabular information, a category system and meta-

1http://creativecommons.org/
2http://en.wikipedia.org/wiki/Wikipedia:Statistics

138 Suchanek / Information Extraction for Ontology Learning

Elvis Presley

Elvis Aaron Presley (January 8, 1935 – August
16, 1977), middle name sometimes written Aron)
was an American singer, musician and actor.

etc.

Born: January 8, 1935
Occupations: singer, actor
etc.

Categories: 1935 births | 1977 deaths | American
rock singers | Rock and roll | People with diabetes
etc.

Figure 1. A Wikipedia Article

information such as inter-article links and user information. This allows structured IE
techniques to work, which often have a higher precision than unstructured techniques.

For these reasons, it is not surprising that several ontological IE approaches have
targeted Wikipedia. This section will present three of them. For this purpose, let us first
discuss the technical markup of Wikipedia.

2.1. Wikipedia

Each Wikipedia article is a single Web page and usually describes a single topic or entity,
the article entity. Figure 1 shows an excerpt of the article about Elvis Presley. As an on-
line encyclopedia, Wikipedia has several characteristics: First, each article is highly inter-
linked to other articles. In the example, a click on the word singer leads to the Wikipedia
article about singers. Each Wikipedia article has an unstructured, natural language part
(on the left hand side in Figure 1). In addition to that, some Wikipedia articles also have
an infobox (pictured on the right hand side). An infobox is a standardized table with in-
formation about the article entity. For example, there is an infobox template for people,
which contains the birth date, the profession, and the nationality. Other widely used in-
fobox templates exist for cities, music bands, companies etc. Each row in the infobox
contains an attribute and a value. For example, our infobox contains the attribute Born
with the value January 8, 1935. An infobox attribute may also have multiple values, as
exemplified by the Occupations attribute. The majority of Wikipedia articles have been
manually assigned to one or multiple categories. Our sample article is in the categories
American rock singers, 1935 births, and 34 more. Figure 1 shows an excerpt at the bot-
tom.

Wikipedia is rendered as HTML pages, but is written in a special markup language,
the Wiki markup language. Figure 2 shows an excerpt of the article on Elvis Presley in
this language. The XML dump of Wikipedia (as of 2010) is approximately 27 Gigabytes
large and stores the articles in the Wiki markup language.

We will now look at three systems that exploit this structured nature of Wikipedia:
DBpedia, YAGO and KOG. Since these systems build an ontology, they can use auto-
mated reasoning to check and control the knowledge they are extracting. While DBpedia
uses fewer reasoning, YAGO uses simple deductive reasoning and KOG uses the more
sophisticated Markov logic [17].

Suchanek / Information Extraction for Ontology Learning 139

{{Infobox musical artist
| Name = Elvis Presley
| Img = Elvis Presley 1970.jpg
| Born = {{birth date|1935|1|8|}}
| Occupation = [[singer]], [[actor]]
etc.
}}

”’Elvis Aaron Presley”’([[January 8]], [[1935]] - [[August
16]], [[1977]]), middle name sometimes written ”’Aron”’, was
an [[United States|American]] [[singer]], [[musician]] and
[[actor]]. etc.

[[Category:1935 births]] [[Category:1977 deaths]] etc.

Figure 2. The Wikipedia Markup Language

2.2. DBpedia

DBpedia [2] is a system that extracts an RDF ontology from Wikipedia3. The project
is a community effort, coordinated by the University of Leipzig, the Free University of
Berlin and the OpenLink Software company. DBpedia was among the first projects to
harvest Wikipedia at a large scale for ontology construction.

2.2.1. Fact Extraction

The DBpedia system takes as input a dump of Wikipedia. The system creates one re-
source for each article in Wikipedia. For example, the Wikipedia page named “Elvis
Presley” gives rise to the DBpedia resource http://dbpedia.org/resource/
Elvis_Presley. The DBpedia extractors create basic facts about the resource by ex-
ploiting, among other things, the title of the article (which becomes the rdfs:label of the
resource), the image of the article (which creates a triple linking the resource and the im-
age URL) and the external links of the article (which each generate one triple). DBpedia
applies this process to all language pages of Wikipedia, so that each resource in DBpedia
has labels and abstracts in multiple languages (if Wikipedia has them).

DBpedia uses two approaches to harvest the infoboxes of Wikipedia. The first ap-
proach is recall-oriented. This means that it tries to harvest as much information as pos-
sible, even if this information may not be correctly extracted or contradictory. In this
approach, every value of the infobox gives rise to one triple. The subject of the triple
is the article resource. The relation of the triple is the infobox attribute, prefixed by
http://dbpedia.org/property/. The object of the triple is the value in the in-
fobox. For example, the line “Occupation = [[singer]]” in Elvis’ infobox translates into
the triple

<http://dbpedia.org/resource/Elvis_Presley,
http://dbpedia.org/property/Occupation,
http://dbpedia.org/resource/singer>

3http://dbpedia.org

140 Suchanek / Information Extraction for Ontology Learning

The extractors can detect and handle lists, dates, numbers, and units as data types.
This extraction technique covers all infoboxes and all infobox attributes. Unfortunately,
Wikipedia sometimes uses different identifiers for the same relation. For example, some
Wikipedia templates contain the attribute occupation while others contain profession.
Therefore, the extraction algorithm creates many synonymous relations without an indi-
cation that they are synonymous.

Hence DBpedia also pursues a second approach to infobox harvesting [4]. This ap-
proach is precision-oriented, meaning that it extracts fewer information, but with higher
quality. For this purpose, the DBpedia community has begun to map Wikipedia tem-
plates into an ontology. This ontology was created by manually arranging the 350 most
commonly used infobox templates within the English edition of Wikipedia into a sub-
sumption hierarchy. This hierarchy consists of 170 classes. The community then mapped
the 2350 attributes of these templates to 720 manually defined ontology properties. The
property mappings imclude fine-grained rules on how to parse infobox values and de-
fine target data types, which help the parsers to process attribute values. For instance, if
a mapping defines the target data type to be a list of links, the parser will ignore addi-
tional text that might be present in the attribute values. This extraction provides cleaner
data, but works only on the templates that have been manually identified. This applies to
roughly half of the resources already.

2.2.2. Taxonomies

DBpedia arranges its resources into 4 taxonomies. The first taxonomy is derived from
the Wikipedia Category system. Every category of Wikipedia becomes a class, struc-
tured by skos:broader and skos:narrower relationships. The main advantage of the cat-
egory system is that it is collaboratively extended and kept up-to-date by thousands of
Wikipedia editors. A disadvantage is that categories do not form a proper topical hi-
erarchy, as there are cycles in the category system and as categories often only repre-
sent a rather loose relatedness between articles. The second taxonomy is imported from
the YAGO ontology. This taxonomy is described in detail in Section 2.3. While YAGO
achieves a high accuracy in general, there are a few errors and omissions due to its auto-
matic generation. A third taxonomy has been taken from the Upper Mapping and Bind-
ing Exchange Layer UMBEL. The UMBEL taxonomy was derived from OpenCyc. The
fourth taxonomy is being developed manually by the DBpedia community from the
most commonly used infobox templates within the English edition of Wikipedia. It con-
sists of 170 classes that form a shallow subsumption hierarchy. It includes 720 properties
with domain and range definitions. As all taxonomies use Wikipedia identifiers for the
instances, they can all co-exist in parallel in DBpedia. See the PARIS project [19] for a
comparison of the class and relation hierarchies of YAGO and DBpedia4.

2.2.3. Summary

As of February 2011, DBpedia contains 3.5 million resources and 670 million triples.
The DBpedia data can be downloaded from the Web, but it can also be accessed through
a SPARQL interface and through the Linked Data protocol [3]. This has made DBpedia
a hub in the world of linked data. One of the main technical contributions of DBpedia is
the systematic harvesting of infoboxes for fact extraction. This techniques give DBpedia

4http://webdam.inria.fr/paris

Suchanek / Information Extraction for Ontology Learning 141

large coverage of practically all structured facts of Wikipedia. The entities of DBpedia
are canonic, because DBpedia is based on Wikipedia, which contains very few duplicate
entities. The community-based definition of extraction patterns ensures that more and
more of the properties of DBpedia are also canonic. Through its 4 class hierarchies,
DBpedia also gives an extensive taxonomic structure to its data.

DBpedia does not use reasoning to check its data for consistency. The YAGO project
makes first steps in this direction.

2.3. YAGO

YAGO[20] is an ontology5 that has been automatically constructed from Wikipedia,
WordNet [8], the Universal WordNet [7] and Geonames6. The project is being devel-
oped by the Max Planck-Institute for Informatics in Germany. YAGO was one of the
first projects that used the extracted knowledge for consistency checks on other extracted
knowledge.

2.3.1. Fact Extraction

Much like DBpedia, YAGO starts out from Wikipedia and makes every article a resource.
For every article, YAGO also collects the categories of the article. It determines which of
the categories identify a class to which the article entity belongs. For example, the cate-
gory American rock singers identifies a class for the article entity Elvis Presley, while the
category Rock music does not. YAGO creates a class for each of these category names and
makes the article entity an instance of these classes. Then, YAGO links the classes to the
corresponding classes in the WordNet taxonomy [8]. The class American rock singers,
e.g., becomes a subclass of the WordNet class singer. YAGO harvests the infoboxes by
help of a manual mapping from infobox attributes to properties [21]. YAGO also contains
the Universal WordNet UWN [7]. UWN was derived from WordNet and translates its
class names into up to 200 different languages. The YAGO extractors add in the classes
and instances from Geonames, a dataset of geographical entities. Careful matching al-
gorithms make sure that each Geonames class finds its place in the existing taxonomy
and that each Geonames instance is mapped to the matching entity from Wikipedia, if it
already exists. Thereby, YAGO is virtually free of duplicates and achieves canonicity of
entities, classes and relations.

2.3.2. Fact Checking

In YAGO, every entity is assigned to at least one class. If YAGO cannot find a class
for an entity, the entity is purged. This applies also to literals. YAGO contains a manu-
ally designed taxonomy for literals (the class ThreeLetterLanguageCode, e.g., is a sub-
class of String). Each literal class comes with a regular expression that identifies lexical
forms of the data type. Furthermore, the relationships in YAGO are defined manually and
have ranges and domains. This forces the extracted data into a rather rigid framework
of classes and constraints. Within this framework, the YAGO extractors can perform a
limited type of reasoning while extracting the facts:

5http://yago-knowledge.org
6http://geonames.org

142 Suchanek / Information Extraction for Ontology Learning

1. Functional Dependencies: If a relation is known to be a function, only one ob-
ject will be accepted for each subject

2. Reductive Type Checking: If a value extracted from an infobox does not meet
the domain and range conditions of the relation, it is rejected. The type checking
applies to resources (which have a type given by the taxonomy) as well as to
literals (which can be type checked by the regular expression from the data type
taxonomy).

3. Type Coherence Checking: At the top-level, the taxonomy of YAGO is parti-
tioned into 5 different branches (locations, artifacts, people, other physical enti-
ties, and abstract entities). If an entity is an instance in multiple branches, a vot-
ing procedure is used to determine the only branch that will be accepted for that
entity.

These mechanisms ensure that potentially erroneous triples are not accepted into YAGO.

2.3.3. Fact Deduction

The YAGO extractors use reasoning not just to eliminate triples, but also to deduce new
triples. YAGO implements a deduction mechanism for simple Horn rules. These rules
are manually defined. The following rule, e.g., deduces that if an entity has an academic
supervisor, then that entity must be a person:

<X , :hasAcademicSupervisor, Y >

<X , rdf:type, :person>

This mechanism, Inductive Type Checking, works for certain relations that identify the
type of its argument unambiguously. Other rules deduce temporal and spatial information
for facts. For example, YAGO knows that the relation wasBornOnDate indicates the
temporal starting point of an entity. YAGO also knows that the relation wasBornInPlace
happened at the time of the birth of the entity. Therefore, YAGO deduces that the time
of the wasBornInPlace fact must be the date that comes with the wasBornOnDate fact.
Horn rules are used to propagate time and space information from one fact to the other.
As a result, YAGO can attach time intervals and geographic locations to many of its
entities and facts, thus giving the data a temporal and a spatial dimension [11].

2.3.4. Summary

YAGO contains 80 million triples about 10 million resources. This includes temporal
and spatial information for both facts and entities. YAGO has been evaluated manually
and shown to have an accuracy of 95% (with respect to Wikipedia as the ground truth).
The main technical contribution of the project is the use of a basic reasoning framework
to check extracted facts for consistency and to derive new facts. Through the manual
definitions of properties and the matching algorithms, YAGO achieves canonicity of en-
tities, classes, and relations. Through the fact checking mechanisms, YAGO achieves a
certain consistency of the extracted data. By mapping Wikipedia categories to the classes
of WordNet, YAGO gives its data a taxonomic backbone.

YAGO does not exploit that infobox templates can also yield class information. We
are going to discuss next a project that uses the infobox templates to construct a taxon-
omy.

Suchanek / Information Extraction for Ontology Learning 143

2.4. KOG

Th Kylin Ontology Generator (KOG) [25] is a system that builds an ontology from the in-
foboxes of Wikipedia and combines it with WordNet. KOG is part of the Machine Read-
ing project at the University of Washington. KOG was the first system to treat Wikipedia
infoboxes as classes and to infer their attributes and subsumption relations.

2.4.1. Class Extraction

KOG starts out from the dump of Wikipedia. It treats each infobox template as a class.
The attributes of the template are considered attributes of the class. KOG cleans the
infobox data in 4 steps:

1. Recognizing Duplicate Infobox Types: Sometimes, the same class of things
(e.g., US counties) are described by two types of infoboxes (e.g., uscounty and
us_county). KOG uses the Wikipedia redirect pages, the Wikipedia editing his-
tory and name similarity heuristics to detect and merge equivalent infobox types.

2. Assigning Meaningful Names: Some infobox types have obscure names such
as abl. KOG uses the Wikipedia redirect links, the Wikipedia categories of the
respective articles and Google spell checking to find more meaningful names for
the types (such as AmericanBaseballLeague instead of abl).

3. Inferring Attribute Ranges: KOG collects all values of a given attribute (e.g.,
all people who occur as values of the attribute directedBy). For each value, it de-
termines the class of which the value is an instance. KOG uses the YAGO hier-
archy and the DBpedia hierarchy [2] for this purpose. It chooses the superclass
of the most frequent classes as the range for the attribute. For example, if most
people that appear in a directedBy attribute are instances of the class American-
MovieDirectors or the class ItalianMovieDirectors, KOG chooses the superclass
movieDirectors.

4. Attribute Mapping: Some attributes are similar, even if they appear in different
infobox types. For example, both the infoboxes for actors and the infoboxes for
scientists have an attribute spouse. KOG uses string matching techniques, infor-
mation from the taxonomy (see below) and data from the edit history of pages to
identify such attributes.

2.4.2. Taxonomy Construction

Next, KOG builds a taxonomy in 2 phases: First, KOG establishes which infobox tem-
plate must be a subclass of which other infobox template. For example, KOG figures out
that the template EnglishPublicSchool must be a subclass of PublicSchool. KOG uses
name matching, pattern matching and information from the Wikipedia categories, the
edit histories, and WordNet [8] for this purpose. Next, KOG connects the infobox classes
to WordNet. For this purpose, KOG uses the mapping that exists already in YAGO [20]
and the mapping that exists already in DBpedia [2], and trains a classifier to detect sub-
sumption between a Wikipedia entity and a WordNet entity. KOG uses Markov Logic
Networks [17] to take into account rules such as the transitivity of subClassOf. This
produces a subsumption hierarchy of classes. Each class is canonic and has canonic at-
tributes. The hierarchy is connected to the WordNet hierarchy.

144 Suchanek / Information Extraction for Ontology Learning

2.4.3. Summary

An evaluation of KOG yields precision rates around and beyond 90%. As of the time of
this writing, the KOG ontology is not available online. One of the main technical con-
tributions of the KOG system is the exploitation of infoboxes of Wikipedia as classes.
These classes are anchored in WordNet, so that the KOG ontology possesses a strong
taxonomic structure. KOG implements many techniques to make sure its classes, enti-
ties and relations are canonic. Unlike DBpedia and YAGO, KOG achieves this canon-
icity without manual rules. KOG also implements reasoning techniques to ensure the
consistency of the extracted data.

KOG is highly tailored to the internal structure of Wikipedia. We will next look at
systems that go beyond Wikipedia.

3. IE from the Web

While Wikipedia contains already much information, it contains only part of the huge
amount of data that is available on the Web. This is why several newer approaches have
embarked to go beyond Wikipedia, and to extract ontological information from the entire
Web. The Web is much more heterogeneous than Wikipedia, with different file formats,
different languages, different page layouts, and only creeping standardization. Further-
more, the information on the Web exhibits various degrees of credibility. Data may be
faulty, incomplete, contradictory, or wrong. In addition, the Web is one of the largest
computer-processable resources at all. This makes IE from the Web particularly chal-
lenging.

On the other hand, an IE algorithm can also benefit from the size of the Web: The
redundancy of the Web means that the same piece of information is likely to appear mul-
tiple times in multiple forms. For example, the fact that Elvis won the Grammy Award is
likely to appear several pages in several forms. If the algorithm manages to extract this
piece of information from one page, it may be able to discover it subsequently on another
page. This may allow it to learn a new textual pattern. This pattern, in turn, can then
generate new facts. This mutual reinforcement of pattern discovery and fact discovery is
a well-known principle in IE [5,1].

Due to the redundancy, the goal is no longer to extract all information from a given
single document. Rather, the goal is to extract all information that is expressed in the doc-
uments, no matter from which document. This idea heralds a paradigm shift, which has
been called machine reading [15] or macro-reading [6]. Quite a number of approaches
have embarked in this direction. Some of the more prominent ones are the Read-the-Web
project NELL [6] of Carnegie-Mellon University, the TextRunner/KnowItAll project7

and the OntoUSP project at the University of Washington, and the PROSPERA/SOFIE
project at the Max Planck Institute for Informatics. In this article, we will focus on On-
toUSP, NELL, and SOFIE, as they aim to produce ontological output with canonicity,
consistency, and a taxonomy in mind.

7http://www.cs.washington.edu/research/knowitall/

Suchanek / Information Extraction for Ontology Learning 145

3.1. OntoUSP

OntoUSP8 is a system that can extract information in an unsupervised way from natural
language text[16]. OntoUSP is part of the Machine Reading project [15] at the University
of Washington. OntoUSP can build up a knowledge base from the input documents and
answer questions on it without using any training data.

3.1.1. Fact Extraction

The goal of OntoUSP is to build a probabilistic knowledge base from a set of natural
language documents. In this knowledge base, both entities and relationships will be rep-
resented as clusters of synonymous terms. For example, a protein called IL-4 will be rep-
resented as a cluster of synonymous terms, such as Protein IL-4, the cytokin interleukin-4
or the IL-4 protein. The relationship enhance, which holds between a protein and a gene,
is represented as the cluster of the terms enhances, induces etc.

OntoUSP assumes that the documents have been parsed by a dependency parser
(cf. Maynard and Bontcheva [13], this volume). Thus, OntoUSP takes as input a set of
dependency trees. The dependency trees are first represented in a so-called quasi-logical
form (QLF), i.e., in a first order logic conjunction: every node in the dependency tree
becomes a constant; every edge becomes a binary predicate applied to the two node
constants and every leaf becomes a unary predicate applied to the leaf node constant. For
example, the sentence “IL4 induces CD11b” becomes

induces(n1) ∧ subj(n1, n2) ∧ IL4(n2) ∧ obj(n1, n3) ∧ CD11b(n3)

Parts of such QLFs can be generalized to lambda forms, i.e., to sub-formulas where
some constants are replaced by variables. In the example, we can extract the lambda
form λx2, x3.induces(n1)∧subj(n1, x2)∧obj(n1, x3). The OntoUSP algorithm groups
lambda forms to lambda form clusters. A lambda form cluster is a set of semantically
interchangeable lambda forms. For example, the cluster for “IL4 induces CD11b” will
contain a cluster of synonymous lambda forms for IL4 (such as the IL-4 protein), a cluster
of synonymous forms for induces and a cluster of synonymous forms for CD11b. To
build these clusters, OntoUSP uses three operators: MERGE (which merges two clusters
to a larger cluster), ABSTRACT (which creates a super-cluster that contains two sub-
clusters) and COMPOSE (which combines two forms to a sequence of forms, such as
the with protein to the protein). OntoUSP uses a Markov Logic [17] to assign a cost to
these operations and a hill-climbing algorithm to perform the clustering.

The result of this clustering is a probabilistic knowledge base, in which synonymous
linguistic expressions are grouped together. The clusters are arranged in a taxonomic in-
clusion hierarchy. For example, OntoUSP can figure out that “induce” and “inhibit” are
sub-clusters of the more general “regulate”. OntoUSP can also abstract away the differ-
ence between active voice and passive voice. This allows OntoUSP to answer questions
on the knowledge base, even if the question uses other terms than the original text.

8Ontological Unsupervised Semantic Parsing

146 Suchanek / Information Extraction for Ontology Learning

3.1.2. Summary

OntoUSP has been run on a corpus of 2000 biomedical documents and evaluated with
2000 natural language questions. The system achieves a precision of 91%. The main
technical contribution of OntoUSP is the unsupervised learning of a hierarchy of synony-
mous linguistic forms. The knowledge that OntoUSP builds up is implicit in the sense
that it lacks explicit labels, logic constraints and crisp assignments of entities to classes.
Still, OntoUSP exhibits a canonicity in the sense that it groups together synonymous
names for one entity. OntoUSP also builds a hierarchical structure of the forms, thus in-
ducing a type of taxonomy. However, this structure is not a class hierarchy in the classical
sense, because it lacks explicit labels and crisp membership.

Due its implicit nature, OntoUSP cannot use reasoning to ensure the logical con-
sistency of its knowledge base. We will discuss next a system that makes use of logical
constraints to extract knowledge.

3.2. NELL

NELL9 is a research project that aims to extract ontological information from the whole
Web [6]. The project is driven by the Carnegie Mellon University. The NELL system
aims to gather ontological information continuously on a large scale. It was launched
in January 2010 and has been running ever since. The idea is that NELL shall not just
constantly accumulate new knowledge, but also become better at it.

3.2.1. Fact Extraction

The goal of NELL is to create a set of facts (triples) together with a taxonomy. NELL
uses as input a text corpus of several million documents. It also uses an initial ontology
with predefined categories and binary relations. Each category comes with a predefined
set of seed instances and each relation comes with a predefined set of seed pairs. For
example, the category of insects is filled with 10 initial known insect names. The relation
playsFor is filled with 10 initial pairs of soccer players and soccer teams. Furthermore,
the system is also given a set of mutual-exclusion constraints. For example, the system
knows that vehicles and people are disjoint. In addition, domain and range constraints
are also supplied. The key idea of NELL is to use not just one extractor, but multiple
extractors in parallel. Information gathered by one extractor is used to support the other
extractors. This principle is called coupled training.

More precisely, NELL uses three learners: The first learner is the Coupled Pattern
Learner (CPL), which extracts patterns and facts from natural language text. Given a
document and given seed instances for categories, CPL extracts the contexts in which the
seeds appear. For example, if it is known that Microsoft is a company, and if Microsoft
appears in a sentence like “Bill Gates was the CEO of Microsoft”, then the CPL will
extract the pattern “CEO of X” as a pattern that identifies companies. If the CPL finds
another sentence in which this pattern appears, it will propose the corresponding word
as an instance of the category company. The CPL uses heuristics based on POS-tagging
to determine the size of the patterns. The same idea applies to binary relationships: If
a seed pair for a relation appears in a sentence, the CPL extracts the words between
the two elements as a pattern. If this pattern appears again with two other elements, the

9Never-Ending Language Learner, http://rtw.ml.cmu.edu/rtw/overview

Suchanek / Information Extraction for Ontology Learning 147

CPL proposes this pair of words as an instance of the relationship. The CPL uses some
manually defined patterns for bootstrapping, which include the Hearst patterns [10].

The second learner is the Coupled SEAL (CSEAL), which is a modified version
of SEAL [24]. CSEAL extracts patterns and facts in a similar way to CPL, but from
structured documents. This means that the patterns that CSEAL learns are sequences of
characters around the seed, which may include text, punctuation, HTML tags and HTML
attributes. Just like CPL, CSEAL will learn new patterns from occurrences of seeds and
use these patterns to propose new instances.

The third learner is the Meta-Bootstrap-Learner (MBL). The MBL runs in parallel
with CPL and CSEAL and controls these extractors. For every instance that the extrac-
tors discover, MBL checks whether it satisfies the domain and range constraints and the
exclusion constraints specified by the ontology. If that is not the case, MBL tells the
extractor to filter out that instance. As a consequence, the extractor will downgrade the
patterns that extracted this instance. Vice versa, MBL can also tell the extractor to pro-
mote an instance, if that instance was found by both extractors. As a consequence, the
extractor will boost the patterns that extracted this instance. Through this coupling, MBL
exploits the synergy of the two extractors and uses the results of one extractor to boost
the performance of the other.

The NELL system has been continuously running since January 2010. The results
undergo periodic screening and correction by a human. New categories and relations are
also being added.

3.2.2. Summary

As of February 2011, NELL has accumulated a knowledge base of 500,000 asserted in-
stances of 589 different categories and relations, at an estimated average precision of
87%. NELL is a live system and its progress can be followed online at the project home-
page. The main technical contribution of the NELL project is the coupling of different
extractors, which boost and control each other. Through the mutual exclusion rules and
the type constraints, NELL can ensure a certain consistency of its results. Due to its re-
liance on Hearst Patterns, NELL is particularly strong on extracting type and subclassOf
facts. This allows NELL to build a taxonomic structure.

Canonicity has not yet been a focus of the project. NELL does not work on ontolog-
ical entities, but on strings, which may be synonymous or polysemous. We will next see
a project that targets also this disambiguation of entities.

3.3. SOFIE

SOFIE10 is an IE system that aims to extend the YAGO ontology [20] with facts extracted
from natural language documents [22]. It is part of the YAGO-NAGA project at the
Max Planck Institute for Informatics in Germany. SOFIE aims to solve the canonicity
problem, the pattern discovery and the consistency problem in one unified framework.

3.3.1. Model

In previous work, the problems of disambiguation, consistency reasoning and IE have
mostly been attacked in isolation. However, these problems are highly intertwined. Con-

10Self-Organizing Framework for Information Extraction, http://mpii.de/yago-naga/sofie

148 Suchanek / Information Extraction for Ontology Learning

sider, e.g., the sentence “Elvis died in 460 AD.”. If the ontology already knows that Elvis
Presley was born in 1935, then the word “Elvis” in the sample sentence cannot refer to
Elvis Presley, because people have to be born before they die. This indicates that consis-
tency constraints can guide disambiguation. Likewise, disambiguation can produce hints
for pattern discovery and so on. Therefore, SOFIE aims to solve all three problems in one
unified framework. This framework is based on the Weighted Maximum Satisfiability
problem (Weighted MAX SAT). In this setting, all data is expressed as logic formulas.

SOFIE first describes the input documents as logic formulas. For every pair of proper
names or numbers that appears in the text within a certain window, SOFIE generates a
proposition of the form patternOcc(Elvis@D1, “died in”, 460). This proposition means
that the word “Elvis” appeared with the string “died in” with the number 460. Elvis@D1
identifies the word “Elvis” in document D1. Even though SOFIE does not yet know
which entity is meant by “Elvis”, SOFIE assumes that all occurrences of that word in
the same document have the same meaning. Therefore, all those words are identified
by the same token, a wic (word in context). So far, the generated proposition makes a
statement only about the occurrence of certain strings. It does not yet make a statement
about entities.

SOFIE extracts facts only about entities that are already known to the ontology.
Furthermore, SOFIE assumes that the ontology knows all names that are commonly used
to refer to an entity. This allows SOFIE to make hypotheses about the meaning of the
wics. By taking into account the context of the wic (the bag of words in the document)
and the context of a possible meaning of the wic (the names of the entities related to the
entity in question in the ontology), SOFIE can assign a weight to these hypotheses. In
the example, Elvis@D1 could give rise to the following propositions (with weights):

means(Elvis@D1, ElvisPresley)[0.8]
means(Elvis@D1, SaintElvis)[0.3]

SOFIE also maps the ontology to logic formulas. In the case of YAGO, which just
contains simple triples, every triple of YAGO becomes one proposition. For example,
SOFIE will know wasBornOnDate(ElvisPresley, 1935). SOFIE also makes use of se-
mantic rules. These have to be supplied manually. One example for such a rule is

bornOnDate(X,Y) and diedOnDate(X,Z)⇒ Y < Z (*)

Other, freely configurable rules can enforce functional dependencies or incorporate do-
main knowledge. In addition, SOFIE uses rules that glue the framework together:

patternOcc(WX, P, WY) and expresses(P, R)
and means(WX, X) and means(WY, Y)
⇒ R(X,Y)

This rule means: If pattern P appears with wics WX and WY and P expresses the
YAGO relation R, and if WX has been disambiguated to entity X , and WY to Y , then
X and Y stand in relationship R. In the example, assuming that “died in” is known to
express diedOnDate, we could deduce diedOnDate(ElvisPresley,460). An analogous rule
says that if a pattern P occurs with two entities, and if the ontology knows that the entities
stand in relationship R, then P expresses R. For example, if YAGO knows that Einstein
died in 1955, then a sentence of the form “Einstein died in 1955” (with appropriate
disambiguation) will trigger the deduction of expresses(“died in”,diedOnDate).

Suchanek / Information Extraction for Ontology Learning 149

3.3.2. Reasoning

All of the above formulas are grounded, i.e., one creates one instance of the formula for
every possible instantiation of the variables. All formulas that do not have an explicit
weight are given a large weight W . This gives SOFIE a huge set of weighted proposi-
tional formulas. These formulas can never all be true at the same time. means, for exam-
ple, is declared a function, but already has two images for Elvis@D1. Furthermore, the
deduction of pattern meanings may be overly hasty and wrong. Lastly, the documents
themselves may contain contradictory information. Therefore, SOFIE aims to find an
assignment of truth values to the propositions that maximizes the weight of the satisfied
formulas. In the example, assigning true to the proposition means(Elvis@D1, ElvisPres-
ley) will gain a weight of 0.8. At the same time, this assignment will make it impossible
to satisfy rule (*). Therefore, SOFIE might decide to make means(Elvis@D1, SaintElvis)
true instead and to deduce diedOnDate(SaintElvis, 460). Finding the optimal assignment
of truth values to the propositions is an NP-hard problem. SOFIE implements a heuristic
algorithm that runs in polynomial time and has an approximation guarantee of 1/2.

The optimal solution of the Weighted MAX SAT problem corresponds to the most
plausible interpretation of the documents, given the background knowledge. SOFIE can
continuously analyze new documents and compute the most plausible interpretation of
the evidence at any time. As more evidence accumulates, the most plausible interpreta-
tion of it may change over time.

3.3.3. Summary

SOFIE has been run on Web documents and has been shown to have a precision of
90%. This includes both the correctness of the facts and the correct disambiguation of
entities. The main technical contribution of SOFIE is the modeling of disambiguation,
pattern deduction and consistency in one single framework. This allows SOFIE to exploit
synergies between these three tasks. Through its automated reasoning, SOFIE achieves
both canonicity of the extracted facts and consistency with the ontology. SOFIE does not
find new classes. It re-uses the existing taxonomy of YAGO. SOFIE has been extended
to the PROSPERA system [14] to run in a parallelized way on large scale.

4. Conclusion

In this chapter, we have discussed IE for ontologies. Three main desiderata for ontolog-
ical IE are the canonicity of entities and relationships, the consistency of the extracted
facts and the taxonomic organization of the data. We have seen 3 approaches that extract
information from Wikipedia with these goals in mind: DBpedia, YAGO and KOG. These
systems can already use different degrees of reasoning to ensure the consistency of the
extracted data. We have also discussed ontological IE from the Web. Such approaches
can use the redundancy of the Web to mutually reinforce pattern discovery and fact dis-
covery. We have seen 3 such systems, OntoUSP, NELL, and SOFIE. All of them use
some degree of reasoning to ensure logical consistency of the extracted facts.

The rapid growth of the Web is drawing more and more attention to the “semantic
gap” between syntactic text and semantic knowledge. At the same time, the availability
of large scale knowledge bases (such as for example those on the Web of Linked Data

150 Suchanek / Information Extraction for Ontology Learning

[3]) opens up new ways of using structured information to deal with unstructured text.
These two trends have nurtured a strong interest in ontological IE. Today, numerous
research groups work on making the Web semantically accessible. Newer IE approaches
go beyond fact extraction and extract entire axioms. For example, IE can extract entire
OWL axioms from the first sentences of Wikipedia articles [23].

References

[1] Eugene Agichtein, Luis Gravano, Jeff Pavel, Viktoriya Sokolova, and Aleksandr Voskoboynik. Snow-
ball: a prototype system for extracting relations from large text collections. SIGMOD Records,
30(2):612, 2001.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and Zachary G. Ives.
DBpedia: A Nucleus for a Web of Open Data. In Proceedings of the International Semantic Web Con-
ference (ISWC), volume 4825 of Lecture Notes in Computer Science, pages 722–735, Berlin, Germany,
2007. Springer.

[3] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked data on the Web. In
Proceedings of the International Conference on World Wide Web (WWW), pages 1265–1266, New York,
NY, USA, 2008. ACM.

[4] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker, Richard Cyganiak, and
Sebastian Hellmann. Dbpedia - a crystallization point for the web of data. Web Semant., 7:154–165,
September 2009.

[5] Sergey Brin. Extracting patterns and relations from the world wide web. In Selected papers from the
International Workshop on the WWW and Databases, pages 172–183, London, UK, 1999. Springer.

[6] Andrew Carlson, Justin Betteridge, Richard C. Wang, Estevam R. Hruschka Jr., and Tom M. Mitchell.
Coupled semi-supervised learning for information extraction. In Proceedings of the Third ACM Inter-
national Conference on Web Search and Data Mining (WSDM 2010), 2010.

[7] Gerard de Melo and Gerhard Weikum. Towards a universal wordnet by learning from combined evi-
dence. In Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM
2009), pages 513–522, New York, NY, USA, 2009. ACM.

[8] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
[9] Dayne Freitag and Nicholas Kushmerick. Boosted wrapper induction. In Proceedings of the Seventeenth

National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of
Artificial Intelligence, pages 577–583, Menlo Park, CA, USA, 2000. AAAI Press.

[10] Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the
International Conference on Computational Linguistics (ICCL), pages 539–545. Association for Com-
putational Linguistics, 1992.

[11] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. Yago2: A spatially and
temporally enhanced knowledge base from wikipedia. Artif. Intell., 194:28–61, 2013.

[12] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and searching web tables using
entities, types and relationships. Proceedings of the International Conference on Very Large Databases
(VLDB), 3:1338–1347, September 2010.

[13] Diana Maynard and Kalina Bontcheva. Natural language processing. In Johanna Völker and Jens
Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2012.

[14] Ndapandula Nakashole, Martin Theobald, and Gerhard Weikum. Scalable knowledge harvesting with
high precision and high recall. In Proceedings of the fourth ACM international conference on Web
search and data mining, WSDM ’11, pages 227–236, New York, NY, USA, 2011. ACM.

[15] Hoifung Poon, Janara Christensen, Pedro Domingos, Oren Etzioni, Raphael Hoffmann, Chloe Kiddon,
Thomas Lin, Xiao Ling, Mausam, Alan Ritter, Stefan Schoenmackers, Stephen Soderland, Dan Weld,
Fei Wu, and Congle Zhang. Machine reading at the university of washington. In Proceedings of the
NAACL HLT 2010 First International Workshop on Formalisms and Methodology for Learning by Read-
ing, FAM-LbR ’10, pages 87–95, 2010.

[16] Hoifung Poon and Pedro Domingos. Unsupervised ontology induction from text. In Conference of the
Association for Computational Linguistics (ACL), pages 296–305, 2010.

Suchanek / Information Extraction for Ontology Learning 151

[17] Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1-2), 2006.
[18] Sunita Sarawagi. Information Extraction. Foundations and Trends in Databases, 2(1), 2008.
[19] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. PARIS: Probabilistic Alignment of Rela-

tions, Instances, and Schema. Proceedings of the International Conference on Very Large Databases
(VLDB), 5(3):157–168, 2011.

[20] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO: A core of semantic knowledge -
unifying WordNet and Wikipedia. In Carey L. Williamson, Mary Ellen Zurko, and Prashant J. Patel-
Schneider, Peter F. Shenoy, editors, Proceedings of the International Conference on World Wide Web
(WWW), pages 697–706, Banff, Canada, 2007. ACM.

[21] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. YAGO - A Large Ontology from Wikipedia
and WordNet. Elsevier Journal of Web Semantics, 6(3):203–217, September 2008.

[22] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. SOFIE: A Self-Organizing Framework for
Information Extraction. In International World Wide Web conference (WWW 2009), New York, NY,
USA, 2009. ACM Press.

[23] Johanna Völker, Pascal Hitzler, and Philipp Cimiano. Acquisition of OWL DL axioms from lexical
resources. In Enrico Franconi, Michael Kifer, and Wolfgang May, editors, Proceedings of the 4th Eu-
ropean Semantic Web Conference (ESWC), volume 4519 of Lecture Notes in Computer Science, pages
670–685. Springer, JUN 2007.

[24] Richard C. Wang and William W. Cohen. Character-level analysis of semi-structured documents for set
expansion. In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Process-
ing: Volume 3 - Volume 3, EMNLP ’09, pages 1503–1512, Stroudsburg, PA, USA, 2009. Association for
Computational Linguistics.

[25] Fei Wu and Daniel S. Weld. Automatically refining the Wikipedia infobox ontology. In Proceedings of
the International Conference on World Wide Web (WWW), pages 635–644, New York, NY, USA, 2008.
ACM.

Empirically Grounded Emergent
Knowledge

Vít NOVÁČEK aand Siegfried HANDSCHUH a

a Digital Enterprise Research Institute, National University of Ireland Galway
IDA Business Park, Lower Dangan, Galway, Ireland

e-mail: vit.novacek@deri.org

Abstract. This chapter introduces a framework for representation and processing
of emergent knowledge. By emergent knowledge we mean most primarily semantic
patterns discovered within simple statements automatically extracted from textual
resources. Empirical grounding of the emergent knowledge is achieved by apply-
ing the principles of distributional semantics in order to anchor the discovered se-
mantic patterns in the textual data in a well-founded and non-arbitrary manner. We
also propose a method for seamless combination of the distributional (bottom-up)
and symbolic (top-down) aspects of the semantics of emergent knowledge. Broad
applicability of our approach is showcased within several practical scenarios in the
domain of life sciences.

Keywords. Empirical Knowledge, Emergent Knowledge, Distributional Semantics

Introduction

The vast realms of the web encompass a substantial portion of the human knowledge
nowadays. However, the particular pieces of the knowledge are interleaved with a lot of
noise and scattered among many information resources of various relevance. Thus it is
often difficult or even infeasible to get what one needs to know from the ballast of largely
irrelevant content. Our goal is to contribute to giving more meaning to the content on
the web, identifying and interlinking relevant knowledge out there so that machines can
help humans to make use of it more efficiently. We are particularly interested in giving a
clear empirical grounding to the machine-processable meaning of the web resources. To
do so, we have investigated an extension of a general corpus semantics framework [2]
and applied it in the scope of continual ontology learning.

Essentially, we show how to represent statements extracted from the web in a corpus-
like structure, and how to glean more complex, emergent knowledge (e.g., implicit re-
lationships between similar entities and properties, or rules) from the simple extracted
pieces. The proposed corpus-like storage allows for inferring more complex emergent
knowledge from the data by means of various statistical and algebraic methods of analy-
sis known from computational linguistics and information retrieval. This way the knowl-
edge we consequently operate with is empirically grounded in the data in a well-founded
and non-arbitrary manner.

154 Nováček and Handschuh / Emergent Knowledge

In addition to the bottom-up knowledge acquisition process, we propose a symbolic
layer on the top of the distributional core, which allows for a straightforward application
of rule-based reasoning on the top of the emergent knowledge bases. Thus we combine
the benefits of bottom-up and top-down approaches to semantics in one framework for
continuous knowledge acquisition. To showcase the practical relevance of the introduced
framework, we give an overview of its three different applications to various problems
related to information overload in life sciences.

The rest of the chapter is organised as follows. Section 1 presents an overview of
the related work. The general principles of the proposed framework are elaborated in
Section 2. Specific applications are described in Section 3, including summaries of cor-
responding evaluation experiments. Finally, we sum up the chapter in Section 4.

1. Related Work

Most of the ontology learning approaches (see [16] or [4] for an overview) focus on
methods for extraction of particular ontological constructs (e.g., sub-class-of, instance-of
or disjoint-with relationships) from unstructured natural language texts. Our general ap-
proach is more light-weight and modular – we are more interested in a layered represen-
tation of various aspects of knowledge emerging from the web/linked data (c.f. [35] in
this volume) and/or texts. This involves rather simple information about co-occurrence
of entities in various types of inputs, general patterns gleaned from the inputs, and a
perspective enabling rule-based reasoning with the learned content. Thus, instead of fo-
cusing on the advancement of particular methods for knowledge extraction, we provide
a general coherent framework for representation and processing of various emergent
knowledge aspects which allows for straightforward incorporation of applicable state of
the art methods whenever necessary.

As our approach is focused on bottom-up and emergent knowledge acquisition, it is
clearly related to works like [30], [14], [27] or [5]. However, the method [30] focuses
more on ontology merging than on knowledge acquisition (although instances extracted
from related documents are employed in the merging process). The combination of het-
erogeneous sources for taxonomy acquisition by means of machine learning presented
in [5] is conceptually similar to our incremental and synergetic approach to knowledge
acquisition. However, we are not focused on a single semantic phenomenon (i.e., tax-
onomy) and want rather to provide a general framework for extraction and analysis of
emergent semantics. Perspectives of emergent semantics for learned ontologies are out-
lined in [14], which proposes a general bottom-up methodology for emergent knowledge
maintenance with no particular technical contribution, though. Clustering-based emer-
gent construction of ontologies from text managed by a multi-agent self-organising sys-
tem is investigated in [27]. We complement the approaches to emergent ontology evolu-
tion [14,27] by providing a framework for distributional representation and analysis of
extracted knowledge augmented by a symbolic inference layer, which allows for more
uniform and sophisticated consequent processing and utilisation. The combination of
ontology learning and reasoning that is targeted by our approach (among other things)
is related to works like [8] and [9]. However, [8] deals much rather with the resolution
of inconsistencies in learned knowledge and consequent essentially trivial Description
Logics inference, while [9] requires rather lossy translation of ontologies into first-order

Nováček and Handschuh / Emergent Knowledge 155

formulas, which are, moreover, often relatively simple. We offer more general and cus-
tomisable rule-based inference operating on the top of the extracted knowledge.

Perhaps the closest inspiration of our approach is the general distributional frame-
work for corpus-based semantics [2]. However, we generalise and extend the tensor-
based representation of weighed co-occurrence relations between natural language ex-
pressions proposed in [2] to reflect provenance and also possible contexts of the basic
statements. Moreover, we provide novel methods of smooth combination of the distri-
butional and symbolic semantic levels in order to allow for automated formal reasoning
about the empirically grounded knowledge emerging from the web.

There are additional works related to the particular applications of our general ap-
proach. These are beyond the scope of this overview chapter, though, and are dealt with
thoroughly in our more technical publications, namely in [22], [26] and [21].

2. General Framework

The proposed distributional framework for grounded emergent knowledge has two layers
– the bottom-up and top-down one. The former caters for the implicit meaning, while
the latter allows for adding more value to the bottom-up analysis by utilising the cur-
rent Semantic Web resources (e.g., RDF Schema or ontologies). A general way of using
the framework follows this pipeline: (1) convert a set of simple RDF documents (e.g.,
Semantic Web graphs, or triples extracted from resources like natural language texts or
databases) into the internal distributional representation; (2) extract interesting patterns
from it; (3) make use of extant top-down semantic resources to materialise more implicit
knowledge by means of inference (optional); (4) utilise the results to improve the quality
of the initial RDF data set. The last step can consist of exporting the distributional pat-
terns as RDF statements to be added to the input data (e.g., as links between the entities
or properties found to be similar). Alternatively, one can present the patterns directly to
users along the original data set to facilitate its machine-aided augmentation.

2.1. Bottom-Up Layer

This layer serves for grounding complex semantic phenomena in the underlying data.
In particular, it provides compact structures for representation of simple statements and
their provenance, as well as for analysis of knowledge patterns (e.g., implicit conceptual
relationships or rules) emerging from the basic level.

2.1.1. Source Representation

The basic structure of the bottom-up layer is a so called source (or graph) representation
G, which captures the co-occurrence of things (i.e., subjects and objects) within relations
(i.e., predicates) across a set of documents (i.e., RDF graphs). Let Al, Ar be sets repre-
senting left and right arguments of binary co-occurrence relationships (i.e., statements),
and L the types of the relationships. Al, Ar, L correspond to sets of RDF subjects, ob-
jects and predicates, respectively. Furthermore, let P be a set representing provenances
of particular relationships (i.e., graph names). We define the source representation as a
4-ary labeled tensor G ∈ R|Al|×|L|×|Ar|×|P |. It is a four-dimensional array structure
indexed by subjects, predicates, objects and provenances, with values reflecting a fre-

156 Nováček and Handschuh / Emergent Knowledge

quency or weight of statements in the context of particular provenance sources (0 if a
statement does not occur in a source). For instance, if a statement (al, l, ar) occurs k-
times in a data source d (a single graph or a set of graphs in general), then the element
gal,l,ar,d of G will be set to k to reflect it. More details are illustrated in the following.

Example 1 Let us consider 7 statements (acquired from biomedical texts):

(protein domain , different, protein), (protein domain, type, domain), (gene, different,
protein), (internal tandem duplications, type, mutations), (internal tandem duplications,
in, juxtamembrane), (internal tandem duplications, in, extracelullar domains), (protein
domain, type, domain)

with provenances D1, D1, D2, D3, D3, D3, D4, respectively. The source representation (using
statement occurrence frequencies as values) is:

s ∈ Al p ∈ L o ∈ Ar d ∈ P gs,p,o,d

protein domain different protein D1 1
protein domain type domain D1 1

gene different protein D2 1
internal tandem duplications type mutations D3 1
internal tandem duplications in juxtamembrane D3 1
internal tandem duplications in extracelullar domains D3 1

protein domain type domain D4 1

We omit all zero values and use the tabular notation as a convenient and concise representation
of a 4-dimensional tensor, with the three first columns for indices and the fourth one for the corre-
sponding value.

2.1.2. Corpus Representation

The source tensor is merely a low-level data representation preserving the associa-
tion of statements with their provenance contexts. Before allowing for actual distri-
butional analysis, the data have to be transformed into a more compact structure C
called corpus representation. C ∈ R|Al|×|L|×|Ar| is a ternary (three-dimensional) la-
beled tensor, devised according to [2] in order to provide for a universal and com-
pact distributional representation for the proposed bottom-up web semantics frame-
work. A corpus C can be constructed from a source representation G using functions
a : R × R → R, w : P → R, f : Al × L × Ar → R. For each C element cs,p,o,
cs,p,o = a(

∑
d∈P w(d)gs,p,o,d, h(s, p, o)), where gs,p,o,d is an element of the source ten-

sor G and the a, f, w functions act as follows: (1) w assigns a relevance degree to each
source; (2) f reflects the relevance of the statement elements (e.g., a mutual information
score of the subject and object within the sources); (3) a aggregates the result of the w, f
functions’ application. This way of constructing the elements of the corpus tensor from
the low-level source representation essentially aggregates the occurrences of statements
within the input data, reflecting also two important things – the relevance of particular
sources (via the w function), and the relevance of the statements themselves (via the f
function). The specific implementation of the functions is left to applications – possible
examples include (but are not limited to) ranking (both at the statement and document
level) or statistical analysis of the statements within the input data.

Example 2 A corpus corresponding to the source tensor from Example 1 can be represented
(again in a tabular notation) as given below. The w values were 1 for all sources and a, f aggre-
gated the source values using relative frequency (in a data set containing 7 statements).

Nováček and Handschuh / Emergent Knowledge 157

s ∈ Al p ∈ L o ∈ Ar cs,p,o

protein domain different protein 1/7
protein domain type domain 2/7

gene different protein 1/7
internal tandem duplications type mutations 1/7
internal tandem duplications in juxtamembrane 1/7
internal tandem duplications in extracelullar domains 1/7

2.1.3. Corpus Perspectives

The elegance and power of the corpus representation lays in its compactness and univer-
sality that, however, yields for many diverse possibilities of the underlying data analysis.
The analysis are performed using a process of so called matricisation of the corpus tensor
C. Essentially, matricisation is a process of representing a higher-order tensor using a
2-dimensional matrix perspective. This is done by fixing one tensor index as one matrix
dimension and generating all possible combinations of the other tensor indices within
the remaining matrix dimension. In the following we illustrate the process on the simple
corpus tensor from Example 2. Detailed description of matricisation and related tensor
algebra references can be found in [2].

Example 3 When fixing the subjects (Al set members) of the corpus tensor from Example 2, one
will get the following matricised perspective (the rows and columns with all values equal to zero
are omitted here and in the following examples):

s/〈p, o〉 〈d, p〉 〈t, dm〉 〈t,m〉 〈i, j〉 〈i, e〉
protein domain 1/7 2/7 0 0 0

gene 1/7 0 0 0 0
internal tandem duplications 0 0 1/7 1/7 1/7

.

The abbreviations d, p, t, dm,m, i, j, e stand for different, protein, type, domain, mu-
tations, in, juxtamembrane, extracellular domains. One can clearly see that the transfor-
mation is lossless, as the original tensor can be easily reconstructed from the matrix by appropriate
re-grouping of the indices.

The corpus tensor matricisations correspond to vector spaces consisting of elements
defined by particular rows of the matrix perspectives. Each of the vectors has a name (the
corresponding matrix row index) and a set of features (the matrix column indices). The
features represent the distributional attributes of the entity associated with the vector’s
name – the contexts aggregated across the whole corpus. Thus by comparing the vectors,
one essentially compares the meaning of the corresponding entities emergently defined
by the underlying data. For exploring the matricised perspectives, one can uniformly use
the linear algebra methods that have been successfully applied to vector space analysis
tasks for the last couple of decades. Large feature spaces can be reliably reduced to a
couple of hundreds of the most significant indices by techniques like singular value de-
composition or random indexing Vectors can be compared in a well-founded manner by
various metrics or by the cosine similarity. See [6] for an overview of vector space se-
mantic models, distances, similarities and singular value decomposition, one of the most
used matrix decomposition techniques. Using these techniques, matrix perspectives can
be combined with vector space analysis techniques in order to investigate a wide range
of semantic phenomena related to synonymy, clustering, ambiguity resolution, taxon-
omy detection or analogy discovery. The following example illustrates how to perform
clustering of similar entities and properties (more examples come later in Section 3).

158 Nováček and Handschuh / Emergent Knowledge

Example 4 Let us add two more matrix perspectives to the s/〈p, o〉 one provided in Example 3.
The first one represents the distributional features of objects (based on the contexts of predicates
and subjects they tend to co-occur with in the corpus):

o/〈p, s〉 〈d, pd〉 〈t, pd〉 〈d, g〉 〈t, itd〉 〈i, itd〉
protein 1/7 0 1/7 0 0
domain 0 2/7 0 0 0

mutations 0 0 0 1/7 0
juxtamembrane 0 0 0 0 1/7

extracellular domains 0 0 0 0 1/7

.

d, pd, t, g, itd, i stand for different, protein domain, type, gene, internal tandem duplications, in.
Similarly, the second perspective represents the distributional features of properties:

p/〈s, o〉 〈pd, p〉 〈pd, d〉 〈g, p〉 〈itd,m〉 〈itd, j〉 〈itd, ed〉
different 1/7 0 1/7 0 0 0

type 0 2/7 0 1/7 0 0
in 0 0 0 0 1/7 1/7

.

itd, pd, p, d, g,m, j, ed stand for internal tandem duplications, protein domain, protein, domain,
gene, mutations, juxtamembrane, extracellular domains.

The vector spaces induced by the matrix perspectives s/〈p, o〉 and o/〈p, s〉 can be used for
finding similar entities by comparing their corresponding vectors. Using the cosine vector simi-

larity, one finds that sims/〈p,o〉(protein domain, gene) =
1
7

1
7√

(1
7
)2+(2

7
)2
√

(1
7
)2

.
= 0.2972 and

simo/〈p,s〉(juxtamembrane, extracel-lular domains) =
1
7

1
7√

(1
7
)2
√

(1
7
)2

= 1. These are the

only non-zero similarities among the subject and object entities present in the corpus. As for the
predicates, all of them have a zero similarity. This quite directly corresponds to the intuition a hu-
man observer can get from the data represented by the initial statements from Example 1. Protein
domains and genes seem to be different from proteins, yet protein domain is a type of domain and
gene is not, therefore they share some similarities but are not completely equal according to the
data. Juxtamembranes and extracellular domains are both places where internal tandem duplica-
tions can occur, and no other information is available, so they can be deemed equal until more data
comes. Among the particular predicates, no patterns as clear as for the entities can be observed,
therefore they can be considered rather dissimilar given the current data.

2.2. Top-Down Layer

This layer serves for application of extant semantic resources (like manually designed
ontologies or rule bases) to the uncertain representations of the bottom-up layer. A sig-
nificant portion of the expressive Semantic Web standards (RDFS, OWL) and widely
used extensions (such as N3 1) can be expressed by conjunctive rules 2. To allow for a
seamless combination of this top-down layer of the Semantic Web with the bottom-up
principles introduced in the previous section, we propose a straightforward adaptation of
state of the art rule-based reasoning methods.

Conjunctive rules can be described as follows in the ‘language’ of the bottom-up
semantics. Let S = R|Al∪V |×|L∪V |×|Ar∪V | be a set of corpus tensors with their index
domains (Al, L,Ar) augmented by a set of variables V . Then (L,R, w), where L,R ∈

1See http://www.w3.org/DesignIssues/Notation3.html for details.
2See http://www.w3.org/TR/rdf-mt/, http://www.w3.org/TR/owl2-profiles/ or

[31].

Nováček and Handschuh / Emergent Knowledge 159

S, w ∈ R, is a rule with an antecedent L, a consequent R and a weight w. The values
of the rule tensors are intended to represent the structure of the rule statements – a non-
zero value reflects the presence of a statement consisting of the corresponding indices
in the rule. However, the antecedent tensor values can also specify the weights of the
relationship instances to be matched and thus facilitate uncertain rule pattern matching.
The weights can be used to set relative importance of rules. This is especially useful when
combining rules from rule sets of variable relevance – one can assign higher weights
to rule coming from more reliable resources and the other way around. We assume the
weights to be set externally – if this is not the case, they are assumed to be 1 by default.

Example 5 An RDFS entailment rule for transitivity can be stated in N3 as: {?x rdfs:sub-
ClassOf ?y . ?y rdfs:subClassOf ?z } => {?x rdfs:subClassOf ?z }.
The rule is transformed to the tensor form as:

(
s ∈ Al ∪ V p ∈ L ∪ V o ∈ Ar ∪ V ls,p,o

?x rdfs : subClassOf ?y 1
?y rdfs : subClassOf ?z 1

,

s ∈ Al ∪ V p ∈ L ∪ V o ∈ Ar ∪ V rs,p,o

?x rdfs : subClassOf ?z 1
, 1).

Rules can be applied to a corpus by means of Algorithm 1. The particular rule-based

Algorithm 1 Rule Evaluation
1: RESULTS ← ∅
2: FOREST ← conditionTrees(R)
3: for T ∈ FOREST do
4: for (I,R, w) ∈ matches(T) do
5: R′ ← w ·materialise(I,R)
6: RESULTS ← RESULTS ∪R′

7: end for
8: end for
9: return

∑
X∈RESULTS X

reasoning method we currently use is a modified version of the efficient RETE algorithm
for binary predicates [7]. The conditionTrees() function in Algorithm 1 generates a set
of trees of antecedent conditions from a rule setR.

Example 6 For instance, let us imagine the following rule set (described in N3 again): R1 : {?x
rdfs:subClassOf ?y . ?y rdfs:subClassOf ?z } => {?x rdfs:subClas-
sOf ?z}. R2 :{?x rdfs:subClassOf ?y . ?z rdf:type ?x} => {?z rdf:
type ?y}. For simplicity, we assume the weights of the rules R1, R2 to be 1.0. Given
this rule set, the conditionTrees() function returns a single tree with a root condition ?x
rdfs:subClassOf ?y and the ?y rdfs:subClassOf ?z, ?z rdf:type ?x condi-
tions as the root’s children. The tree leafs (i.e., children of the root’s children) then point to the
consequents and weights of the rules R1, R2, respectively.

The rule condition forest allows for optimised incremental generation of all possible
corpus instance assignments to the variables in the rule conditions – each condition is
being evaluated only once even if it occurs in multiple rules. The generation of instance
assignments for particular condition variables is realised by the function matches() in

160 Nováček and Handschuh / Emergent Knowledge

Algorithm 1. It produces tuples (I,R, w), where I is an assignment of instances to the
antecedent variables along a particular root-leaf path in the given tree T . R, w are then
the rule consequent and weight in the leaf of the corresponding instance assignment path.

The functionmaterialise() takes the computed instance assignment I and applies it
to the consequent R. The values of the materialised consequent tensor R′ are computed
as rs,p,o = >{ci1,i2,i3 |(i1, i2, i3) ∈ I} for each (s, p, o) element of the consequent
that has a non-zero value in the original R tensor. The ci1,i2,i3 elements of the tensor
C (the corpus representation, i.e., knowledge base) correspond to all statements in the
instantiated rule conditions along the assignment path I . Finally, the > operation is an
application of a fuzzy conjunction (t-norm) to a set of values3. The result of Algorithm 1
is a sum of all materialised tensors weighted by the corresponding rule weights.

Example 7 To exemplify an iterative rule materialisation (knowledge base closure), let us add
two more elements to the corpus from Example 2 (the weights are purely illustrative):

Al L Ar value
domain rdfs : subClassOf molecular structure 2/9

molecular structure rdfs : subClassOf building block 1/9

.

If we assume that the type relation from the previous examples is equivalent to the rdf:type
relation from the rule R2 in Example 6, we can apply the R1, R2 rules to the extended cor-
pus representation with the following results. After assigning instances to the antecedent vari-
ables, the only instance path leading towards R1 in the condition tree consists of the statements
domain rdfs:subClassOf molecular structure and molecular structure
rdfs:subClassOf building block. The R2 branch generates four possible instance
paths. The root can have two values: domain rdfs:subClassOf molecular structu-
re, molecular structure rdfs:subClassOf building block. Similarly for the
child – there are two statements in the corpus that fit the corresponding condition: protein
domain rdf:type domain and internal tandem duplications rdf:type mu-
tations. When using the minimum t-norm we can enrich the knowledge base by the following
materialised consequents:

s ∈ Al p ∈ L o ∈ Ar rs,p,o

domain rdfs : subClassOf building block 1/9
protein domain rdf : type molecular structure 2/9

.

If we apply Algorithm 1 again, we get one more new statement:

s ∈ Al p ∈ L o ∈ Ar rs,p,o

protein domain rdf : type building block 2/9
.

After that the corpus representation already remains stable (its closure has been computed), as no
further application of the rules produces new results.

3. Specific Applications

We have utilised the general framework introduced in the previous section within sev-
eral practical tasks that show the broad applicability of the presented research. The ma-

3See [10]. Note that although the minimum t-norm, t(a, b) = min(a, b), can be applied to any positive
values in the corpus representation tensors with the intuitively expected (fuzzy-conjunctive) semantics, any
other t-norm, such as the product one, t(a, b) = ab, would lead to rather meaningless results if the tensor
values were not normalised to the [0, 1] interval first.

Nováček and Handschuh / Emergent Knowledge 161

jor recent applications are described in more detail in the following sections. Note that
despite of the differences in the applications, they are all deployed on life science data.
This is due to the fact that the field presents practically motivated challenges related to
our research [32]. Life sciences also offer abundance of relevant experimental data in
both structured and unstructured form, often including large gold standard data sets for
evaluation. However, any of the applications can be straightforwardly deployed in other
domains, too, as the only strict requirement in order for the tools to work is availability
of any kind of textual and/or RDF input data.

3.1. EUREEKA and CORAAL

EUREEKA is a back-end implementing the emergent knowledge representation and pro-
cessing framework introduced in Section 2, while CORAAL is a front-end application
that utilises EUREEKA to offer intelligent search&browse services on the top of life
science publication repositories. In the rest of this section, we provide a brief overview
of the EUREEKA and CORAAL applications, and summarise their evaluation. Read-
ers interested in details are referred to [25,24], or to [22] for the most comprehensive
information4.

3.1.1. Method and Data

We applied the EUREEKA back-end to: (i) automated extraction of machine-readable
knowledge bases from the texts of life science articles (using various state of the art Natu-
ral Language Processing methods; see [19] in this volume for details on this topic); (ii) in-
tegration, refinement and extension of the extracted knowledge within one large emer-
gent knowledge base; (iii) exposure of the processed knowledge via a query-answering
and faceted browsing interface, tracking the article provenance of particular statements.

For the initial knowledge extraction, we used a NLP-based heuristics stemming
from [15,34] in order to process chunk-parsed texts into subject-predicate-object-score
quads. The scores were derived from aggregated absolute and document frequencies of
subject/object and predicate terms. The extracted quads encoded three major types of
ontological relations between concepts: (I) taxonomical—type—relationships; (II) con-
cept difference (i.e., negative type relationships); (III) “facet” relations derived from verb
frames in the input texts (e.g., has part, involves or occurs in). We imposed taxonomy on
the latter, considering the head verb of the respective phrase as a more generic relation
(e.g., involves expression of was assumed to be a type of involves). Also, several artificial
relation types were introduced to restrict the semantics of some most frequent relations.
Namely, (positive) type was considered transitive and anti-symmetric, and same as was
set transitive and symmetric. Similarly, part of was assumed transitive and being inverse
of has part. Note that the has part relation has rather general semantics within the ex-
tracted knowledge, i.e., its meaning is not strictly physically mereological, it can refer
also to, e.g., conceptual parts or possession of entities.

4An instance of CORAAL deployed on cancer research publications from Elsevier is available at http:
//coraal.deri.ie. As of March 2013, we have also developed a related light-weight tool for exploration
of text and data collections both in biomedical and general domains. The tool is called SKIMMR and its
detailed description is in [23]. SKIMMR is available as a Python package that can be easily installed locally
and deployed on arbitrary data – see https://pypi.python.org/pypi/skimmr_bm/ (biomedical
version) or https://pypi.python.org/pypi/skimmr_gt/ (general version).

162 Nováček and Handschuh / Emergent Knowledge

The extracted quads were processed as follows (details of the particular steps and
the underlying principles are described in [22]): (I) addition – The extracted quads were
incrementally added into an emergent knowledge base K, using a fuzzy aggregation of
the respective conceptual matrices. As a seed defining the basic domain semantics (i.e.,
synonymy and core taxonomy of K), we used the EMTREE and NCI thesauri. (II) clo-
sure – After the addition of new facts into K, we computed its materialisation according
to RDFS entailment rules [3] ported to the format specified in [22]. (III) extension – the
extracted concepts were analogically extended using similar stored knowledge.

We exposed the content of the eventual knowledge base via a query-answering mod-
ule. It returns answer statements sorted according to their relevance scores and similarity
to the query (details of the algorithm are again provided in [22]). Answers are provided
by an intersection of publication provenance sets corresponding to the respective state-
ments’ subject and object terms. The module currently supports queries in the following
form: t | s : (NOT)?p : o(AND s : (NOT)?p : o)∗, where NOT and AND stands
for negation and conjunction, respectively. s, o, pmay be either variable—anything start-
ing with the ? character or even the ? character alone—or a lexical expression. t may be
lexical expressions only. The ? and ∗ wildcards mean zero or one and zero or more oc-
currences of the preceding symbols, respectively, | stands for or. Only one variable name
is currently allowed to appear within a single query statement and across a statement
conjunction.

For the particular deployment of CORAAL we have processed 11,761 articles from
biomedical journals published by Elsevier that were related to cancer research. The ac-
cess to the articles was provided within the Elsevier Grand Challenge5. The domain was
selected so due to the expertise of our sample users and testers from Masaryk Oncology
Institute in Brno, Czech Republic. From the article repository, we extracted the knowl-
edge and publication meta-data for further processing by CORAAL. Besides the publica-
tions themselves, we employed legacy machine-readable vocabularies for the refinement
and extension of the extracted knowledge (in particular, the NCI and EMTREE thesauri6.

CORAAL exposes two data-sets as an output of the publication processing: First,
we used a triple store containing publication meta-data (citations, their contexts, struc-
tural annotations, titles, authors and affiliations) associated with respective full-text in-
dices. The resulting store contained 7, 608, 532 of RDF subject-predicate-object state-
ments [18] describing the input articles. This included 247, 392 publication titles and
374, 553 authors (both from full-texts and references processed).

Apart of the triple store, we employed a custom EUREEKA knowledge base with
facts of various certainty extracted and inferred from the article texts and the seed life
science thesauri. Directly from the articles, 215, 645 concepts were extracted (and ana-
logically extended later on). Together with the data from the initial thesauri, the domain
lexicon contained 622, 611 terms, referring to 347, 613 unique concepts. The size of the
emergent knowledge base was 4, 715, 992 weighed statements (ca. 99 and 334 extracted
and inferred statements per publication in average, respectively). The contextual meta-
knowledge related to the statements, namely provenance information, amounted to more
than 10, 000, 000 additional statements (should it be expressed in RDF triples).

5See http://www.elseviergrandchallenge.com.
6See http://www.cancer.gov/cancertopics/terminologyresources and http://

www.embase.com/emtree/, respectively.

Nováček and Handschuh / Emergent Knowledge 163

3.1.2. Evaluation Summary

We evaluated both EUREEKA and CORAAL tools via the CORAAL interface. A sam-
ple of actual users (experts in the domain of cancer research and clinical care) helped us
to assess various quantitative and qualitative aspects of the emergent content processed
within our framework. The results are summarised in Table 1. The P, R, F stand for preci-

Type Quantitative Qualitative

Attr. P R F KR rel.
QA rel.

Effic.
ans. doc.

Val. 0.532 0.305 0.310 0.289 0.348 0.425 0.657

∆ 189% 374% 279% N/A N/A N/A 247%
Table 1. Summary of the evaluation

sion, recall and F-score, respectively, and reflect the quantitative assessment of the auto-
matically generated CORAAL knowledge base content in comparison to a gold standard
created by domain experts. As a base-line, we used a standard RDF store for processing
the knowledge.

Within the qualitative evaluation, we measured not only factual correctness, but also
practical relevance of the knowledge extracted and processed by CORAAL. In particular,
we assessed the relevance of statements related to important concepts (KR rel.), answers
to typical queries (QA rel. – ans.) and documents retrieved with the answers (QA rel.
– doc.). In addition, we measured the efficiency of users when accomplishing typical
knowledge-based literature search tasks with our tool in comparison with a base-line
(Google, PubMed and ScienceDirect services). Where applicable, the improvement of
CORAAL over the base-line is indicated in the ∆ line of Table 1, while the Attr. and
Val. lines present the evaluated attribute and its value, respectively. One can clearly see
that our framework outperforms the base-lines by rather large margins. Note that what
we have provided here is but a brief summary. Full account on the evaluation of the use
case deployment is given in [22] (Chapter 9).

3.2. Knowledge Consolidation

In another practical deployment of our research, we chose to showcase the alternative
approach to the very definition of meaning of the (Semantic) Web by applying it to
knowledge consolidation. The Semantic Web has been designed for asserting meaning of
things mostly in a top-down manner (via explicit specifications of RDF descriptions or
ontologies). The framework introduced in Section 2 suggests another, bottom-up way of
looking at meaning of things on the web, where the semantics consist of implicit patterns
that emerge from a simple language of countless triple statements.

Such an alternative way of looking at the Semantic Web can bring better solutions to
problems in areas like knowledge consolidation (by which we basically mean clustering
of related entities and properties). For instance, in our previously mentioned CORAAL
prototype, users can search for properties linking particular life science entities (like
genes or diseases). CORAAL extracts all the underlying statements automatically from
text, which leads to thousands of properties occurring only in very small number of
triples. This may result in too specific query answers and user frustration, as they have to
struggle to figure out how to get more general information. Imagine one wants to know

164 Nováček and Handschuh / Emergent Knowledge

more about organs involved in the production of a hormone H. A query for that can look
like H secreted_in ?x. However, such a query may retrieve only a single result. More
results could be retrieved via related properties like excreted_in or produced_in, but it
is rather tedious to try all such possibilities without knowing precisely how exactly one
should ask. A solution grouping extracted content into more general inter-related clusters
would significantly improve the user satisfaction and efficiency, as hitting a single prop-
erty would also reveal all the related ones. Yet for achieving such a consolidation, one
needs to know not (only) what is meant by the statements at the level of the particular
documents (which is covered by the current approaches). What is more important (and
less explored) are the minuscule contextual features distributed across the whole data set
(e.g., properties and 〈 subject, object 〉 tuples that tend to co-occur at a larger scale with
sufficient significance). This is what constitutes the global evidence of what is actually
meant by the data set at large (and not just asserted at the level of local semantic de-
scriptions). By capturing these aspects, one can consolidate the little scattered chunks of
related knowledge in an empirically valid manner.

In the following we provide an outline of our approach to knowledge consolida-
tion using the general framework introduced in Section 2, and summarise its evaluation.
Readers interested in more detailed description of this experiment are referred to [26].

3.2.1. Method and Data

The first type of data we used in the knowledge consolidation experiment were four
RDF documents (parts of the Linked Open Data cloud) that were converted into RDF
from manually curated life science databases and served on the D2R web site7. To keep
the data set focused, we chose resources dealing with drugs and diseases: Dailymed,
Diseasome, Drugbank and Sider8. This data set is referred to by the LD identifier in the
rest.

The second data set we used was generated from the textual content of the
LD documents, which contain many properties with string literal objects represent-
ing natural language (English) definitions and detailed descriptions of the entries (e.g.,
drugbank:pharmacology describes the biochemical mechanism of drug func-
tions). We extracted the text from all such properties, cleaned it up (removing spurious
HTML mark-up and irregularities in the sentence segmentation) and applied a simple
NLP relation extraction pipeline on it (a slightly modified version of the pipeline de-
scribed in Section 3.1, only without negative relationships). This produced a data set of
extracted statements (XD in the following text)9.

Concerning the size of the experimental data, the linked data sets contained ca. 630
thousand triples, 126 properties and around 270 thousands of simple entities (i.e., either
subjects or objects) corresponding to almost 150 thousands of unique identifiers (i.e.,
preferred labels). The size of the extracted data set was around 3/4 of the linked data
one, however, the number of extracted properties was much higher – almost 35 thousand.
Apart of the LD, XD data sets, we also prepared their LD−, XD− alternatives, where we

7See http://www4.wiwiss.fu-berlin.de/.
8See http://dailymed.nlm.nih.gov, http://diseasome.eu/, http://www.

drugbank.ca/ and http://sideeffects.embl.de/, respectively.
9Details and examples of a typical application of the extraction pipeline are again available as a part of the

data package provided at http://140.203.154.177/resources/2011/iswc2011_data.zip
(an archive containing all the data, source code and additional descriptions relevant to this part of the chapter).

Nováček and Handschuh / Emergent Knowledge 165

just ‘flattened’ all the different properties to uniform links. We did so to investigate the
influence the multiple property types have on the distributional web semantics features
within the experiments.

Before performing the knowledge consolidation, we had to incorporate the RDF data
(the LD, XD sets) into the framework introduced in Section 2, i.e., to populate the graph
and source representation tensors G,C (separate tensors for each of the LD, XD, LD−,
XD− data sets). The G indices were filled by the lexical elements of triples and by the
corresponding source graph identifiers (there were five provenance graphs – one for each
of the four linked data documents and one for the big graph of extracted statements). The
G values were set to 1 for all elements gs,p,o,d such that the statement (s, p, o) occurred
in the graph d; all other values were 0. To get the C tensor values cs,p,o, we multiplied
the frequency of the (s, p, o) triples (i.e.,

∑
d∈P gs,p,o,d) by the point-wise mutual infor-

mation score [17] of the (s, o) tuple. This method is widely used for assigning empirical
weights to distributional semantics representations [2], we only slightly adapted it to the
case of our “triple corpora” by using the frequencies of triple elements and triples them-
selves. As we were incorporating triples from documents with equal relevance, we did
not use any specific provenance weights in the C tensor computation. After the popula-
tion of the corpus tensor, we used its s/〈p, o〉, o/〈p, s〉 perspectives for generating simi-
lar entities and the p/〈s, o〉 perspective for similar properties, proceeding exactly as de-
scribed in Example 4. A cluster of size x related to a vector u in a perspective π was
generated as a set of up to x most similar vectors v such that simπ(u,v) > 0.

To evaluate the entity consolidation, we employed MeSH10 as a gold standard.
MeSH is manually designed and covers a lot of disease, gene and drug terms, therefore
the groups of related things within its taxonomical structure are a good reference compar-
ison for artificially generated clusters of entities from the same domain. To the best of our
knowledge, no similar applicable gold standard that would cover our property consoli-
dation data sets exists, thus we had to resort to manual assessment of the corresponding
results. As a baseline, we used randomly generated clusters of entities and properties.

3.2.2. Evaluation Summary

The quality of entity clusters was based on their overlap with the MeSH gold standard.
The overlap itself was computed as an arithmetic mean of the MeSH-based similarities
between all entities from a cluster that were present in MeSH. The MeSH-based simi-
larities were inversely proportional to the distance of the particular entities in the MeSH
tree structure (essentially an edge-based approach motivated by the similarity measures
commonly used in the context of life science knowledge bases [28]). For evaluating the
property clusters, we employed two human evaluators (one bioinformatician and one
clinical researcher). They assessed two factors – an adequacy (aq) and accuracy (ac) of
property clusters. Given a property cluster C, ac = |C|−|N |

|C| , aq = |R|
|C|−|N | , where N is

a set of properties deemed as noise by a human evaluator, and R is a set of properties
considered to be relevant to the seed property the cluster was generated from.

Firstly we will discuss the results of property clustering. The adequacy of cluster-
ing was best (0.875) for small, crisp LD clusters (with a rather strict similarity thresh-
old of 0.75), while for bigger clusters without a similarity threshold restriction, it was

10A freely available controlled vocabulary and thesaurus for life sciences, see http://www.nlm.nih.
gov/mesh/.

166 Nováček and Handschuh / Emergent Knowledge

decreasing, yet still significantly better than the baseline. For the extracted data set
(XD), roughly one half of extracted properties was deemed to be accurate. Out of
these, around 46.4% in average were adequate members of the analysed property clus-
ters, which is quite promising, as it would allow for reduction of the space of about
35, 000 extracted properties to several hundreds with an error rate around 50%. This
may not be enough for a truly industry-strength solution, but it could already be use-
ful in prototype applications if extended by result filtering (e.g., ranking) or faceted
browsing like in our CORAAL tool. Examples of interesting property clusters we gen-
erated are: C1 = {secreted_in, excreted_in, appear_in, detected_in, accounted_for_in,
produced_in, eliminated_in}, C2 = {from, following_from, gathered_from}, C3 =
{increase, increased_by, diminish}. C1 appears to be related to production/consumption
of substances in organs, C2 to origin of substances in location and C3 to quantity change.

To discuss the entity clustering results, let us have a look at Figure 1, which shows
the dependency of the cluster quality on the cluster sizes for all the evaluated data sets.
The dotted green line (circle markers) represents the baseline (EC-BL), while the red

Figure 1. Dependency of the cluster quality on their sizes

and black lines (square/plus and diamond/cross markers) are for the extracted and linked
open data sets, respectively (EC-XD/EX-XD−, EC-LD/EC-LD−). The solid lines are
for original data sets (with properties), whereas the dashed lines indicate resources with
properties reduced to mere links. One can immediately see that the results of entity con-
solidation are significantly better in terms of quality than the baseline for clusters of size
up to 25. This holds for all evaluated data sets and thus demonstrates a clear contribution
of our approach. This is, we believe, not the most interesting thing, though. Quite sur-
prisingly, the data sets flattened to mere links between entities (the dotted lines) produce
much better results than the original resources with multiple property types. This is espe-
cially the case of flattened linked data resources (the dashed black line), which perform
better than the baseline for all cluster sizes. Another counterintuitive finding is that the
flattened automatically extracted resources (red dashes) perform better than the manually

Nováček and Handschuh / Emergent Knowledge 167

created linked data sets (without flattened properties). For clusters of size 50 and bigger,
the flattened extracted batch oscillates around the random baseline, while both batches
with actual properties are consistently worse.

We believe that these surprising results may be caused by the actual difference be-
tween the empirical similarities induced by the full and flattened data. The gold standard
similarity imposed by the MeSH thesaurus may be directly related to its taxonomy struc-
ture. The flattened resources may produce a related, rather simple ‘subsumption’ type of
distributional similarity, while the resources with multiple property types can give rise
to a more complex ‘structural’ similarity. This could be the reason for a better fit of the
flattened data to the gold standard. Also, it could explain the poor (i.e., worse than ran-
dom) performance of the full-fledged data sets for larger cluster sizes. In these cases, the
flattened resources may be producing bigger clusters of more general and more specific
(but still related) terms, whereas the other type of similarity just increases the noise by
adding more and more specific and mutually unrelated structural sub-clusters. As these
are all mere assumptions now, though, we are going to further investigate the interesting
by-products of our knowledge consolidation experiments in near future.

3.3. Rule Mining and Automated Document Annotation

This particular application of our general framework for emergent knowledge processing
is again motivated by the information overload in the context of life science literature.
As can be seen for instance in [12], a popular way of tackling this problem is annota-
tion of articles by terms from standardised biomedical vocabularies. Such annotations
can in turn make the retrieval of relevant documents much more efficient. However, as
providing the necessary annotations manually is very expensive, automated methods are
desired [12], which is what the application described in this section addresses. Note that
similarly to the previous sections, we provide only an outline of our approach and its
evaluation here. Those interested in more details are referred to [21].

3.3.1. Method and Data

To facilitate the automated document annotation, we utilised another type of semantic
features that can be discovered using the framework introduced in Section 2 – IF-THEN
rules mined from the emergent knowledge bases. Rules are useful for our motivating use
case due to their applicability to extension of the basic article annotations – once we
know that an article has annotations that conform to a rule’s antecedent, we can also add
annotations present in the corresponding rule consequent.

To simplify the presentation, let us consider conjunctive IF-THEN rules of type
(?x, l1, r1) ∧ (?x, l2, r2) ∧ · · · ∧ (?x, lk, rk) → (?x, lk+1, rk+1) ∧ (?x, ln, rn) in the
following, where ?x is a variable and li, ri, i ∈ {1, . . . , n} are concrete relation
and (right) argument terms. An example of such rule is (?x, type of, domain) →
(?x, different from, protein), which says that everything that is a type of domain is not
a protein. The rule mining consists of two steps: (1) using the matrix perspective 〈p, o〉/s
for finding candidate sets of 〈li, ri〉) tuples that can form rules; (2) using the matrix
perspective s/〈p, o〉 for pruning the generated rules based on their confidence.

The first step corresponds to finding all frequent itemsets in a database as described
in the associative rule mining classics [1]. The row vectors of the 〈p, o〉/s matrix are es-
sentially the ‘items’ – features of the rules, i.e., the concrete (li, ri), i ∈ {1, . . . , n} tu-

168 Nováček and Handschuh / Emergent Knowledge

ples. By grouping close vectors, we can discover related features that may possibly form
rules. Perhaps a simplest way of doing this is k-means clustering based on Euclidean
distance [11] applied to the 〈p, o〉/s matrix. The k parameter is set so that the sizes of the
generated clusters correspond to the desired maximum number of statements present in a
rule. In practice, we recommend to apply dimensionality reduction to the columns of the
matrix. This makes the clustering faster, while also leading to noise reduction and better
representation of the features’ meaning in the sense of [6]. The described approach ef-
fectively replaces the process of finding frequent itemsets in [1]. Using our distributional
representation, we find promising ‘itemsets’ not via support in discrete data transactions,
but by exploiting their continuous latent semantics.

The second step involves pruning of the previously generated rules using measures
of support (supp) and confidence (conf). Only rules with sufficiently high confidence
are kept as a result of the mining process. The measures are computed on a matrix that is
a transpose of the one used for generating the rules (s/〈p, o〉 in case of the discussed type
of rules). We keep the original dimensions of the matrix this time, so that we can check
for the confidence of the rules using the actual data without any transformations. We base
the rule pruning on the definitions of support and confidence provided in [1], however,
we generalise the support so that we can fully exploit the power of our distributional
representation (see [21] for details).

After giving an overview of the rule mining method we developed on the top of the
general framework introduced in Section 2, we can go back to the actual document anno-
tation experiment. As a corpus of documents for annotation, we employed 2, 003 articles
from the PubMed repository that had their fulltext content available from PubMed Cen-
tral11. The articles were selected so that for each article present, the corpus also contained
corresponding related articles as offered by the PubMed’s related articles service [13].
This fact was important for the evaluation later on. For the article annotation, we used
the MeSH 2011 version.

We processed the data using the following high-level pipeline: (1) extraction of
statements from the articles and from MeSH; (2) incorporation of the extracted state-
ments into two separate knowledge bases for PubMed articles and for MeSH thesaurus;
(3) construction of basic MeSH annotation sets for each article; (4) mining of rules from
the MeSH knowledge base; (5) rule-based extension of the basic annotation sets; (6) eval-
uation of the initial and extended sets of annotations.

In the extraction step, we were focusing on simple binary co-occurrence statements.
We tokenized the article text into sentences, then applied part of speech tagging and
shallow parsing in order to determine noun phrases. Any two noun phrases NP1, NP2

occurring in the same sentence formed a statement (NP1, R,NP2), where R stands
(here and in the following) for a related_to relationship expressing a general relatedness
between the left and right arguments. Any synonyms of MeSH terms in the statements
were converted to the corresponding preferred MeSH headings in order to lexically unify
the data. 1, 379, 235 statements were generated from the 2, 003 articles this way. From
the MeSH data set, we generated (T1, R, T2) statements for all terms (i.e., headings)
T1, T2 such that they were parent, child or sibling of each other in the MeSH hierarchy,
which led to 41, 632 statements. Note that for both data sets, we considered theR relation

11See http://www.ncbi.nlm.nih.gov/pubmed/ and http://www.ncbi.nlm.nih.gov/
pmc/, respectively.

Nováček and Handschuh / Emergent Knowledge 169

symmetric, which effectively made the s/〈p, o〉 and o/〈s, p〉 perspectives equivalent in
the consequent steps.

The adopted model of co-occurrence limited to a single general relationship R may
seem to be restrictive, however, we chose to do so to be able to link the semantics of
the data extracted from articles with the semantics of MeSH in the most general sense
applicable. Apart of that, the experiment we reported on in Section 3.2 suggests that in
this context, such ‘flattened’ semantics may actually perform better than a model with
multiple relations.

The second step in the experimental pipeline was incorporation of the extracted
statements into knowledge bases (i.e., the source, corpus and perspective structures de-
scribed in Section 2). The incorporation was done in the same way for both PubMed and
MeSH data, following the process described already in Section 3.2.1.

The annotations for each article d were computed using the article knowledge
base as follows. First we constructed a set TF = {(t, fd(t))|t ∈ d}, where t
are all terms extracted from d and fd(t) is the absolute frequency of the term t in
d. For each (t, fd(t)) tuple from TF , we computed a set RELt = {(t′, fd(t) ·
sims/〈p,o〉(t, t′))|sims/〈p,o〉(t, t′) > 0}. Rephrased in prose, the RELt sets contained
tuples of all terms similar to t and the actual similarities multiplied by the fd(t) frequency
(more frequent terms should generally produce terms with higher relatedness value). The
sims/〈p,o〉 similarity function was defined as in Example 4. Eventually, we collated the
particular term relatedness values across the whole document d into an overall related-
ness rel(t′) = 1

W

∑
w∈Wt′

w, where Wt′ = {r|(t′, r) ∈ ⋃t∈dRELt} and W is a sum
of all the relatedness values occurring in the

⋃
t∈dRELt union. The final output of this

step for each document d was a set of all related terms t′ such that t′ is in MeSH. The
rel(t′) values were used for ranking the set of MeSH annotations and taking only the top
ones if necessary.

The rule mining part of the experimental pipeline was executed iteratively with dif-
ferent random initialisations of the clusters until no new rules were added in at least
10 most recent iterations. We obtained 33, 384 rules with confidence at least 0.5 this
way. The rules were then used for extending the basic article annotation sets as fol-
lows. Let us assume an article d has annotations {t1, t2, . . . , tn}. Then for any rule
(?x,R, e1) ∧ (?x,R, e2) ∧ · · · ∧ (?x,R, ek) → (?x,R, ek+1) ∧ (?x,R, ek+2) ∧ · · · ∧
(?x,R, em) such that {t1, t2, . . . , tn} ⊆ {e1, e2, . . . , ek}, we used the consequent set
{ek+1, ek+2, . . . , em} as extended annotations for the article d. The relatedness measure
of the extensions e was computed as 1

W

∑
w∈Ce

w, where Ce is a set of confidences of
all rules that contributed with the extension e, and W is a sum of all such confidences
across all extensions computed. Similarly to the basic annotation sets, the relatedness of
the extensions was used for their ranking and possible restriction to top-scoring ones.

3.3.2. Evaluation Summary

To evaluate the annotation sets produced in the experimental pipeline, we used two meth-
ods. Firstly, we measured precision and recall of the basic and extended annotation sets
based on their comparison with manually provided MeSH annotations of the correspond-
ing articles (available through the PubMed’s Entrez API). For each article, we computed
average precision, precision and recall [17] of all computed annotations and also of top
h ones, where h is the number of human annotations for the given article.

170 Nováček and Handschuh / Emergent Knowledge

The second evaluation method focused on the utility of the computed annotations,
namely in the task of finding related articles. We used a standard vector space model [29]
for determining the relatedness of documents, where features were formed by the sets
of computed or manually assigned article annotations. For each document, we com-
puted different sets of related documents (based on the human annotations and on the
basic/extended ones generated by our framework). To determine their precision and re-
call, the computed sets were compared to corresponding sets of related articles provided
by the dedicated PubMed service. Similarly to the evaluation of annotations themselves,
we measured average precision, precision and recall of all and of top h related articles
computed, where h was the number of related articles in the gold standard.

The comparison with the manually curated MeSH annotations was not particularly
impressive, with highest precision and recall values of 16.4% and 12.7%, respectively.
On the other hand, the automatically computed annotations performed much better than
the ‘manual’ ones when using them as features for finding related articles. There was
a substantial improvement namely regarding precision and overall F-score. The only
measure where the manually curated annotations performed slightly (ca. 1.1-times) better
than the next-best automated method was recall. Especially notable was the difference
in precision – the extended annotations achieved more than 91% when finding related
articles, which was about two-times better than when using the manual annotations.

The results we obtained may have several interpretations. We believe that one of
the more plausible ones is related to the nature of the manually provided MeSH anno-
tations. As mentioned for instance in [20], the goal of PubMed annotators is to provide
best MeSH ‘tags’ for the purpose of indexing in digital library collections. Thus they
are motivated to select annotations that better discriminate papers from each other. This
may, however, be rather detrimental when the task is to identify related papers using the
annotations, as features used for identifying relatedness (i.e., similarity) are often incom-
patible with the features used for discrimination of entities [33]. This reasoning can in
turn explain why our automatically computed article annotations, apparently very differ-
ent from the manually curated ones, perform significantly better when used as features
for finding related articles. The better performance (especially in case of the precision of
extended annotations) may indicate that the automatically computed annotations are se-
lected in a more fine-grained manner and from a more varied ‘vocabulary’ than the ones
provided by human annotators, who can hardly grasp the scale of all the hypothetically
available annotations (in addition to having different motivations as mentioned before).
This is not to say that either kind of annotations is worse than the other, it much rather
means that they simply serve slightly different purposes.

To conclude the discussion, we believe that despite of the low performance of our
approach in terms of comparison with manually curated MeSH annotations, we can still
offer potentially very beneficial results (especially in case of annotations augmented by
emergent rules). This holds particularly for use cases where the annotations are supposed
to be produced in a scalable and economical way in order to determine similarities be-
tween articles. Examples of such use cases include not only identification of related doc-
uments, but also question answering or automated linking of publications and supple-
mentary data (e.g., pharmaceutical, disease or protein datasets available as Linked Open
Data).

Nováček and Handschuh / Emergent Knowledge 171

4. Conclusions and Future Work

We have introduced a layered framework for discovery of emergent semantic phenom-
ena empirically grounded in simple statements extracted from the web data and/or texts.
Further augmentation of the content processed within our framework is made possible
by a symbolic layer that involves deductive (rule-based) reasoning on the top of the es-
sentially inductively inferred emergent knowledge. This allows for seamless combina-
tion of the more traditional, top-down approaches to web semantics with our bottom-up
framework.

Apart of the general framework, we gave an overview of three distinct applications
that were motivated by various challenges related to information overload in life sciences.
The presented results clearly show a practical applicability of our framework in diverse
scenarios and demonstrate a significant potential for future development.

In future, we want to investigate inference of more complex and varied semantic
phenomena (e.g., analogies or named hierarchical clusters). Consequently, we intend to
develop practical applications involving continuous materialisation of emergent knowl-
edge bases according to relevant rule sets. Last but not least, we want to work more
intensively with potential users of the introduced technologies in order to deliver truly
industry-strength solutions that would successfully cope with the present challenges in
information overload.

Acknowledgements This work has been supported by the ‘Líon II’ project funded by
SFI under Grant No. SFI/08/CE/I1380. We also thank the book editors and anonymous
chapter reviewers for remarks that provided us with much guidance when preparing the
final text.

References

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between sets of items
in large databases. SIGMOD Rec., 22(2):207–216, 1993.

[2] Marco Baroni and Alessandro Lenci. Distributional memory: A general framework for corpus-based
semantics. Computational Linguistics, 36(4):673–721, 2010.

[3] Dan Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema, 2004. Avail-
able at (Feb 2006): http://www.w3.org/TR/rdf-schema/.

[4] Paul Buitelaar and Philipp Cimiano. Ontology Learning and Population: Bridging the Gap between Text
and Knowledge. IOS Press, 2008.

[5] Philipp Cimiano, Alexander Pivk, Lars Schmidt-Thieme, and Steffen Staab. Learning taxonomic rela-
tions from heterogenous sources of evidence. In Paul Buitelaar, Philipp Cimiano, and Bernardo Magnini,
editors, Ontology Learning from Text: Methods, Evaluation and Applications, pages 59–73. IOS Press,
2005.

[6] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and Richard Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society for Information Science,
41(6):391–407, 1990.

[7] Robert B. Doorenbos. Production Matching for Large Learning Systems. PhD thesis, 1995.
[8] Peter Haase and Johanna Völker. Ontology learning and reasoning - dealing with uncertainty and incon-

sistency. In Proceedings of URSW2005, pages 45–55, NOV 2005.
[9] Hele-Mai Haav. An ontology learning and reasoning framework. In Yasushi Kiyoki, Jaak Henno, Hannu

Jaakkola, and Hannu Kangassalo, editors, Information Modelling and Knowledge Bases XVII, volume
136 of Frontiers in Artificial Intelligence and Applications, pages 302–309. IOS Press, 2006.

[10] Petr Hájek. Metamathematics of Fuzzy Logic. Dordrecht: Kluwer, 1998.

172 Nováček and Handschuh / Emergent Knowledge

[11] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[12] Minlie Huang, Aurélie Névéol, and Zhyiong Lu. Recommending MeSH terms for annotating biomedical
articles. Journal of the American Medical Informatics Association, 18(5):660–667, 2011.

[13] Jimmy Lin and W. John Wilbur. PubMed related articles: a probabilistic topic-based model for content
similarity. BMC Bioinformatics, 8(1), 2007.

[14] Alexander Maedche. Emergent semantics for ontologies. In Emergent Semantics, IEEE Intelligent
Systems, pages 85–86. IEEE Press, 2002.

[15] Alexander Maedche and Steffen Staab. Discovering conceptual relations from text. In Proceedings of
ECAI 2000. IOS Press, 2000.

[16] Alexander Maedche and Steffen Staab. Ontology learning. In S. Staab and R. Studer, editors, Handbook
on Ontologies, chapter 9, pages 173–190. Springer, 2004.

[17] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schuetze. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

[18] Frank Manola and Eric Miller. RDF Primer, 2004. Available at (November 2008): http://www.w3.
org/TR/rdf-primer/.

[19] Diana Maynard and Kalina Bontcheva. Natural language processing. In Johanna Völker and Jens
Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2013.

[20] Aurélie Névéol, Sonya E. Shooshan, Susanne M. Humphrey, James G. Mork, and Alan R. Aronson. A
recent advance in the automatic indexing of the biomedical literature. Journal of Biomedical Informatics,
42(5), 2009.

[21] Vít Novácek. Distributional framework for emergent knowledge acquisition and its application to auto-
mated document annotation. CoRR, abs/1210.3241, 2012.

[22] Vít Nováček. EUREEKA! Towards a Practical Emergent Knowledge Processing. PhD thesis, Digi-
tal Enterprise Research Institute (DERI), National University of Ireland Galway, 2011. Available at
(January 2011): http://dl.dropbox.com/u/21379226/thesis/phd_inf.pdf.

[23] Vít Nováček and Gully Burns. SKIMMR: Machine-aided skim-reading. In IUI13 Companion. ACM,
2013.

[24] Vít Nováček and Stefan Decker. Towards lightweight and robust large scale emergent knowledge pro-
cessing. In Proceedings of ISWC’09. Springer, 2009.

[25] Vít Nováček, Tudor Groza, Siegfried Handschuh, and Stefan Decker. CORAAL - dive into publications,
bathe in the knowledge. Web Semantics: Science, Services and Agents on the World Wide Web, 8(2),
2010.

[26] Vít Nováček, Siegfried Handschuh, and Stefan Decker. Getting the meaning right: A complementary
distributional layer for the web semantics. In Proceedings of ISWC’11. Springer, 2011.

[27] Kevin Ottens, Nathalie Aussenac-Gilles, Marie-Pierre Gleizes, and Valerie Camps. Dynamic ontology
co-evolution from texts: Principles and case study. In Proceedings of ESOE 2007 Workshop, pages
70–83. CEUR-WS, 2007.

[28] Catia Pesquita, Daniel Faria, AndrÃl’ O. FalcÃčo, Phillip Lord, and Francisco M. Couto. Semantic
similarity in biomedical ontologies. PLoS Computational Biololgy, 5(7), 2009.

[29] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Commun. ACM,
18(11):613–620, 1975.

[30] Gerd Stumme and Alexander Maedche. Fca-merge: Bottom-up merging of ontologies. In IJCAI’01,
2001.

[31] Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF schema and a
semantic extension involving the OWL vocabulary. Journal of Web Semantics, pages 79–115, 2005.

[32] Junichi Tsujii. Refine and pathtext, which combines text mining with pathways. Keynote at Semantic
Enrichment of the Scientific Literature 2009 (SESL 2009), March 2009.

[33] Amos Tversky. Features of similarity. Psychological Review, 84(2):327–352, 1977.
[34] Johanna Voelker, Denny Vrandecic, York Sure, and Andreas Hotho. Learning disjointness. In Proceed-

ings of ESWC’07. Springer, 2007.
[35] Denny Vrandecic and Anja Jentzsch. Linked data and the semantic web. In Johanna Völker and Jens

Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2013.

Part IV

Learning from Web Data

Capturing Emergent Semantics
from Social Tagging Systems

Dominik BENZ a and Andreas HOTHO b

a Knowledge and Data Engineering Group, University of Kassel, Germany
benz@cs.uni-kassel.de

b Data Mining and Information Retrieval Group, University of Würzburg, Germany
hotho@informatik.uni-wuerzburg.de

Abstract. With the advent of the so-called “Web 2.0”, the participatory nature of
many of its applications has nurtured the vision of many researchers to finally over-
come the knowledge acquisition bottleneck inherent to many Semantic Web ap-
plications. Despite the uncontrolledness and openness of platforms like collabo-
rative tagging systems, blogs, social networks or wikis, evidence for the presence
of emergent semantics within the resulting large bodies of human-annotated con-
tent was found. The strengths and weaknesses of traditional top-down approaches
(like expert-defined ontologies) and this “wisdom of the crowds” approaches are
obviously inverse. Therefore the idea to bridge the gap between the social and the
semantic web has motivated a large number of approaches coming from different
research areas.

In this chapter, we will give a systematic overview of the recent trends and devel-
opments within the research branch targeted towards capturing emergent semantics
from social tagging systems. Starting with an introduction to the data characteris-
tics, we give an overview of approaches which analyze evidences and factors of
emergent semantics. The following main part of this chapter is concerned with var-
ious methods geared towards making the implicit semantics within social tagging
data explicit. The presentation is structured along a set of comparison dimensions,
including the different levels of the ontology learning layer cake. We conclude the
chapter by giving an outlook on promising future research directions.

Keywords. Folksonomies, Social Tagging, Emergent Semantics

1. Ontology Learning to bridge the gap between Web 2.0 and the Semantic Web

In contrast to the “Web 1.0”, where information consumers and producers are clearly dis-
tinct, the participatory nature of many so-called “Web 2.0” applications allows anyone to
easily annotate digital information resources (e.g. websites or multimedia content) some-
one else authored. Despite the fact that no central authority or expert team exercises con-
trol, some of these systems successfully tackle problems that Semantic Web applications
were initially designed for, especially in the fields of knowledge sharing, reuse and orga-
nization. This phenomenon has often been attributed to emergent semantics, describing
the formation of an implicit consensus of shared understandings. It constitutes a bottom-
up alternative1 to the top-down Semantic Web paradigm inherent e.g. in expert-created

1sometimes called “grassroots semantics”

176 Benz and Hotho / Emergent Semantics from Social Tagging

ontologies.
Although many approaches which (semi-)automatically support the creation and

maintenance of ontologies have reached a decent degree of maturity, the fact that large
user populations are effectively involved in the creation of metadata opened up new pos-
sibilities and challenges to the field of ontology learning. The vision of bridging the
gap [3,36] between Web 2.0 and the Semantic Web has motivated a large number of ap-
proaches. An early and inspiring insight was that the characteristics of the “traditional”
way of capturing semantics e.g. within ontologies and the user-created metadata from
social tagging systems are inverse: While ontologies provide a precise and expressive
knowledge representation formalism, their creation and maintenance suffers from the
knowledge acquisition bottleneck. Metadata from the Social Web, on the other hand, is
available in abundance and adapts fast to changes, but suffers from problems like ambi-
guity or lack of precision. Clearly, combining “the best of both worlds” seems to be a
promising direction to follow towards a next generation World Wide Web.

In this chapter, we give a systematic overview of the research area of capturing emer-
gent semantics from social tagging systems. Our starting point are works which provide
evidence for the presence of emergent semantics within user-contributed tagging data;
as a next step, we analyze the question which factors influence the quality of the learned
semantic structures. The following main part of this chapter summarizes approaches of
making the implicit semantics explicit, structured along a set of comparison dimensions
including the different layers of the ontology learning layer cake. We conclude with dis-
cussing promising future research directions.

2. Web 2.0 data

In general, it is difficult to draw clear boundaries between “traditional” Web 1.0 data
and Web 2.0 data. But despite the fact that the Web 1.0 was also intended to be a “web
of people”, a commonality of most Web 2.0 applications is that they greatly alleviate
the process of contributing and sharing content on the Web for end-users. Their inherent
ease of use and their immediate usefulness has in fact engaged millions of human users
in editing and annotating web resources. For the context of this work, we will mainly
consider collaborative tagging and leave out all the other Web 2.0 phenomena.

Tagging systems like Delicious, Flickr or BibSonomy2 allow the sharing of different
kinds of content (e.g. bookmarks, pictures or scientific papers). Users can assign freely
chosen keywords or tags to the uploaded items to ease organization and retrieval. Despite
their uncontrolled nature, [25] have provided evidence for emergent semantics within the
resulting so called folksonomies. More formally, we stick to [29] and refer to a folkson-
omy as a tuple F := (U, T,R, Y) where U , T , and R are finite sets, whose elements are
called users, tags and resources, respectively, and Y is a ternary relation between them,
i.e. Y ⊆ U × T ×R.

In the context of ontology learning, the question is now to which extent the data
resulting from tagging systems differs from “traditional” input data of ontology learning
algorithms. A fundamental difference lies hereby within the way how and by whom the
data is created. This difference can be best explained along the comparison dimensions (i)

2http://www.delicious.com, http://www.flickr.com, http://www.bibsonomy.org

Benz and Hotho / Emergent Semantics from Social Tagging 177

Social tagging data “traditional” OL input

M
ot

iv
at

io
n

user goal solution of specific (personal) task,
primarily for own benefit

↔ capturing and conveying infor-
mation for a specific audience

community goal aggregate user prefrences ↔ more content in higher quality
medium publicity side-effect ↔ core aspect
user types producers, consumers ↔ contributors, lurkers

C
om

m
un

ic
. richness low ↔ high

type many-to-many, many-to-one ↔ one-to-many
cost low ↔ high
influence on users by actions, implicit ↔ by messages, explicit

R
eq

.-m
en

ts amount of do-
main knowledge

small ↔ large

cognitive cost low (lightweight conceptualization) ↔ high (structuring of content)
nr. of contributors high ↔ low

Table 1. Dimensions of comparision between “traditional” input of ontology learning algorithms and input
from social tagging systems: Motivation, communiction and requirements.

motivation of contributors, (ii) communication among contributors and (iii) requirements
for contributions. The following sections explain each of these in detail.

Motivation of contributors For many ontology learning datasets (e.g., medical
journals in [18]), it is justified to presume that an important motivation of the authors is to
capture and convey information such that it can be used by others. This is not necessarily
the case for social tagging data: [25] presented evidence that “users bookmark primarily
for their own benefit, not for the collective good”. The aspect that an intrinsically private
information management task (like the maintenance of a personal bookmark collection)
is performed in a public space is a novel characteristic of the resulting data. To use a
more pointed formulation, the main motivation for users to “produce” data in a Web 2.0
system is not necessarily to make the data available to the public (as it is when writing
articles or books), but rather to solve a specific personal task.

Communication among contributors Compared to, e.g., a group of people writing
a book, the connection among all users involved e.g. in the creation of a tag cloud de-
scribing a certain resource is much less explicit. [56] refers to these communication fea-
tures as ballot box communication. Compared to “traditional” computer-mediated com-
munication, one of its distinguishing characteristics is the many-to-one nature of infor-
mation flows. It describes the paradigm that the many individual contributions are aggre-
gated and presented to each user as a single “voice of the crowd”. This exposure leads
to the fact that an individual is implicitly influenced by local or global trends within a
certain community - without necessarily being able to pin down this influence to one or
more particular users.

Requirements for contribution Compared to the high requirements of, e.g., writing
a book, we can find probably the most distinguishing feature among the characteristics
of social tagging systems: A central aspect of them is their very low entry barrier and
immediate usability for a large number of users. [56] noted that this effect is partially
a result of the limited interaction options which lower the participation costs compared
to e.g. reading and writing messages. Sinha3 reported on lower cognitive costs of tag-
ging. In addition, most systems impose no special requirements of domain knowledge,

3http://rashmisinha.com/2005/09/27/a-cognitive-analysis-of-tagging/

178 Benz and Hotho / Emergent Semantics from Social Tagging

which leads to the situation that the knowledge is not concentrated within a small cir-
cle of experts, but more fragmented and distributed among a broad community. Table 1
summarizes the main dimensions of comparison discussed before.

3. Evidence and Factors of Emergent Semantics in Social Tagging Data

According to [61], emergent semantics “refers to a set of principles and techniques an-
alyzing the evolution of decentralized semantic structures in large scale distributed in-
formation systems”4. In this article, collaborative tagging is also mentioned as a key
application to be analyzed using an emergent semantic paradigm.

While the phenomenon of collaborative tagging was discussed in its early stages
mainly in newsgroups or mailing lists (e.g. [41,50]), a first systematic analysis was per-
formed by [25]. One core finding was that the openness and uncontrolledness of these
systems did not give rise to a “tag chaos”, but led on the contrary to the development
of stable patterns in tag proportions assigned to a given resource. [15] reported similar
results and denoted the emerging patterns as “semantic fingerprints” of resources. [17]
analyzed statistical properties of tag co-occurrence networks; by using a shuffling ap-
proach, they discovered local patterns of co-occurrence indicating a possible underlying
semantic hierarchical organization. A consensus of these works is that the large bodies of
human-annotated content resulting from collaborative tagging systems contain evidences
for emergent semantics.

Following the reported evidences for the existence of latent conceptual structures, a
natural next question is which factors are having an impact on their emergence and qual-
ity. This question has been addressed by a much lower number of researchers, because
the necessary data (e.g. which recommendation or spam prevention techniques are used)
for such analyses is often only available to the system operators themselves. Despite
this fact, we suggest to categorize the influencing factors into system properties, tagging
pragmatics and system abuse.

System properties: A first intuitive assumption is that the emergent semantics from
a tagging system depends on intrinsic properties of the system itself. Among those, the
sheer size of the system already seems to play a crucial role; an early empirical observa-
tion by [25] was that “after the first 100 or so” tagging activities on a given resource, its
semantic fingerprints tended to stabilize. A more systematic analysis was done by [34],
who used a measure of semantic distance as an indicator of emergent semantics based
on various folksonomy partitions. The solid black line in Figure 1 shows an almost con-
tinuous decrease in semantic distance (indicating higher quality of emergent semantics)
when subsequently adding users in random order. This suggests the rule “more data, bet-
ter semantics”. However, further studies considering pragmatic aspects of tagging rela-
tivized this claim (see below). However, to the best of our knowledge it is still an open
an interesting question at which point in time a folksonomy (or certain parts of it) are
“mature” enough for harvesting its implicit semantics.

Another aspect is the domain of the system under consideration. Using again
folksonomy-derived measures of tag relatedness, [5] computed similar tags based on De-
licious (known for its technophile user basis) and Flickr (used by a broader population to
share pictures). A finding was a different kind of semantics: While, e.g., “bug” and “net”

4retrieved from http://people.csail.mit.edu/pcm/papers/EmergentSemantics.pdf

Benz and Hotho / Emergent Semantics from Social Tagging 179

 9

 10

 11

 12

 13

 14

 15

 0 20 40 60 80 100

av
er

ag
e

se
m

an
ti

c
d

is
ta

n
ce

percentage of included users

describers (trr)
categorizers (tpp)

random
all users

Figure 1. Influencing factors on Emergent Semantics.

were semantically related to browser and Internet tags within Delicious, their use within
Flickr covered different (nature-related) aspects.

Tagging pragmatics: Besides the question of tag semantics (i.e. what tags mean),
researchers started to observe different usage patterns within the user populations and
gained interest in tagging pragmatics (i.e. how tags are used). [34] proposed a broad dis-
tinction of taggers into categorizers, who typically use a small and controlled set of tags,
and describers, using a more verbose style of tagging. In their work, they systematically
analyzed sub-folksonomies containing different ratios of categorizers and describers with
regard to the quality of the contained semantics. The latter was measured again using
a notion of semantic distance as introduced by [16]. Figure 1 shows some exemplary
results. When subsequently adding describers (dotted line with blank circle, from left
ro right), an interesting observation is that roughly 40% of all users suffice to reach the
semantic precision of the whole dataset (dashed line). When adding categorizers (dotted
line with filled circle), most sub-folksonomies contain a smaller amount of implicit se-
mantics compared to random addition (solid line). The global optimum is found for 90%
of categorizers; the authors hypothesized that the missing 10% of extreme describers
were probably spammers, whose removal has beneficial effects. These results provide
empirical evidence for a causal link between tagging pragmatics and tag semantics.

System abuse and spam: A common problem of tagging systems and many other
popular application on the web is that growing popularity often leads to an increase of
unintended and spam-related activities. As an example, [33] reported that among the
20,000 users of BibSonomy, 18,500 were identified manually as spammers, responsible
for 90% of all posted bookmarks. These issues obviously have to be taken into account
when analyzing emergent semantics in such systems. [17] identified anomalies in tag
co-occurrence networks which could be traced back to spamming activity. [34] made a
similar observation of a detrimental effect of spammers on global emergent semantics.
In both cases, very simple “spam detection” techniques (namely filtering out posts con-
taining an excessive number of tags) led to a disappearance of the anomalies and to an
improvement of the semantic precision (see also Figure 1). The discussion of more so-
phisticated spammer identification algorithms is beyond the scope of this chapter; the

180 Benz and Hotho / Emergent Semantics from Social Tagging

Dimension Values

Data Sources folksonomy structure, resource content, tag content, user-defined tag relations,
additional metadata, external sources

Data Filtering by tag / resource / user properties, by external source, manual
Learning Technique statistical data mining & machine learning (clustering, association rules, genera-

tive models, latent semantic analysis), SNA measures, NLP techniques, custom
algorithms

Learning Task ontology construction (terms, synonyms, concepts, concept hierarchy, relations
& axioms), semantic measures (relatedness, generality), tag sense disambigua-
tion, ontology maintenance, ontology population

Evaluation human assessment, gold-standard based, application-centered (folksonomy),
application-centered (external application)

Table 2. Comparison dimensions and possible values to compare methods of making semantics in folk-
sonomies explicit.

interested reader is referred to [27]. However, we would like to emphasize that proper
spam handling is an essential step in any methodology of exploiting tag semantics.

4. Methods to make emergent semantics from social tagging data explicit

The early insights of emergent semantics in social tagging systems and the availability
of large test data sets quickly motivated a large number of approaches coming from dif-
ferent disciplines targeted towards making the implicit semantic structures explicit. A
complete coverage is beyond the scope of this chapter; so our approach is to first propose
a set of comparison dimensions and values in Section 4.1 which are intended to cover
as exhaustively as possible all approaches. The following sections are mainly structured
along the core dimension of “Learning Tasks” (see Table 2). The selection of the pre-
sented approaches was guided by the goals of (i) preferring early works on a specific
direction (ii) covering a possibly broad range of relevant authors and (iii) providing of at
least one example for each of the values defined in our comparison model.

4.1. Comparison dimensions

The main dimensions and values used for comparison are summarized in Table 2. [23]
also provided an extensive review of approaches to discover tag semantics, including a
suggestion for a unified process model. Complementing their work, our main focus is
not to compare existing approaches based on the different process steps, but rather us-
ing dimensions similar to prior comparisons of approaches of general ontology learning
like [44,49,10]. As we consider the “Learning Tasks” to be the core dimension of com-
parison, we will cover each of its values in a subsequent subsection; the other dimensions
will now be briefly explained.

First of all, a core question is of course which Data Source is exactly used to derive
semantics from. A large number of approaches (e.g. [26]) is solely based on the folk-
sonomy structure. By this we mean the tripartite structure itself as defined in Section 2,
as well as derived structures like tag-resource [43] or tag co-occurrence [8] networks.
The advantage of this kind of approaches is their independence from tag language and
content type of the shared resources (bookmarks, videos, pictures, . . .). When taking into
account the tag content (i.e. the lexical representation of a tag itself [52]) or the resource

Benz and Hotho / Emergent Semantics from Social Tagging 181

content [12], the advantage of more information is to be traded off against a restricted
applicability to different languages and content types. If available, additional metadata
like time and location information can also be exploited [32]. Some systems also allow
their users to define tag relations, which can also be used for taxonomy induction [46].
Finally, approaches which consider external sources like existing ontologies or thesauri
[39] benefit from rich prior knowledge, but of course naturally depend on the availability
of such.

Having chosen a specific data source, most approaches perform an a-priori Data Fil-
tering in order to exclude inappropriate content or optimize the input for a specific learn-
ing procedure. Typically, data items are hereby disregarded based on certain tag, user
or resource properties. Very common are minimum frequency thresholds [55], or top-k
selections [16] which restrict the analysis to popular folksonomy partitions. A method to
restrict the networks to their denser parts is to use p-cores [7], which iteratively removes
nodes with less than p connections. But also more sophisticated strategies like including
only resources annotated with a least one verb [37] or users with certain tag usage pat-
terns [34] can be found. The latter is also often related to spam removal. Another possible
data restriction is to only keep items which are present in external repositories like tags
in Tagpedia5 [53]. In addition, the fine-tuning of the resulting dataset is also often done
manually, e.g. by removing system tags like “system:unfiled” [6].

The variety of disciplines interested in learning tag semantics also led to a variety
of applied Learning Techniques. Clustering is an obvious candidate of statistical data
mining and machine learning techniques to form groups of (semantically) related tags
[4]. Closely related are association rule mining methods [28] which are able to detect
semantic relations among items. A more specialized example from this area are statis-
tical models of subsumption [48], targeting the discovery of is-a relations among tags.
From a different perspective, generative approaches like the separable mixture model
(SMM, [59]) are modeling the users’ behaviour in assigning tags to resources. Starting
from an observed tag co-occurrence distribution, a conditional distribution of tags over
a fixed number of topics is computed. Another theoretically well-founded approach is
to apply dimensionality reduction techniques like latent semantic analysis (LSA, [21])
to the high-dimensional tag vector space, resulting in a mapping of tags to “topics”
or “concepts”. Because some folksonomy-induced networks exhibit suitable properties,
also measures stemming from social network analysis (SNA) like centrality or clustering
coefficient were applied [43], mostly in order to distinguish between general and spe-
cific tags. Despite the fact that the assignment of tags to resources does not follow any
kind of syntactical pattern, researchers from the natural language processing community
(NLP) have used part-of-speech taggers to gain a deeper syntactic understanding of a tag
and finally to discover equality and synonymy relations among tags [52]. A last family
of approaches are custom algorithms specifically tailored for the task of capturing tag
semantics, like the incremental tag taxonomy induction algorithm proposed by [26].

Besides the specific learning tasks (which will be covered in the subsequent subsec-
tions), the last comparison dimension is which Evaluation paradigm was used to assess
the quality of the learned semantics. Because this dimension differs at least from general
ontology learning, we just recapitulate briefly the three main classes mentioned by [19] of
(i) human assessment (e.g. [48]), (ii) gold-standard based (e.g. [8]) and (iii) application-

5http://www.tagpedia.org

182 Benz and Hotho / Emergent Semantics from Social Tagging

centered approaches. The latter is often performed within the folksonomy system itself,
e.g. by using the learned semantics to improve tag recommendations [54] or information
retrieval [39]. Examples of integration into external systems are less frequent, but found
for example in the context of e-learning applications [20].

4.2. Semantic measures

When a sufficient amount of knowledge is captured within an ontology like e.g. WordNet,
then one can also derive useful semantic measures from it. Of special interest for many
knowledge-based applications are hereby measures of Semantic Relatedness among
terms, which assign a score to a given term pair (t1, t2) reflecting the likeness of their
semantic meaning (cf. [13]). For this reason and because the notion of relatedness also
plays an important role for many ontology induction algorithms, an early research ques-
tion was to which extent such measures could be derived from a folksonomy. While
a number of approaches successfully applied several kinds of such measures (e.g. an
adapted version of Jaccard similarity coefficient in [42], a systematic analysis of the char-
acteristics of different relatedness measures was done by [16]. Among their findings was
that the so-called tag context relatedness (representing tags in the co-occurrence vector
space with other tags, and computing cosine similarity therein) yields semantically more
closely related tags, compared to e.g. plain co-occurrence. [40] provided a generalization
including further aggregation and projection variants, pointing out that measures based
on mutual information also score high in terms of semantic precision.

Apart from semantic relatedness, some knowledge extraction algorithms are also
based on a notion of Semantic Generality of tags, which is used e.g. to distinguish
between broader and narrower terms. Again, several measures were used in the litera-
ture (e.g. network centrality by [26]). A systematic comparison was done by [9], who
compared each measure with a gold-standard measure derived from several taxonomies
and found that relatively simple measures (like e.g. degree centrality or even frequency)
already encode an acceptable degree of generality information.

4.3. Ontology construction

Despite the fact that e.g. measures of semantic tag relatedness do have a value on their
own, the goal of formalizing the implicit knowledge in folksonomies by constructing on-
tologies remains desirable. For the coverage of such approaches, we will stick to the tasks
contained in the “ontology learning layer cake” [18] and detail on relevant approaches
for each layer.

Terms: A main advantage of folksonomies compared to text documents as input
for ontology learning algorithms is that the process of term extraction is much simpler
– in fact, many approaches skip this step completely and regard tags directly as terms.
However, observing a great variety of spelling and abbreviation variants among tags,
some works perform tag normalization at different levels of complexity ([14,51,53]).

Synonyms & Concepts: Many researchers came up with various methods to form
groups of tags with a similar meaning, often referred to as concepts. In a strict sense,
the latter does not conform to the definition given by [18], according to which the pro-
cess of concept formation should also provide an intensional definition (e.g. a natural
language description or a set of typical attributes) of each concept. Despite that, we will

Benz and Hotho / Emergent Semantics from Social Tagging 183

treat for simplicity reasons both variants (i.e. semantic groupings of tags with and with-
out6 an additional intensional definition) uniformly as “concepts”. [4] proved the appli-
cability of clustering to discover concepts by using an algorithm based on spectral bi-
section. Their approach requires an predefinition of the number of clusters. Examples
of approaches which produce a variable number of clusters are [60,47]. Because these
clustering techniques are usually based on a notion of tag similarity, another relevant re-
sult is given by [16], who identified distributional measures of tag similarity which yield
preferably synonym tags (as found in WordNet). One of them was applied by [8] for the
process of “synsetizing” a folksonomy by merging tag pairs whose similarity was above
a similarity threshold. [30] explores the possibility to match tags with the same meaning
across different languages. [31] applied FCA techniques to discover so-called frequent
tri-concepts (i.e. sets of users, tags and resources belonging to an implicit concept) within
folksonomies. [54] apply a translation approach to compute mappings between tags used
by different users to describe similar concepts.

Another class of approaches is to take into account external sources containing prior
knowledge about semantic relations. [2] proposed a method to enrich folksonomies by
mapping tags to concepts defined in WordNet; [53] described a similar approach using
categories and concepts derived from Wikipedia. Though coming from a different direc-
tion, approaches like [1] are exploiting WordNet for query expansion, geared towards
enhancing retrieval quality by querying with “concepts on the fly”.

Concept Hierarchy: While synonym resolution is mainly targeted towards improv-
ing retrieval tasks, the reconstruction of hierarchical relationships among tags (or learned
concepts) is often mentioned in the context of enhanced browsing facilities. Because the
maintenance of larger hierarchies is a difficult task and hence the idea of self-organizing
structures is very appealing, many researchers have focussed on this aspect. [43] pio-
neered in deriving broader / narrower tag relations from a user-tag graph (called “actor-
concept network”), which are effectively based on subcommunity relationships. [26] sug-
gested a custom algorithm to induce a “tree of tags”, based on a measure of tag general-
ity and a measure of tag similarity. This algoritm was later extended by [8] by (i) using
computationally more lightweight measures and (ii) handling of synonymy and ambi-
guity. [48] applied a statistical model of subsumption (originally stemming from work
on deriving concept hierarchies from text) for a similar purpose. [21] used probabilistic
latent semantic indexing (PLSI) to induce a taxonomy of tags. [60] used a divisive clus-
tering technique based on deterministic annealing to iteratively split the set of tags into
semantically coherent subsets. The approach of [42] consists in building first a directed
weighted tag graph using a notion of generality, and then removing edges until a maxi-
mum spanning tree is found. Based on a different data source, [46] suggested to integrate
user-specified tag relations7 into a global concensus structure.

Relations & Axioms: Apart from learning taxonomic relations among concepts as
described in the previous paragraph, literature on learning other kinds of relations from
social tagging data is still sparse. A possible reason for this is that a large portion of
relation learning techniques based on text (see [18] for an overview) comprise the ex-
ploitation of syntactic dependencies or lexico-syntactic patterns, which do not exist in

6Of course one could also argue that the set of tags themselves can always be interpreted as a lightweight
intensional description.

7Some social tagging systems like BibSonomy or Flickr allow users to create explicit directed tag relation-
ships.

184 Benz and Hotho / Emergent Semantics from Social Tagging

folksonomies. However, when reviewing the results of taxonomy learning techniques, it
turns out that in some cases the learned taxonomic relations do not always convey a sharp
and precise “is-a” semantics. In the examples given by the authors, one can also find
occurrences of e.g. “part-of”-relationships or purpose-related connections. But the “dis-
ambiguation” of these relations remains so far an open and interesting research problem,
as well as the extraction of more complex constructs like axioms.

4.4. Tag Sense Disambiguation

Besides the aforementioned problem of synonymy, another major and often mentioned
weakness of tagging systems is ambiguity of tags. Of course this it not an intrinsic prob-
lem of social tagging, but in a way “inherited” from the fact that tags can mostly be
considerd as natural language entities. However, the openness and uncontrolledness of
these systems makes this issue more visible. In principle, the task of disambiguating tag
meanings belongs to the process of concept identification (see Section 4.3); but in order
to clarify the different aspects and approaches, it is treated separately in this chapter. Sta-
tistical natural language processing distinguishes between supervised, dictionary-based
and unsupervised disambiguation [38]. In all cases, information taken from the context
of a term forms the basis for its assignment to a certain sense. In the process model of
discovering tag semantics by [23], “context identification” is also included as a major
step.

Supervised approaches are based on labelled training data, and learn usually a classi-
fier based on context features of a given word. Such approaches have rarely been applied
to social tagging sytems. Dictionary-based approaches rely on sense definitions defined
in dictionaries or thesauri. [22] uses cosine similarity between tag co-occurrence vec-
tors and a bag-of-words representation of Wikipedia pages to identify the most suitable
sense definition within DBPedia8. [35] also computes a relevance score between tags and
Wikipedia articles for the same purpose.

Unsupervised approaches are trying to partition the context of a given term into
clusters corresponding to its different senses. [58] analyzed several folksonomy-derived
networks with regard their suitability to derive senses by graph clustering algorithms.
[59] proposed an entropy-based metric to capture the level of ambiguity of a given tag.
[8] applied hierarchical agglomerative clustering of co-occuring tags to identify different
senses.

As a last class of approaches, methods like the one proposed by [45] require the user
to define the intended meaning during the tagging process by choosing among a set of
possible senses.

4.5. Other Tasks

Besides the above-mentioned major tasks, some other approaches of exploiting folkson-
omy semantics are thinkable and can be found in the literature. Instead of constructing
an ontology from scratch, ontology maintenance and refinement are concerned with the
insertion, update and removal of concepts in order to keep the captured knowledge up to
date. Though folksonomies could possibly be useful to this end, existing approaches are
still scarcely found; [24] discusses some ideas. The same holds for ontology population,

8http://www.dbpedia.org

Benz and Hotho / Emergent Semantics from Social Tagging 185

which is focussed on finding instances of given concepts. [11] describes the SOBOLEO
system for semantic annotation, which is intended to enhance tagging and foster ontol-
ogy evolution. Another applications is to employ folksonomies for disambiguating web
search queries [57].

5. Conclusions & Future directions

The main focus of this chapter was to give a detailed overview of the development and
the state of the art in capturing emergent semantics from social tagging systems. Special
properties of social tagging data compared to “traditional” input of ontology learning
algorithms were discussed, along with a review of works analyzing emergent seman-
tics and its influencing factors within these systems. In the sequel, relevant approaches
on making these implicit semantic structures explicit were discussed, structured mainly
along the different learning tasks defined in a small comparison framework.

In summary, there is solid evidence for emergent semantics, and existing as well as
novel methods have been successfully adapted for knowledge extraction from tagging
data. When a sufficient amount of tagging data for a given domain is available, it is very
worth to be considered for the process of ontology engineering. Despite these promising
results, folksonomy-based approaches alone can not be seen as the silver bullet of knowl-
edge acquisition: Especially in the context of learning different kinds of relations (e.g.
meronymy or even typed relations), current approaches still need to be further developed
to reach the performance of other approaches based on e.g. the rich syntactic structure
of natural language texts. Ultimately, a promising research direction is to analyze which
data (coming from different social and traditional sources) is most suitable as an input to
different kinds of knowledge acquisition tasks and applications.

References

[1] Rabeeh Abbasi and Steffen Staab. RichVSM: enRiched Vector Space Models for Folksonomies. In
HyperText’09: Proc. of 20th ACM Conf. on Hypertext and Hypermedia, 2009.

[2] Sofia Angeletou. Semantic enrichment of folksonomy tagspaces. In Int’l Semantic Web Conference,
volume 5318 of LNCS, pages 889–894. Springer, 2008.

[3] Anupriya Ankolekar, Markus Krötzsch, Thanh Tran, and Denny Vrandecic. The two cultures: mashing
up web 2.0 and the semantic web. In WWW ’07: Proc. of the 16th Int’l Conf. on World Wide Web, pages
825–834, New York, NY, USA, 2007.

[4] Grigory Begelman, Philipp Keller, and Frank Smadja. Automated tag clustering: Improving search and
exploration in the tag space. In Proc. of the Collaborative Web Tagging Workshop at the WWW 2006,
Edinburgh, Scotland, May 2006.

[5] Dominik Benz, Marko Grobelnik, Andreas Hotho, Robert Jäschke, Dunja Mladenic, Vito D. P. Servedio,
Sergej Sizov, and Martin Szomszor. Analyzing tag semantics across collaborative tagging systems. In
Proc. of the Dagstuhl Seminar on Social Web Communities, number 08391, 2008.

[6] Dominik Benz and Andreas Hotho. Position paper: Ontology learning from folksonomies. In Work-
shop Proc. of Lernen - Wissensentdeckung - Adaptivität (LWA 2007), pages 109–112. Martin-Luther-
Universität Halle-Wittenberg, sep 2007.

[7] Dominik Benz, Andreas Hotho, Robert Jäschke, Beate Krause, Folke Mitzlaff, Christoph Schmitz, and
Gerd Stumme. The social bookmark and publication management system bibsonomy. The VLDB Jour-
nal, 19(6):849–875, December 2010.

[8] Dominik Benz, Andreas Hotho, and Gerd Stumme. Semantics made by you and me: Self-emerging
ontologies can capture the diversity of shared knowledge. In Proc. of the 2nd Web Science Conference
(WebSci10), Raleigh, NC, USA, 2010.

186 Benz and Hotho / Emergent Semantics from Social Tagging

[9] Dominik Benz, Christian Körner, Andreas Hotho, Gerd Stumme, and Markus Strohmaier. One tag to
bind them all : Measuring term abstractness in social metadata. In Proc. of the 8th Extended Semantic
Web Conference (ESWC 2011), Heraklion, Crete, May 2011.

[10] Chris Biemann. Ontology learning from text: A survey of methods. LDV Forum, 20(2):75–93, 2005.
[11] Simone Braun, Andreas Schmidt, and Valentin Zacharias. Soboleo: vom kollaborativen tagging zur

leichtgewichtigen ontologie. In Mensch & Computer - 7. Fachübergreifende Konferenz - M&C 2007,
pages 209–218, München, 2007.

[12] Christopher H. Brooks and Nancy Montanez. Improved annotation of the blogosphere via autotagging
and hierarchical clustering. In WWW ’06: Proc. of the 15th Int’l Conf. on World Wide Web, pages
625–632, New York, NY, USA, 2006. ACM Press.

[13] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based measures of lexical semantic relat-
edness. Computational Linguists, 32(1):13–47, 2006.

[14] Ivan Cantador, Martin Szomszor, Harith Alani, Miriam Fernandez, and Pablo Castells. Enriching onto-
logical user profiles with tagging history for multi-domain recommendations. In 1st Int’l Workshop on
Collective Semantics: Collective Intelligence & the Semantic Web (CISWeb 2008), June 2008.

[15] Ciro Cattuto. Semiotic dynamics in online social communities. The European Physical Journal C -
Particles and Fields, 46:33–37, August 2006.

[16] Ciro Cattuto, Dominik Benz, Andreas Hotho, and Gerd Stumme. Semantic grounding of tag relatedness
in social bookmarking systems. In The Semantic Web – ISWC 2008, Proc.Intl. Semantic Web Conference
2008, volume 5318 of LNAI, pages 615–631, Heidelberg, 2008. Springer.

[17] Ciro Cattuto, Christoph Schmitz, Andrea Baldassarri, Vito D. P. Servedio, Vittorio Loreto, Andreas
Hotho, Miranda Grahl, and Gerd Stumme. Network properties of folksonomies. AI Communications,
20(4):245–262, December 2007.

[18] Philipp Cimiano. Ontology Learning and Population from Text: Algorithms, Evaluation and Applica-
tions. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[19] Klaas Dellschaft and Steffen Staab. On how to perform a gold standard based evaluation of ontology
learning. In Proc. of ISWC-2006 Int’l Semantic Web Conference, Athens, GA, USA, November 2006.
Springer, LNCS.

[20] Iyad Abu Doush and Enrico Pontelli. Integrating semantic web and folksonomies to improve e-learning
accessibility. In Computers Helping People with Special Needs, volume 6179 of LNCS, pages 376–383.
Springer Berlin / Heidelberg, 2010.

[21] Takeharu Eda, Masatoshi Yoshikawa, Toshio Uchiyama, and Tadasu Uchiyama. The effectiveness of
latent semantic analysis for building up a bottom-up taxonomy from folksonomy tags. World Wide Web,
12(4):421–440, 2009.

[22] Andres Garcia, Martin Szomszor, Harith Alani, and Oscar Corcho. Preliminary results in tag disam-
biguation using dbpedia. In Proc. of the First Int’l Workshop on Collective Knowledge Capturing and
Representation, September 2009.

[23] Andres Garcia-Silva, Oscar Corcho, Harith Alani, and Asuncion Gomez-Perez. Review of the state of
the art: Discovering and associating semantics to tags in folksonomies. Knowledge Engineering Review,
26(4), December 2011.

[24] Domenico Gendarmi and Filippo Lanubile. Community-driven ontology evolution based on folk-
sonomies. In LNCS: On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops, pages
181–188. Springer, 2006.

[25] Scott Golder and Bernardo A. Huberman. The structure of collaborative tagging systems. Journal of
Information Sciences, 32(2):198–208, April 2006.

[26] Paul Heymann and Hector Garcia-Molina. Collaborative creation of communal hierarchical taxonomies
in social tagging systems. Technical report, Computer Science Department, Standford University, April
2006.

[27] Andreas Hotho, Dominik Benz, Robert Jäschke, and Beate Krause, editors. ECML PKDD Discovery
Challenge 2008 (RSDC’08). Workshop at 18th Europ. Conf. on Machine Learning (ECML’08) / 11th
Europ. Conf. on Principles and Practice of Knowledge Discovery in Databases (PKDD’08), 2008.

[28] Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Emergent semantics in bib-
sonomy. In Informatik 2006 – Informatik für Menschen. Band 2, volume P-94 of Lecture Notes in
Informatics, Bonn, October 2006.

[29] Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Information retrieval in folk-
sonomies: Search and ranking. In The Semantic Web: Research and Applications, volume 4011 of LNCS,

Benz and Hotho / Emergent Semantics from Social Tagging 187

pages 411–426, Heidelberg, June 2006. Springer.
[30] Jason Jung. Matching multilingual tags based on community of lingual practice from multiple folk-

sonomy: A preliminary result. In Trends in Applied Intelligent Systems, volume 6097 of LNCS, pages
39–46. Springer, Berlin / Heidelberg, 2010.

[31] Robert Jäschke, Andreas Hotho, Christoph Schmitz, Bernhard Ganter, and Gerd Stumme. Discovering
shared conceptualizations in folksonomies. Web Semantics: Science, Services and Agents on the World
Wide Web, 6(1):38–53, feb 2008.

[32] Lyndon Kennedy, Mor Naaman, Shane Ahern, Rahul Nair, and Tye Rattenbury. How flickr helps us make
sense of the world: context and content in community-contributed media collections. In MULTIMEDIA
’07: Proc. of the 15th Int’l Conf. on Multimedia, pages 631–640, New York, NY, USA, 2007. ACM.

[33] Beate Krause, Christoph Schmitz, Andreas Hotho, and Gerd Stumme. The anti-social tagger - detecting
spam in social bookmarking systems. In Proc. of the Fourth Int’l Workshop on Adversarial Information
Retrieval on the Web, 2008.

[34] Christian Körner, Dominik Benz, Markus Strohmaier, Andreas Hotho, and Gerd Stumme. Stop thinking,
start tagging - tag semantics emerge from collaborative verbosity. In Proc. of the 19th Int’l World Wide
Web Conference (WWW 2010), Raleigh, NC, USA, apr 2010. ACM.

[35] Kangpyo Lee, Hyunwoo Kim, Hyopil Shin, and Hyoung-Joo Kim. Tag sense disambiguation for clari-
fying the vocabulary of social tags. In CSE, pages 729–734. IEEE Computer Society, 2009.

[36] Freddy Limpens, Fabien Gandon, and Michel Buffa. Bridging ontologies and folksonomies to leverage
knowledge sharing on the social web: A brief survey. Automated Software Engineering - Workshops,
2008. ASE Workshops 2008. 23rd IEEE/ACM Int’l Conference on, pages 13–18, Sept. 2008.

[37] Mohamed Zied Maala, Alexandre Delteil, and Ahmed Azough. A conversion process from Flickr tags
to RDF descriptions. IADIS Int’l Journal on WWW/Internet, 6(1), 2008.

[38] C. Manning and H. Schütze. Foundations of statistical natural language processing. MIT Press, Cam-
bridge, MA, 1999.

[39] Leandro Balby Marinho, Krisztian Buza, and Lars Schmidt-Thieme. Folksonomy-based collabulary
learning. In Int’l Semantic Web Conference, volume 5318 of LNCS, pages 261–276. Springer, 2008.

[40] Benjamin Markines, Ciro Cattuto, Filippo Menczer, Dominik Benz, Andreas Hotho, and Gerd Stumme.
Evaluating similarity measures for emergent semantics of social tagging. In 18th Int’l World Wide Web
Conference, pages 641–641, April 2009.

[41] Adam Mathes. Folksonomies - cooperative classification and communication through shared metadata,
December 2004.

[42] Pasquale De Meo, Giovanni Quattrone, and Domenico Ursino. Exploitation of semantic relationships
and hierarchical data structures to support a user in his annotation and browsing activities in folk-
sonomies. Inf. Syst., 34(6):511–535, 2009.

[43] Peter Mika. Ontologies are us: A unified model of social networks and semantics. In The Semantic Web
- ISWC 2005, Proc. of the 4th Int’l Semantic Web Conference, ISWC 2005, Galway, Ireland, November
6-10, volume 3729 of LNCS, pages 522–536. Springer, 2005.

[44] Borys Omelayenko. Learning of ontologies for the web: the analysis of existent approaches. In Proc.
of the Int’l Workshop on Web Dynamics, held in conj. with the 8th Int’l Conference on Database Theory
(ICDT’01), London, UK, 2001.

[45] A. Passant and P. Laublet. Meaning of a tag: A collaborative approach to bridge the gap between tagging
and linked data. Proc. of the WWW 2008 Workshop Linked Data on the Web (LDOW2008), Beijing,
China, Apr, 2008.

[46] Anon Plangprasopchok and Kristina Lerman. Constructing folksonomies from user-specified relations
on flickr. In WWW, pages 781–790. ACM, 2009.

[47] Joni Radelaar, Aart-Jan Boor, Damir Vandic, Jan-Willem van Dam, Frederik Hogenboom, and Flavius
Frasincar. Improving the exploration of tag spaces using automated tag clustering. In Web Engineering,
volume 6757 of LNCS, pages 274–288. Springer Berlin / Heidelberg, 2011.

[48] Patrick Schmitz. Inducing ontology from flickr tags. In Proc. of the Workshop on Collaborative Tagging
at WWW2006, Edinburgh, Scotland, May 2006.

[49] M. Shamsfard and A. Abdollahzadeh Barforoush. The state of the art in ontology learning: a framework
for comparison. The Knowledge Engineering Review, 18(04):293–316, 2003.

[50] Clay Shirky. Ontology is overrated: Categories, links and tags, May 2005.
[51] Lucia Specia and Enrico Motta. Integrating folksonomies with the semantic web. In Proc. of the 4th

European conference on The Semantic Web: Research and Applications, volume 4519/2007 of LNCS,

188 Benz and Hotho / Emergent Semantics from Social Tagging

pages 624–639. Springer Berlin / Heidelberg, 2007.
[52] Marta Tatu and Dan I. Moldovan. Inducing ontologies from folksonomies using natural language un-

derstanding. In LREC. European Language Resources Association, 2010.
[53] Maurizio Tesconi, Francesco Ronzano, Andrea Marchetti, and Salvatore Minutoli. Semantify

del.icio.us: Automatically turn your tags into senses. In Proc. of the Workshop Social Data on the Web
(SDoW2008), 2008.

[54] Robert Wetzker, Carsten Zimmermann, Christian Bauckhage, and Sahin Albayrak. I tag, you tag: trans-
lating tags for advanced user models. In WSDM, pages 71–80. ACM, 2010.

[55] Xian Wu, Lei Zhang, and Yong Yu. Exploring social annotations for the semantic web. In WWW ’06:
Proc. of the 15th Int’l Conf. on World Wide Web, pages 417–426, New York, NY, USA, 2006. ACM
Press.

[56] Mu Xia, Yun Huang, Wenjing Duan, and Andrew B. Whinston. Ballot box communication in online
communities. Commun. ACM, 52(9):138–142, 2009.

[57] Ching Man Au Yeung, Nicholas Gibbins, and Nigel Shadbolt. Web search disambiguation by collabo-
rative tagging. In Proc. of the Workshop on Exploiting Semantic Annotations in Information Retrieval
(ESAIR 2008), co-located with ECIR 2008, Glasgow, United Kingdom, 31 March, 2008, pages 48–61,
2008.

[58] Ching Man Au Yeung, Nicholas Gibbins, and Nigel Shadbolt. Contextualising tags in collaborative
tagging systems. In HT ’09: Proc. of the 20th ACM Conf. on Hypertext and hypermedia, pages 251–260,
New York, NY, USA, 2009. ACM.

[59] Lei Zhang, Xian Wu, and Yong Yu. Emergent semantics from folksonomies: A quantitative study.
Journal on Data Semantics VI, 2006.

[60] Mianwei Zhou, Shenghua Bao, Xian Wu, and Yong Yu. An unsupervised model for exploring hierar-
chical semantics from social annotations. In Proc. of the 6th international The semantic web and 2nd
Asian conference on Asian semantic web conference, pages 680–693, 2008.

[61] M. Tame Özsu and Lin Liu. Encyclopedia of database systems, 2009.

Semantic Enrichment of Places: From
Public Places Descriptions to Linked Data

Ana Oliveira ALVES a,b and Francisco Câmara PEREIRA a,
a CISUC, Centre for Informatics and Systems of University of Coimbra, Portugal

b ISEC, Coimbra Institute of Engineering, Portugal

Abstract. We present a methodology for extracting Lightweight Ontologies from
textual descriptions about Public Places available on the Web. In this context, a
place is a “Point of Interest” (POI), composed generally of a latitude/longitude
pair and a name. In our approach, we enrich this information using the KUSCO
system, which builds a Semantic Index for a given POI through Natural Language
Processing techniques and Statistical computing over collected information on the
Web. This process is called “Semantic Enrichment of POIs”. Semantic Indexes are
then contextualized and mapped to the Linked Web Data [1]. This mapping is the
focus of this chapter. Thus, the POI can be represented not by a bag of words but
instead by an interlinked cloud of concepts that enable us to infer more knowledge
about a place.

Keywords. Semantics of Place, Lightweight Ontologies, Information Extraction

1. Introduction

From the human perspective, places are often associated with meaning, and different
people relate to places in different ways. The meaning of place is derived from social
conventions: its private or public nature, possibilities for communication, and many other
factors. By definition, a POI is a place with meaning to someone, and the perception of
this meaning is the main objective of our research.

It is noticeable that a place can be described or referenced according to a range of
perspectives, depending on what is intended to be communicated (e.g. its function or its
physical properties or its content or its relationship with the subject). We use different
online resources from where we extract information related to POIs: the Yahoo!Local
POI directory, Wikipedia, Boston Calendar and the open World Wide Web (using Yahoo
Search API). From the point of view of each resource, a different perspective on each
place can be found. In Yahoo!Local, some places have rich descriptions and their official
website is indicated; in Wikipedia, places are described with historical and geographical
viewpoints; in the Boston Calendar, the dynamic life of places becomes apparent through
the flow of events that happen in the city; using regular web search, the possibilities
are immense, as is the resultant ambiguity, but often places are described thoroughly in
their specific home pages. Our system, KUSCO, applies NLP tools (cf. Maynard and
Bontcheva [2] in this volume), such as POS tagging, Noun Phrase Chunking and Named
Entity Recognition, to extract relevant terms from these textual descriptions about places.

190 Alves and Pereira / Semantic Enrichment of Places

Some filtering heuristics are applied such as stop-list and geographic word removal, and
the relevance of each term is computed by TF-IDF. After selecting N top relevant terms,
we can see each POI as a bag of words representing its main attributes, products and
services.

Nowadays we have the Linked Open Data (LOD) project [1] that connects different
Ontologies and provides Web APIs to consult interlinked data. This project includes
WordNet [3], Yago [4] and DBpedia [5] covering multi-domain knowledge that is used
in our system to contextualize terms related to public places. These places are classified
in SUMO [6], a Upper Ontology also present in LOD. Thus, the information extracted
is completely interlinked in the cloud from the bottom (concepts) to the bottom (public
places).

This chapter is organized in the following manner: the second section introduces the
reader to the main subjects present in this work and to the related state of the art, in order
that the reader may become familiar with the concepts and algorithms used; the third
section presents our model of Semantic Enrichment of Place materialized in a imple-
mented system named KUSCO; the fourth section illustrates the KUSCO performance
through examples and experimental evaluation; and finally the last section summarizes
the conclusions and points the next steps in this research.

2. Background

2.1. Semantics of Place

As argued in [7], absolute position such as the pair latitude/longitude is a precise repre-
sentation of place but with no meaning associated. Beyond position, the name and labels
associated to location are also of great importance in acquisition of places[8]. While this
is true to personal places, we think this is also true to public places. According to [9],
place consists of three components: physical setting, thus the locale of a place, activities
performed at a place and the meaning of a place to the public and the individual. In an
urban view of a city, people generally create POIs referring to buildings than to other
categories of places like parts inside buildings, regions, junctions, and others[10].

The possibility to automatically associate labels has been investigated in the liter-
ature. These labels are generally limited to generic and personal ones like work, home,
friends, etc. However, our approach is not centered on the user. Instead, it focuses on the
place itself and this representation should include public aspects and the functionality of
places, since the relation between a specific individual and the place itself is not of great
importance. We think that a richer representation of a public Place with more meaning-
ful commonsense concepts associated will complement works such as those previously
described.

In [11], the authors propose a semi-automatic process of tag assignment, which in-
tegrates knowledge from Semantic Web ontologies and the collection of Web2.0 tags.
This approach should be the, theoretically, correct one: it shares the formal soundness of
Ontologies with the informal perspective of social networks. However it is a bit hard to
implement: for each new POI/category the main points have to be chosen manually. The
dynamics of this kind of information, particularly when depending on Web 2.0 social
networks, would demand enormous resources to keep the information up to date, and

Alves and Pereira / Semantic Enrichment of Places 191

the compliance with semantic standards already seems unlikely to be widely accepted by
individual users.

Working in a different direction, Rattenbury et al. [12] identify places and events
from tags that are assigned to photos on Flickr. They exploit the regularities of tags
which regard to time and space at several levels, so when “bursts” (sudden high quantities
of a given tag in space or time) are found, they become an indicator of an event of
meaningful place. Accordingly, the reverse process is possible, the search for the tag
clouds that correlate with that specific time and space. They do not, however, make use
of any enrichment from external sources, which could add more objective information,
and their approach is limited to the specific scenarios of Web 2.0 platforms that carry
significant geographical reference information.

Other attempts have also been made towards analyzing Flickr tags [13,14] by apply-
ing ad-hoc approaches to determine “important” tags within a given region of time [13]
or space [14] based on inter-tag frequencies, or visualizing them over areas of the World
[15]. However, no determination of the properties or semantics of specific tags has been
provided [12].

In the Web-a-Where project, Amitay et al. [16] associate web pages to geographi-
cal locations to which they are related, also identifying the main “geographical focus”.
The “tag enrichment” process thus consists on finding words (normally Named Entities)
that show potential for geo-referencing, and then applying a disambiguation taxonomy
(e.g. “MA” with “Massachusetts” or “Haifa” with “Haifa/Israel/Asia”). The results are
very convincing, but the authors do not explore the other idea beyond using explicit geo-
graphical references. An extension could be to detect and associate patterns such as those
referred above in [12] without the need for explicit location referencing.

Our work focuses on the semantic aspect of location representation. Furthermore,
we also take advantage of information available on the Web about public places. With
the rapid growth of the World Wide Web, a continuously increasing number of com-
mercial and non-commercial entities are acquiring a presence online, whether through
the deployment of proper web sites or by referral from related institutions. This presents
an opportunity for identifying the information which describes how different people and
communities relate to places, and thereby enrich the representation of POIs. Nowadays,
this information found on the Web is rarely structured or tagged with semantic meaning.
Indeed, it is widely known that the majority of online information contains unrestricted
user-written text. Hence, we become dependent primarily on Information Extraction (IE)
techniques (cf. Suchanek [17] in this volume) for collecting and composing information
from textual descriptions.

2.2. Location-based Web Search

Location-based web search (or Local Search) is one of the most popular tasks expected
from search engines. A location-based query consists of a topic and a reference location.
Unlike general web search, in location-based search, a search engine is expected to find
and rank documents which are not only related to the query topic but also geographically
related to the location to which the query is associated. There are several issues concern-
ing developing effective geographic search engines and, until now no global location-
based search engine has been reported to achieve them [18]. Amongst the most notice-
able difficulties are location ambiguity, lack of geographic information on web pages,

192 Alves and Pereira / Semantic Enrichment of Places

language-based and country-dependent variation in addressing styles, and multiple loca-
tions related to a single web resource.

Search engine companies have started to develop and offer location-based services.
However, they are still geographically limited, mostly to the United States, such as Ya-
hoo!Local, Google Maps and MSN Live Local, and have not become as successful and
popular as general search engines. Also the results generally presented are related to
their business directories and not to Web documents. Despite this, a lot of work has been
done in improving the capabilities of location-based search engines [19,16], but this is
beyond of the scope of this chapter. Instead, we make use of generally available search
engines and formulate queries using the geographical reference to retrieve information
about places. The work in this context is more focused on contributing to the indexing
capabilities of such engines in terms of local search (finding an inspiration in [20]) than
on becoming any alternative form of search.

2.3. Semantic Web

Although a decade has passed since its definition by Tim Berners-Lee [21], the Semantic
Web is a visionary architecture of the Web where all on-line information can be processed
by machines. This can only happen if data is structured probably as in Ontologies, by
axioms defining entities, their properties and the relations between them.

Since it is an ambitious task to represent all knowledge about the World, even for
a restricted subset such as Places, the focus of this research is not to create a complete
general Ontology about places from scratch or even Domain Ontologies about different
types of places. Since one of the first motivations to build ontologies is for knowledge
sharing, here the intention is to reuse structured commonsense knowledge and instantiate
this knowledge, mainly concepts, related to Public Places. If we want to use ontology
technology to increase interoperability between multiple representations or increase ac-
cess to existing data, we need to build ontologies that are linked to the existing knowledge
organization systems (KOS) [22].

Technically, Linked Data refers to data published on the Web in such a way that it is
machine-readable, its meaning is explicitly defined, it is linked to other external data sets,
and it can in turn be linked to and from external data sets [1]. The concepts inferred from
textual descriptions of places are interlinked to the following commonsense ontologies
present in the Open Linked Data cloud: WordNet, Wikipedia, YAGO and DBpedia. The
details of this mapping are presented in sections 4 and 5. Two other resources interlinked
in the Open Linked Data project are used in a new perspective: NAICS and SUMO. The
first is a business standard coding system and the latter is a generic upper ontology. Both
resources are detailed in the following subsections in order to introduce the reader to the
mapping process.

2.3.1. North American Industry Classification System (NAICS)

In industry, classification systems serve to communicate important facts about a com-
pany. These codes are generally controlled by a governmental, a professional, trade or
by an international standards organization. They often serve as shorthand for users inter-
ested in material in a particular area

The North American Industry Classification System(NAICS)[23] is an example of
an official POI classification system which is the standard system used by Federal statis-

Alves and Pereira / Semantic Enrichment of Places 193

tical agencies in classifying business establishments for the purpose of collecting, ana-
lyzing, and publishing statistical data related to the U.S. business economy. The NAICS
was developed under the auspices of the Office of Management and Budget (OMB), and
was adopted in 1997 to replace the old Standard Industrial Classification (SIC) system.

The NAICS is a two through six-digit hierarchical classification code system, offer-
ing five levels of detail. Each digit in the code is part of a series of progressively narrower
categories, and the more digits in the code, the greater the classification detail. The first
two digits designate the economic sector, the third digit designates the sub-sector, the
fourth digit designates the industry group, the fifth digit designates the NAICS industry,
and the sixth digit designates the national industry. A complete and valid NAICS code
contains six digits. Figure 1 shows part of the NAICS hierarchy regarding the “Museum"
category of Public Place.

Figure 1. Example of the NAICS hierarchy

2.3.2. SUMO

The Suggested Upper Merged Ontology (SUMO) is an upper ontology developed by
IEEE’s Standard Upper Ontology (SUO) Working Group as an open source initiative
with the purpose of creating a public standard, accessible through the Web [24].

The ontology is being progressively created through the integration of public con-
tent. For instance, the YAGO-SUMO integration incorporates millions of entities from
YAGO into SUMO. With the combined force of the two ontologies, an enormous, un-
precedented corpus of formalized world knowledge is available for automated process-
ing and reasoning, providing information about millions of entities. From these entities,
we are concerned with public geo-referenced entities such as points-of-interest, organi-
zations, and companies[25]. Compared to the original YAGO, more advanced reasoning
is possible due to the axiomatic knowledge delivered by SUMO. For example, a reasoner
can conclude that a soup dish holds soup while the soup is being eaten, or that a service
elevator is a transportation device consisting of a car that moves up and down in a ver-
tical shaft for carrying freight so that objects can move from one floor to another in a
building. Another instance of such interlinked data is the integration of NAICS-SUMO
achieved by SUMO authors [26] 1. Despite the fact that the NAICS taxonomy is barely
mapped to SUMO, the main economy sectors are uniquely indicated. This is illustrated
by comparing the excerpt from the NAICS hierarchy about the “Museum” category in
figure 1 with the same information inferred as RDF triples in SUMO, shown in figure 2.

1Available through the SUMO ontology portal: http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/KBs/naics.kif

194 Alves and Pereira / Semantic Enrichment of Places

...
<rdfs:Class rdf:ID="EducationalOrganization">
<rdfs:subClassOf rdf:resource="#Organization"/>
</rdfs:Class>
<rdfs:Class rdf:ID="Museum">
<rdfs:subClassOf rdf:resource="#EducationalOrganization"/>
</rdfs:Class>
...

Figure 2. Excerpt of the root NAICS hierarchy mapped to SUMO.

3. The KUSCO System

A system that is able to extract relevant semantics from public places can be useful for
any context-aware system that behaves according to position. The level of information
considered in this work adds another layer to other sensors (GPS, accelerometer, com-
pass, communications, etc.), eventually pushing forward the potential for intelligent be-
havior. This section presents an approach to such a system and its implementation, result-
ing in an architecture called KUSCO: Knowledge Unsupervised Search for instantiating
Concepts on lightweight Ontologies. The figure 3 shows the overall KUSCO’s architec-
ture. Each module in this architecture is briefly presented next. The firs two modules
were introduced in previously published work [27,28,29], while the latter two modules,
the focus of this chapter, will be detailed in the next section. The expected processing
and data flow in this system is as follows:

• A POI Source is specified as input for the system. In the present architecture,
the structure of this source (e.g. a collection of documents, a directory Web site,
a POI-finding API) is extracted in order to automatically populate a database of
POIs. This intensive extraction may be accomplished by simply invoking API
(when available) or by Web scraping [27]. KUSCO uses regular expressions to
extract POIs from different POI websites and in different formats and integrates
them in a conceptual schema that accommodates different levels of informa-
tion. This choice was made instead of starting from POIs that are already dis-
ambiguated in LOD such as those from DBpedia. Apart from the well defined
structure of information that we could use from DBpedia for some of the most
important public places, we think that using an external POI source is a more
intensive approach in order to get exhaustively the most of POIs from a given city

Alves and Pereira / Semantic Enrichment of Places 195

Figure 3. The KUSCO system architecture.

of study (including also less popular public places). As multiple POI sources are
explored, it is important to have a way to identify similar POIs, so that we don’t
end up with redundant information and also to collect as much information as
possible about a given place. This requires a way to identify similarities based,
not only in proximity, but also in name likeness. Our approach makes use of the
JaroWinklerTF-IDF class from the SecondString project [30] to identify close
names, ignoring misspelling errors and some abbreviations.

• Information Retrieval on a Perspective consists of finding documents about each
POI from a given background collection. The World Wide Web and Wikipedia
were explored to retrieve such information applying three overall different ap-
proaches [28]. The system explores the Web in a focused search. The Wikipedia
knowledge source is used through two distinct ways to locate generic and specific
information about places. For these three combinations of selecting the subset of
documents in the source collection, we name each one as a different Perspective
of the semantic enrichment:

∗ The About Perspective crawls the web using a search engine restricting the
universe of search to the Official Website of a POI when it is available from
POI sources. KUSCO tries to find in the POI Official Website the informa-
tion which is focused on the purpose, services offered or mission, or in other
words, what the POI itself is. After some observations, we concluded that all
the information KUSCO needs is quite often found on the “About Web Page"
or “Info Page" which concisely presents the company/POI to visitors. With the
availability of general search engines (e.g. Google) to restrict a web search to

196 Alves and Pereira / Semantic Enrichment of Places

a given Website, the approach to retrieve the About Page of a given POI basi-
cally consists of using this restricted search on the POI Official Website with
different combinations of queries around “About us”, “About this company”,
etc.

∗ The Wikipedia Perspective takes advantage of plenty of relevant information
about places which is obtainable from Wikipedia. Both by searching directly
for the actual Wikipedia page of a POI (e.g. Starbucks), and indirectly by find-
ing information related to its category (e.g. Restaurant), KUSCO currently ap-
plies two variations on searching Wikipedia:
in the Red Wiki perspective retrieves the Wikipedia page corresponding to the
identified set of categories of a POI. Since some POI sources are well struc-
tured, that is, they have a hierarchical taxonomy of disjoint categories, we be-
lieve that the automatic tagging of places, initially considering the category
they belong to, is a first step in labeling that place using encyclopedic knowl-
edge (Wikipedia). Since in most cases no API is currently available from those
local directories studied, a wrapper was created based on regular expressions,
in order to automatically extract the category taxonomy from each local di-
rectory. Through time, these taxonomies grow with new types of services and
places. In this way, by using specific wrappers to each POI provider, it is possi-
ble to run them periodically to integrate new categories in the respective stored
taxonomy. Contextualizing category names in their corresponding Wikipedia
articles is based mainly on string similarity between them. We have opted for
a top-down approach, beginning with the main categories and continuing until
the taxonomy leaves are reached. To increase the confidence in this process, we
chose to disambiguate the main categories manually at first and to make sure
that at least a more specific category would be connected to the wikipages of
its hypernym. When a POI has many categories, KUSCO obtains the articles
for each one and considers the union of all the resulting articles as the source
of analysis. Since there are many different combinations of categories, it is
possible to guarantee that each POI is subjected to its own specific flavor of
category;

in the Yellow Wiki perspective, KUSCO tries to find the Wikipedia page cor-
responding to the POI itself, when its available. While the above approach is
centered on place category, in this approach the focus is on place name. Once
more, KUSCO uses string similarity to match Place name to a Wikipage title
in order to find the Wikipedia description for a given place. At first glance, this
method is efficient in mapping compound and rare place names such as ‘Beth
Israel Deaconess Medical Center’ or ‘Institute of Real Estate Management’.
However, it can naively induce some wrong mappings for those places with
very common names (e.g. Registry - a recruitment company in Boston, Energy
Source - a battery store in New York). This problem was tackled by determin-
ing the specificity of place names, and considering only those with high Infor-
mation Content (IC) [31]. The Information Content of a concept is defined as
the negative log likelihood, −logp(c), where p(c) is the probability of encoun-
tering such concept. For example, ‘money’ has less information content than

Alves and Pereira / Semantic Enrichment of Places 197

‘nickel’ as the probability of encountering the concept of ‘money’, p(Money),
is larger than the probability of encountering the concept ‘nickel’, p(Nickel),
in a given corpus. For those names present in WordNet (e.g. Registry), the IC
is already calculated [32], whereas for those not present, it is heuristically as-
sumed that they are only considered by KUSCO if they are not a node in the
Wikipedia taxonomy, i.e. a Wikipage not representing a Wikipedia category
(as in the case of Energy Source), but only being a Wikipedia article.

• Meaning Extraction finds the bag of relevant concepts in a document retrieved
from a given source (Web or Wikipedia). This process includes Noun Phrase
chunking and Named Entity Recognition (NER) (cf. Maynard and Bontcheva [2]
in this volume) using available Natural Language Processing (NLP) tools [33,34].
On completion of these subtasks, for each textual description, KUSCO ranks
their within concepts with TF-IDF [35] (Term Frequency × Inverse Document
Frequency) value in order to extract the most relevant terms that will represent a
given place [29]. Instead of a common bag of words, this set contains terms with
meaning, since the disambiguation of each term is performed in this module (see
the next section for details).

• Place Classification performs the task of classifying a given POI within an Upper
Level Ontology, allowing the next module to specify the concepts, relations and
attributes in this new instance of the suggested ontology.

• Ontology Instantiation is the final and proposed module for reusing shared and
linked knowledge in order to find and induce already known and new concepts,
relations and attributes about a given POI. At the Meaning Extraction Module,
only concepts are extracted from Web pages describing places. But here, once
the right generic class into a Upper Level Ontology has been found for a given
POI, those concepts will be used to instantiate this ontology. As the Ontology is
composed not only of concepts but also of relations, the original context where
concepts appear inside the Web page will be used to instantiate relations between
them. For instance, considering a POI semantic index which contains concepts
like: ’facility’, ’vegetarian’, ’Portuguese’, ’terrace’, and ’bar’, this POI is cor-
rectly categorized as a Restaurant by respectively matching some classes in the
corresponding ontology: Facility, VegetarianCuisine, PortugueseCousine, Out-
doorSeatingOnTerrace and WineBarCuisine. An ontology typically does not have
all possible instantiations of generic concepts in a given domain. This instanti-
ation process is possible by WordNet semantic relations, which are implicit by
contextualizing concepts from Web pages, and non-taxonomic relations that con-
nect semantically related concepts. So, although the concept ’Dim Sum’ from
a POI semantic index does not appear explicitly in the Ontology, the WordNet
semantic relation in ’Dim Sum’ as a type of ’Cousine’ is useful to capture which
classes and their types occur in a given POI. Another example comes from the
concept “private dining room facility”, although it does not appear in WordNet,
we are able to identify its connection with the ’Facility’ class by Lexico-syntactic
patterns [36] (cf. Maynard and Bontcheva [2] in this volume).

198 Alves and Pereira / Semantic Enrichment of Places

In the next sections, the term disambiguation inside the Meaning Extraction module
and automatic Place Classification are detailed since this is the linking, at one hand, of
semantic indexes produced by KUSCO, and on the other hand, of POIs to the Linked
Data.

4. Term Disambiguation

The intermediate result of the KUSCO meaning extracting module (fig. 3) is a Semantic
Index composed mainly of concepts (words with meaning) instead of terms. Although
many approaches have been studied in Word Sense Disambiguation, none of them has
achieved a satisfactory level of accuracy. Moreover, the heuristics of taking the most
common sense of a given word shows better results that computationally intensive and
complex techniques [37]. KUSCO takes advantage of WordNet and Wikipedia in order
to map terms to linked concepts. A Semantic Index of a place in a given perspective is
generally made up of both types of elements: generic concepts (noun phrases) and enti-
ties (named entities representing places, locations and organizations). Our approach only
considers the first group to term disambiguation. This mapping is done in the following
way: simple noun phrases (one term) is often contextualized in WordNet, while the com-
pound noun phrases (two or more terms) sometimes representing instances of generic
concepts, is quite often contextualized in Wikipedia2 when there is unambiguously a
related article about each instance. This approach for contextualizing noun phrases is
formalized by algorithm 1.

WordNet is used here to map words to concepts choosing in each case the most prob-
able sense through corpus occurrence. For example, the term “library" has (at least) two
meanings in WordNet: “a room where books are kept" or “a collection of standard pro-
grams and subroutines that are stored and available for immediate use"; the first meaning
is the most frequently used if we consider statistics from a corpus. The corpus used is
the SemCor corpus which was especially developed for WordNet and which is manually
annotated with synset occurrences [32].

WordNet is not intended to be a complete resource. We can still check if a given
noun phrase corresponds to an instance in WordNet, but even for compound nouns the
lack of information is broadly recognized. To solve this problem, we use Wikipedia. This
is, in our view, the best open common-sense resource suited for compound noun disam-
biguation, particularly for named entities. To disambiguate proper or compound nouns
not found in WordNet, the same approach is used here. The most common use given
to a word is queried in Wikipedia. If it returns a disambiguation page, then the system
simply continues with the term decontextualized. This approach is highly dependent on
the availability of article entries related with a given noun phrase and the discernment of
authors on indicating the right place of a given article. For instance, the term wheelchair
access being only existent in Wikipedia, is redirected to the article wheelchair instead of
the article more lexically and semantically closer, wheelchair accessible. Another con-
crete example of ambiguity, due to the redirection of related Wikipedia titles but not ex-
actly meaning the same concept, is the the term drug stores. Despite the name is correctly
found on Wikipedia it is redirected to pharmacy and this article is more related to the

2Besides the fact that WordNet is also explored, but as discussed later, this resource is not so rich as
Wikipedia in terms of instances and compound terms

Alves and Pereira / Semantic Enrichment of Places 199

profession and not the place where medicaments are dispensed, being the article titled
community pharmacy the more precise choice.

Algorithm 1 Noun Phrase Disambiguation: map a noun phrase (simple or compound) to
a lexical resource entry
Require: np : noun phrase
Ensure: map : mapped entry in lexical resource with a term count as-

sociated ∨ SemCor : Anotated WordNet Corpus
WNmap⇐ WordNetDisambiguation(np, SemCor)
WKmap⇐ WikipediaDisambiguation(np)
if (NumberOfWords(WKmap) > NumberOfWords(WNmap)) then

map⇐WKmap
5: else

map⇐WNmap
end if
return map

function WordNetDisambiguation(np, SemCor): WNmap
10: candidateSynsets⇐ FindSynsetsInWordNet(np)

selectedSynset⇐MostFrequentNoInstanceSynset(candidateSynsets, SemCor)
{each mapping contains also the hit count, every count is initialized with 1}
WNmap⇐ (selectedSynset, 1)
return WNmap
end function

15: function WikipediaDisambiguation(np): WKmap
candidatePage⇐ SearchWikipediaAPI(np)
if (IsDisambiguationPage(candidatePage) is False) then

selectedPage⇐ candidatePage
WKmap⇐ (selectedPage, 1)

20: end if
return WKmap
end function

5. Automatic Place Classification

Different approaches were implemented and tested to classify POIs into a common tax-
onomy, which would allow, for instance, to connect directly a place to the SUMO Upper
Level Ontology. Given a source of POIs generally there is a proper taxonomy of POI cat-
egories, each one classifying them by related terms (e.g. Entertainment Venues or Live
Theaters), it is necessary to elect a common classification to use. The aim is to be able to
classify POIs from different sources to a common and more widespread taxonomy like
NAICS. Doing so is essential in order to perform a proper analysis of the extracted POIs.
If the POIs are not mapped to a common taxonomy we will not be able to determine,
for instance, how many POIs of restaurants exist in a given area because one POI source
may classify them as “Restaurants” and the another as “Eating places”. The approaches
here proposed to automatically classify POIs in a given taxonomy rely mainly on cat-
egory information from POI sources which are also organized in taxonomies. Because

200 Alves and Pereira / Semantic Enrichment of Places

POI name Location Categories POI source url
Au Bon 1 State St Plz Carry Out & Take Out, http://local.yahoo.com
Pain New York, NY Bakeries, Restaurants /info-11039898-au-bon-

pain-new-york
Boston
Athenaeum

10 Beacon St,
Boston, MA

Tourist Attractions, All Enter-
tainers, Art Museums & Gal-
leries, Libraries

http://local.yahoo.com
/info-10150557-boston-
athenaeum-boston

Erbaluce 69 Church St Italian Restaurants, http://local.yahoo.com
Boston, MA Restaurants /info-46631862-erbaluce-

boston
Petco 1210 Providence

Hwy, Norwood,
MA

Pet Supplies, All Animal Ser-
vices

http://local.yahoo.com
/info-10144601-petco-
norwood

Radio
Shack

925 Lexington Ave,
New York, NY

Computer Software, Electron-
ics Retailers, Cellular Phones

http://local.yahoo.com
/info-11112320-radio-
shack-new-york

Table 1. Some example of POIs from the greater metropolitan area of Boston and New York considering the
Yahoo! Local API.

the same POI is sometimes assigned to more than one category in some POI sources, the
number of possible combination can be huge. As a consequence, finding mappings be-
tween the source taxonomy and the target taxonomy is not always a trivial task. Consider
the following mappings:
“Newspaper Publishers” -> “Newspaper Publishers”
“Newspapers Printing” -> “Newspaper Publishers”
“Laboratories” -> “Research & Development in Biotechnology”
Different approaches were studied: Ontology Matching and Lexical/Semantic Similar-
ity, but the most profitable was the application of Machine Learning (ML) algorithms
to automatically classify the NAICS code of a given POI [27]. More precisely, the most
successful algorithm was a K-nearest neighbor classifier, named IBk [38] (with k = 1),
which essentially finds the similar test case and assigns the same NAICS code. This algo-
rithm obtained approximately an accuracy of 85%, 76.8% and 73.1% for the automatic
classification of POIs in the two, four and six-digit NAICS code respectively.

6. Illustrative Examples

In this section, a list of some semantic indexes is presented as the retrieval of informa-
tion made previously by KUSCO for each perspective. Thus, for the same set of POIs,
different views are presented using the Web or Wikipedia as source for the semantic en-
richment process. Considering the states of Massachusetts and New York in the U.S., we
chose the Yahoo! Local API as the POI source for this examples as shown in table 1.

For each POI under consideration, different perspectives are applied and the top-
5 most relevant terms has been found by KUSCO for each of them as shown in table
2. In the About perspective, it is not always possible to find a candidate for the About
page due either to the completely nonexistence of such page in the POI website or to the
organization of the About section with other submenus making it hard to find the best one

Alves and Pereira / Semantic Enrichment of Places 201

to elect as the About page (e.g. Erbaluce’s website). In the Red Wiki perspective, when
there is no direct mapping in Wikipedia for a given category name or when this name is
ambiguous it is used the immediately upper category mapping in the POI taxonomy. In
table 3, these categories are highlighted in bold (e.g. “All Animals Services" and “Pet
Supplies” are mapped to Wikipedia through its subsumer category “Animals & Pets").

Also, in this perspective, all terms that are already known as category names of a
given POI are filtered out in its semantic index in order to avoid duplicate information.
For instance, in the case of the POIs Au Bon Pain and Boston Athenaeum, the terms
restaurant and Library were removed from their respective semantic indexes. Further-
more, in this last POI the term Museums was maintained by KUSCO as it is a general-
ization of Art Museum and not meaning the same of one of the categories already known
from the POI Boston Athenaeum.

These extracted terms are then mapped to WordNet and Wikipedia following the
algorithm 1. Thus, they can be considered as concepts linked to the cloud, as shown
in table 3. This mapping is done selecting the most used sense of a given term in the
respective lexical resource. While in Wikipedia the only restriction is to guarantee that
a given term is not ambiguous (i.e. the obtained sense is not a disambiguation page),
for WordNet, the sense chosen has to be the most frequently used in the SemCor corpus
and it is only considered if it does not refer to an instance of something. As an example,
consider the terms kiosk, soup, table service, Pizza delivery and Tandy. The first term
is unambiguous and is found in WordNet. The second one is ambiguous, since it has
more than one meaning in WordNet, being its most used sense picked up. The third
exists in WordNet and Wikipedia, but as it is not an instance in WordNet, this meaning
is preferred over the Wikipedia definition. The fourth only exists in Wikipedia and it is
not ambiguous since its article is not a disambiguation page. Finally, the fifth term is
present in both resources, but while in WordNet it is a instance of the concept actress, in
Wikipedia it is connected to more than one article (disambiguation is needed). Thus, this
last term remains decontextualized.

Table 3.: Disambiguation of most relevant terms in each perspective. For each definition
the gloss (in WordNet) or the first sentence of the article abstract (in Wikipedia) is shown.

POI WordNet/Wikipedia Mapping for Most Relevant Terms

A
u

B
on

Pa
in

Soup (WN) liquid food especially of meat or fish or vegetable stock...
breads (WN) food made from dough of flour or meal and usually raised with yeast or baking
powder and then baked
plate (WN) a sheet of metal or wood or glass or plastic
kiosk (WN) small area set off by walls for special use
restaurant (WN) a building where people go to eat
Pizza delivery (WK) ...is a service in which a pizzeria delivers a pizza to a customer...
food (WN) any substance that can be metabolized by an animal to give energy and build tissue
fast food (WN) inexpensive food prepared and served quickly
table service (WN) tableware consisting of a complete set of articles for use at table
Good (WN) articles of commerce
locations (WN) a point or extent in space
cafes (WN) a small restaurant where drinks and snacks are sold
associate (WN) a person who joins with others in some activity or endeavor
Membership (WN) the body of members of an organization or group
gathering (WN) a group of persons together in one place

Continued on Next Page. . .

202 Alves and Pereira / Semantic Enrichment of Places

Table 3 – Continued

POI WordNet/Wikipedia Mapping for Most Relevant Terms

B
os

to
n

A
th

en
ae

um

opportunities (WN) a possibility due to a favorable combination of circumstances
dance (WN) taking a series of rhythmical steps (and movements) in time to music
Library (WN) a collection of literary documents or records kept for reference or borrowing
Museum (WN) a depository for collecting and displaying objects having scientific or historical
or artistic value
collections (WN) several things grouped together or considered as a whole
landmark building (WK) ...a geographic feature used by explorers and others to find their way
back or through an area...
galleries (WN) a porch along the outside of a building (sometimes partly enclosed)

E
rb

al
uc

e

cuisines (WN) the practice or manner of preparing food or the food so prepared
restaurateur (WN) the proprietor of a restaurant
Premises (WN) statement that is assumed to be true and from which a conclusion can be drawn
delivery service (WK) A service delivery framework (SDF) is a set of principles, standards,
policies and constraints used to guide the design, development, deployment, operation and re-
tirement of services delivered by a service provider...
table wines (WN) wine containing not more than 14% alcohol usually served with a meal
wine grape (WN) A grape is a non-climacteric fruit, specifically a berry, and from the deciduous
woody vines of the genus Vitis
sweet wines (WN) The subjective sweetness of a wine is determined by the interaction of several
factors: the amount of sugar, the relative levels of alcohol, acids, and tannins, etc.

Pe
tc

o

sheet (WN) a flat artifact that is thin relative to its length and width
Release (WN) the act of liberating someone or something
discus (WN) an athletic competition in which a disk-shaped object is thrown as far as possible
sponsorship (WN) the act of sponsoring (either officially or financially)
companion (WN) a friend who is frequently in the company of another
animals (WN) a living organism characterized by voluntary movement
pets (WN) a domesticated animal kept for companionship or amusement
dog (WN) a member of the genus Canis (probably descended from the common wolf) that has
been domesticated by man since prehistoric times
group (WN) any number of entities (members) considered as a unit
owners (WN) a person who owns something
pet foods (WN) food prepared for animal pets

R
ad

io
sh

ac
k

Realist (WN) a philosopher who believes that universals are real and exist independently of
anyone thinking of them
Album (WN) a book of blank pages with pockets or envelopes; for organizing photographs or
stamp collections, etc
Catalog (WN) a complete list of things; usually arranged systematically
computer store (WN) a store that sells computers to the small businessperson or personal user
hardware (WN) (computer science) the mechanical, magnetic, electronic, and electrical compo-
nents making up a computer system
home (WN) housing that someone is living in
mobile phone (WK) ...a device that can make and receive telephone calls over a radio link whilst
moving around a wide geographic area...
data (WN) an item of factual information derived from measurement or research
Application (WN) the act of bringing something to bear; using it for a particular purpose
Sponsor (WN) someone who supports or champions something
brands (WN) a name given to a product or service
Electronics (WN) the branch of physics that deals with the emission and effects of electrons and
with the use of electronic devices
telephones (WN) electronic equipment that converts sound into electrical signals that can be
transmitted over distances and then converts received signals back into sounds
Contacts (WN) the physical coming together of two or more things

Alves and Pereira / Semantic Enrichment of Places 203

POI Perspective Information Retrieval Meaning Extraction

A
u

B
on

Pa
in

About http://www.aubonpain.com/aboutus/ Soups, breads, plate, kiosks, Louis
Kane,...

Red Wiki http://en.wikipedia.org/wiki/Carry-out restaurant, Pizza delivery,
http://en.wikipedia.org/wiki/Bakeries food, fast food,
http://en.wikipedia.org/wiki/Restaurants table service,...

Yellow
Wiki

http://en.wikipedia.org/wiki/Au_Bon_Pain Good, restaurant, locations, cafes,
Thomas John,...

B
os

to
n

A
th

en
ae

um

About http://bostonathenaeum.org/ Athen, associate, Meet-ups, Member-
ship, gathering,...

Red Wiki http://en.wikipedia.org/wiki/Tourist_attractions opportunities, dance,
http://en.wikipedia.org/wiki/Entertainers Frankish, Library,
http://en.wikipedia.org/wiki/Museums Museum,...
http://en.wikipedia.org/wiki/Libraries

Yellow
Wiki

http://en.wikipedia.org/wiki/Boston_Athenaeum Library, collections, landmark build-
ing, galleries, Edward Clarke Cabot,...

E
rb

al
uc

e

About not found

Red Wiki http://en.wikipedia.org/wiki/Italian_restaurant cuisines, restaurateur, Sein-
http://en.wikipedia.org/wiki/Restaurants feld, Premises, delivery service,...

Yellow
Wiki

http://en.wikipedia.org/wiki/Erbaluce Clarke Encyclopedia, table wines,
Caluso, wine grape, sweet wines,...

Pe
tc

o

About http://about.petco.com/ sheet, Release, discus, sponsorship,
companion,...

Red Wiki http://en.wikipedia.org/wiki/Animals animals, pets, dog, group, owners,...
Red Wiki http://en.wikipedia.org/wiki/Pets
Yellow
Wiki

http://en.wikipedia.org/wiki/Petco pet foods, Pets, Cesar Millan, San
Diego, Halo Brand,...

R
ad

io
sh

ac
k

About http://radioshack.com/ Tandy, Realist, Album, Catalog, com-
puter store,...

Red Wiki http://en.wikipedia.org/wiki/Computer_software hardware, home,
http://en.wikipedia.org/wiki/Home_electronics mobile phone, data,
http://en.wikipedia.org/wiki/Cellular_phones Application,...

Yellow
Wiki

http://en.wikipedia.org/wiki/Radio_Shack Sponsor, brands, Electronics, tele-
phones, Contacts,...

Table 2. The output of which module for the POIs given as example.

The automatic place classification of POIs employed allowed POIs to be mapped to
linked data through the mapping NAICS-SUMO upper level ontology currently available
in the Linked Open Data project. Table 4 presents the correspondent mapping to the POIs
in study.

7. Conclusions and Future Work

In this chapter, we have briefly presented an approach for the Semantic Enrichment of
Places, thereby developing a system, KUSCO, which builds a semantic index associated

204 Alves and Pereira / Semantic Enrichment of Places

POI NAICS SUMO RDF triples
722110 <rdfs:Class rdf:ID="FoodServicesAndDrinkingPlaces">

Au Bon Full- <rdfs:subClassOf rdf:resource="#AccommodationAndFoodServices"/>
Pain & Service </rdfs:Class>
Erbaluce Restaurants <rdfs:Class rdf:ID="FullServiceRestaurants">

<rdfs:subClassOf rdf:resource="#FoodServicesAndDrinkingPlaces"/>
</rdfs:Class>

519120, <rdfs:Class rdf:ID="InformationServices">
Libraries & <rdfs:subClassOf rdf:resource="#InformationServicesAndDataProcessingServices"/>

Boston Archives </rdfs:Class>
Athenaeum <rdfs:Class rdf:ID="LibrariesAndArchives">

<rdfs:subClassOf rdf:resource="#InformationServices"/>
</rdfs:Class>

453910 <rdfs:Class rdf:ID="OtherMiscellaneousStoreRetailers">
Pet & Pet <rdfs:subClassOf rdf:resource="#MiscellaneousStoreRetailers"/>

Petco Supplies </rdfs:Class>
Stores <rdfs:Class rdf:ID="PetAndPetSuppliesStores">

<rdfs:subClassOf rdf:resource="#OtherMiscellaneousStoreRetailers"/>
</rdfs:Class>

443112, <rdfs:Class rdf:ID="ApplianceTelevisionAndOtherElectronicsStores">
Radio <rdfs:subClassOf rdf:resource="#ElectronicsAndApplianceStores"/>

RadioshackTv & Other </rdfs:Class>
Electronics <rdfs:Class rdf:ID="RadioTelevisionAndOtherElectronicsStores">
Stores <rdfs:subClassOf rdf:resource="#ApplianceTelevisionAndOtherElectronicsStores"/>

</rdfs:Class>
Table 4. POI classification in NAICS-SUMO.

with a given Point of Interest. For each POI, KUSCO finds related information on the
Web and executes a sequence of Information Extraction and Natural Language Process-
ing steps to automatically extract the relevant related terms. Each term is contextualized
in lexical resources (WordNet and Wikipedia) which guide the extraction process by val-
idating common-sense terms and which are also used to infer the meaning of each term.
Once these terms are contextualized, they are called concepts. Their relevance is com-
puted through an extended version of TF-IDF, which considers the semantics of each
term. The main contribution in this work includes a clear and well defined methodology
for gathering a massive amount of POIs and analyze a considerable proportion of these,
creating semantic information about each POI from web pages.

The focus of this chapter was the contextualization of terms and the POI itself in the
Linked Open Data cloud. The first mapping was done choosing the most used sense of a
given term in knowledge resources to infer its meaning, while the latter was done using
automatic classification through an instance based machine learning algorithm.

We have applied this methodology of semantic enrichment to another type of geo-
referenced entity: social events[39]. For this type of entity new online sources, this time
for social events, were selected (specifically Zvents and Boston Calendar). These sources
were harvested in order to extract and enrich 148303 events from August 25th 2009 to
September 20th 2010 and hosted in 11197 different venues in Boston. This represented

Alves and Pereira / Semantic Enrichment of Places 205

a new perspective for us in extending our approach to a Generic Semantic Enrichment
Model[40].

As a future step, with different perspectives of a given place being available, we
think the use of this context can help the disambiguation task. This is true mainly for
generic and ambiguous concepts that are related in similar perspectives for a given place
(e.g. bank and account, each one present in different perspectives), which can benefit of
the domain in question (e.g. Finance Services) and other unambiguous concepts found
for the same place (e.g. tax, monetary fund). Another improvement is to take advantage
of the meaning inferred for each concept in order to relate each of them through seman-
tic relations from Yago, DBPedia and WordNet. Thus, it will be possible to locate the
cluster of related concepts and instantiate other concepts that would be discarded without
semantic knowledge.

References

[1] Bizer, C.: The emerging web of linked data. IEEE Intelligent Systems 24 (2009) 87–92
[2] Maynard, D., Bontcheva, K.: Natural language processing. In Lehmann, J., Völker, J., eds.: Perspectives

on Ontology Learning. Studies on the Semantic Web. AKA Heidelberg / IOS Press (2014)
[3] Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduction to wordnet: An on-line lexical

database. Int J Lexicography 3(4) (1990) 235–244
[4] Suchanek, F., Kasneci, G., Weikum, G.: YAGO - a large ontology from Wikipedia and WordNet. Else-

vier Journal of Web Semantics 6(3) (September 2008) 203–217
[5] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: Dbpedia - a

crystallization point for the web of data. Web Semantics: Science, Services and Agents on the World
Wide Web 7(3) (2009) 154 – 165 The Web of Data.

[6] Suggested Upper Merged Ontology: http://www.ontologyportal.org/ Last visited: December, 2011.
[7] Hightower, J.: From position to place. In: Proc. of LOCA. (2003) 10–12 Ubicomp.
[8] Zhou, C., Frankowski, D., Ludford, P., Shekhar, S., Terveen, L.: Discovering personally meaningful

places: An interactive clustering approach. Volume 25., New York, NY, USA, ACM (July 2007)
[9] Relph, E.C.: Place and placelessness / [by] E. Relph. Pion, London : (1976)

[10] Falko Schmid, C.K.: In-situ communication and labeling of places. In: 6th International Symposium on
LBS & TeleCartography, Springer (9 2009)

[11] Lemmens, R., Deng, D.: Web 2.0 and semantic web: Clarifying the meaning of spatial features. In:
Semantic Web meets Geopatial Applications. AGILE’08

[12] Rattenbury, T., Good, N., Naaman, M.: Towards automatic extraction of event and place semantics from
flickr tags. In: SIGIR ’07, New York, USA, ACM 103–110

[13] Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags over time.
In: WWW ’06, New York, USA, ACM 193–202

[14] Jaffe, A., Naaman, M., Tassa, T., Davis, M.: Generating summaries and visualization for large collec-
tions of geo-referenced photographs. In: MIR ’06. 89–98

[15] Ahern, S.N.M.N.R.Y.J.: World explorer: Visualizing aggregate data from unstructured text in geo-
referenced collections. International Conference on Digital Libraries, Vancouver, BC, Canada (2007)

[16] Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content. In: SIGIR ’04
[17] Suchanek, F.: Information extraction for ontology learning. In Lehmann, J., Völker, J., eds.: Perspectives

on Ontology Learning. Studies on the Semantic Web. AKA Heidelberg / IOS Press (2014)
[18] Asadi, S., Zhou, X., Yang, G.: Using local popularity of web resources for geo-ranking of search engine

results. World Wide Web 12 (2009) 149–170
[19] Ahlers, D., Boll, S.: Location-based web search. In Scharl, A., Tochtermann, K., eds.: The Geospatial

Web. Springer, London (2007)
[20] Tanasescu, V., Domingue, J.: A differential notion of place for local search. In: LOCWEB ’08, New

York, USA, ACM 9–16
[21] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284 (2001) 34–43

206 Alves and Pereira / Semantic Enrichment of Places

[22] Hepp, M., Leenheer, P.D., de Moor, A., Sure, Y., eds.: Ontology Management, Semantic Web, Semantic
Web Services, and Business Applications. Volume 7 of Semantic Web And Beyond Computing for
Human Experience. Springer (2008)

[23] NAICS: North American Industry Classification System, Mexico’s Instituto Nacional de Estadística e
Geografía Informática (INEG) and Statistics Canada and the United States Office of Management and
Budget (OMB) (2011) Last visited: December, 2011.

[24] Breitman, K.K., Casanova, M.A., Truszkowski, W.: Ontology sources. In: Semantic Web: Concepts,
Technologies and Applications. NASA Monographs in Systems and Software Engineering. Springer
London (2007) 175–199

[25] de Melo, G., Suchanek, F., Pease, A.: Integrating YAGO into the Suggested Upper Merged Ontology.
In: Proc. of the ICTAI 2008), IEEE Computer Society, Los Alamitos, CA, USA (2008)

[26] Niles, I., Pease, A.: Towards a standard upper ontology. In: Proc. of the International Conference on
Formal Ontology in Information Systems - Vol. 2001. FOIS ’01, New York, NY, USA, ACM (2001) 2–9

[27] Rodrigues, F., Alves, A.O., Pereira, F.C., Jiang, S., Ferreira, J.: Automatic classification of Points-of-
Interest for land-use analysis. In: Proceedings of Geoprocessing’2012. (2012)

[28] Alves, A.O., Pereira, F., Rodrigues, F., Oliveirinha, J.: Place in perspective: Extracting online informa-
tion about points of interest. In: Proc. of AmI’10. Springer Berlin / Heidelberg (2010) 61–72

[29] Alves, A.O., Pereira, F.C., Biderman, A., Ratti, C.: Place enrichment by mining the web. In: Proc. of
AmI’09, Berlin, Heidelberg, Springer-Verlag (2009) 66–77

[30] Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for name-matching
tasks. In: IJCAI-03 Works. on Information Integration. 73–78

[31] Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: IJCAI. (1995)
[32] Mihalcea, R.: Semcor semantically tagged corpus. Technical report, University of North Texas (1998)
[33] Ramshaw, L., Marcus, M.: Text Chunking using Transformation-Based Learning. In: Proc. of WVLC-

1995, Cambridge, USA
[34] Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction

systems by gibbs sampling. In: ACL ’05. 363–370
[35] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing

and Management 24(5) (1988) 513–523
[36] Schutz, A., Buitelaar, P.: Relext: A tool for relation extraction from text in ontology extension. In:

The Semantic Web - ISWC 2005, Proceedings. Volume 3729 of Lecture Notes in Computer Science.,
Galway, Ireland, Springer (2005) 593–606

[37] Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2) (2009) 1–69
[38] Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6 (Jan. 1991)

37–66
[39] Oliveirinha, J.a., Pereira, F., Alves, A.: Acquiring semantic context for events from online resources. In:

Proceedings of the 3rd International Workshop on Location and the Web. LocWeb ’10, New York, NY,
USA, ACM (2010) 8:1–8:8

[40] Alves, A., Pereira, F.: Making sense of location context. In: Proceeding of the International Workshop
on Context Discovery and Data Mining - The 18th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, New York, NY, USA, ACM (2012)

Ontology Learning from Databases: Some
Efficient Methods to Discover Semantic

Patterns in Data

Farid CERBAH a, Nadira LAMMARI b
a Scientific Studies Department, Dassault Aviation

b CEDRIC, Cnam

Abstract. Databases are often considered as the most reliable sources for knowl-
edge extraction. Methods and tools have been proposed to build ontologies from
databases, mainly by exploiting relational schemas. However, the resulting ontolo-
gies are often far below expectations, especially in terms of expressivity. A signif-
icant part of the domain-specific semantics needed to build more expressive on-
tologies can only be recovered from the stored data. This chapter describes some
semantic patterns that are frequently encountered in databases and provides a sys-
tematic description of data-driven methods to exploit these patterns for ontology
learning.

Keywords. Ontology Learning, Knowledge Extraction, Relational Databases, Data
Mining, Natural Language Processing, Terminology Extraction

Introduction

To construct the accurate semantic resources required by future knowledge-intensive ap-
plications, existing databases are undoubtedly among the most reliable sources to be ex-
ploited. However, finding ways to significantly ease the task of building highly expres-
sive ontologies from such structured information sources is far from being a straightfor-
ward issue. Early methods exclusively based on the transformation of database schemas
often result in incomplete ontologies that need to be further refined at the cost of huge
manual post-editing efforts. Such manual tasks might be deemed too tedious and costly
by many practitioners. To provide an extended automated support to facilitate the pro-
duction of high quality ontologies from databases, adequate ontology learning methods
should be elaborated.

When considering databases as information sources, ontology learning should be
distinguished from the related issue of database-to-ontology mapping which has also
motivated substantial work those past few years [2,6,11,4]. The main goal of the map-
ping technology is to provide declarative means in order to link relational models to pre-
existing ontologies and to automatically generate instances from the data. Conversely,
the basic issue in ontology learning from databases is to automatically build the ontol-
ogy models, and more importantly to dig out the hidden semantics which is not directly
available from the metadata.

208 Cerbah and Lammari / Ontology Learning from Databases

Ontology learning from relational databases is not a new research issue. Several ap-
proaches and tools have been developed to deal with such structured input. Past contribu-
tions showed how ontologies can be learned and be fruitfully exploited to solve practical
problems, such as ensuring integration and interoperation of heterogeneous databases.
However, a major limitation of the existing methods is the derivation of ontologies with
flat structure that simply mirror the schema of the source databases. Such results do not
fully meet the expectations of users that are primarily attracted by the rich expressive
power of semantic web formalisms and that could hardly be satisfied with target knowl-
edge repositories that look likes their legacy relational databases. A natural expectation
is to get at the end of the learning process ontologies that better capture the underlying
conceptual structure of the stored data.
Ontologies with flat structure is the typical result of learning techniques that exclusively
exploit information from the database schema without (or just marginally) considering
the data. A careful analysis of existing databases shows that additional definition patterns
can be learned from the data to significantly enrich the base structure. More particularly,
class hierarchies can be induced from the data to refine classes derived from the rela-
tional schema.
We define in this chapter a comprehensive approach to ontology learning from relational
databases that combines two complementary information sources: the schema definition
and the stored data. The transformation of database schemas to ontologies has been ex-
tensively studied in previous work. Hence, we will mainly focus here on the exploita-
tion of the stored data. Our primary contribution is a systematic description of three
robust methods dedicated to identification of meaningful categorization patterns in the
content of the databases. These methods have been implemented and integrated in the
RDBToOnto platform1.

The remainder of the chapter is organized as follows. We introduce in section 1
some motivating examples illustrating the panel of categorization patterns addressed in
this work. Then, we give an overview of the typical learning process and of the classical
schema-based transformation rules. The next sections are the core of this contribution
and are dedicated to the hierarchy mining methods. We give an extensive description of
the three formalized methods. Finally, last section offers some concluding remarks and
directions for further research.

1. Diversity of Semantic Patterns

We give in this section an overview through selected examples of the structuring patterns
that will be further explored in this chapter. We introduce here some interesting struc-
turing patterns without paying to much attention to how they can be automatically iden-
tified and used to generate appropriate ontology fragments. Some of the most relevant
content-driven transformation techniques will be addressed in next sections and we show
how to exploit them in order to complement ontologies derived from database schemas.

1http://www.sourceforge.net/projects/rdbtoonto, see also [8]

Cerbah and Lammari / Ontology Learning from Databases 209

– Categorizing Attributes

In many relational databases, some attributes are specifically included in tables to
categorize the tuples. Figure 1 shows a typical example of such categorizing attributes.
The table includes a set of access parts of an aircraft. A schema-based method will simply
derive a class from this table and populate it by turning each tuple into a class instance.
This straightforward transformation is effective in many situations. However, it is worth
noting that additional structuring patterns can be exploited to semantically refine the
target model. This example shows how the class derived from the table definition can
be refined into subclasses derived from the values of the Type column. Sometimes, two
categorizing attributes can be involved. For example, from a table of suppliers including
the City and Country attributes, a Supplier class can be constructed and extended with a
two-level hierarchy by interpreting the values of both columns (resulting in subclasses
Sweden Supplier −→ Stockholm Supplier, Göteborg Supplier, etc).

Code Description Type

210SD Nose cone DOOR

281FT Windshield retainers PANEL

300ZY Umbrella acces panel No 1 PANEL

243DR Servicing compartment
floor No 1

FLOOR

342EA Rear under pylon fairing FAIRG

Access Part
Door

Floor

Panel

Fairing

Access Parts
Windshield retainers
Umbrella access panel No 1...

...

...

...

Figure 1. A categorization pattern where the categories to be exploited for hierarchy generation are defined in
a specific column

To exploit these structuring patterns in ontology learning, two operations need to be
performed: Identification of the categorizing attributes and exploitation of the attribute
values to build hierarchies. A fully formalized method is presented in section 5.

– Terminology-based Hierarchies

Another content-based pattern somehow related with categorizing attributes is based
on the semantic relationships that may hold between the textual designations of items.
In the example given in figure 2, the source table includes a large list of tools to be used
in aircraft maintenance. We can notice that by analyzing the terms in the description col-
umn, intermediate structuring classes can be introduced in the resulting ontology. Such
patterns are very frequent in technical databases and they appear to be highly productive
for building deeper taxonomies. The lexico-syntactic structure of technical terms can be
exploited to include in the resulting ontologies some semantic relationships of the under-
lying specialized domain. Relevant terminology-based patterns can be mined from var-
ious data sources often encountered in databases, such as large product catalogs, struc-
tured descriptions of complex manufactured artifacts or biomedical repositories to name
just a few.

We show in section 6 how such patterns relying on the lexical relationships between
the terms can be reliably identified using terminology extraction techniques.

210 Cerbah and Lammari / Ontology Learning from Databases

Id Description

57-60 LH Wing Installation Trolley

35-00 Vaccum Pump

57-604 RH Wing Installation Trolley

29-45 Manual Pump for Hydraulic
Servicing

57-605 RH Wing Installation Trolley

... ...

Tool

Towbar

Installation Trolley

Pump

Sling

Tools
Trolley

Vaccum Pump

Manual Pump

LH Wing Installation Trolley
RH Wing Installation Trolley
...

...

Manual Pump for Hydraulic Servicing

...

...

Figure 2. Extraction of a class hierarchy from a flat list of technical terms stored in a table column

– Null Values

Null or missing values can also reveal part of the hidden semantics. When all in-
stances (i.e tuples) of a generic concept and its sub-concepts are gathered into a single
table, some attributes may only be relevant for some subconcepts, and thus filled for in-
stances of these sub-concepts but left empty for the others. For example, in an Employ-
ees relation that includes all employees of a flight company, attributes FlightHours and
LicenceNumber would be filled with null values in entries corresponding to non-members
of the flight staff. Partitioning of a relation on the basis of null values and their cooc-
currences may reveal the underlying concept hierarchy. Figure 3 shows another exam-
ple of subclass derivation from multiple null value attributes. In section 7, we define a
method dedicated to the identification of these categorization patterns that are also to be
discovered in data.

Expected
Departure
DateTime

Real
Departure
DateTime

Expected
Arrival
DateTime

Real
Arrival
DateTime

Occupation
Rate

Cancellation
Reason

Cancellation
Report

13 17/12/2009
:10:00

17/12/2009
:10:15

17/12/2009
:12:00

17/12/2009
:12:15

90 Null Null

23 18/02/2010
:09:00

Null 18/02/2010
:14:00

Null Null Strike http:// ...

30 18/12/2010
:22:30

18/12/2010
:22:30

18/12/2010
:01:00

18/12/2010
:01:10

60 Null Null

43 15/03/2010
:09:00

Null 15/03/2010
:11:00

Null Null Fog http://...

60

Flight

DisruptedFlight

Flights

CompletedFlight

Flight 13
Flight 30...

Flight 23

...Flight 43

Figure 3. Derivation of subclasses from table columns with null values

2. The Overall Ontology Learning Process

The learning process is conceived as a combination of the most robust rules for exploiting
relational schemas and data mining methods focused on concept hierarchy identification.

The transformation is defined as a composition of automated steps. The main steps
of this process are: database normalization, class and property learning and ontology
population.

In early approaches, data normalization is not included in the process. It is quite
common to consider as input relational databases that are in some normal form, often
2NF or 3NF (e.g. [1]). It is assumed that the transformation process can be easily ex-
tended to cope with ill-formed input by incorporating at the early stages of the process

Cerbah and Lammari / Ontology Learning from Databases 211

a normalization step based on existing algorithms. Though theoretically acceptable, this
assumption has some drawbacks in practice, especially in a data mining perspective.
Many legacy databases suffer from redundancy problems and substantial normalization
efforts are often required to build up acceptable input for ontology construction. The nor-
malization step aims at eliminating data redundancy through information sharing based
on foreign key relations. This may result in an improved schema in which additional
key-based constraints between the relationships are made explicit.

The core of the transformation process in ontology learning combines a classical
database schema analysis with hierarchy mining in the stored data to identify semanti-
cally rich ontology models. The methods for class and property identification are dis-
cussed in the next sections.

The final step is ontology population that aims at generating instances of classes and
properties from the database content. For a given class, an instance is derived from each
tuple of the source relation. Moreover, if the refinement into subclasses has been suc-
cessfully applied on the class, the instances need to be further dispatched into subclasses.

3. Preliminary Definitions

Before providing a detailed description of the methods, we start by introducing some
basic notations and definitions.

A relational database schema D is defined as a finite set of relation schemas
D = {R1, . . . , Rn} where each relation schema Ri is characterized by its finite set of
attributes {Ai1, . . . , Aim}. A function pkey associates to each relation its primary key
which is a set of attributes K ⊆ R.

A relation r on a relation schema R (i.e. an instance of R) is a set of tuples which
are sequences of |R| values. Similarly, a database d on D is defined as a set of relations
d = {r1, . . . , rn}. By convention, if a relation schema is represented by a capital letter,
the corresponding lower-case letter denotes an instance of the relation schema.

A projection of a tuple t on a set of attributes X ⊆ R, denoted t[X], is a restriction
on t, resulting in the subsequence with values corresponding to attributes of X . The
projection of a relation r on X , denoted πX(r), is defined by πX(r) = {t[X] | t ∈ r}.

The concept of inclusion dependency (e.g. [1]) is used to account for correlations
between relations. An inclusion dependency is an expressionR[X] ⊆ S[Y] whereX and
Y are respectively attribute sequences of R and S relation schemas, with the restriction
|X| = |Y |. The dependency holds between two instances r and s of the relation schemas
if for each tuple u in r there is a tuple v in s such that u[X] = v[Y]. Informally, an
inclusion dependency is a convenient way to state that data items are just copied from
another relation.

Foreign key relationships can be defined as inclusion dependencies satisfying the
additional property: Y = pkey(S). The notation R[X] ⊆ S[pkey(S)] will be used for
these specific dependencies.

Formal descriptions of ontology fragments are expressed in OWL abstract syntax.

212 Cerbah and Lammari / Ontology Learning from Databases

Relation to Class
Source Preconditions Target
R ∈ D ¬ ∃ C | C = targetClassOf(R) class(CR)

Foreign key Relationship to Functional Object Property
Source Preconditions Target

ObjectProperty(PA

R0[A] ⊆ R1[pkey(R1)] C0 = targetClassOf(R0) domain(C0)
C1 = targetClassOf(R1) range(C1)

Functional)

Composite Key Relation to Object Property
Source Preconditions Target
R0 ∈ D ObjectProperty(PR

|R0| = 2 C1 = targetClassOf(R1) domain(C1)
pkey(R0) = {K1,K2} C2 = targetClassOf(R2) range(C2))
R0[K1] ⊆ R1[pkey(R1)]

R0[K2] ⊆ R2[pkey(R2)]

Table 1. Three reliable rules that match patterns in the schema. In the Target part, the variable in bold holds
the Uri of the generated ontology fragment. targetClassOf assertions provide traceability to control the process.

4. Schema-based Transformations

Ontology learning can benefit from early work in the domain of database reverse engi-
neering where the primary concern was to extract object-oriented models from relational
models [5,22,23] and most approaches in this domain are based on an analysis of the
relational schemas. The core of the schema-based transformation rules for reverse engi-
neering are still relevant in the context of ontology learning. The most reliable rules have
been reused as a starting point and extended in several approaches that have ontologies
as target models [26,17].

The transformation can be based on prioritized rules that define typical mappings
between schema patterns and ontology elements, namely classes, datatype and object
properties. We give in table 1 three of the most reliable rules which are also employed in
several existing approaches. The first trivial rule states that every relation can potentially
be translated as a class though relations can be consumed by more specific rules with
higher priority, such as the third rule. The second rule is also a simple mapping from
a foreign key relationship to a functional object property. The third rule is intended to
match a relation with a composite primary key and two key-based attributes. Such bridg-
ing relations are only introduced in the database to link two other relations through key
associations. They are turned into many-to-many object properties. An extensive set of
formalized rules is proposed in [25].

As mentioned in section 2, a preliminary normalization task is often required to im-
prove the schema before starting the ontology learning process. More particularly, data
duplication between relations is a recurring problem that might have a negative impact
on the resulting ontologies. Such data duplications can be formalized as inclusion de-
pendencies where the set of attributes from the right-hand relation are not restricted to
the primary key (i.e inclusion dependencies that are not foreign key relationships). To

Cerbah and Lammari / Ontology Learning from Databases 213

eliminate these duplications, the database need to be transformed by turning all these
inclusion dependencies into foreign key relationships. More formally, each attested de-
pendency R[X] ⊆ S[Y] with Y 6= pkey(S) is replaced with the foreign key relationship
R[A] ⊆ S[pkey(S)] whereA is a newly introduced foreign key attribute, and all non key
attributes in X together with corresponding data in r are deleted from the relation.

Content of the relations is an additional information source allowing to refine with
subclasses some of the classes obtained by applying schema-based mapping rules. The
exploitation of this second source is central in the data-driven approach we are advocat-
ing.

5. Categorizing Attributes

In section 1, we introduced through examples the issue of hierarchy mining from
database content, showing how classes derived from the schema can be refined with sub-
classes extracted from the stored data. The motivating example given in figure 1 is an il-
lustration of some modelling patterns attested in many databases where specific attributes
are used to assign categories to tuples. These frequently-used patterns are highly useful
for hierarchy mining as values of categorizing attributes can be exploited to derive sub-
classes. One of the methods we propose for hierarchy mining is focused on exploiting
the patterns based on such categorizing attributes.

We describe below the pattern identification procedure. Then, we discuss the gener-
ation of the subclasses from the identified patterns.

Two sources are involved in the identification of categorizing attributes: the names
of attributes and the redundancy in attribute extensions (i.e. in column data). These two
sources are indicators that allow to find attribute candidates and select the most plausible
one.

5.1. Identification of lexical clues in attribute names

Categorizing attributes are often lexically marked. When used for the purpose of catego-
rization, the attributes may bear names that reveal their specific role in the relation (i.e.
classifying the tuples). The categorizing attribute can be clearly identified by its name
(e.g. Category, type). The lexical clue that indicates the role of the attribute can just be a
part of a compound noun or of an abbreviated form, as in the attribute names CategoryId

or CatId. Our candidate filtering method relies on a simple segmentation procedure that
aims at identifying clues from a predefined list of frequently used lexical items.

The efficiency of this filtering step heavily depends on this predefined list of lexical
clues. More specifically, finding the right balance between precision and recall amounts
to find the proportion of word stems (vs full clue words) to be included in this clue
list. Because of the large proportion of attributes with abbreviated names, good recall
cannot be obtained without exploiting clue stems. For example, the stem cat is required to
identify the categorizing attributes Catname, CatId and SubcatItemId, all encountered in our
test set. The counterpart is that such short clues have a negative impact on the precision.
Our extensive experiments suggest to only include the stems of the most frequently used

214 Cerbah and Lammari / Ontology Learning from Databases

clue words. For instance, the clue word Family, which is identified as a relevant but not
very frequent indicator, is included in the list without its stem (fam).

With an extensive list of lexical clues, the filtering step based on lexical clues can
be effective. However, experiments on complex databases showed that this step often
ends up with several candidates. Furthermore, attributes that can play a categorization
role are not necessarily defined with lexically marked names. We gave in section 1 an
example where attributes named Country and City can be seen in some application con-
texts as good categorization sources even though no lexical clues can be found in the
attribute names. These facts motivate the need for complementary ways to characterize
the potentially relevant categorizing attributes. Additional filtering mechanisms can help
to make a decision even when no lexical clues can be found or to choose between lexi-
cally pre-filtered attributes. Information diversity in the attribute extension appears to be
a good complementary source in this selection process.

- Filtering though entropy-based estimation of data diversity

We make the assumption that a good candidate for tuple categorization might exhibit
some typical degree of diversity that can be formally characterized using the concept
of entropy from information theory. Entropy is a measure of the uncertainty of a data
source. In our context, attributes with highly repetitive values will be characterized by a
low entropy. Conversely, among attributes of a given relation, the primary key attribute
will have the highest entropy since all values in its extension are distinct.

Informally, the rationale behind this selection step is to favor the candidate that
would provide the most balanced distribution of instances within the subclasses. We give
in what follows a formal definition of this step.

If A is an attribute of a relation schema R instantiated with relation r, the diversity
in A is estimated by:

H(A) = −
∑

v∈πA(r)

PA(v) . logPA(v) (1)

PA(v) =
|σA=v(r)|
|r| (2)

• πA(r) is the projection of r on A defined as πA(r) = {t[A] | t ∈ r}. This set
is the active domain of A. In other words, πA(r) is the set of values attested in
the extension of A. Each value v of the set πA(r) is a potential category (to be
mapped to a subclass in the ontology).

• σA=v(r) is a selection on r defined as σA=v(r) = {t ∈ r | t[A] = v}. This
selection extracts from the relation r the subset of tuples with A attribute equal to
v. In this specific context, the selection extracts from the relation all entries with
(potential) category v.

• PA(v) is the probability of having a tuple with A attribute equal to v. This pa-
rameter accounts for the weight of v in A. It can be estimated by the relative
frequency of v (i.e. maximum-likelihood estimation).

Let now C ∈ R denote the subset of preselected attributes using lexical clues. A
first pruning operation is applied to rule out candidates with entropy at marginal values:

Cerbah and Lammari / Ontology Learning from Databases 215

1 Method: catAttBasedHierarchy(R,A)
2 – R is a relationship (and r is its corresponding instance in the database)
3 – A is a categorizing attribute from R identified through the procedure defined in section 5.1

4 CR = targetClassOf(R)
5 A′ = getExternalFullCatList(R,A)

6 if A′ = NULL then A′ = A

7

8 forall the v ∈ πA′ (r) do
9 add class(Cv partial CR)

10 end

11 Method: getExternalFullCatList(R,A)
12 if R[A] ⊆ S[pkey(S)] and
13 pkey(S) = {B0} and
14 S = {B0, B1} and
15 |πB0

(r)| = |πB1
(r)| then

16 return B1

17 else
18 return NULL

19 end

Algorithm 1: A method for hierarchy generation from a categorizing attribute

C ′ = { A ∈ C | H(A) ∈ [α, Hmax(R) . (1− β)] } (3)

• α and β are parameters such that α, β ∈ [0, 1].
• Hmax(R) is the highest entropy found among attributes of the relations (Hmax(R) =

maxA∈RH(A)). As said earlier, Hmax(R) is often the entropy of the primary
key attribute.

If, after this pruning step, several candidates still remain2, we ultimately select the at-
tribute that would provide the most balanced organization of the instances. This amounts
to look for the attribute whose entropy is the closest to the maximum entropy for the
number of potential categories involved. This maximum entropy is given by :

H̃max(A) = log |πA(r)| (4)

This reference value, derived from the entropy expression (1), is representative of a per-
fectly balanced structure of |πA(r)| categories with the same number of tuples in each
category. Note that this value is independent of the total number of tuples (|r|).

The final decision aims at selecting the attribute A∗ whose entropy is the closest to
this reference value:

A∗ = arg min
A∈C′

|H(A)− H̃max(A)|
H̃max(A)

(5)

5.2. Generation and population of the subclasses

As shown with algorithm 1, the generation of subclasses from an identified categorizing
attribute can be straightforward. A subclass is derived from each value type of the at-

2Note that all candidates can be eliminated. In this case, the first candidate is arbitrarily chosen.

216 Cerbah and Lammari / Ontology Learning from Databases

Description

.. LH MLG shock absorber

.. LH MLG shock absorber

.. Hydraulic system A
pressure-relief valve

.. Hydraulic system B
pressure-relief valve

.. ...

.. LH differential pressure
sensor

...

Aircraft Parts Table (X 2630)

absorber shock absorber MLG shock absorber
LH MLG shock absorber

RH MLG shock absorber

sensor

Pressure sensor

Differential pressure sensor

LH differential pressure sensor

RH differential pressure sensor

valve

Isolation valve

Cockpit isolation valve

Manifold isolation valve

Baggage isolation valve

Solenoid valve
Rain repellent solenoid valve

APU fuel solenoid valve

LH rain repellent solenoid valve
RH rain repellent solenoid valve

Pressure-relief valve

Hydraulic system A pressure-relief valve

Hydraulic system B pressure-relief valve
Hydraulic system C pressure-relief valve

Cockpit hot line differential
pressure sensor

Term Tree Extraction

Temperature sensor

HGS fan sensor

Gasper pressure sensor

Precooler temperature sensor Engine 2 precooler temperature sensor

Engine 3 precooler temperature sensor

Engine 1 precooler temperature sensor

...

...

Figure 4. The terminology analysis process applied to a table column that includes an extended list of 2630
technical terms referring to aircraft components. The figure gives a partial view of three extracted term trees,
respectively rooted at the absorber,valve and sensor single word terms.

tribute extension (i.e. for each element of the attribute active domain). However, proper
handling of the categorization source may require more complex mappings (getExter-
nalFullCatList method). This part of the transformation method accounts for the fact
that values to be used for subclass generation can be issued from another relation. In the
underlying pattern, the categorizing attribute only includes identifiers to refer through a
foreign key relationship to a relation in which all allowed categories are defined.

Classes of the resulting hierarchy are populated by exploiting the tuples from the
same source relation. An instance is generated from each tuple. The extra task of dis-
patching the instances into subclasses is based on a partitioning of the tuples accord-
ing to values of the categorizing attribute. Formally, for each value v of A∗, the cor-
responding class is populated with the instances derived from the tuples of the set
σA∗=v(r) = {t ∈ r | t[A] = v}.

6. Terminology-based Patterns

Those past few years, a lot of attention has been devoted to ontology learning from text,
resulting in a wide range of techniques for generating knowledge structures that are often
considered as relevant intermediate productions in the process of constructing formal
ontologies (cf. [16] in this volume, [3]). However, few methods have been focused on
exploiting the textual data stored in heterogeneous databases.

The most commonly extracted knowledge structures extracted from text corpora in
ontology learning are domain-specific vocabularies (terminologies) defined as hierar-
chies of technical terms. The simple method we define in this section aims at mining
such terminological resources in databases to build ontologies with deeper taxonomies.
As discussed in section 1, many complex technical databases to be exploited for ontol-

Cerbah and Lammari / Ontology Learning from Databases 217

MLG shock absorber
LH MLG shock absorber
RH MLG shock absorber

Sensor

valve

Isolation valve

Cockpit isolation valve
Manifold isolation valve
Baggage isolation valve

Solenoid valve
APU fuel solenoid valve
LH rain repellent solenoid valve

Pressure-relief valve
Hydraulic system A pressure-relief valve
Hydraulic system B pressure-relief valve

Aircraft Part

...

Pressure sensor
Gasper pressure sensor
S-duct anti-ice pressure sensor

Temperature sensor
APU fuel solenoid valve...

...

Differential pressure sensor

...
LH differential pressure sensor
RH differential pressure sensor
Cockpit hot line differential pressure sensor

Precooler temperature sensor
Engine 1 precooler temperature sensor
Engine 2 precooler temperature sensor...

...

...

Figure 5. Class hierarchy derived from the terminological resources described in figure 4. This structure is
obtained with the threshold vector δ = [1 2 3]

ogy learning may incorporate large poorly structured lists of items (e.g. product cata-
logs, components of complex manufactured artifacts, biomedical data, etc) from which
valuable semantic patterns can be extracted. The method relies on two key assumptions:

• In many situations, the underlying structure of the flat lists of technical terms
included in table columns can be recovered through Natural Language Processing
(see [19] in this volume for details on commonly exploited NLP techniques). In
the term trees resulting from the linguistic analysis, the leaves are labeled with the
column values (i.e. the full terms) and the intermediate nodes with more generic
terms obtained through lexical decomposition of the full terms (see the example
of figure 4 further discussed below).

• In the ontology generation process, one the key decisions to be made is the de-
termination of the items from this lexical structure to be turned into classes in
order to provide a suitable hierarchical organization of instances in the resulting
ontology. Depending on the process settings, some nodes (either intermediate or
terminal) will be selected from the term tree to build a class hierarchy while in-
stances are to be derived from some of the leaves (which actually correspond to
the source column values). The figure 5 shows a part of the ontology derived from
the term trees of figure 4.

6.1. Extraction of the term trees

To build the term trees from the flat input term lists extracted from the table columns,
NLP techniques for terminology extraction can be exploited [19,14,7]. However, it is
worth noting that the problem addressed here differs on some aspects from the classical
terminology extraction problem. In this specific context, a significant set of the terms is

218 Cerbah and Lammari / Ontology Learning from Databases

already given and the goal is to complement this set with more generic terms that would
enable the construction of meaningful term hierarchies. Conversely, the basic goal of
terminology extraction is to extract terms from corpora without necessarily presupposing
any initial set of terms.

The main task performed in order to build the term trees is the lexical decompo-
sition of the input terms by applying lexico-syntactic patterns commonly used in term
extraction methods. This task relies on the result of a preliminary parsing step where
part-of-speech tags are assigned to the components of the terms. For example, the term
LH differential pressure sensor will be assigned the tag sequence Abbr/Adj/Noun/Noun. From
this sequence, the decomposition task extracts the generic terms corresponding to the
eligible tag subsequences Noun, Noun/Noun and Adj/Noun/Noun resulting in the hyperonym
chain composed of the terms sensor, pressure sensor and differential pressure sensor.

We have experimented this process on significant datasets using the extraction meth-
ods implemented in the HyperTerm platform which is dedicated to terminology acqui-
sition [9]. Moreover, a terminology analyzer specifically developed for this purpose is
made available with RDBToOnto. This analyzer which is based on the GATE platform
[19] takes as input a flat term list (which might correspond to a table column extension)
and returns a set of term trees encoded in SKOS [21]. These term trees can be interpreted
by RDBToOnto to build part of the ontology. We illustrate in figure 4 the terminology
analysis process applied to a table column that includes an extended list of 2630 tech-
nical terms referring to aircraft components. The output of this process is a set of 150
term trees resulting from the lexical decomposition of the stored terms. The figure gives
a partial view of three extracted term trees, respectively rooted at the absorber,valve and
sensor single word terms. The goal is to automatically extract generic terms in order to
encompass the input column items in a hierarchical structuring scheme. Consequently,
the extraction procedure only retains term trees whose leaves are labeled with the column
items (see example in figure 4).

6.2. From term trees to class hierarchies

All the terms generated in the previous step are not necessarily turned into classes. Se-
lecting the terms that will still appear at the ontology level is a difficult issue that may
require a semantic interpretation of some kind and need, in most cases, including in the
process an additional step for manual tuning. Our ambition here is limited to the defini-
tion of a simple generation method based on structural considerations that allows the user
to shape the resulting class hierarchy by iteratively adjusting some global parameters.
Informally, the method relies on two principles:

• Leaves of the trees (i.e the input column items) can either be converted as
classes or instances. The choice between these two global options is application-
dependent.Typically, the “all as classes” option can be more suitable when deal-
ing with thesaurus-like input whereas the “leaves as instances” option would be
preferred when transitioning a structural descriptions of a complex product (e.g.
an aircraft or car system breakdown from a product management system where
basic units of the decomposition refer to the concrete components of the vehicle).

• The potential of an intermediate term to be turned into a class is based on both its
depth in the tree and the number of leaves of the subtree rooted at this term (i.e.
the number of instances that would be gathered by the resulting class). Roughly

Cerbah and Lammari / Ontology Learning from Databases 219

1 Method: termBasedHierarchy(R,A, T)
2 – R is a relationship
3 – A is the attribute from R relying on a terminology-based pattern
4 – T is the set of term trees extracted from πA(r)

5 – δ is a threshold vector providing for each tree depth the number of leaves that need to be gathered
by a term to be considered as a good class candidate

6 CR = targetClassOf(R)
7 forall the T ∈ T do
8 {compactTree(T)} // Optional removal of all single child nodes
9 t0 = root(T)

10 deriveClasses(t0, CR, T)

11 end

12 Method: deriveClasses(t, Cp, T)
13 if |leaves(t)| ≥ δ[depth(t)] then
14 add class(Ct partial Cp) // New class Ct is derived from t

15 forall the t′ ∈ children(t) do
16 deriveClasses(t′, Ct, T)

17 end
18 end

Algorithm 2: Derivation of a class hierarchy from term trees

speaking, the terms closer to the roots are more likely to be relevant candidates
whereas specific terms closer to the leaves could only be selected if they encom-
pass more terminal nodes.

This approach is formally described in algorithm 2. In this algorithm, the class
derivation process is iteratively applied to each element of the term tree set T (in
termBasedHierarchy method). The deriveClasses method performs a recursive depth-
first exploration of a given term tree. A class Ct is derived from a term t (line 14) if the
number of leaves under this term is equal or above the threshold defined in the δ vector
for the corresponding depth in the tree (line 13). The class hierarchy depicted in figure
5 is obtained with the threshold vector δ = [1 2 3]. In other words, only one leaf is
required for the root term to be considered as a relevant class candidate while two leaves
are required for terms of depth 2 which are directly linked to the root. Three leaves are
required for terms of depth 3, and no classes can be derived from the deeper terms. In the
implementation of this lightweight approach included in RDBToOnto, the process can
be further constrained through user-defined term exception lists to enforce the exclusion
or inclusion of some terms in the resulting ontology.

7. Null Values

Another categorization pattern widely adopted in relational databases can be identified
through a careful analysis of missing information. As illustrated in section 1, attributes
with null or default values may reveal an implicit semantic partitioning of the potentially
similar items gathered in a single table. Some of the attributes may appear to be only
applicable for a subset of the items leading to the introduction of null values. For ex-
ample, a MaidenName attribute in a Person relation would be set to null in a significant

220 Cerbah and Lammari / Ontology Learning from Databases

1 Method: nullV alueBasedHierarchy(R,X)

2 – R is a relationship (and r its instance in the database)
3 – X is the set of null value attributes in R

4 CR = targetClassOf(R)
5 for i = 1 to |X| do ci = {xi}
6

7 C = {c1, . . . , c|X|}
8 while ∃(ci, cj) | domci (r) = domcj (r) do // Group compatible attributes into clusters

9 C = C \ {ci, cj} ∪ {ci ∪ cj}
10 end
11 forall the c ∈ C do
12 add class(Cc partial CR) // class Cc is derived from attribute cluster c

13 forall the a ∈ c do // A datatype property is derived from each attribute of c

14 add DatatypeProperty(Pa domain(Cc) range(datatype(a)))
15 end
16 end

Algorithm 3: Derivation of a class hierarchy from null value attributes

proportion of the tuples since the applicability domain of the attribute is limited to tuples
representing women.

We define here a data-driven method allowing the generation of class hierarchies
from null values attributes. We start with additional definitions to provide a formal ac-
count of null value semantics and of the related method.

The applicability domain of an attribute A in a relation instance r, denoted by
domA(r), is the set of tuples where this attribute is applicable (i.e. the set of tuples with
a non-null value assigned to this attribute). We also define the applicability domain of
a set of attributes X , denoted by domX(r), the set of tuples where attributes of X are
jointly applicable.

A mutual existence dependency between two attribute sets X and Y holds if
domX(r) = domY (r). Conversely, an exclusive existence dependency between two at-
tribute sets X and Y holds if domX(r) ∩ domY (r) = ∅.

The basic idea behind this method (cf. algorithm 3) is to divide an initial set of rel-
evant null value attributes into clusters of attributes linked through mutual existence de-
pendencies (line 5 to 8) . Then, a subclass with specific attributes is defined from each of
the resulting clusters of null value attributes. The process can be outlined on the example
of figure 3. The initial set of all null value attributes is {Real Departure DateTime, Real arrival
DateTime, Occupation Rate, Cancellation Reason, Cancellation Report}. Partitioning of this in-
put set produces the two clusters {Real Departure DateTime, Real arrival DateTime, Occupation
Rate} and {Cancellation Reason, Cancellation Report} which respectively correspond to the
subclasses CompletedFlight and DisruptedFlight.

To ensure the consistency of the resulting clustering and estimate the plausibility of
the input null value attributes, an additional step could be included to check that exclusive
mutual dependencies actually hold between each couple of the attribute clusters.

It should be noted that this formalized process starts with an identified set of relevant
null value attributes. For sake of robustness, the identification of these attributes is not
included in the process. A major difficulty of this selection task is the need to consider the
status or lifecycle of the database to properly interpret the semantics of the null values.
Data sparseness can be interpreted as either inapplicability or temporary absence of the

Cerbah and Lammari / Ontology Learning from Databases 221

values. However, this method can be extended to provide some support for this step,
more particularly through a more precise analysis of the existence dependencies3.

8. Conclusion and Further Work

In this chapter, we have discussed ontology learning for relational databases with a focus
on methods for the identification of semantic patterns in the stored data. We strongly sup-
port the idea that expressive ontologies can rarely be generated by exclusively exploring
the database schema without looking at the data. The data-driven methods we proposed
have been experimented on significant datasets and demonstrated very good performance
(more details on evaluation are provided in [10] and [15]).

One of the main extensions to be addressed is the combination of these methods. It
is highly instructive to revisit the examples discussed in section 1 and see that in most of
them, different types of categorization patterns can be found. In a suitable combination of
these methods, null value attributes and categorizing attributes could be the main sources
for classes in upper levels of the target ontologies whereas terminology-based patterns
could be exploited to further refine the class hierarchies.

The extraction of terminology-based patterns from databases for the purpose of on-
tology learning is a first step in the exploitation of the unstructured content which is
prominent in many databases. Incorporating information extraction techniques to dis-
cover complex axioms from these heterogeneous sources is a major challenge for future
ontology learning systems (cf. [27,13] in this volume). When analyzing unstructured text
from database records, the use of the related categorical attributes as background knowl-
edge may contribute to improve the performance of information extraction [18,20].

Moreover, ontology learning in this context should not be conceived as an endoge-
nous process that only aims at discovering domain semantics from the data and meta-
data of some source legacy databases. Interoperability of the resulting ontologies can
significantly be increased by mapping the application-specific concepts extracted from
these databases to equivalent or closely related concepts from widely shared reference
ontologies4. Solutions for identifying such semantic bridges between ontologies are be-
ing investigated in the related area of ontology matching [12,24].

References

[1] S. Abiteboul, R. Hull, and V. Vianu, editors. Foundations of databases. John Benjamins, 1995.
[2] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and David Aumueller. Triplify:

light-weight linked data publication from relational databases. In Proc. of the 18th International Con-
ference on World Wide Web, WWW 2009, Madrid, Spain. ACM, 2009.

[3] N. Aussenac-Gilles, S. Despres, and S. Szulman. The TERMINAE method and platform for ontology
engineering from texts. In P. Buitelaar and P. Cimiano, editors, Bridging the Gap between Text and
Knowledge - Selected Contributions to Ontology Learning and Population from Text. IOS Press, 2008.

3Cf. Lammari et al. [15] for further details on this type of attribute dependencies and on how null value
patterns can be combined with various information sources (schemas, queries, . . .).

4RDBToOnto allows the reuse of external reference ontologies. However, the provided support is limited to
the processing of mappings defined manually. For example, the generation process can be manually constrained
so that a firstname column will be mapped to foaf:firstName property from the FOAF ontology.

222 Cerbah and Lammari / Ontology Learning from Databases

[4] J. Barrasa, O. Corcho, and A. Gómez-Pérez. R2O, an extensible and semantically based database-
to-ontology mapping language. In Second Workshop on Semantic Web and Databases (SWDB2004),
Toronto, Canada, 2004.

[5] Andreas Behm, Andreas Geppert, and Klaus R. Dittrich. On the migration of relational schemas and
data to object-oriented database systems. In Proc. 5th International Conference on Re-Technologies for
Information Systems, Klagenfurt, Austria, 1997. Oesterreichische Computer Gesellschaft.

[6] C. Bizer. D2R MAP - a database to rdf mapping language. In Proceedings of WWW03, Budapest, 2003.
[7] D. Bourigault, C. Jacquemin, and M.-C. L’Homme, editors. Recent Advances in Computational Termi-

nology. John Benjamins, 2001.
[8] F. Cerbah. Learning highly structured semantic repositories from relational databases – The

RDBToOnto tool. In The Semantic Web: Research and Applications – Proceedings of the 5th European
Semantic Web Conference (ESWC 2008). Springer, 2008.

[9] F. Cerbah and B. Daille. A Service Oriented Architecture for Adaptable Terminology Acquisition. In
NLDB 2007. Springer, 2007.

[10] Farid Cerbah. Learning ontologies with deep class hierarchies by mining the content of relational
databases. In F. Guillet, G. Ritschard, D. A. Zighed, and H. Briand, editors, Advances in Knowledge
Discovery and Management, volume 292 of Studies in Computational Intelligence. Springer, 2010.

[11] Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL: a data and schema representation format
based on owl. In Proc. of the 2nd Asia-Pacific conference on Conceptual modelling, Australia, 2005.

[12] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag Berlin Heidelberg, 2007.
[13] Sebastian Hellmann, Jens Lehmann, and Johanna Völker. Learning owl class expressions from

wikipedia. In Jens Lehmann and Johanna Völker, editors, Perspectives on Ontology Learning, Studies
on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[14] K. Kageura, B. Daille, H. Nakagawa, and L.F. Chien. Recent trends in computational terminology.
Terminology, 10(2):1–25, 2004.

[15] N. Lammari, I. Comyn-Wattiau, and J. Akoka. Extracting generalization hierarchies from relational
databases. a reverse engineering approach. Data and Knowledge Engineering, 63:568–589, 2007.

[16] Jens Lehmann and Johanna Völker. Introduction. In Jens Lehmann and Johanna Völker, editors, Per-
spectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press, 2014.

[17] M. Li, X. Du, and S. Wang. Learning ontology from relational database. In Proc. of International
Conference on Machine Learning and Cybernetics, volume 6, pages 3410 – 3415. IEEE, 2005.

[18] I. R. Mansuri and S. Sarawagi. Integrating unstructured data into relational databases. In Proceedings
of the 22nd International Conference on Data Engineering (ICDE’06), 2006.

[19] Diana Maynard and Kalina Bontcheva. Natural language processing. In Jens Lehmann and Johanna
Völker, editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2014.

[20] M. Michelson and C. A. Knoblock. Semantic annotation of unstructured and ungrammatical text. In In
IJCAI, 2005.

[21] A. Miles and D. Brickley. Skos core guide – w3c working draft. Technical report, W3C, 2005.
[22] W.J. Premerlani and M.R. Blaha. An approach for reverse engineering of relational databases. Commu-

nications of the ACM, 37(5), 1994.
[23] S. Ramanathan and J. Hodges. Extraction of object-oriented structures from existing relational

databases. ACM SIGMOD, 26(1), 1997.
[24] Marta Sabou, Mathieu d’Aquin, and Enrico Motta. Using the semantic web as background knowledge

for ontology mapping. In Proc. of the Int. Workshop on Ontology Matching (OM-2006), 2006.
[25] J. F. Sequeda, M. Arenas, and D. P. Miranker. On directly mapping relational databases to RDF and

OWL. In Proc. of the 18th Int. Conference on World Wide Web, WWW 2012, Lyon, France. ACM, 2012.
[26] L. Stojanovic, N. Stojanovic, and R. Volz. Migrating data-intensive web sites into the semantic web. In

Proceedings of the ACM Symposium on Applied Computing (SAC 02), Madrid, 2002.
[27] Fabian Suchanek. Information extraction for ontology learning. In Jens Lehmann and Johanna Völker,

editors, Perspectives on Ontology Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press,
2014.

Part V

Methodology and User
Interaction

Learning Ontologies via Games with a
Purpose

Elena SIMPERL a, Stephan WÖLGER b, Stefan THALER b, Katharina SIORPAES b

a University of Southampton, United Kingdom
b STI Innsbruck, University of Innsbruck

Abstract. In this chapter, we analyse the process of ontology learning, and we give
an overview of typical activities and tasks that rely on human contributions. We
present a survey of existing games concerned with the learning of ontologies and
other related knowledge structures, and compare and discuss their features against
the results of the process-oriented analysis. By describing in detail the Generic
Gaming Toolkit delivered by the European research project INSEMTIVES, which
facilitates the development of games for semantic content authoring, as well as a
number of guidelines and best practices derived from our own experiences in the
context of the OntoGame framework, we hope to provide useful information to
game designers. We conclude the paper with a short summary and an outline of
potential future lines of research in the area.

Keywords. ontologies, games with a purpose, GWAP, incentives, user interaction,
crowdsourcing, human computation

1. Introduction

Many aspects of semantic content authoring are demonstrably reliant on human compu-
tation [24,20]. This includes knowledge modeling and ontology development, but also
semantic annotation - the description of digital artifacts such as Web pages, images,
audio and video content using ontological concepts - and, most recently, data publica-
tion and interlinking according to Linked Data principles [25] (cf. also Vrandecic and
Jentzsch [35] in this volume). In all of these areas, human abilities is indispensable for
the resolution of those particular tasks that are acknowledged to be hardly approachable
in a systematic, engineering-driven fashion; and also, though to a lesser extent, to the
wide array of methods and techniques that have been proposed as an attempt to perform
others automatically. In this second category, despite constant progress in improving the
performance of the corresponding algorithms and the quality of their results, experiences
show that human assistance is nevertheless required, even if it just for the validation of
algorithm outputs. Ontology learning falls in the same category; as we will discuss in
Section 2, putting aside the configuration of the overall learning environment, the selec-
tion of applicable techniques and the generation of training data, many ontology learn-
ing algorithms combine per design human and computational intelligence, where human
skills are required to evaluate intermediary results and decide upon the further steps in
the learning process.

226 Simperl et al. / Games with a Purpose

One novel approach which proved successful to solve technical tasks via human
computation is based on ’games with a purpose’ [32]. The idea behind games with a
purpose is simple, but effective; tasks which remain difficult to handle by machines, but
which humans seem to accomplish easily are hidden behind entertaining, collaborative
games targeting not experts, but casual Internet users. By playing a game with a purpose,
users are indirectly generating data that can be capitalized to build knowledge corpora
required for the training of algorithms, and to validate the results of such algorithms,
thus providing a powerful example of how human and computational intelligence can be
interwoven to address important, challenging problems. Since the original proposal by
Van Ahn in 2006 games with a purpose have been applied to tasks as diverse as image and
video annotation,1 genetics,2 natural language processing,3, conceptual modeling,4 and
through our own work in the context of the OntoGame gaming framework, to ontology
engineering and semantic annotation.5

Games with a purpose is only one of the most popular instances of socially-inspired
approaches to knowledge acquisition proposed in the last years. According to recent sur-
veys people spend a substantial amount of time every day on playing games [1,2,3].
Games in general create an environment which is in itself intrinsically motivating, offer-
ing through their very nature many motivational features such as fun, challenge, fantasy,
competition and collaboration with others, and recognition, to name only a few [17].
Through games with a purpose, one leverages these features to turn the significant num-
ber of hours willingly spent playing by Internet users through sophisticated algorithms
into meaningful results that lead to qualitative improvements of information management
technology. The concept is particularly useful for those types of problems that so far
have not been the classical subject of popular science and engineering, but have targeted
highly specialized audiences, because of the expert-driven and knowledge-intensive na-
ture of the underlying tasks to be performed, the novelty of the questions raised, or both.

The area of semantic technologies is a good example therefor, with the tasks dis-
cussed above, including ontology learning, as typical scenarios which require approaches
combining both human and computational intelligence to yield optimal results. The mul-
titude of methodologies, techniques and tools developed over the past decade for the pur-
pose of ontology development, alignment or learning offer many sophisticated features,
but they are hardly accessible to a lay audience due to the fact that they assume in-depth
expertise not only with respect to the task at hand, but also with respect to the underlying
processes and procedures according to which the tasks are executed. These limitations
laid the foundations for the emergence of a new field of research in semantic technolo-
gies, inspired by the success of the Web 2.0 phenomenon in encouraging user partici-
pation and capitalizing on the power of collective intelligence [5,14,19,22,31]. Despite
early success stories and promising prospects, the application of these crowdsourcing
approaches comes with a trade-off: putting aside the (important) question of motivators
and incentives, addressing a priorly unknown user base that reaches far beyond the scope
for which expert tools have been created constrains the complexity of the tasks that can
be feasibly undertaken, and the domains for which knowledge can be reliably collected

1http://www.gwap.com/
2http://fold.it
3http://galoap.codeplex.com/
4http://apps.facebook.com/conceptgame/
5http://ontogame.sti2.at/

Simperl et al. / Games with a Purpose 227

from a mass audience, and introduces the need for specific evaluation and quality assur-
ance mechanisms. The collaborative nature of these approaches imposes further restric-
tions with respect to the types of tasks to be tackled, and may require mechanisms for
decomposing the work into smaller chunks to be carried out (to a certain degree) inde-
pendently, and for combining the partial results. In the particular case of games with a
purpose, an additional challenge is the design of the games, which have to fulfill highest
usability expectations, be enjoyable and engaging to ensure players retention, and, as a
side effect, serve the purpose for which they have been actually created. Turning back to
the area of semantic technologies, the types of semantic-content authoring problems that
can be realistically solved via games with a purpose are greatly confined. The ontologies
and semantic annotations that result are lightweight (with respect to expressivity) and
cover mainstream topics that a large share of Internet users feel related to. In addition, a
great majority of the tasks that have been an active subject of research and development
over the past decade are too complex, too unstructured, or both to be turned into enter-
taining game experiences. In Section 4 we will elaborate on these aspects in more detail
by means of several examples.

To conclude this introductory section, the concept of games with a purpose has
rapidly achieved great resonance in many research communities confronted with the
problem of attracting user involvement for the resolution of various tasks of technical
nature, which had been for a long time the realm of expert audiences. This chapter will
provide a selection of the games that have been developed in the last years to support the
learning of ontologies, as a proof for the increasing popularity of the overall idea. How-
ever, as already discussed above, as in every emerging field of research, there are still a
number of open issues of theoretical and practical nature that require closer investigation
in order to gain a thorough understanding of the new challenges arising by applying a
game-based approach to semantic content authoring tasks, and to optimize the outcomes
of existing games and their exploitation.

The remainder of this chapter is structured as follows. We will start with an analysis
of the process of ontology learning in order to provide an overview of typical activities
and tasks that rely on human contributions (Section 2). In Section 3 we will survey exist-
ing games concerned with the learning of ontologies and other related knowledge struc-
tures, and compare and discuss their features against the results of the process-oriented
analysis. In Section 4 we will concentrate on the realization of new games serving sim-
ilar purposes; we will present the Generic Gaming Toolkit delivered by the European
research project INSEMTIVES which facilitates the development of games for seman-
tic content authoring, and a number of guidelines and best practices derived from our
own experiences in the context of the OntoGame framework, which may prove useful for
game designers. We conclude the paper with a short summary and an outline of potential
future lines of research in the area (Section 5.

2. Combining Human and Computational Intelligence in Ontology Learning

In this section we will analyze the role of human contributions in ontology learning
projects, and identify related activities and tasks which rely on these contributions. The
analysis is based on a larger survey conducted in 2009 of some of the most prominent
methodologies, methods and tools in the broad area of semantic content authoring, in-

228 Simperl et al. / Games with a Purpose

cluding ontology development, evaluation, learning, alignment and semantic annotation,
whose findings can be found in [24].

Ontology learning approaches can be categorized according to the types of resources
that are used as input to derive ontological knowledge: unstructured resources such as
textual documents, and semi-structured resources such as folksonomies and UML dia-
grams. Cimiano [7] presents the ontology learning layer cake, which covers the most
relevant types of methods and techniques, as well as core activities and tasks in ontology
learning. In our analysis, we considered a selection of ontology learning approaches pub-
lished in the Semantic Web literature over the past ten years to identify commonalities
and characteristics regarding the types of human input that they require. We focused on
methodological aspects rather than on the features and functionality of specific tools, as
our aim was to gain a better understanding of the actual tasks which are typically under-
taken to learn an ontology, and not to evaluate or compare existing tools, methods and
techniques. Consequently, the analysis is based on a study of the relevant publications,
and on the information and experience reports of these publications, and not on actual
experiments with the corresponding technology.

Maedche and Staab [16] introduce a framework for building ontologies supported
by ontology learning, which combines machine learning and knowledge acquisition fea-
tures. They propose the following five steps for the execution of the learning process:

Import and reuse In the first step, relevant sources are collected. This can include het-
erogeneous documents, regardless of their degree of structure. Additionally, a core
ontology is used that contains generic and domain-specific terms. This ontology is
later extended.

Ontology extraction The second step is about learning new concepts from the document
corpus with the help of natural language processing techniques.

Ontology pruning The aim of this step is to focus the ontology on the target domain by
removing irrelevant concepts.

Ontology refinement The ontology is further extended into relations between concepts
and other types of ontological primitives.

Ontology evaluation In the final step, the ontology is evaluated in its target application
setting. In case it needs to be improved, the process is repeated starting from the
first step.

Aussenac-Gilles and colleagues [4] propose the Terminae method for ontology en-
gineering from texts. The approach combines linguistic and modeling techniques. It is
semi-automatic in the sense that it depends on the input of a human “supervisor”. The
method consists of three main steps as follows:

Domain resources In the first step domain resources are gathered. This includes a cor-
pus of text documents, as well as existing ontologies, terminologies and other po-
tentially useful knowledge structures. The authors recommend the assistance of a
domain expert to choose representative texts providing good coverage of the do-
main, and define guidelines for the selection of such corpora.

Linguistic analysis In the second step a linguistic analysis is performed by applying
different natural language processing techniques to the corpus put together in the
previous step. This is an iterative process that eventually results into lexical data
which forms the basis for the development of the conceptual model.

Simperl et al. / Games with a Purpose 229

Conceptual model The third step is about building this conceptual model, including the
definition of concepts and their hierarchical organization. Furthermore, normaliza-
tion can be carried out using methods such as OntoClean [12] in order to improve
the conceptual model .

Simperl and colleagues [21] propose a methodology for ontology learning that is
embedded in the ontology engineering process by Gomez-Perez and colleagues [11].
They introduce a process model with eight phases and finer-grained activities:

Feasibility study The first phase assesses whether a learning approach to support on-
tology development is feasible, starting from the requirements specification that
was created in the course of the ontology engineering project. Ontology engineers,
domain experts, and ontology learning experts collaborate in order to come up
with a risk analysis document. The feasibility study is then split into a number
of sub-tasks to define the main dimensions of the prospected ontology learning
project, including the specification of the type of ontology to be created and the
information sources from which the ontology will be learned.

Requirements specification This phase is concerned with the specification of the re-
quirements for the ontology learning process based on the ontology requirements
specification document (ORSD) and the risk analysis document produced earlier.
The methodology further refines the operation of the phase by identify additional
sub-tasks referring to, for instance, the characteristics of the corpus to be used as
input for learning, and the features that should be provided by the software to be
used.

Selection of information sources, learning methods and tools At the end of this phase
the ontology learning team has made a decision on the actual methods and tools to
be used and built a corpus of information sources that will be processed to learn
the ontology.

Learning preparation Here ontology learning experts configure the learning tools and
prepare the information sources for carrying out the learning process. The result is
a tool environment, a documentation, and an execution plan, which specify which
tools will process which resources, how they will be configured and executed, and
when and what type of user intervention is required to run the overall process.

Learning execution In this phase, the actual knowledge is acquired through the opera-
tion of the ontology learning tools on the information sources previously collected.
This involves human input for the completion of semi-automatic techniques or for
the evaluation of intermediary results, which might lead to adjustments and reiter-
ations of specific parts of the tool pipeline.

Ontology evaluation and integration The team analyzes the resulting ontologies against
the requirements specification, and integrates them into the final ontology follow-
ing methods of ontology integration [10,18].

The Role of Human Input Ontology engineering can be heavily supported by computer
programs. Yet, in most of the cases the results of automatic ontology learning methods
and techniques are not sufficient in terms of completeness and accuracy, and human pro-
cessing skills are required at various stages in the process. In terms of the methodology
presented in [21], which splits the overall ontology learning process in atomic tasks, the
feasibility study, the requirements specification, and the selection of information sources

230 Simperl et al. / Games with a Purpose

and ontology learning methods and tools are clearly human-driven. In addition, human
input is helpful for the configuration of the learning environment and for resuming the
execution of those tools that follow a semi-automatic approach, or that require the user
to evaluate intermediary results in order to decide upon the further steps in the learning
process. The question of how to optimally acquire or collect the human input required at
all these levels does not have a unique or simple answer. Studies in organization theory
have identified a plethora of factors that affect the success of a crowdsourcing approach
in a specific setting, and proposed means to measure the performance of groups jointly
accomplishing work. The type of task to be performed (combinable vs unitary, divisible,
optimizable, see [27]), as well as the social structure and the nature of the task outcomes
(public vs private) are key factors in this context [8,9,20]. While the organizational con-
text of an ontology learning project needs to be studied on a case-to-case basis to under-
stand its characteristics and their impact on the intrinsic and extrinsic motivations of the
individuals and the team as a whole, the activities and tasks that are typically part of the
process can be studied with respect to their potential to be meaningfully crowdsourced,
be that as part of a game with a purpose (or in fact any other related approach to har-
ness human computation in the large). From the tasks identified in [21] the ones which
can be hidden behind a gamelike interface are related to the validate the intermediary
results of an ontology learning algorithm, which consist in suggestions for terms, syn-
onyms, concepts, and relationships between concepts [7]. Following design guidelines
published in the literature [34,17], covering the full range of expressivity of ontology
learning algorithms within a single game is likely to yield suboptimal results, mainly be-
cause of the complexity of the task involved. Instead, one could imagine a series of differ-
ent (selection-agreement) games solving inter-related sub-tasks such as identifying syn-
onyms, building a taxonomy of concepts, describing the relationship between concepts,
translating concept labels into different languages, or documenting ontological concepts.
In the next section we give an overview of some of the games with a purpose addressing
these aspects.

3. Games for Learning Ontologies

The selection is based on a survey of relevant literature in the area of games with a pur-
pose, complemented by submissions to the INSEMTIVES Game Challenge.6 For each
of the games, we provide a summary of its most important characteristics, resulting from
trials of the games - when available online - and information available in publications
and documentation:

Aim Short paragraph including the name, the purpose and some general information
about a game.

Knowledge corpus Some games are tied to a specific domain, others are domain-
independent. They use a specific collection of digital resources to generate chal-
lenges to be solved during gameplay.

Human contribution The types of inputs collected, and the modes of interaction with
the players.

Output Data generated by the game.
Link Link at which readers can try out the game.

6http://challenge.insemtives.eu/

Simperl et al. / Games with a Purpose 231

3.1. OntoPronto

Aim OntoPronto [23] is a two-player real-time quiz game for ontology development,
specifically for the classification of concepts according to a pre-defined upper-
level ontology. As a corpus, OntoGame uses Wikipedia articles, which players
have to map consensually to the most specific class of the PROTON ontology [28].
The game is designed for two players, but also supports a single-player mode on
pre-recorded game challenges. Points are earned for consensual answers to the
challenges included in each game round. Through an integration with Facebook,
achieved results can also be made public within the social network of players.

Knowledge corpus The game uses a random selection of Wikipedia articles and the
PROTON ontology, but could be easily adjusted to other scenarios.

Human contribution The users have to read the first paragraph of a randomly chosen
Wikipedia article and first agree whether the article represents a concepts or an
instance (Figure 1). In the next step, they have to select the class of the PROTON
ontology that best describes the corresponding article.

Output Ontology consisting of classes and instances classified according to the PRO-
TON ontology, represented in SKOS.

Link http://ontogame.sti2.at/

Figure 1. OntoPronto: Extending an existing ontology with classes and instances

232 Simperl et al. / Games with a Purpose

3.2. Concept Game

Aim Concept Game [13] focuses on the creation of a commonsense knowledge base
consisting of assertions created via text mining that are validated by players. It
is a single-player game, timed, implemented as Facebook application. Players are
rewarded for choosing the correct answers - correctness being derived via majority
voting - and progress and unlocking of a new game level are posted publicly on
the Facebook wall of the user.

Knowledge corpus The triple-like assertions are obtained from automatic text mining
algorithms applied on a seed set of concepts from the ConceptNet7 semantic net-
work and Wikipedia articles. The concepts have been annotated by experts and
used as basis for building BagPack models. The resulting confidence values were
used to rate assertions from the dependency parsed Wikipedia corpus made avail-
able by the WaCky project.8 Top-rated assertions build the corpus of Concept
Game.

Human contribution The users have to validate previously collected and randomly cho-
sen candidate assertions (Figure 2), indicating whether the corresponding state-
ment is meaningful or meaningless.

Output A commonsense knowledge based, validated by humans.

Link http://apps.facebook.com/conceptgame/

Figure 2. Concept Game: Validating commonsense assertions

7(http://conceptnet.media.mit.edu/)
8http://wacky.sslmit.unibo.it

Simperl et al. / Games with a Purpose 233

3.3. FACTory Game

Aim FACTory Game is a single-player, turn-based online quiz game that develops a
knowledge base of commonsense facts validated by humans. Scoring is designed
in the same way as for Concept Game, correct answers being identified based on
multiple answers on the same questions from different players.

Knowledge corpus The game randomly chooses facts from the Cyc knowledge base
and presents them to the players. The assertions from Cyc consist of facts, rules
of thumb and heuristics for reasoning about the objects and events of everyday
life. The content is represented in a formalized language describing terms and
assertions on these terms (ground assertions as well as rules).

Human contribution The users are provided with knowledge from the Cyc knowledge
base and decide whether the given information is true, false, does not make sense
or whether it is not possible to say whether the information makes sense (Figure
3).

Output Validated assertions extracted from the Cyc knowledge base.
Link http://game.cyc.com

Figure 3. FACTory Game: Validating Cyc knowledge

3.4. Phrase Detectives

Aim Phrase Detectives is about indicating relationships between words and phrases [6].
It is a multi-player online game tackling the challenging problem of anaphora res-
olution. Anaphora resolution systems are useful for many applications of com-

234 Simperl et al. / Games with a Purpose

putational linguistics, for instance, in information extraction, text summarization
and search. In its newest release the game is also available as Facebook applica-
tion, where people can compete against experts or in a team with their friends (in
selection-agreement mode).

Knowledge corpus Phrase Detectives uses texts from Wikipedia, as well as fairy tales
and other types of texts. From this knowledge corpus, users are assigned text frag-
ments they have to annotate according to specific rules and instructions.

Human contribution The players annotate text fragments and make specific annotation
decisions. They have to complete different tasks as for example to make decisions
regarding whether or not a certain phrase has appeared already before in the game,
determining whether a phrase is referring to something else, or whether it is a
property of another phrase (Figure 4). Contributions are rewarded with points and
upgrades to the so-called ’graduate’ level. Leader and top scores boards advertise
the achievements of the most successful players. Input validation is realized via
comparisons with existing gold-standard texts and with answers provided by other
users on the same text.

Output Text corpus annotated with anaphoric references.
Link http://anawiki.essex.ac.uk/phrasedetectives/

Figure 4. Phrase Detectives: Identifying relationships between words and phrases for anaphora resolution

3.5. Rapport Game

Aim Rapport Game [15] is a game for building a semantic network encoding common-
sense knowledge. To do so players ask other players questions related to inter-
esting topics. The answers they receive to their questions are then evaluated by
majority voting and taken as basis for building the network.

Knowledge corpus Any topic that is of interest for the players as they start interacting
with each other by asking/answering questions related to a chosen topic.

Human contribution Players choose other players from a list and start interacting with
each other in one of four possible ways. They start discussing by asking/answering
questions related to topics of their interest and voting each other’s answers (Fig-
ure 5).

Output Semantic network.
Link http://apps.facebook.com/conceptnet/

Simperl et al. / Games with a Purpose 235

Figure 5. Rapport Game: Question-answering to build a semantic network

3.6. Verbosity

Aim Verbosity [33]) is a two-player online game for gathering commonsense facts. In
each round, one player is assigned the role of the ’describer’ and the other the
’guesser’. The describer is producing hints for the guesser to guess the input sug-
gested by the game designer. The goal is that the guesser reproduces the original
input of the game based on the information supplied by the describer. In this way,
the game collects commonsense facts about virtually any topic. The game can also
be played in a single-player mode, simulating the describer.

Knowledge corpus Arbitrary topics.
Human contribution The describer gives hints to the guesser about the topic suggested

by the game designer by filling in triple-like sentence templates with pre-defined
predicates ’is-kind-of’, ’is-used-for’, and ’is-the-opposite-of’, while the guesser
enters terms that may fit the description (Figure 6). As the describer sees the an-
swers of the guesser, she can also indicate whether the guesser gets closer to the
solution or not. Points are assigned cooperatively, whenever the pair of players
successfully completes a game round.

Output Knowledge base of commonsense facts expressed as triples using pre-defined
predicates.

Link http://www.gwap.com/

236 Simperl et al. / Games with a Purpose

Figure 6. Verbosity: Collecting commonsense facts

3.7. WhoKnows?

Aim In WhoKnows? (Figure 7) players evaluate the accuracy of DBpedia knowledge an-
swering questions automatically extracted from DBpedia triples.9 Questions which
are marked as meaningless by a certain number of users indicate data quality prob-
lems in DBpedia and could be subsequently used for ranking and curation pur-
poses.

Knowledge corpus WhoKnows? uses questions of the form ’object is-property-of sub-
ject’ which are generated automatically from DBpedia triples. Each challenge is
conceived as a multi-choice question consisting of correct and incorrect answers.
The latter are created automatically from DBpedia triples that hold the same prop-
erty and a different object.

Human contribution The player is provided with questions that he should answer cor-
rectly and as fast as possible. Each question has a closed set of answers, including
correct and incorrect choices.

Output Validated DBpedia assertions, ranking of facts.

3.8. Comparison

As discussed in Section 2 many aspects of the execution of ontology learning algorithms
can be turned into games with a purpose following different game models. This includes
computations linguistics aspects, as illustrated in the Phrase Detectives game, but also
conceptual modeling and fact validation aspects as shown in OntoPronto and the mul-
titude of commonsense fact checking instances of which this chapter can offer only a
small selection. While many of the games surveyed here share common aims and ideas,
their underlying game mechanics is very different at various levels: the actual game play,

9http://dbpedia.org/

Simperl et al. / Games with a Purpose 237

Figure 7. WhoKnows?: Curating DBpedia

the quality assurance measures by which players inputs are accepted, and the incentives
that are put in place to reward players contributions and encourage players retention.

Table 1 summarizes the most important features of the games surveyed in this sec-
tion.

The evaluation of players’ inputs is done either by comparison or cooperatively
when pairs of players agree upon the solution to a challenge. In either cases it is essential
that the game attracts a critical mass of players. For comparative metrics, an answer can
be reliably validated only if it has been confirmed in multiple game rounds. In addition,
cooperative metrics rely on a gameplay in which pairs of players are assigned randomly
in each round, which implies that at each moment in time there has to be a certain num-
ber of players logged in to the game; otherwise, the second player can be emulated (as it
is done, for instance, in Verbosity and OntoPronto) using pre-recorded challenges.

The types of knowledge that is processed through the games vary, however, all games
we surveyed10 choose topics of general interest and openly-available knowledge corpora
as foundation for the selection of challenges. As this selection is performed automati-
cally, most of them also offer means for users to filter potential meaningless challenges,
thus constantly improving their background algorithms. The data generated through the
games consists of knowledge assertions that can be used to create, extend or curate a
knowledge base - or in the case of Phrase Detectives, train anaphora resolution systems.

In terms of the motivation for users to contribute, most tools rely on simple game
mechanics related to what Malone referred to as ’challenge’ in [17]: timed game rounds,
rewards implemented as scores, leader boards and different game levels. Multi-player
games such as OntoPronto and Verbosity encourage cooperation in the sense that players
can win points only if they agree with their partners on the solution to a given problem.

10See also http://www.insemtives.eu/games for a more comprehensive overview.

238 Simperl et al. / Games with a Purpose

Table 1. Comparison table

Aim Knowledge cor-
pus

Human contri-
bution

Output

OntoPronto ontology devel-
opment, clas-
sification of
concepts

random selection
of Wikipedia ar-
ticles, PROTON
ontology

read a paragraph
from Wikipedia,
agree whether
the article repre-
sents a concepts
or an instance,
select the class
of the PROTON
ontology that
best describes the
corresponding
article

Ontology con-
sisting of classes
and instances
represented in
SKOS

Concept
Game

develop knowl-
edge base of
commonsense
knowledge

seed concepts
from Concept-
Net, assertions
from Wikipedia
corpus

decide about
meaningfulness
of assertion

validated asser-
tions, forming
commonsense
knowledge base

FACTory
Game

curate Cyc assertions from
Cyc facts, rules
of thumb and
heuristics for
reasoning about
the objects
and events of
everyday life

decide whether
assertions are
meaningful

validated asser-
tions

Phrase
Detectives

anaphora resolu-
tion

texts from
Wikipedia, fairy
tales and other
types of texts

indicate rela-
tionships be-
tween words and
phrases

annotated data set
of anaphoric ref-
erences

Rapport
Game

building com-
monsense seman-
tic network

any topic that is
of interest for the
gamers

discuss by ask-
ing and answer-
ing questions re-
lated to topics of
interest and vot-
ing other players’
answers

semantic network

Verbosity gathering com-
monsense facts
on given topic

any describe given
topic using pre-
defined sentence
templates, guess
topic

database of com-
monsense facts

Who
Knows?

curate DBpedia,
rank DBpedia
facts

set of questions
and possible
answers created
based on DB-
pedia entities,
predicates and
categories

answer multi-
choice triple-like
questions

validated asser-
tions

Simperl et al. / Games with a Purpose 239

For such game models it is assumed that player enjoyment is triggered primarily by social
aspects, in this case the challenge being to achieve consensus with a game partner who
is not known in advance using only the communication channels that are provided by
the game designer; such selection-agreement games also promote fantasy and creativity,
which are known as important factors to make a game more interesting for its audience
[17].

4. Building New Games

This section is dedicated to the development of new games with a purpose for ontol-
ogy learning, and any other type of scenario involving the creation and management of
Semantic Web data. We introduce the Generic Gaming Toolkit, a extensible framework
which provides the main building blocks for the design and implementation of seman-
tic games, and conclude with a series of general guidelines derived from relevant liter-
ature on games and game mechanics and from our own experiences in the context of
OntoGame and the INSEMTIVES project.

4.1. Enabling Technology

The Generic Gaming Toolkit facilitates the development of semantic games (see Figure
8). It consists of a programming API covering the most common functional components
which are required to turn a specific technical task into a game with a purpose, and a
technology platform to run such games [26,29]. Both the source code and the associated
code documentation are publicly available at SourceForge.11

Figure 8. Generic Gaming Toolkit: Overall architecture

11http://insemtives.svn.sourceforge.net/viewvc/insemtives/

240 Simperl et al. / Games with a Purpose

Conceptually Generic Gaming Toolkit differentiates among challenges, inputs, re-
sources, and play records. A ’challenge’ abstracts from the actual task players carry out
while playing the game. Each challenge can be split into several sub-challenges, which
are structured hierarchically. In OntoPronto, for instance, the main task is to classify the
topic of a Wikipedia article in the PROTON ontology, and is sub-divided into two atomic
tasks: deciding whether an article refers to a concept or an instance, and identifying the
most representative class in PROTON the class or instance from the previous step can be
classified as. A ’resource’ abstracts from the topic a challenge is about, for example, a
YouTube video, an ontology concept or a Wikipedia article. A resource may also refer to
the answer provided by a player, which in the OntoPronto case, are classes in the PRO-
TON ontology. An ’input’ represents an answer of a player to a certain challenge. It is
always related to a resource, deals with a specific challenge and may contain a resource
as answer. A ’play record’ behaves like a container for player inputs about a specific
resource. It is used for all subsequent background computations by which player inputs
are translated into semantic content, including the evaluation of the inputs, and the actual
encoding using Semantic Web standards.

Agreement Negotiation Agreement negotiation denominates the process by which a
pair of gamers decides whether to take a given challenge or skip. The process starts with
collecting inputs from of all players. These can be: ’Disagreed’ in case it is not clear
whether or not to skip a given challenge, ’Skipped’ if both players decided to skip, and
’Agreed’ if they declared that they want to provide an answer to the question raised in
the game round at hand. Once the inputs of all players have been collected, the game is
resumed according to a pre-defined negotiation strategy. In the games implemented so far
as part of the OntoGame series, we ask players to reach an agreement on whether to skip
or accept a challenge; however, the toolkit can be easily extended to support variations
of this simple model, for instance, for multi-player scenarios in which the majority of
players decide upon the questions to be answered.

Partner Matching Another important feature of the Generic Gaming Toolkit is the
matching of the players. When a users logs to a game the system selects a game partner
according to criteria such as IP-addresses, location, age, and gender, all of which may
influence the quality of the inputs collected. The selection of players within the game
ensures that players remain anonymous while consensually resolving challenges, thus
increasing the probability that they behave as intended by the game designer. In other
games of the OntoGame family we have also used recorded game rounds, for which
answers are already available from previous players, in order to realize a single-player
mode in addition to the two-players mode deployed in, for instance, OntoPronto.

Players’ Reliability Reliability is a rough indicator of the trustworthiness of the an-
swers provided by a player; having such an indicator is a very important aspect of the
process of semantic content creation in the Generic Gaming Toolkit, since the game me-
chanics are always about questions where the answer is actually unknown to the game
designer. It has to be assumed that there are at least some players that want to trick
the system and behave in an irrational and unfavorable way. As the very purpose of the
games is to derive useful, structured knowledge from game inputs, each game needs to
implement functionality to verify whether an input comes from a trustworthy player or a
cheater. Permitting cheating would decrease the gaming fun as well as the quality of the
generated data.

Simperl et al. / Games with a Purpose 241

Consensus Finding One of the most important features of the Generic Gaming Toolkit
is the abstract projection of the process to find consensus for the set of answers provided
for each question. Finding consensus can be achieved in many different ways such as
plainly by a simple majority. However, there are also more sophisticated ways of iden-
tifying a consensual set of answers, e.g., by weighting each answer by their player’s re-
liability, considering only answers that have been answered similarly by all players of
a certain game round. Additionally restrictions such as a minimum number of different
players or a minimal number of answers on a challenge can be imposed on the process
of consensus finding.

Ranking Ranking is used to give an indication of the importance of a play record. The
importance defines which record is most suited to be played next. Ranking metrics can
be implemented in various ways, depending on the needs of the game, i.e., one could
rank the records that are closest to produce output highest, or records that have not yet
been played very frequently. In the Generic Gaming Toolkit we have implemented two
different strategies: one that does not rank at all, which is required when ranking is not
to be considered during the record selecting procedure; and a second one considering the
number of required answers, the number of different players, and the number of questions
that have been answered.

Matching The last relevant conceptual feature of the Generic Gaming Toolkit is the
process of defining whether or not a set of answers coincide. Note that this is different
from assessing consensus, as matching answers is used to compute an equality between
answers. An example of doing so is comparing two players’ answers and evaluating their
similarity. Another implemented matching algorithm checks whether a player’s answer
equals the majority of all previous collected answers about this resource.

4.2. Design Principles and Open Issues

In this section, we summarize some of the most important lessons learned over the last
three years of continuously developing the OntoGame framework. The ultimate aim of
this line of research is to provide comprehensive decision support in matters related to
the execution of human-aided semantic content authoring tasks. This can be achieved by
identifying those tasks that can be effectively addressed through games, crowdsourcing
platforms such as Amazon Mechanical Turk,12 or social platforms.

Task selection. The identification of those semantic-content-authoring tasks that are
suitable for the casual-game paradigm is of paramount importance for the overall suc-
cess of the approach. Hiding tasks behind games is not trivial, and cannot work for every
aspect of semantic-content-authoring, no matter how highly human-driven it might be.
Candidate tasks cannot be too difficult, or too easy; they have to be divisible or com-
binable, so that they can be broken down into smaller chunks that can be independently
solved across a potentially large group of contributors [27]. They have to be suitable for
a broad audience of players and, in the context of games, be mappable to a series of
consensual-decision-making challenges. Our experiences show that the resulting work-
flows have to be not just constrained in their structure - basically sequences of atomic

12http://www.mturk.com/

242 Simperl et al. / Games with a Purpose

tasks which are approached and solved consensually by players - but also in size. As a
rule of thumb, a sequence of more than 3 to 4 interrelated tasks is likely to lead to chal-
lenges that are too complicated for players to learn and keep track of at the fast pace the
game is expected to be played. This makes the game less appealing for players, thus di-
minishing their willingness to play and reducing the amount of data produced from their
inputs. Each atomic task results in a question - to which the correct answer is not known
in advance to the game designer - which needs to be answered by the pair of players com-
peting against each other at a certain point in time in the game. This includes open-scale
questions, whose answers are typed in by users in a dedicated field, or closed-scale ones,
for which the system provides a set of possible answers from which the players have to
choose one viable option. In the first scenario one needs to make use of specific matching
algorithms to cope with potential variations in the form of the answers - for instance,
different spellings - in order to ensure that consensus finding is feasible in most cases.
Nevertheless, if the set of potentially correct answers is too broad for a consensus to be
likely to emerge in most cases, the task is probably less appropriate for a game-based
approach and additional knowledge has to be taken into account to reduce the space of
possible solutions. An interesting research question in this context would be the extent
to which one could combine a games-based approach, which can obviously solve only
very specific types of semantic-content-authoring tasks, with other human-computation
paradigms and incentive mechanisms. For example, one could imagine refining the re-
sults of casual games in Amazon’s Mechanical Turk, or different combinations of games
similarly to the GWAP framework.

In ontology learning projects, a game-based approach is feasible as a means to vali-
date the results of automatic algorithms carrying out a specific task either at the level of
text corpus from which the ontology is eventually learned, or at the level of the concep-
tual structures that can be detected. Each of these aspects, however, have to be treated
separately, as individual games or game-like experiences, and as such it would be in-
teresting to investigate how related crowdsourcing approaches might fit in the picture,
as mentioned earlier. This might prove particularly beneficial especially in the context
of ontology learning, given the increasing popularity of Mechanical Turk in computa-
tional linguistics and the emerging portfolio of methods, techniques and tools assisting
researchers in validating the outcomes of their algorithms and creating training corpora
therefor. In addition, the question of combining the results of different crowdsourcing
platforms - games or others - from a data and execution flow point of view remains to
be solved. The current state of the art in the area - at least as far as the Semantic Web
community is concerned - is that more and more games with a purpose, most recently as
Facebook applications, are being developed, but it is unclear how their results could be
exploited beyond their original scope. This problem is to some extent solved by openly
publishing the generated data according to Linked Data principles; however, in order to
further optimize the usability and usefulness of the data, in particular in the context of
so-called ’crowdsourcing pipelines’ that are essential for tackling almost any activity on
the ontology life cycle - as these activities are too complex to be crowdsourced as they
are - one would need special-purpose metadata schemas capturing the most important
parameters of the crowdsourcing project the data resulted from.

Knowledge Corpora Games with a purpose usually need a corpus of knowledge to start
with, which is an integral part of the game challenges. Challenges cannot be shown too
often to the same players without damaging the game experience [34]. This requires a

Simperl et al. / Games with a Purpose 243

large repository of knowledge in the background that can be used as input, whereas on-
line collections of resources such as YouTube, Flickr, Wikipedia or WordNet are surely
useful. In the context of SpotTheLink [30], a game on ontology alignment, we experi-
mented with various ontologies in domains such as eCommerce and eTourism as knowl-
edge corpus for the game. None of them received a positive resonance in initial trials -
this was due to the structure and size of the ontologies (many inheritance levels, large
number of concept siblings per level in the eCommerce setting), or the domain itself
(perceived as less interesting by interviewees, or simply too far away from their daily
life). Ontologies suitable for an ontology alignment game should be of manageable size
(several hundreds of concepts), and in a domain that a broad audience of users can relate
to (e.g., media, entertainment, sports, but also ontologies capturing general knowledge
such as DBPedia and PROTON, as in OntoPronto or Who Knows?). These limitations
may affect the acceptance of a game whose purpose is the learning of an ontology in
a domain which is accessible to an expert audience. A second problem game designers
have to solve is the quality of the knowledge corpus when the corpus is generated auto-
matically; some of the challenges presented to the users might not be meaningful, thus
hampering the game experience.

Game fun The challenge here is to reach a balance between an appealing design and
the purposefulness of the game with respect to the task to be solved. Games for semantic-
content authoring are in many cases on the edge of being too difficult for a non-expert
audience. The positive side of this is that such games provide an intellectual challenge,
which is important to keep the games sufficiently interesting. The negative side is that
creating an attractive and easy-to-grasp interface for such technical tasks is not trivial;
user interfaces studies for semantic technologies are still in their infancy even when it
comes to expert-oriented environments such as ontology editors. In selection-agreement
games, the navigation must force users to move along existing knowledge structures, and
make a consensual selection. This requires appropriate visualization techniques, while
remaining game-like and playful in terms of the colors and metaphors used. Massive
user participation and generation of output is crucial for the games and the methods they
incorporate: they require a critical mass of contributions. Even when the task is intellec-
tually challenging, and the interface is perceived as usable and pleasant, we cannot ex-
pect a massive user involvement per se. Additional incentives schemes and motivations
are needed to make users start and continue playing. This can include measures such as
competition, reputation and sociability. Keeping scores is an important feature of every
game. Players want to improve their ranking and standing within the player community.
Measures which should be applied are making score lists prominent - and rewarding
progress through badges and alike - making users aware when they are about to lose a
rank or when they improved, and to provide means for users to be able to brag about
the results on social platforms. With respect to sociability, knowing that they are playing
against a real partner is motivating for many players. As the games are cooperative by
design, players might want to know more about their partner. Allowing communication
after the gaming session - if they achieve a certain amount of points - could be such a
measure. Moreover, players should be able to indicate preferences for the choice of their
partners, be able to invite people from their social network to play the game, and report
extensively on their achievements, for instance, through frequent status updates.

Recent studies on the massive success of social games deployed via Facebook and
other platforms, which are similar to games with a purpose through their relatively sim-

244 Simperl et al. / Games with a Purpose

ple, casual plot and the incentive mechanisms they incorporate, have identified a number
of essential game-design features which ensure growth in number of players and encour-
age player retention. Many of these features are available at best only in a very basic
form in the games with a purpose we surveyed: multiple difficulty levels, changing game
goals, virtual gifts, to name only a few. It is yet unclear how these features could be
implemented in games aiming at solving a Semantic Web-related problem, as the under-
lying tasks are often repetitive, and distinguishing variable levels of difficulty and goals
automatically is not straightforward. In most cases, the games have been evaluated in
controlled experiments and there is scanted evidence on their acceptance by the large
community of casual gamers, and on their ability to viral growth and players retention.

5. Conclusions

In this chapter we have analyzed the process of ontology learning and discuss the fea-
sibility of a game-based approach to solving those problems which computer programs
still find difficult despite many years of research, increasing volumes of data available,
and progress with respect to the accuracy of the results. We have presented a selection of
semantic games that try to address the shortcomings of automatic ontology development
by describing their purpose, the domain of interest, the required human contribution and
the results of each game. To foster the further development of this new and exciting field
of research we have presented the Generic Gaming Toolkit as enabling technology for the
implementation and deployment of semantic games, devised general design guidelines,
and identified several open research questions.

Acknowledgements

The work presented has been funded by the FP7 project INSEMTIVES under EU Ob-
jective 4.3 (grant number FP7-231181).

References

[1] Casual Games Association. Casual Games Market Report. http://www.org.id.tue.nl/
IFIP-TC14/documents/CasualGamesMarketReport-2007.pdf, 2007.

[2] Entertainment Software Association. Essential Facts About the Computer and Video Game Industry.
http://www.theesa.com/facts/pdfs/ESA_Essential_Facts_2010.pdf, 2010.

[3] International Game Developers Association. 2008-2009 Casual Games White Paper. http://www.
igda.org/casual/, 2009.

[4] N. Aussenac-Gilles, Sylvie Despres, and Sylvie Szulman. Ontology learning and population: bridg-
ing the gap between text and knowledge, chapter The TERMINAE method and platform for ontology
engineering from texts, pages 199–223. IOS Press, 2008.

[5] S. Braun, A. Schmidt, A. Walter, G. Nagypal, and V. Zacharias. Ontology maturing: A collaborative
web 2.0 approach to ontology engineering, May 8 2007.

[6] Jon Chamberlain, Massimo Poesio, and Udo Kruschwitz. A demonstration of human computation using
the phrase detectives annotation game. In Proceedings of the ACM SIGKDD Workshop on Human
Computation, pages 23–24, 2009.

[7] P. Cimiano. Ontology Learning and Population from Text: Algorithms, Evaluation and Applications.
Springer, 2006.

Simperl et al. / Games with a Purpose 245

[8] R. Cuel, O. Morozova, M. Rohde, E. Simperl, K. Siorpaes, O. Tokarchuk, T. Widenhoefer, F. Yetim,
and M. Zamarian. Motivation mechanisms for participation in human-driven semantic content creation.
International Journal of Knowledge Engineering and Data Mining, 1(4), 2011.

[9] R. Cuel, O. Tokarchuk, and M. Zamarian. Mechanism Design for Designing Annotation Tools. In
Proceedings of the the Sixth International Conference on Internet and Web Applications and Services
(ICIW 2011), 2011.

[10] K. Dellschaft and S. Staab. Ontology Learning and Population: Briding the Gap between Text and
Knowledge, chapter Strategies for the evaluation of ontology learning, pages 253–272. IOS Press, 2008.

[11] A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Ontological Engineering. Advanced Informa-
tion and Knowledge Processing. Springer, 2004.

[12] N. Guarino and C. A. Welty. Evaluating ontological decisions with ontoclean. Communications of the
ACM, 45(2):61–65, 2002.

[13] Amac Herdagdelen and Marco Baroni. The Concept Game: Better commonsense knowledge extraction
by combining text mining and a game with a purpose. In Proceedings of the AAAI Fall Symposium on
Commonsense Knowledge, pages 52–57, 2010.

[14] Markus Krötzsch, Denny Vrandecic, Max Völkel, Heiko Haller, and Rudi Studer. Semantic wikipedia.
Journal of Web Semantics, 5(4):251–261, 2007.

[15] Y. Kuo, J. Lee, K. Chiang, R. Wang, E. Shen, C. Chan, and J. Hsu. Community-based game design:
experiments on social games for commonsense data collection. In Proceedings of the ACM SIGKDD
Workshop on Human Computation, HCOMP ’09, pages 15–22, 2009.

[16] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent Systems, 16(2):72–
79, 2001.

[17] T. W. Malone. What makes things fun to learn? Heuristics for designing instructional computer games.
In Proceedings of the 3rd ACM SIGSMALL Symposium and the first SIGPC Symposium on Small Sys-
tems, SIGSMALL ’80, pages 162–169, 1980.

[18] H.S. Pinto and J.P. Martins. A methodology for ontology integration. In International Conference on
Knowledge Capture (K-CAP), pages 131–138. ACM Press, 2001.

[19] Sebastian Schaffert, François Bry, Joachim Baumeister, and Malte Kiesel. Semantic wikis. IEEE Soft-
ware, 25(4):8–11, 2008.

[20] E. Simperl, R. Cuel, and M. Stein. Incentive-Centric Semantic Web Application Engineering. Synthesis
Lectures on the Semantic Web: Theory and Technology. Morgan & Claypool, 2013.

[21] E. Simperl, C. Tempich, and D. Vrandecic. Ontology learning and population: bridging the gap between
text and knowledge, chapter A Methodology for Ontology Learning, pages 225–249. IOS Press, 2008.

[22] K. Siorpaes and M. Hepp. Games with a Purpose for the Semantic Web. IEEE Intelligent Systems,
23(3):50–60, 2008.

[23] K. Siorpaes and M. Hepp. OntoGame: Weaving the Semantic Web by Online Games. In Proceedings of
the European Semantic Web Conference ESWC2008, pages 751–766, 2008.

[24] K. Siorpaes and E. Simperl. Human intelligence in the process of semantic content creation. World Wide
Web Journal, 13(1), 2010.

[25] K. Siorpaes and E. Simperl. Incentives, Motivation, Participation, Games: Human Computation for
Linked Data. Linked Data in the Future Internet (Future Internet Assembly), 2010.

[26] K. Siorpaes and S. Thaler. Requirements and design of a generic gaming toolkit and api. Deliverable
D4.1.1, INSEMTIVES, March 2010.

[27] I. D. Steiner. Group Process and Productivity (Social Psychological Monograph). Academic Press Inc,
1972.

[28] I. Terziev, A. Kiryakov, and D. Manov. Base upper-level ontology (bulo) guidance. Technical report,
2005.

[29] S. Thaler. Generic gaming toolkit and api implementation. Deliverable D4.1.2, INSEMTIVES, Septem-
ber 2010.

[30] S. Thaler, E. Simperl, and K. Siorpaes. SpotTheLink: A Game for Ontology Alignment. In Proceedings
of the 6th Conference for Professional Knowledge Management Innsbruck (WM2011), 2011.

[31] Tania Tudorache, Sean M. Falconer, Natalya Fridman Noy, Csongor Nyulas, Tevfik Bedirhan Üstün,
Margaret-Anne D. Storey, and Mark A. Musen. Ontology development for the masses: Creating icd-11
in webprotégé. In Knowledge Engineering and Management by the Masses - Proceedings of the 17th
International Conference (EKAW 2010), pages 74–89, 2010.

[32] L. Van Ahn. Games with a purpose. IEEE Computer, 29(6):92–94, 2006.

246 Simperl et al. / Games with a Purpose

[33] L. Van Ahn, M. Kedia, and M. Blum. Verbosity: a game for collecting common-sense facts, 2006.
[34] L. von Ahn and L. Dabbish. Designing games with a purpose. Communications of the ACM, 51(8):58–

67, 2008.
[35] Denny Vrandecic and Anja Jentzsch. Linked data and the semantic web. In Johanna Völker and Jens

Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2012.

Formal Concept Analysis Methods for
Interactive Ontology Learning

Sebastian RUDOLPH a, Barış SERTKAYA b

a Karlsruhe Institute of Technology
rudolph@kit.edu

b SAP Research Center Dresden
baris.sertkaya@sap.com

Abstract. In this chapter we give a thorough overview over ontology learning ap-
proaches based on Formal Concept Analysis. By using information provided by a
domain expert, our approaches learn the relationships between classes of the appli-
cation domain and extend the ontology accordingly. We present basis for efficient
and formally well-founded techniques and tools that can be used for interactive
ontology learning. The use of techniques from Formal Concept Analysis ensures
that, on the one hand, the interaction with the expert is kept to a minimum, and, on
the other hand, enables us to show that the knowledge in the resulting ontology is
complete in a certain, well-defined sense.

Keywords. interactive ontology learning, formal concept analysis, ontology
exploration

1. Introduction

Designing and maintaining ontologies is a cumbersome and error-prone task. In most
of the cases, during the design phase, the ontology engineer cannot fully specify the
relationships between the classes of the application domain either because there are too
many of them or because he does not have a complete list of these relationships ready at
hand. In such cases, automated tools are not of much use either, since this task requires
comprehensive knowledge of the application domain, which means that interaction with
a domain expert is required. Besides designing an ontology, maintaining an existing one
has similar problems. Here the ontology engineer faces the problem of checking whether
the ontology already has all of the relevant relationships between the classes or not.
Again this problem cannot be solved by an automated tool alone because such questions
can only be answered by a domain expert. What one can use to solve these problems is
a semi-automated tool that learns the application domain from a domain expert. More
precisely, this method should be able to interactively acquire domain knowledge from an
expert in order to support the design or maintenance of the ontology.

An interactive knowledge acquisition algorithm developed in Formal Concept Anal-
ysis can be used to solve these problems. Formal Concept Analysis (FCA) [14] is a field
of applied mathematics that is based on a lattice-theoretic formalization of the notions of
concept and conceptual hierarchy. It has been successfully used in many areas of com-

248 Rudolph and Sertkaya / Formal Concept Analysis Methods

puter science including data analysis, data mining and machine learning. FCA provides
efficient algorithms for analyzing data and discovering hidden dependencies in the data.
It also allows the user to visualize the data in an easily understandable way. In addition to
these, FCA provides a knowledge acquisition method that efficiently acquires knowledge
in a specific application domain by asking questions to a domain expert. Moreover, this
method guarantees completeness of the resulting knowledge in a well-defined way.

FCA has been used in the literature to create or complete ontologies in an interac-
tive process involving both reasoning engines and human experts. As a general ratio-
nale behind these techniques, the amount of interaction with the experts – and hence
their workload – shall be minimized. Consequently, the overall process can be seen as a
kind of user-assisted ontology learning. Although this sounds fairly straightforward, one
cannot directly use classical FCA methods for this purpose. They have to be adapted to
meet the requirements of ontological knowledge representation such as the open-world
assumption or the potential infinity of class descriptions.

In this chapter we will give a thorough overview over the field of FCA-based ontol-
ogy learning. Section 2 will introduce the foundational notions used in FCA. Section 3
provides the connections between notions of ontological knowledge representation and
notions of FCA and sketches a basic algorithm how ontologies can be generated in an
FCA-style way. Section 4 presents substantial refinements to this algorithm necessary to
employ these techniques in an open-world setting with already present prior ontological
knowledge. In Section 5, this approach is further extended in order to account for the
potentially infinite amount of class descriptions.

2. Formal Concept Analysis

In FCA, data is represented in the form of so-called formal contexts, which in their sim-
plest form just specify for a given set of objects and attributes, which attributes are satis-
fied by which objects.

Definition 1 (Formal context). A formal context is a triple K = (G,M, I), where G is
a set of objects, M is a set of attributes, and I ⊆ G ×M is a relation that associates
each object g with the attributes satisfied by g. In order to express that an object g is in
relation I with an attribute m, we write gIm. �

A formal context is usually visualized as a cross table, where the rows represent the
objects, and the columns represent the attributes of the context. A cross in column m of
row g means that object g has attribute m, and the absence of a cross means that g does
not have attribute m.

Definition 2 (Derivation operator). Let K = (G,M, I) be a formal context. For a set
of objects A ⊆ G, we define the set of attributes that are satisfied by all objects in A as
follows: A′ := {m ∈ M | ∀g ∈ A. gIm}. Similarly, for a set of attributes B ⊆ M , we
define the set of objects that satisfy all attributes in B as follows: B′ := {g ∈ G | ∀m ∈
B. gIm}. �

Given a formal context, the most common method to analyze it is to find (a canonical
base of) the implications between the attributes of this context. Implications between
attributes are constraints that hold in a given context. They are statements of the form

Rudolph and Sertkaya / Formal Concept Analysis Methods 249

“Every object that satisfies the attributes mi1, . . . ,mik also satisfies the attributes
mj1, . . . ,mj`.”

Formally, an implication between attributes is defined as follows:

Definition 3 (Implication between attributes). Let K = (G,M, I) be a formal context.
An implication between the attributes in M is a pair of sets L,R ⊆ M , usually written
as L → R. An implication L → R holds in K if every object of K that has all of the
attributes in L also has all of the attributes in R, i.e., if L′ ⊆ R′. We denote the set of all
implications that hold in K by Imp(K), and call it the implicational theory of K. �

The implicational theory Imp(K) of a formal context K can be large. Thus, one is
interested in small bases generating Imp(K). There may exist different bases of Imp(K),
and not all of them need to be of minimum cardinality. A base J of Imp(K) is called
minimum base iff no base of Imp(K) has a cardinality smaller than the cardinality of J .
Duquenne and Guigues have given a description of such a minimum base [15] for formal
contexts with a finite set of attributes. It is called the Duquenne-Guigues Base or the stem
base of a formal context.

In some applications where one wants to compute the Duquenne-Guigues Base, the
formal context is not given explicitly as a cross table, but it is only implicitly “known” to a
domain expert. In such cases, Ganter’s interactive attribute exploration algorithm [11,13]
has proved to be a useful method to compute the Duquenne-Guigues Base and efficiently
capture the expert’s knowledge. Consider the following setting: There is an application
domain which can be represented as a formal context K, but K is not explicitly known.
However, due to his expertise, a domain expert is able to answer if an implication holds in
K and, in case it does not hold he is able to give a counterexample. By asking implication
questions to the domain expert, the attribute exploration method computes a base for
Imp(K) and a subcontext K′ of K such that Imp(K′) = Imp(K). For each implication
question, the expert either says that it holds in K, in which case the implication is added
to the base, or he gives a counterexample from K, which is then added to K′. What
makes attribute exploration an attractive method for capturing expert knowledge is that it
guarantees to make the best use of the expert’s answers, and to ask the minimum possible
number of questions that suffice to acquire complete knowledge about the application
domain [11,13].

3. Ontology Exploration

Provided with this machinery of attribute exploration, the basic idea to employ it for
ontological knowledge acquisition is as follows: We assume that the domain which we
want to describe can be represented by one description logic [24] (DL) interpretation
I = (∆I , ·I). Picking a set M of concept names we can extract a formal context from
I in the straightforward way by letting the objects be the domain elements of I and
defining the relation I as concept membership.

Definition 4 (interpretation context). Let I = (∆I , ·I) be a DL interpretation and let
M be a subset of the concept names of I. Then the corresponding interpretation context
KM
I is the formal context (G,M, I) with G = ∆I and I = {(δ, A) | δ ∈ AI}. �

250 Rudolph and Sertkaya / Formal Concept Analysis Methods

The key insight now is that there is a tight correspondence between implications
holding in KM

I and a certain type of GCIs: it can be easily proven that an implication
A1, . . . , An → B1, . . . Bm holds in KM

I exactly if the GCIA1u. . .uAn v B1u. . .uBm

is satisfied by I. Hence, performing attribute exploration w.r.t. KM
I allows for acquir-

ing (a base of) all GCIs of that type. Note that, although KM
I may be infinite, the ex-

ploration will terminate as long as M is finite. The next common insight is that already
present ontological background knowledge can be exploited by presenting every impli-
cation coming up in the course of the exploration first to an automated reasoning engine
which might or might not confirm or deny it based on already present information. This
eases the workload of the expert who will then be only confronted with an implication if
the reasoning engine is not able to confirm or deny it on the basis of the present informa-
tion. Moreover, GCIs and counterexamples acquired during the exploration process can
be directly fed back into the background knowledge.

This general encoding and work flow underlies most of the work of applying at-
tribute exploration to ontology learning tasks. It was first sketched in [27], yet it needed
to be substantially refined and extended to meet the requirements of ontological model-
ing for the Semantic Web. In the sequel we will present these extensions and also provide
more technical details on (an adapted version of) the exploration algorithm itself.

4. Ontology Completion

The standardization of OWL [19] as the ontology language for the semantic web [7]
led to the fact that several ontology editors like Protégé [23], and Swoop [22] now sup-
port OWL, and ontologies written in OWL are employed in more and more applica-
tions. As the size of these ontologies grows, tools that support improving their quality
become more important. The tools available until now use DL reasoning to detect in-
consistencies and to infer consequences, i.e., implicit knowledge that can be deduced
from the explicitly represented knowledge. There are also promising approaches that al-
low to pinpoint the reasons for inconsistencies and for certain consequences, and that
help the ontology engineer to resolve inconsistencies and to remove unwanted conse-
quences [30,21,20,18,5,26]. These approaches address the quality dimension of sound-
ness of an ontology, both within itself (consistency) and w.r.t. the intended application
domain (no unwanted consequences). In [4,3] Baader et. al. have considered a different
quality dimension: completeness. They have provided a basis for formally well-founded
techniques and tools that support the ontology engineer in checking whether an ontol-
ogy contains all the relevant information about the application domain, and to extend the
ontology appropriately if this is not the case.

Given an application domain and a DL ontology describing it, it is interesting to
know whether the ontology contains all the relevant information about the domain:

• Are all the relevant constraints that hold between concepts in the domain captured
by the TBox?

• Are all the relevant individuals existing in the domain represented in the ABox?

Such questions cannot be answered by an automated tool alone. Clearly, to check
whether a given relationship between concepts—which does not follow from the TBox—
holds in the domain, one needs to ask a domain expert, and the same is true for questions

Rudolph and Sertkaya / Formal Concept Analysis Methods 251

regarding the existence of individuals not described in the ABox. The rôle of the auto-
mated tool is to ensure that the expert is asked as few questions as possible; in particular,
she should not be asked trivial questions, i.e., questions that could actually be answered
based on the represented knowledge. Answering a non-trivial question may require the
expert to study the relevant literature in the application domain or even to discover new
knowledge.

At the first glance, this task seems to be easily solvable by using the attribute explo-
ration method of FCA. However for this setting one cannot use attribute exploration as
it is. The main reason is the open-world semantics of DL ontologies in contrast to the
closed-world semantics of formal contexts. In DLs, if we cannot deduce from a TBox T
and an ABox A that an individual i is an instance of C, then we do not assume that i
is an instance of ¬C. Thus, our knowledge about the relationships between individuals
and concepts is incomplete. In contrast, classical FCA and attribute exploration assume
that the knowledge about objects is complete: a cross in row g and column m of a formal
context means that object g has attribute m, and the absence of a cross means that g does
not have m.

There has already been some work on how to extend FCA and attribute exploration
from complete knowledge to the case of partial knowledge [12,8,16,17,9,28]. However,
these works are based on assumptions that are different from the ones in the ontology
completion setting. In particular, they assume that the expert cannot answer all queries
and, as a consequence, the knowledge obtained after the exploration process may still be
incomplete. In contrast, in the ontology completion setting the intention is to complete
the ontology, i.e., in the end one wants to have complete knowledge about the relation-
ships between concepts of the ontology. What may be incomplete is the description of
individuals used during the exploration process.

4.1. Partial contexts

In [4] Baader et. al. have introduced an extension of attribute exploration that can deal
with partial knowledge, and have shown how it can be used to complete OWL ontologies.
This extension is based on the notion of a partial object description and partial context.

Definition 5 (Partial object description). A partial object description (pod) is a tuple
(A,S) where A,S ⊆ M are such that A ∩ S = ∅. We call such a pod a full object
description (fod) if A∪S = M . A set of pods is called a partial context and a set of fods
a full context . �

Note that in this definition, A is the set of attributes that a partial object certainly
has, and S is the set of attributes that it certainly does not have. A partial context can be
extended by either adding new pods or by extending existing pods.

Definition 6 (Realizer). We say that the pod (A′, S′) extends the pod (A,S), and write
this as (A,S) ≤ (A′, S′), if A ⊆ A′ and S ⊆ S′. Similarly, we say that the partial
context K′ extends the partial context K, and write this as K ≤ K′, if every pod in K is
extended by some pod in K′. If K is a full context and K ≤ K, then K is called a realizer
of K. �

The notion of implications in formal contexts is extended to partial contexts as fol-
lows:

252 Rudolph and Sertkaya / Formal Concept Analysis Methods

Definition 7 (Implication in partial contexts). Let L,R ⊆ M . The implication L → R
is refuted by the pod (A,S) if L ⊆ A and R ∩ S 6= ∅. It is refuted by the partial context
K if it is refuted by at least one element of K. The set of implications that are not refuted
by a given partial context K is denoted by Imp(K). The set of all fods that do not refute
a given set of implications L is denoted by Mod(L). �

In the ontology completion setting it is assumed that the domain expert has access
to a full context K and thus can answer all implication questions w.r.t. K, though finding
these answers may involve extensive literature study, or even proving new mathematical
theorems or carrying out new experiments, etc. What is partial is the subcontext that
the attribute exploration algorithm works with. The reason is that the initial context may
be partial, and the same is true for the counterexamples that the expert provides for
implications that do not hold in K.

The setting can be described in more detail as follows: We are given an initial (pos-
sibly empty) partial contextK, an initially empty set of implications L, and a full context
K that is a realizer of K. The expert answers implication questions “L → R” w.r.t. the
full context K. If she says “yes,” then K does not refute L→ R (and thus L→ R holds
in the corresponding formal contextK). The implication L→ R is then added to L. Oth-
erwise, the expert extends the current context K such that the extended context refutes
L→ R and still has K as a realizer. Consequently, the invariant K ≤ K ⊆ Mod(L) will
be satisfied. The aim is to enrich K and L such that

• eventually L is not only sound, but also complete for Imp(K),
• and K refutes all other implications (i.e., all the implications refuted by K).

As in the classical case, this should be achieved by asking as few questions as possible
to the expert. Our approach is based on the notion of undecided implications.

Definition 8 (Undecided implication). Let L be a set of implications and K a partial
context. An implication is called undecided w.r.t. K and L if it neither follows from L
nor is refuted by K. It is decided w.r.t. K and L if it is not undecided w.r.t. K and L. �

In principle, the attribute exploration algorithm on partial contexts tries to decide all
undecided implications by either adding the implication to L or extending K such that it
refutes the implication. If all implications are decided, then the goal is achieved.

Proposition 1. Assume that K ≤ K ⊆ Mod(L) and that all implications are decided
w.r.t. K and L. Then L is complete for Imp(K) and K refutes all implications not be-
longing to Imp(K).

How can one find all undecided implications? Generating all possible implications
and checking which ones are undecided is infeasible due to its computational cost. In-
stead it suffices to consider implications whose left-hand sides are L-closed.

Proposition 2. Let L be a set of implications and L→ R an implication. Then, L→ R
follows from L iff L(L)→ R follows from L.

Given an L-closed set L as left-hand side, what kind of right-hand sides should be
considered? Obviously, we need not consider right-hand sides R for which the implica-
tion L → R is refuted by K: such implications are already decided. The largest right-
hand side R such that L→ R is not refuted by K can be computed as follows:

Rudolph and Sertkaya / Formal Concept Analysis Methods 253

Proposition 3. For a given left-hand side L and a partial context K, the largest right-
hand side is K(L) := M \ ⋃{S | (A,S) ∈ K, L ⊆ A} such that L → K(L) is not
refuted by K.

In order to enumerate all left-hand sides, we can use the well-known approach from
FCA for enumerating closed sets in the lectic order [11,13], which is defined as follows:

Definition 9. Assume that M = {m1, . . . ,mn} and fix some linear order m1 < m2 <
· · ·mn on M . The lectic order < is defined as follows: for mi ∈ M and A,B ⊆ M we
define A <i B iff mi ∈ B \A and A ∩ {m1, . . . ,mi−1} = B ∩ {m1, . . . ,mi−1}. The
order < is the union of the orders <i.

Obviously, < extends the strict subset order, and thus ∅ is the smallest and M the
largest set w.r.t. <.

Proposition 4. Given a set of implications L and an L-closed set A (M , the next
L-closed set following A in the lectic order is L((A∩{m1, . . . ,mj−1})∪{mj}) where
j is maximal such that A <j L((A ∩ {m1, . . . ,mj−1}) ∪ {mj}.

If an implication is added because the expert has stated that it holds in K, then we
can extend the current context K by closing the first component of every pod in K w.r.t.
the new set of implications L. In fact, L ⊆ Imp(K) makes sure that the extended context
is still realized by K. To allow for this and possible other ways of extending the partial
context, the formulation of the algorithm just says that, in case an implication is added,
the partial context can also be extended. Whenever an implication is not accepted by the
expert, K will be extended to a context that refutes the implication and still has K as
a realizer. Based on these considerations, the attribute exploration algorithm for partial
contexts is described in Algorithm 1.

4.2. Ontologies and partial contexts

Given a consistent DL ontology (T ,A), it is not difficult to see that any individual in
A induces a partial object description. To be more precise, let M be a finite set of con-
cept descriptions. Any individual name a occurring in A gives rise to the partial object
description

podT ,A(a,M) := (A,S) where A := {C ∈M | T ,A |= C(a)} and
S := {C ∈M | T ,A |= ¬C(a)},

and the whole ABox induces the partial context KT ,A(M) := {podT ,A(a,M) |
a is an individual name occurring in A}. Similarly, any element d ∈ ∆I of an interpre-
tation I gives rise to the full example

fodI(d,M) := (A,S) where A := {C ∈M | d ∈ CI} and
S := {C ∈M | d ∈ (¬C)I},

and the whole interpretation induces the full context KI(M) := {fodI(d,M) | d ∈
∆I}. Note that fodI(d,M) is indeed a fod since every d ∈ ∆I satisfies either d ∈ CI
or d ∈ ∆I \ CI = (¬C)I .

254 Rudolph and Sertkaya / Formal Concept Analysis Methods

Algorithm 1 Attribute exploration for partial contexts
1: Initialization
2: K {initial partial context, realized by the underlying full context K}
3: L := ∅ {initial empty set of implications}
4: P := ∅ {lectically smallest L-closed subset of M}
5: while P 6= M do
6: Compute K(P)
7: if P 6= K(P) then {P → K(P) is undecided}
8: Ask the expert if the undecided implication P → K(P) is refuted by K
9: if no then {P → K(P) not refuted}

10: K := K′ where K′ is a partial context such that K ≤ K′ ≤ K
11: L := L ∪ {P → K(P) \ P}
12: P := next L-closed left-handside (Definition 4)
13: else {P → K(P) refuted}
14: Get a partial context K′ from the expert such that K ≤ K′ ≤ K and P →

K(P) is refuted by K′
15: K := K′
16: end if
17: else {trivial implication}
18: P := next L-closed left-handside (Definition 4)
19: end if
20: end while

The notion of refutation of an implication is transferred from partial (full) contexts
to knowledge bases (interpretations) in the obvious way.

Definition 10. The implicationL→ R over the attributesM is refuted by the knowledge
base (T ,A) if it is refuted by KT ,A(M), and it is refuted by the interpretation I if it is
refuted by KI(M). If an implication is not refuted by I, then we say that it holds in I.
The set of implications over M that hold in I is denoted by ImpM (I). In addition, we
say that L→ R follows from T if uL vT uR, where uL and uR respectively stand for
the conjunctions

d
C∈L C and

d
D∈RD. �

Obviously, L → R is refuted by (T ,A) iff there is an individual name a occurring
in A such that T ,A |= C(a) for all C ∈ L and T ,A |= ¬D(a) for some D ∈ R.
Similarly, L → R is refuted by I iff there is an element d ∈ ∆I such that d ∈ CI for
all C ∈ L and d 6∈ DI for some D ∈ R. In addition, the implication L → R holds
in I iff (uL)I ⊆ (uR)I . Given these, we are now ready to define what we mean by
a completion of a DL knowledge base. Intuitively, the knowledge base is supposed to
describe an intended model. For a fixed set M of “interesting” concepts, the knowledge
base is complete if it contains all the relevant knowledge about implications between
these concepts. To be more precise, if an implication holds in the intended interpretation,
then it should follow from the TBox, and if it does not hold in the intended interpretation,
then the ABox should contain a counterexample. Based on the notions introduced in the
previous subsection, this can formally be defined as follows.

Definition 11. Let (T ,A) be a DL knowledge base, M a finite set of concept descrip-
tions, and I a model of (T ,A). Then (T ,A) is M -complete (or simply complete if M

Rudolph and Sertkaya / Formal Concept Analysis Methods 255

is clear from the context) w.r.t. I if the following three statements are equivalent for all
implications L→ R over M :

1. L→ R holds in I;
2. L→ R follows from T ;
3. L→ R is not refuted by (T ,A).

Let (T0,A0) be a DL knowledge base that also has I as a model. Then (T ,A) is a
completion of (T0,A0) if it is complete and extends (T0,A0), i.e., T0 ⊆ T andA0 ⊆ A.
�

In order to rephrase the definition of completeness, let us say that the element d ∈
∆I of an interpretation I satisfies the subsumption statement C v D if d 6∈ CI or d ∈
DI , and that I satisfies this statement if every element of ∆I satisfies it. In addition, let
us call the individual name a a counterexample in (T ,A) to the subsumption statement
C v D if T ,A |= C(a) and T ,A |= ¬D(a).

Lemma 1. The knowledge base (T ,A) is complete w.r.t. its model I iff the following
statements are equivalent for all subsets L,R of M :

1. uL v uR is satisfied by I;
2. uL vT uR holds;
3. (T ,A) does not contain a counterexample to uL v uR.

Using these, Algorithm 1 that works on partial contexts can be adapted for comput-
ing a completion of a given ontology (T0,A0) w.r.t. a fixed model I of this ontology. It
is assumed that the expert has enough information about this model to be able to answer
questions of the form “Is L → R refuted by I?”. If the answer is “no,” then L → R is
added to the implication base computed by the algorithm. In addition, the GCI uL v uR
is added to the TBox. Since L → R is not refuted by I, the interpretation I is still a
model of the new TBox obtained this way. If the answer is “yes,” then the expert must
extend the current ABox (by adding or refining assertions) such that the extended ABox
refutes L → R and I is still a model of this ABox. In order to optimize this, before
actually asking the expert whether the implication L → R is refuted by I, we can first
check whether uL v uR already follows from the current TBox. If this is the case, then
we know that L→ R cannot be refuted by I.

The complexity of this algorithm is the same as the complexity of the classical at-
tribute exploration algorithm [11,13]: in the worst case it is exponential in the number
of attributes. Regarding the number of questions asked to the expert, as in the classical
case the extended algorithm asks the minimum number of questions with positive an-
swers. Our approach for completing ontologies applies to ontologies written in arbitrary
DLs, provided that the language allows for at least conjunction and negation, the TBox
formalism allows for GCIs, the ABox formalism allows for concept assertions, and the
subsumption and the instance problem are decidable.

In [6] Baader and Sertkaya have addressed usability issues of an implementation
of this method. They have improved the method in such a way that at any time during
completion the expert can pause the process, see all of her previous answers or changes
to the knowledge base, undo some of those changes, and continue completion. This im-
provement takes into account that the expert does not have to answer the same questions
she has answered before pausing the process. The improved approach saves previous an-

256 Rudolph and Sertkaya / Formal Concept Analysis Methods

swers, and uses them as background knowledge when the expert continues completion.
Another wish of ontology engineers, namely postponing questions was solved by pausing
completion, changing the order of attributes, and restarting the completion with previous
answers as background knowledge. In theory, this method might not postpone a question,
thus the expert might be asked the last question again. However, in [6] it was reported
that in practice the method turned out to be useful in many cases when the expert was not
able to answer a particular question and wanted to get another one. An implementation
of the ontology completion method together with these usability issues is available as an
open-source plugin for the Protégé ontology editor under the name OntoComP1 [32].

5. Relational Exploration

The approach of Relational Exploration [28] is concerned with the aim of acquiring all
GCIs valid in the domain of interest which are expressible within a certain DL. Typically
the chosen DL is sub-Boolean, such as EL, FLE , or ALE .2 This approach goes beyond
the procedure described in the preceding section where a finite set of “interesting” con-
cepts is fixed a-priori. The problem that needs to be faced when trying this is that virtu-
ally all such DLs allow for infinitely many semantically different concept descriptions.
Hence, applying the aforementioned techniques in a naive way would require to handle a
context with infinitely many attributes, which is clearly not possible. Therefore, the idea
is to perform exploration (as introduced in the previous section) repeatedly in several
subsequent steps (denoted by i = 0, 1, . . .) including more and more (but always finitely
many) concepts. Thereby the information acquired in previous steps is taken into account
not just by feeding it into the subsequent step but also by reducing the to-be-explored set
of concepts through the removal of semantically equivalent concepts.

In relational exploration, this iteratively organized process will successively incre-
ment the considered concepts’ maximal role depth.3 Every single step of this procedure
is subdivided into three phases: attribute generation, background knowledge explication,
and (semi-)interactive exploration. In the sequel, we give a detailed account of these steps
for FLE as the underlying description logic. We use FLE i to denote the set of all FLE
concepts with a role depth of at most i.

5.1. Attribute Generation

In this phase, we stipulate the attribute set Mi ⊆ FLE i for exploration step i based on
the information collected in the previous exploration steps. If i = 0, we simply let M0

be the set of all concept names plus the concept ⊥. Otherwise, we use the implicational
base Li−1 explored in the previous step in order to generate an empirically reduced set
of attributes. The new set of attributes then comprises:

• all concept names as well as the ⊥-concept,

1http://ontocomp.googlecode.com
2The reason for this is twofold: First, full Boolean DLs (like ALC) would lead to exponentially larger

attribute sets making the exploration process infeasible. Second, the hypothetical axioms generated by the
exploration algorithm would be significantly more difficult to comprehend by the human expert.

3The maximal role depth of a concept is the maximal nesting of role restrictions occurring in that concept.
E.g., the maximal role depth of ∃marriedTo.> u ∃hasChild.∀hasToy.P ink is 2.

Rudolph and Sertkaya / Formal Concept Analysis Methods 257

• for every conceptC ∈Mi−1, the all-quantified versions ∀r.C for every role name
r, and

• for every Li−1-closed set of concepts C ⊆ Mi−1 that does not contain ⊥, the
existentially quantified conjunction ∃r.dC for every role name r.

It can be shown that this set is roughly spoken still sufficient to comprehensively “talk
about” the considered domain in terms of FLE i.

5.2. Background Knowledge Explication

After having stipulated the attribute set for the current exploration step, we can determine
the implications that can be added as a-priori knowledge. In order to do that, we exploit
the previous implicational base Li−1, and determine the set of implications which can
already be guaranteed to be valid before starting the exploration. Thereby, we use the
functions normi : FLE i → 2FLEi and normi : FLE i → 2FLEi recursively defined as
follows:4

normi(C) = Li(normi(C))
normi(C) = {C} for C ∈M0

normi(
d

C) =
⋃{normi(A) | A ∈ C}

normi(∀r.A) = {∀r.Ã | Ã ∈ normi−1(A)}
normi(∃r.A) =

{
{⊥} if ⊥ ∈ normi−1(A),
{∃r.d normi−1(A)} otherwise.

The set of a-priori implications of step i then contains the implications:

• {⊥} →Mi,
• {Ã | normi(A) = {Ã}, A ∈ A} → {B̃ | normi(B) = {B̃}, B ∈ B} for every

implication A→ B from Li−1,
• {∀r.A | A ∈ A} → {∀r.B | B ∈ B} for every implication A→ B from Li−1,
• {∃r.dA} → {∃r.dB} for all Li−1-closed sets A,B ⊆ Mi−1 with A (B

where there is no Li−1-closed set C with A (C (B, and
• {∃r.dA,∀r.A} → {∃r.dLi−1(A ∪ {A})} for every concept A ∈ Mi−1 and

every Li−1-closed set A ⊆Mi−1 \ {A}Baris.

In doing this, we deliver implicational knowledge that trivially follows from former
exploration steps prior to engaging in the next interactive exploration phase. The “ob-
servable behavior” of the system (i.e., the questions asked to the human expert) would be
the same without that preparation, since the used decision procedure would automatically
answer questions concerning this kind of knowledge. However, providing this knowl-
edge in advance obviously reduces the number of calls to the decision procedure, which
are assumed to be costly.

5.3. Interactive Exploration

After all these preparations, the actual exploration process as described in Section 4 takes
place on the attribute set Mi.

4Essentially these functions take an arbitrary FLEi concept C and convert it into a set of concepts from Mi

such that the conjunction over these and C have the same extension in I. This allows to express everything
that can be expressed in via FLEi by means of implications on the reduced concept set Mi.

258 Rudolph and Sertkaya / Formal Concept Analysis Methods

At the end of this phase, we have an implicational base Li for Mi and thus a means
to decide any GCI on FLE i due to the following proposition:

Proposition 5. Let A ∈ FLE i and let I be the explored interpretation. Then AI =(d
normi(A)

)I
=
(d

normi(A)
)I

. Consequently for any FLE i GCI C v D we ob-
tain I |= C v D exactly if

d
normi(C) v d

normi(D).

5.4. Termination

Although the exploration process just described will have to be stopped after few steps in
most practical cases due to the drastic increase of time costs, at least from the theoretical
point of view the question emerges, whether and under which circumstances the pro-
posed algorithm terminates, i.e., all information necessary to decide any I-subsumption
statement on FLE (of arbitrary role depth) has been acquired. It is clear, that termination
can only be achieved, if the considered interpretation allows for a complete description
by finitely many FLE statements as characterized in the following definition.

Definition 12. An interpretation I will be called finitely FLE-characterizable if there is
a finite set F of FLE GCIs such that for every FLE GCI C v D we have I |= C v D
if and only if F |= C v D.

It turns out that this property can indeed be efficiently checked and thus gives rise to
a termination criterion.

Proposition 6. Let I be an interpretation and let (Li) be the sequence of implicational
bases iteratively explored as described before.
I is finitely FLE-characterizable if there is an n ∈ N such that the mapping Fn :

{ALn | A ⊆ Mn} → {BLn+1 | B ⊆ Mn+1} with Fn(A) := normn+1(
d
A) is a

bijection between the Ln-closed subsets from Mn and the Ln+1-closed subsets from
Mn+1.

The reason why this criterion is valid is that it provides a way to “shrink” an
FLEn+1 concept to maximal role depth n preserving its semantics with respect to I.
Then – exploiting this fact – one can do even more: for any conceptC ∈ FLE (i.e., of ar-
bitrary role depth), we find an “empirically equivalent” concept C̃ ∈ FLEn by applying
the function π : FLE → FLEn with:

C 7→ C for all concept names C or if C = ⊥
∃r.C 7→

{d
[∃r](normn−1(C)) if ∃r.C ∈ FLEn,d
F−1n ([∃r](normn(π(C))))Ln+1 otherwise.

∀r.C 7→
{d

[∀r]normn−1(C) if ∀r.C ∈ FLEn,d
F−1n ([∀r]normn(π(C)))Ln+1 otherwise.d

C 7→d{π(C) | C ∈ C}.

Thereby, for a set C of concepts, we let [∃r]C = ∃r.dC∈C C and [∀r]C =
d

C∈C ∀r.C.
In words, the π function just realizes the following transformation: beginning from

“inside” the concept expression C, subformulae having maximal role depth of n+ 1 are
substituted by I-equivalent ones with smaller role depth. When applied iteratively, this
results in a concept C̃ from FLEn that is I-equivalent to the original one. The validity

Rudolph and Sertkaya / Formal Concept Analysis Methods 259

of this concept can now be checked by the method described in the preceding section.
Hence, we obtain the following proposition.

Proposition 7. Let I be a finitely FLE-characterizable interpretation. Then for any
C ∈ FLE we have and π(C)I = CI and consequently for every FLE GCI C v D
holds I |= C v D exactly if I |= π(C) v π(D).

It is easy to show that I is finitely FLE-characterizable if ∆I is finite. That means,
termination of the described algorithm is guaranteed whenever the described domain is
finite. This seems to be a reasonable assumption for most practical scenarios.

6. Conclusion and Outlook

In the present chapter we have presented approaches to interactive ontology learning
based on Formal Concept Analysis. By using information provided by a domain expert,
our approaches learn the relationships between classes of the application domain and
extend both the terminological and assertional parts of a Description Logic ontology ac-
cordingly. Our approaches provide basis for efficient and formally well-founded tech-
niques and tools for interactive ontology learning. The use of techniques from Formal
Concept Analysis ensures that, on the one hand, the interaction with the expert is kept
to a minimum, and, on the other hand, it enables us to show that the knowledge in the
resulting ontology is complete in a certain, well-defined sense.

Our approaches are based on the so-called attribute exploration method, which is an
interactive knowledge acquisition method developed in Formal Concept Analysis. Start-
ing from an approach called Ontology Exploration where attribute exploration was rather
directly applied to generate ontological knowledge, here we have identified weaknesses
of this approach and presented adaptations of the method more suitable in a Semantic
Web setting. We have thus come up with a method capable of dealing with partial infor-
mation, prior ontological knowledge and potentially infinite sets of concept descriptions.
Due to space restrictions we were not able to give all details of these methods and proofs
of our formal arguments. The proofs of our arguments in Section 4 can be found in [31],
and the proofs of arguments in Section 5 can be found in [28].

It should be noted that the basic interpretation-to-context encoding presented in Sec-
tion 3 is not the only possible one. Alternative encodings lead to methods accomplish-
ing completeness with respect to other logical fragments such as first-order Horn rules
[35] or an extended version of domain-range-restrictions [29]. In [1,2] an extension to
the DL ELgfp, which extends EL by cyclic concept definitions with greatest fixpoint se-
mantics, has been presented. Moreover it seems worthwhile to couple the presented tech-
niques with complementary approaches to ontology learning such as NLP-based meth-
ods [34,33].

On a more general level, the knowledge acquisition approaches described here share
their principled motivation – eliciting expert knowledge while minimizing the imposed
workload – with other approaches to ontology refinement [10,25].

References

[1] Franz Baader and Felix Distel. A finite basis for the set of EL-implications holding in a finite model. In
Raoul Medina and Sergei Obiedkov, editors, Proceedings of the 6th International Conference on Formal

260 Rudolph and Sertkaya / Formal Concept Analysis Methods

Concept Analysis, (ICFCA 2008), volume 4933 of Lecture Notes in Artificial Intelligence, pages 46–61.
Springer-Verlag, 2008.

[2] Franz Baader and Felix Distel. Exploring finite models in the description logic ELgfp. In Sébastien
Ferré and Sebastian Rudolph, editors, Proceedings of the 7th International Conference on Formal Con-
cept Analysis, (ICFCA 2009), volume 5548 of Lecture Notes in Artificial Intelligence, pages 146–161.
Springer-Verlag, 2009.

[3] Franz Baader, Bernhard Ganter, Ulrike Sattler, and Barış Sertkaya. Completing description logic knowl-
edge bases using formal concept analysis. In Proceedings of the Third International Workshop OWL:
Experiences and Directions (OWLED 2007). CEUR-WS, 2007.

[4] Franz Baader, Bernhard Ganter, Barış Sertkaya, and Ulrike Sattler. Completing description logic knowl-
edge bases using formal concept analysis. In Manuela M. Veloso, editor, Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI’07), pages 230–235. AAAI Press, 2007.

[5] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general tableaux. Journal of Logic and
Computation, 2010. To appear.

[6] Franz Baader and Barış Sertkaya. Usability issues in description logic knowledge base completion. In
Sébastien Ferré and Sebastian Rudolph, editors, Proceedings of the 7th International Conference on
Formal Concept Analysis, (ICFCA 2009), volume 5548 of Lecture Notes in Artificial Intelligence, pages
1–21. Springer-Verlag, 2009.

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific American, 284(5):34–
43, 2001.

[8] Peter Burmeister and Richard Holzer. On the treatment of incomplete knowledge in formal concept
analysis. In Bernhard Ganter and Guy W. Mineau, editors, Proceedings of the 8th International Con-
ference on Conceptual Structures, (ICCS 2000), volume 1867 of Lecture Notes in Computer Science,
pages 385–398. Springer-Verlag, 2000.

[9] Peter Burmeister and Richard Holzer. Treating incomplete knowledge in formal concept analysis. In
Formal Concept Analysis, volume 3626 of Lecture Notes in Computer Science, pages 114–126. Springer-
Verlag, 2005.

[10] Philipp Cimiano, Sebastian Rudolph, and Helena Hartfiel. Computing intensional answers to questions
- an inductive logic programming approach. Data & Knowledge Engineering, 69(3):261–278, 2010.

[11] Bernhard Ganter. Two basic algorithms in concept analysis. Technical Report Preprint-Nr. 831, Tech-
nische Hochschule Darmstadt, Darmstadt, Germany, 1984.

[12] Bernhard Ganter. Attribute exploration with background knowledge. Theoretical Computer Science,
217(2):215–233, 1999.

[13] Bernhard Ganter. Two basic algorithms in concept analysis. In Léonard Kwuida and Barış Sertkaya,
editors, Proceedings of the 8th International Conference on Formal Concept Analysis, (ICFCA 2010),
volume 5986 of Lecture Notes in Artificial Intelligence, pages 329–359. Springer-Verlag, 2010. Reprint
of [11].

[14] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis: Mathematical Foundations. Springer-
Verlag, Berlin, Germany, 1999.

[15] Jean-Louis Guigues and Vincent Duquenne. Familles minimales d’implications informatives resultant
d’un tableau de données binaries. Mathématiques, Informatique et Sciences Humaines, 95:5–18, 1986.

[16] Richard Holzer. Knowledge acquisition under incomplete knowledge using methods from formal con-
cept analysis: Part I. Fundamenta Informaticae, 63(1):17–39, 2004.

[17] Richard Holzer. Knowledge acquisition under incomplete knowledge using methods from formal con-
cept analysis: Part II. Fundamenta Informaticae, 63(1):41–63, 2004.

[18] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifications in owl. In Amit P.
Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy W. Finin, and Krish-
naprasad Thirunarayan, editors, Proceedings of the 7th International Semantic Web Conference, (ISWC
2008), volume 5318 of Lecture Notes in Computer Science, pages 323–338. Springer-Verlag, 2008.

[19] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: the
making of a web ontology language. Journal of Web Semantics, 1(1):7–26, 2003.

[20] Aditya Kalyanpur, Bijan Parsia, Matthew Horridge, and Evren Sirin. Finding all justifications of OWL
DL entailments. In Proceedings of the 6th International Semantic Web Conference, 2nd Asian Semantic
Web Conference, (ISWC 2007 + ASWC 2007), volume 4825 of Lecture Notes in Computer Science,
pages 267–280. Springer-Verlag, 2007.

[21] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau. Repairing unsatisfiable con-

Rudolph and Sertkaya / Formal Concept Analysis Methods 261

cepts in OWL ontologies. In York Sure and John Domingue, editors, The Semantic Web: Research and
Applications. Proceedings of the 3rd European Semantic Web Conference (ESWC 2006), volume 4011
of Lecture Notes in Computer Science, pages 170–184. Springer-Verlag, 2006.

[22] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca Grau, and James A. Hendler. Swoop: A
web ontology editing browser. Journal of Web Semantics, 4(2):144–153, 2006.

[23] Holger Knublauch, Ray W. Fergerson, Natalya Fridman Noy, and Mark A. Musen. The protégé OWL
plugin: An open development environment for semantic web applications. In Sheila A. McIlraith,
Dimitris Plexousakis, and Frank van Harmelen, editors, Proceedings of the 3rd International Semantic
Web Conference, (ISWC 2004), volume 3298 of Lecture Notes in Computer Science, pages 229–243.
Springer-Verlag, 2004.

[24] Markus Krötzsch, Frantisek Simančík, and Ian Horrocks. A description logic primer. In Johanna Völker
and Jens Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2012.

[25] Nadeschda Nikitina, Sebastian Rudolph, and Birte Glimm. Interactive ontology revision. Web Seman-
tics: Science, Services and Agents on the World Wide Web, 12(0), 2012. in press.

[26] Rafael Peñaloza and Barış Sertkaya. On the complexity of axiom pinpointing in the EL family of
Description Logics. In Fangzhen Lin, Ulrike Sattler, and Miroslaw Truszczynski, editors, Proceedings
of the Twelfth International Conference on Principles of Knowledge Representation and Reasoning, (KR
2010), pages 280,289. AAAI Press, 2010.

[27] Sebastian Rudolph. Exploring relational structures via FLE . In Karl Erich Wolff, Heather D. Pfeif-
fer, and Harry S. Delugach, editors, Proceedings of the 12th International Conference on Conceptual
Structures (ICCS 2004), volume 3127 of Lecture Notes in Computer Science, pages 196–212. Springer-
Verlag, 2004.

[28] Sebastian Rudolph. Relational exploration: Combining Description Logics and Formal Concept Analy-
sis for knowledge specification. Ph.D. dissertation, Fakultät Mathematik und Naturwissenschaften, TU
Dresden, Germany, 2006.

[29] Sebastian Rudolph. Acquiring generalized domain-range restrictions. In Raoul Medina and Sergei
Obiedkov, editors, Proceedings of the 6th International Conference on Formal Concept Analysis,
(ICFCA 2008), volume 4933 of Lecture Notes in Artificial Intelligence, pages 32–45, 2008.

[30] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In Georg Gottlob and Toby Walsh, editors, Proceedings of the Eighteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI’03), pages 355–362. Morgan Kaufmann,
2003.

[31] Barış Sertkaya. Formal Concept Analysis Methods for Description Logics. Ph.D. dissertation, Institute
of Theoretical Computer Science, TU Dresden, Germany, 2007.

[32] Barış Sertkaya. Ontocomp: A protege plugin for completing owl ontologies. In Lora Aroyo and Paolo
Traverso, editors, Proceedings of the 6th European Semantic Web Conference, (ESWC 2009), volume
5554 of Lecture Notes in Computer Science, pages 898–902. Springer-Verlag, 2009.

[33] Johanna Völker and Sebastian Rudolph. Fostering web intelligence by semi-automatic owl ontology
refinement. In Proceedings of the 7th International Conference on Web Intelligence (WI), 2008.

[34] Johanna Völker and Sebastian Rudolph. Lexico-logical acquisition of owl dl axioms. In Raoul Medina
and Sergei A. Obiedkov, editors, Proceedings of the 6th International Conference on Formal Concept
Analysis, (ICFCA 2008), volume 4933 of Lecture Notes in Computer Science, pages 62–77. Springer,
2008.

[35] Monika Zickwolff. Rule Exploration: First Order Logic in Formal Concept Analysis. Ph.D. dissertation,
TH Darmstadt, Germany, 1991.

Ontology Design Patterns
in Ontology Learning

Eva BLOMQVIST a,b,1, Aldo GANGEMI b, and Francesco DRAICCHIO b

a Dept. of Computer and Information Science, Linköping University
b STLab, ISTC-CNR

Abstract. Ontology Learning (OL), either from text or other resources, suffers from
problems related to implicit knowledge being incompletely extracted, knowledge
that is too specific for creating a general domain model, and data or text structures
that are not easily transformed into a high-quality ontology. Many types of back-
ground knowledge can be used to remedy problems of implicit or missing knowl-
edge, however applying an appropriate modeling solution and style is a harder prob-
lem. Ontology Design Patterns (ODPs) are encodings of general best practices in
ontology design. There are many kinds of patterns that can contribute to OL sys-
tems in different ways. In this chapter we first present the kinds of ODPs that ex-
ist and the kinds of problems they address, we then discuss how ODPs could po-
tentially contribute to OL. Finally, we take two examples of research approaches
where ODPs have been used for improving OL results or perform OL in novel
ways. An overall conclusion is that ODPs can both provide guidance for OL, in
terms of task-focus and making design choices available in a formalized manner, as
well as being reusable building blocks that could potentially raise the focus of OL
from single elements to detection and composition of larger complex components.

Keywords. Ontology Design Patterns, Best Practices, Ontology Refinement

Introduction

In the era of the Semantic Web, ontologies need to be fast and easy to construct, un-
derstand and reuse. Ontology Learning (OL) plays a crucial role in facilitating ontology
construction from existing resources. However, OL suffers from some inherent problems.
The sources used for OL are rarely intended for this purpose, rather they are intended
for human consumption, e.g., natural language texts, or for use by other types of soft-
ware, e.g., databases and other data sources. When extracting ontologies, this introduces
problems related to knowledge being implicitly expressed, knowledge that is too spe-
cific for creating a general domain model, and data or text structures that are not easily
transformed into a high-quality ontology. Many types of background knowledge can be
used to remedy problems of implicit or missing knowledge, however applying an appro-
priate modeling solution and style is a harder problem that has not been equally well
researched.

1Corresponding Author: Eva Blomqvist, Linköping University, SE-581 83 Linköping, Sweden; E-mail:
eva.blomqvist@liu.se or evabl444@gmail.com

264 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

Computational ontologies as they are used on the Semantic Web have a (primarily
logical) structure, and must match both the domain of interest and the task of the appli-
cation; they allow the description of entities whose classes, attributes and relations are of
concern because of their relevance in a domain for some purpose, e.g. query, search, in-
tegration, matching, explanation, etc. For a long time, the main focus of OL has been on
extracting domain entities with their classes (mainly) and relations, rather than establish-
ing the structure of the ontology that would actually enable the solution of the intended
task. This is a major distinction in evaluating ontologies; Gangemi et al. [24] presents
the reason why existing ontologies tend to distribute across the dimensions of coverage
and task-fitness. The task of a coverage-oriented ontology is mostly to cover as much of
the domain as possible in order to annotate and retrieve domain documents, task-oriented
ontologies have more specific tasks, e.g. answering specific queries, or performing a cer-
tain type of reasoning. Early methods for OL were mostly targeting coverage-oriented
ontologies, while later approaches also try to address task-oriented ones. However, this
introduces new problems into OL, since the logical structure of task-oriented ontologies
is a major concern, and such ontologies have different types of requirements that need to
be addressed, i.e. specific usage scenarios.

In this chapter, we focus on patterns for ontology construction [7,20,29], and in par-
ticular we explore some ideas of how they can be exploited in the context of OL. Under
the assumption that there exist classes of problems that can be solved by applying com-
mon solutions (similarly to software engineering practices), Ontology Design Patterns
(ODPs) support reusability on the design side specifically. Thereby, ODPs are encodings
of general best practices in ontology design (ODPs are further described and defined in
Sect. 2). ODPs can be analogous to software libraries when they have the form of small
(or cleverly modularized) ontologies with explicit documentation of design rationales;
they can be used as building blocks in ontology design. ODPs can also be analogous to
software patterns, when they describe best practices for ontology engineering. There are
several types of ODPs [29], and some are useful for solving OL problems, both when
used as concrete building blocks or more abstract ‘best practices’. They have the poten-
tial to improve OL result quality and help raise the focus of OL from single elements, to
more complex composite structures solving certain tasks.

The chapter is organized as follows: In Section 1 we first discuss some challenges
for state of art Ontology Learning; in Section 2 ODPs are discussed in more detail, and
their usefulness to OL is addressed in Section 3. Finally, Section 4 describes two sample
methods that reuse ODPs to improve OL results, or perform OL in new ways.

1. Ontology Learning Challenges

Blomqvist previously analyzed current approaches to OL [4], and singled out some chal-
lenges. One problem concerns how to determine the requirements (the task specifica-
tion) of an ontology, to represent them in a form that can be automatically processed
by an OL system, in order to select the appropriate input for the OL process. Many OL
approaches work with whatever input is given by the user in a non-discriminative man-
ner, without taking any particular requirement into account. Specially when constructing
task-oriented ontologies, this is a clear shortcoming, since we do not know what task the
ontology will be able to perform in the end, and what requirements it realizes.

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 265

OL from text also suffers from several problems related to the nature of text docu-
ments and natural language (NL) (cf. Maynard and Bontcheva [40]), e.g. inherent ambi-
guity of NL, and implicit knowledge. Interpretation of text documents usually requires a
lot of knowledge from the reader, e.g. as Brewster et al. [9] notes writing a text could be
seen as aiming towards ‘knowledge evolution and maintenance’ rather than specifying
and defining knowledge from scratch.

In response to these challenges, some approaches try to use special resources instead
of arbitrary text documents, e.g. dictionary entries [57]; however that is only feasible in
presence of those special resources. The most common way to address the problem is by
using some form of background knowledge to ‘fill the gaps’, e.g. general-purpose lexi-
cal resources such as WordNet [1] or FrameNet [2], or reusing existing general-purpose
(foundational, upper-level or core) or domain-specific ontologies. However, reuse of
background knowledge sometimes adds noise to the process. For example, we cannot
safely assume that lexical resources have a direct formal semantics [27,21], or that exist-
ing ontologies are appropriate to the requirements either.

Extracting ontological elements, such as terms and relations, have been the sub-
ject of research for a long time and is described in previous chapters of this book (e.g.
Suchanek [51], this volume), nevertheless, result quality is still a challenge. Forming
appropriate logical definitions, i.e. axiomatizing those elements, is an even more open
issue. In particular, the composition of the elements – how the pieces fit together – is a
challenge, and often ontologies resulting from OL are quite shallow and ‘light-weight’.
So far, few approaches include semi-automatic ways to refine, enrich, or improve a draft
ontology [4,3].

On the other hand, an ontology built from OL methods can be used as input to a
manual ontology engineering process, so entering a post-processing method. Addition-
ally, we can also see OL as semi-automatic methods within an overall design methodol-
ogy. Since design methodologies include users, the output of OL methods should then
be highly understandable and comprehensive from a user perspective, and facilitate their
design work. Blomqvist [4] argued that some early OL techniques actually might not im-
prove on the corresponding manual ontology engineering tasks: reading text documents,
collecting and defining ontological elements by hand, etc. Unfortunately, most of the on-
tologies built through those early OL systems had no indication of the semantics of the
extracted elements, making the post-processing step very challenging for the user.

Another important problem in OL is the low complexity of formal structures that
can be extracted, typically named entities, type assertions, disjointness axioms, some
domain relations, some constraints on binary relations, etc. As described by Coppola et
al. [13] (this volume), relations with arities >2 are very difficult to extract from natural
language, but those relations are at the core of cognitive understanding [12,21,22]. Indeed
good examples of task-oriented ontologies contain a lot of reified n-ary relations, e.g. for
dealing with events and more abstract entities such as plans, diagnoses, norms, etc.

In summary, currently OL suffers from lack of reliable methods for producing high-
quality and highly axiomatized ontologies from existing sources, as opposed to simply
extracting isolated elements and producing light-weight representations of them. Back-
ground knowledge is needed, but to avoid the reuse problems that are experienced when
reusing large monolithic ontologies, we propose to use small, task-centered ODPs in-
stead. ODPs can address challenges both on the side of logical axiomatization and lack

266 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

of explicit mentions of common sense structures in input sources, at the same time ad-
dressing some quality problems experienced in OL (see Section 4).

2. Ontology Design Patterns

Throughout experiences in ontology engineering projects2 as well as in other ongoing
international projects that have experimented with these ideas, typical conceptual pat-
terns have emerged out of different domains, for different tasks, and while working with
experts having heterogeneous backgrounds. For example, a simple pattern we can call
participation (including objects taking part in events) emerges in domain ontologies as
different as describing enterprise models [32], legal norms [28], software management
[42], biochemical pathways [23], and fishery techniques [26]. Other, more complex pat-
terns have also emerged in the same disparate domains. Similarly, the success of very
simple and small ontologies like FOAF [10] and SKOS [43] shows the potential of re-
ally portable, or ‘sustainable’ ontologies. These lessons learnt support a new approach to
ontology design. However, ODPs are not limited to being reusable building blocks, there
exist many different types of ODPs, and one of their main aims is to encode modeling
best practices.

In principle, ODPs do not depend on any specific representation language3. In the
example section of this chapter we will focus mainly on Content ODPs (CPs, aka knowl-
edge patterns), as defined towards the end of Section 2.1 and described further in Section
2.2, and in order to provide the reader with concrete examples and a closer view on their
exploitation on the Semantic Web, and in OL, we have decided to refer to OWL CPs
throughout the chapter (for details on OWL and its relation to DLs, see Krötzsch et al.
[37] in this volume).

2.1. Types of Ontology Design Patterns

An ODP is a modeling solution to solve a recurrent ontology design problem, and ideally
it encodes some best practice in the field. Several types of ODPs have been identified,
and in [29] they are grouped into six families: Structural ODPs, Correspondence ODPs,
Content ODPs (CPs), Reasoning ODPs, Presentation ODPs, and Lexico-Syntactic ODPs.
In this section we give an overview of the ODP families, with some examples. For more
details, the reader is referred to work by Gangemi and Presutti [29]. Ideas on how these
relate to challenges in OL are given in Section 3.

Structural ODPs Structural ODPs include Logical ODPs and Architectural ODPs.
Logical ODPs are compositions of logical constructs that solve a problem of expressiv-
ity, while Architectural ODPs affect the overall shape of the ontology either internally or
externally.

Logical ODPs are only expressed in terms of a logical vocabulary, because their
signature (the set of predicate names, e.g. the set of classes and properties in an OWL
ontology, c.f. Krötzsch et al [37] in this volume, is empty (with minor exceptions, e.g. the

2For example, in the projects FOS: http://www.fao.org/agris/aos/, WonderWeb:
http://wonderweb.semanticweb.org, Metokis: http://metokis.salzburgresearch.at, NeOn: http://www.neon-
project.org, and IKS: http://www.iks-project.eu/

3With the exception of Logical ODPs.

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 267

default inclusion of owl:Thing in OWL). Logical ODPs help to solve design problems
where the primitives of the representation language do not directly support certain logical
constructs. For example, if the representation language is OWL, and a designer needs to
represent a relation between more than two elements, a Logical ODP is needed in order
to express an n-ary relation semantics by using classes and binary relation primitives.
Logical ODPs were one of the first kind of patterns to be discussed for the Semantic Web,
e.g. by the W3C OEP task force [19]. More examples can be found in various online
portals [19,49,53].

Architectural ODPs affect the overall shape of the ontology. They can be of two
types: (i) internal, defined in terms of collections of Logical ODPs that have to be ex-
clusively employed when designing an ontology e.g., an OWL profile or the varieties of
description logics; (ii) external, defined in terms of meta-level constructs e.g., the modu-
lar architecture consists of an ontology network, where the involved ontologies play the
role of modules.

Reasoning ODPs Reasoning ODPs are applications of Logical ODPs oriented to ob-
tain certain reasoning results, based on the behavior implemented in a reasoning engine.
Examples of Reasoning ODPs include: classification, subsumption, inheritance, materi-
alization, de-anonymizing, etc. Reasoning ODPs, when declared on top of an ontology,
inform about the state of that ontology with respect to carrying out queries, evaluation,
etc. Examples of more complex Reasoning ODPs have been described by van Harmelen
et al. [54], including patterns for semantic search, personalization etc.

Correspondence ODPs Correspondence ODPs include Reengineering ODPs and
Alignment ODPs. Reengineering ODPs provide designers with solutions to the problem
of transforming a conceptual model, which can even be a non-ontological resource, into
a new ontology, hence they are closely related to the OL problem. Alignment ODPs are
patterns for creating semantic associations between two existing ontologies.

Reengineering ODPs are transformation rules applied in order to create a new ontol-
ogy (target model) starting from elements of a source model. The target model is an on-
tology, while the source model can be either an ontology, or a non-ontological resource
e.g., a thesaurus, a data model, a UML model, a linguistic structure, etc. Reengineering
ODPs are described in terms of metamodel transformation rules. Such transformation
rules are commonly used in OL for identifying ontological elements in linguistic struc-
tures, and transforming them into ontological elements (see also Lexico-syntactic ODPs
below), examples can be found in the ODP Portal [50]. Other patterns have been pro-
posed for, for instance, transforming XML or relational databases into OWL/RDF, i.e.
so-called triplification, but so far only a few triplifiers express their transformation rules
as reusable patterns (e.g. Semion works in this direction [46]). Finally, transformation
ODPs are also defined for refactoring ontologies, e.g. transformations between alternate
modelling styles or solutions, as exemplified by Šváb-Zamazal et al. [58]. Alignment
ODPs refer to semantic relations between elements in two or more ontologies. There are
three basic semantic relations that are commonly used for mapping assertions: equiva-
lence, containment, and overlap. Alignment ODPs provide designers with solutions to
relate two ontologies without changing the logical types (e.g. owl:Class) of the on-
tology elements involved.

268 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

Presentation ODPs Presentation ODPs deal with usability and readability of ontolo-
gies from a user perspective. They are meant as best practices that support the reuse of
ontologies by facilitating their evaluation and selection. Examples are Naming ODPs and
Annotation ODPs . The former are conventions about how to create names for names-
paces, files, and ontology elements in general (classes, properties, etc.) [52]. Annotation
ODPs provide annotation properties or annotation property schemas that can be used in
order to improve the understandability of ontologies and their elements.

Lexico-syntactic ODPs Lexico-syntactic ODPs are linguistic structures or schemas
that consist of certain types of words following a specific order, and that permit to gener-
alize and extract some conclusions about the meaning they express. They are also useful
for associating simple Logical and Content ODPs with natural language sentences. A
simple example is the Hearst patterns [34] that are commonly used in OL for detecting
hints of ontological elements and axioms in natural language. An extensive discussion
of lexico-syntactic patterns in linguistics can be found in Maynard and Bontcheva [40],
Section 5, and a catalogue with examples is available in the ODP Portal [48].

Content Ontology Design Patterns (CPs) CPs encode conceptual, rather than logical
design patterns. In other words, while Logical ODPs solve design problems indepen-
dently of a particular conceptualization, CPs propose patterns for solving design prob-
lems for the domain classes and properties that populate an ontology, therefore address-
ing content problems [20]. CPs are instantiations of Logical ODPs (or of compositions
of Logical ODPs), featuring a non-empty signature. In principle, CPs do not depend on
any specific language, however in order to reuse them as building blocks, they have to be
implemented in some way. In the context of this chapter, we deal with CPs in a Semantic
Web context. Hence, we use OWL as a reference formalism for representation.

2.2. Content ODPs

CPs are useful because they provide solutions to domain-oriented problems, and are
directly reusable. On one hand, CPs are comparable to software engineering (SE) design
patterns for what concerns the way they are documented and communicated. On the other
hand, the intuition behind their usage is analogous to that of software engineering (object
oriented) reusable libraries, e.g. Java libraries. Section 2.2.1 lists the characteristics that
differentiate CPs as special ontologies, and in Section 2.2.2 we describe two CP examples
(further examples can be found in the ODP Portal [47]).

In order to document ODPs we use a similar approach to Software Engineering (SE)
patterns. The mainstream approach for describing SE patterns is to use a template, al-
though there is no standard format. Each CP is associated with a catalogue entry includ-
ing a number of information fields (full list of fields can be seen in the ODP Portal [47]):
Name provides a name for the pattern; Intent describes the problem (use case) addressed
by the pattern; Competency questions contains examples of competency questions that
the knowledge base associated with the CP can address; Diagram depicts a diagram rep-
resenting the pattern; Consequences provides a description of the benefits and/or possi-
ble trade-offs when using the pattern; Known uses gives examples of realistic ontologies
where the pattern is used; Building block provides references to implementations of the
pattern. In the case of CPs for Semantic Web ontologies, the latter provides the URI of
an OWL file (containing an implementation of the pattern).

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 269

2.2.1. Characteristics of CPs

CPs are reusable solutions to recurrent modeling problems. As known since a long time
in conceptual modeling and knowledge engineering, these problems have two compo-
nents; a domain and a use case (i.e. task). The same domain can have many use cases,
and the same use case can be found in different domains. Ontologies are usually con-
sidered as models of a domain, but their use case is usually not explicitly described. As
reusable solutions, CPs must explicitly encode a ‘Generic Use Case’ (GUC), i.e. a gen-
eralization of use cases that can be provided as examples of tasks that are supported by
a particular CP. GUC can in many cases be captured by means of competency questions
[32]. A competency question is a typical query that an expert might want to submit to a
knowledge base of its target domain, for a certain task. In principle, an accurate domain
ontology should specify all and only the conceptualizations required in order to answer
all the competency questions formulated by, or acquired from, experts. Also note that
competency questions may range from simple ‘look-up queries’, to complex questions
requiring several inference steps.

Theoretically speaking, CPs are language-independent, and could be encoded in a
higher-order representation language. Nevertheless, pragmatically their (sample) repre-
sentation in OWL is essential in order to (re)use them as building blocks on the Semantic
Web. Regardless of the particular way a CP has been created, it is a small, autonomous
ontology. Smallness (typically two to ten classes with relations defined between them)
and autonomy facilitate composing CPs, and enable them to govern the complexity of
the whole ontology. There are combinations of ontology elements that do not allow any
useful inference, e.g., a taxonomy with only two sibling classes does not allow for any
inferences until the taxonomy is extended with super- or subclasses, or other axioms,
similarly an object property alone does not allow for any useful inferences until it is
used in some axiom, etc. Hence, a CP should be an inference-enabling component, in
the sense that it allows some form of inference, e.g. a taxonomy with two sibling dis-
joint classes, a property with explicit domain and range set, a property and a class with
a universal restriction on that property, etc. This can be a particularly important feature
for ontologies resulting from OL, which are commonly ‘light-weight’ and sometimes
lacking axiomatizations. Furthermore, a CP can be an element in a partial order, i.e. a
hierarchy of CPs, where the ordering relation requires that at least one of the classes or
properties in the pattern is specialized. Many CPs nicely match linguistic patterns called
frames. A frame can be described as a lexically founded ODP, i.e. CPs are linguistically
relevant components. The richest repository of frames is FrameNet [2]. Frames can be
used for validating CPs with respect to lexical coverage, for lexicalizing them, and can
be reengineered as CPs (as described by Coppola et al. [13] in this volume, and in [45],
where Cps are generalized to the notion of knowledge patterns for a complete porting of
FrameNet to RDF-OWL). Finally, a CP should be used to describe a ‘best practice’ of
modelling, i.e. they are formalizations of best practices. Empirical evidence of being a
best practice, in terms of objective and subjective improvement of ontology quality, has
been described in [5,6].

270 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

2.2.2. Sample CPs

In this section we show two CPs taken from the ODP Portal4, Each CP is presented in a
catalogue-like way, and with reference to the OWL language. For space reasons, we de-
scribe each CP with a simplified catalogue entry composed of: the name, the intent, com-
petency questions, some examples of its application, the diagram describing its structure,
the elements and the role they play in the pattern. We have used TopBraid Composer5

in order to produce the OWL encoding. With the same tool, we automatically generated
a diagrammatical visualization based on a UML profile for OWL. UML classes (boxes)
are used in order to depict OWL classes. When a class name is preceded by a prefix,
e.g. sit:, it is interpreted as a class imported (e.g. by owl:imports) from another
(typically more general) CP that is indexed by means of that prefix.

The information realization CP The information realization CP6 is extracted from
the Dolce+DnS Ultra Lite ontology7, and represents the relations between information
objects, such as poems, songs, computer programs, etc., and their physical realizations,
such as printed books, recorded tracks, physical files, etc.

Figure 1. The information realization CP’s graphical representation in UML.

The information realization CP is associated with information according to the cat-
alogue entry fields reported below:
Intent: To represent relations between information objects and their physical realization.
Competency questions: Which physical object realizes a certain information object?
Which information object is realized by a certain physical object?
Diagram: Figure 1 shows a UML diagram of the information realization CP.
Elements:

• InformationObject:A piece of information, such as a musical composition
or a text, independently from how it is concretely realized.

• InformationRealization: A concrete realization of an InformationOb-
ject, e.g. the written document containing the text of a law.

• realizes/isRealizedBy: The relation between an information realization
and an information object, e.g. the paper copy of the Italian Constitution realizes
the text of the Constitution.

4http://www.ontologydesignpatterns.org
5http://www.topbraidcomposer.com/
6http://www.ontologydesignpatterns.org/cp/owl/informationrealization.owl
7http://www.ontologydesignpatterns.org/ont/dul//DUL.owl

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 271

The Time Indexed Person Role CP The time indexed person role8 is a CP that repre-
sents time indexing for the relation between persons and roles they play, e.g., George W.
Bush was the president of the United States in 2007. This CP is also extracted from the
Dolce+DnS Ultra Lite ontology. According to its associated catalogue entry, the main
information associated with this CP is the following:
Intent: To represent time indexing for the relation between persons and roles they play.
Competency questions: Who was playing a certain role during a given time interval?
When did a certain person play a specific role?
Diagram: An illustration of the most specific part of the CP can be seen in Figure 2.
Elements: (Selection of most specific elements realizing pattern functionality.)

• Person: The commonsense notion, i.e. either physical or social persons.
• Role: A concept that classifies a person
• TimeInterval: Any region in a dimensional space representing time.
• TimeIndexedPersonRole: A situation that expresses time indexing for the

relation between persons and roles they play.
• hasRole/isRoleOf: A relation between a Role and an Entity, e.g. ’John is

considered a typical rude man’; your last concert constitutes the achievement of
a lifetime; ’20-year-old means she’s mature enough’. The two properties are the
inverse of each other.

• isSettingFor/hasSetting: A relation between time indexed role situa-
tions and related entities, e.g. ’I was the director between 2000 and 2005 ’, i.e.:
the situation in which I was a director is the setting for the role of director, me,
and the time interval. The two properties are the inverse of each other.

Figure 2. The time indexed person role CP’s graphical representation in UML.

8http://ontologydesignpatterns.org/cp/owl/timeindexedpersonrole.owl

272 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

3. Applications of ODPs in OL

Different types of ODPs have been used to support OL, as already mentioned in connec-
tion with the ODP types. In this section we exemplify some of those usages, and in other
cases describe ideas towards new usage areas of ODPs in OL.

Lexico-syntactic ODPs (LOPs) are probably the most well-known in the OL com-
munity, and have been used for OL since the early times. Maedche used Hearst-type
LOPs in order to extract taxonomic relations from text corpora [39], which has also been
picked up in subsequent work, e.g. by Cimiano [11]. Völker et al. introduce LOPs spe-
cific to dictionary entries [56], in order to extract more expressive axioms. However,
none of these LOPs were at the time described and collected in catalogues, for others to
reuse. Such catalogues are currently emerging, e.g., as in the ODP Portal [48].

When LOPs are explicitly described, and they are linked to Logical or Content
ODPs, they can be considered as Reengineering ODPs, since they provide methods and
rules to transform linguistic structures into formal ones, e.g. a natural language sentence
into an OWL model. An example of using LOPs to enrich CPs, and applying them to
OL, was given by Nikitina et al. [44]. Other examples include work by Mainard et al.
[41] and Aguado de Cea et al. [16]. We also envision future developments of using more
complex LOPs, e.g. based on lexical frames, where frame detection (as described by
Coppola et al. [12]) can then be used together with Content ODPs corresponding to the
lexical frames, in order to construct ontologies from text. More details on using lexical
frames for OL have been discussed by Coppola et al. [13] (this volume).

When moving to non-linguistic resources, we find that RDF triplifiers and other
reengineering tools have gained a lot of momentum, therefore Reengineering ODPs are
going to play a central role in OL. For example, with tools like Semion [46] an ontol-
ogy designer can select some input and a set of Reengineering ODPs (so-called recipes,
written in a dedicated SPARQL-based rule language), and receive an ontology as output.
Semion has been used also to transform FrameNet into RDF linked data, and to investi-
gate appropriate semantics for using semantic frames as ontologies [45]. Ontology evo-
lution and refinement based on Reengineering ODPs for model refactoring has also been
explored [58,59]. The process is semi-automatic, in the sense that the user has to select
the input and ODPs, but detection and transformation are performed automatically.

One of the main shortcomings of ontologies resulting from OL is their low usability
from a user perspective, e.g. their lack of documentation and axiomatization that best
represent the intended meaning of the learnt concepts and relations. For providing more
user-friendly ontologies, Presentation ODPs could be applied. So far we are not aware of
any attempt to explicitly use Presentation ODPs in OL, but as a minimum some form of
naming conventions is usually applied to the generated concepts and relations. Actually,
some early OL approaches used to produce so-called glosses as natural language expla-
nations of the concepts extracted [55]. A prerequisite for pattern-based OL developing
this direction further is to collect and formally describe a larger set of Presentation ODPs.

Logical ODPs, and their corresponding anti-patterns, i.e. common mistakes that
can be resolved by applying a (positive) Logical ODP, have been used in approaches to
error detection and refactoring. These are not OL-specific, but since many ontologies
are highly error-prone, it could be a fruitful direction to apply automatic error detection
as a post-processing step in OL. Anti-pattern detection has been proposed, and applied
for manual debugging of inconsistent ontologies [14,17], where so called inconsistency

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 273

patterns represent the anti-patterns that need to be avoided; solutions are provided as
alternative patterns (i.e. alternative Logical ODPs that represent possible solutions).

So far, CPs have not been extensively utilized in OL, despite the fact that they are
available as actual building blocks implemented in OWL. To the best of our knowledge,
one of the few approach attempting to use CPs for OL is the OntoCase framework (de-
scribed more in depth in the following section). In this approach CPs are applied as a
post-processing step for improving ontology quality, rather than directly using the CPs
in the OL process. Current developments improve on this by directly trying to detect or
discover CPs in input sources, which can be facilitated by connecting CPs to lexical re-
sources, e.g. lexical frames to be used in frame detection as mentioned above. A detec-
tion approach and experience is presented by Coppola et al. [13] (this volume). Another
very recent one (described in section 4.2) is the FRED API, which evolves an implemen-
tation [8] of DRT (Discourse Representation Theory [35]) for deep parsing of text, by
adding frame detection and transformation of DRT structures (DRS) into OWL-RDF on-
tologies, by making use of ODPs. Another unexplored direction addresses the problem
of taking task-related requirements into account when generating ontologies. CPs are
annotated with information about the tasks they support, i.e. through competency ques-
tions. Assuming that similar, but more specific, task-requirements exist for the ontology
to be built, it still remains to be explored how those requirements can be automatically
matched for selecting and specializing the right CPs for the task.

As a vision level recap of this overview, our impression is that we are moving to
a broader, integrating scenario where knowledge derived from multiple heterogeneous
sources aggregates around ‘frameworks of reference’, close to CPs in scope. The ten-
dency to build more sense out of the huge Linked Data Cloud is the most visible man-
ifestation of that. As an example, in their visionary article Gangemi and Presutti [30]
present knowledge patterns as hubs of formal knowledge, linguistic data, structured data,
rules and reasoning recipes, and other associated content. Knowledge patterns can act
as an abstraction that facilitates projects aiming at a ‘global accelerator of knowledge’,9

where knowledge analytics and business intelligence meet the results of heterogeneous
information integration.

4. Using ODPs in OL - Sample Methods

To illustrate how ODPs in general, and CPs in particular might be used for OL, in this
section we describe two sample methods. One, the OntoCase method in Section 4.1,
contains initial work on applying CPs in a post-processing step, to improve OL results,
and the other (see Section 4.2) describes how ODPs can be used together with linguistic
resources to ‘translate’ from NL to complex ontological structures in OWL. In Section
1 some challenges in OL were discussed, e.g. that typically, learnt ontologies are quite
light-weight and lack axiomatization, due to knowledge being implicit in text, and other
problems. One of the main objectives of both these sample methods was to add some
of this background knowledge by means of ODPs and produce a higher degree of ax-
iomatization. Such patterns can also assist in structuring the existing learnt knowledge,
by introducing best practice modeling solutions, so that the resulting ontologies become
more intuitive and easily understandable.

9Cf. http://www.futurict.ethz.ch/FuturICTFlagship

274 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

4.1. The OntoCase Method

The OntoCase framework, as introduced by Blomqvist [4,3], proposed a particular
method for enriching learnt ontologies, by means of CPs. Experiments showed the two
main features of this method: 1) The ability to add a (taxonomical) top structure to the
ontology, representing background knowledge possibly implicit in the texts that were the
basis of the input ontology. 2) The ability to add more structure to the learnt ontology,
i.e., to increase the taxonomical depth and the relation-to-concept ratio.

As input to the method an initial draft ontology extracted by some OL tool (below re-
ferred to as the input ontology), and a catalogue of CPs are assumed. The OWL building
block itself is used for retrieval and reuse of CPs. For the matching procedure OntoCase
draws on ontology matching research. Primarily, terms of the learnt ontology and the CPs
respectively are used, i.e., local names or labels. When matching properties, the domains
and ranges of the properties are also used (if present). One important feature of CPs are
their generality, i.e., they are general and reusable in many contexts. OntoCase attempts
to bridge the abstraction gap by extending the direct matching of concept and relation
names to generalization/specialization. This is done by using some background knowl-
edge, e.g., WordNet in the current implementation, to find specialization/generalization
relations based on hyponym/hypernym relations of the involved terms. Finally, OntoCase
uses a ranking scheme to weight all this evidence of matches between the learnt ontology
and a certain CP, in order to assess not only the correctness of the match but also the
usefulness of incorporating the CP in the ontology (in terms of increased axiomatization
etc.). Details on the method have been described previously by Blomqvist [4].

After selecting the CPs to incorporate, the reuse phase is concerned with cloning and
adapting, i.e., automatically specializing, and composing the selected CPs, and integrat-
ing them into an enriched version of the input ontology. Different sets of heuristics can
be used, to either include the complete CP and input ontology, or to prune those parts that
did not have any match. For the experiments below, a set of heuristics [4] for maximizing
the axiomatization of the resulting ontology was used.

4.1.1. OntoCase Evaluation Results

Ontology evaluation methods were used for studying the quality and characteristics of
the output of OntoCase. Gangemi et al. describe an overall framework for ontology eval-
uation [25], consisting of three levels; structural, functional, and usability evaluations.
Structural evaluations analyze the quality of the syntax and semantics of the ontology
as it is represented. Functional evaluations analyze how well the ontology conforms to
the intended conceptualization, i.e. the requirements. Usability evaluations concern the
understandability and reusability of the ontology, as well as user satisfaction. Since these
are aspects and measures for ontology evaluation, clearly they can also be used to evalu-
ate the output of OL.

The OntoCase method was evaluated in three independent settings; the SEMCO
project’s requirements engineering ontology, the JIBSNet university intranet ontology,
and a set of agricultural ontologies of the FAO. The structural level of the ontologies
was analyzed within all experiments, based on measures such as number of concepts,
number of concepts at the top level (i.e. root concepts, with no other superclass but
owl:Thing), number of subclass axioms and properties, and average depth of the tax-
onomy, as suggested by both Gangemi et al. [25] and Yao et al. [60]. Two separate ap-

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 275

proaches for taxonomic evaluation [31,33], were used when feasible. For the last two
experiments, a sample of the elements were evaluated due to the size of the ontologies.

To evaluate functional and usability characteristics, i.e. the content of the ontologies,
a subset of the OntoMetric framework [38] (only the dimension content) was used in
the SEMCO experiment. In the JIBSNet and FAO cases the evaluation was performed
using a random sample of classes and properties, whereby the same factors were not ap-
plicable. Instead individual assessment of the concept and property sample was done by
domain experts (or ontology engineers in the FAO case). Through a graphical illustration
of the concepts, their placement in the taxonomy, and the properties associated to them
through axioms, the experts were asked to classify them into one of five categories rang-
ing from essential (i.e. highly relevant for inclusion in the ontology) to incorrect (i.e. not
to be included). Their individual opinions were weighted together, resulting in an overall
category for each element as either correct, unsure, or incorrect.

For a more thorough discussion of the results, the reader is referred to previous work
by Blomqvist [4], here we only summarize the main findings. From the SEMCO ex-
periment we see a clear difference between OntoCase and naive methods for CP reuse.
Primarily related to the ability to abstract, hence the ontology is given a new top struc-
ture. Although it is not inherently a positive feature to include more abstract concepts, in
the specific case of enriching very shallow ontologies this turned out to be an improve-
ment. When considering the ‘correctness’ (according to the scale presented above), in
the JIBSNet case the fraction of ‘correct’ concepts on the topmost levels of the taxon-
omy increased from 33% in the input ontology, to 58% after executing OntoCase. The
reason for making this distinction (i.e. ‘top concepts’) was to show that even the top
structure, where most of the pattern classes and properties were added, is reasonable.
In total, the amount of ‘correct’ concepts increased from 27% to 53%, and the amount
of correct properties from 51% to 61%. When considering the agricultural ontologies
of the third experiment, we noted an average increase in property ‘correctness’ of about
11%. It was concluded that it is in particular with respect to the ontology structure (e.g.
properties, axiomatization) OntoCase improves the input ontology. When compared to
manual methods the automatic approach of course does not perform as well, but it has
some merits, especially compared to manually constructing an ontology only based on
similar (textual) sources. For example, more properties were included in the ontologies
constructed by OntoCase, even compared to manual construction. Evaluation of the tax-
onomy, using several methods [31,33], showed comparable levels of correctness between
all ontologies.

To summarize these results we can conclude that even a simple method such as On-
toCase, i.e., applying mainly state-of-the-art ontology matching techniques, is able to
improve learnt ontologies, based on CPs. The main merit is the added structure. A gen-
eral top structure is introduced, adding some of the missing general background knowl-
edge not found explicitly in a text corpus. These improvements are achieved without in-
creasing the error-rate of the ontology elements. These experiments can be viewed as an
indication of the potential of utilizing CPs in OL, however more research is still needed,
e.g., concerning how to take task-related ontology requirements into account when auto-
matically reusing CPs.

276 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

4.2. The FRED Method

The FRED API [18] builds on Boxer [8], an implementation of DRT (Discourse Repre-
sentation Theory [35]) for deep parsing of text, by enhancing frame detection and adding
transformation of DRT structures (DRS) into OWL-RDF ontologies. FRED is based on
an highly configurable, rule-based mapping mechanism, which links Boxer meta-model
primitives, VerbNet [36] and FrameNet roles [2], domain-lexicon-derived concepts, ex-
tracted types, and named entities, to Semantic Web vocabularies such as the OWL re-
alizations of CPs. As a consequence, FRED performs frame-driven extraction of ‘situa-
tions’ from NL, without using a model trained over domain-specific data. The productive
set of Situation-based CPs10 can therefore be easily specialized by using it.

When requested, FRED attempts to detect FrameNet frames based on thematic roles
assigned to event relations in DRS. The detection technique largely relies on existing
Boxer functionalities, but frame detection function has been enhanced, with results that
are comparable11 to the results of the state-of-the-art frame detection tool, Semafor [15]
on the shared Task 19 of SemEval07 (cf. [18] for details). However, the efficiency of
FRED is superior, which makes frame detection practicable for real-world applications.
Frames can also be viewed as Description-Situation-based CPs12.

FRED is a modular semantic RESTful framework that, given an input text, produces
OWL and RDF formal representations based on heuristics that map the DRS output into
OWL based on Logical ODPs. On one hand, the heuristics exploit the similarity between
DRS first-order logic-like syntax and semantics, as well as between DRS events and
neo-Davidsonian reification of n-ary relations, which is also recommended as a Logical
ODP in description logics (and OWL) design. On the other hand, heuristics are used
to solve several issues resulting from typical assumptions of DRT or hardly resolvable
ambiguities in NL, e.g.:

• DRS pervasively creates variables as discourse referents, which create redundant
anonymous individuals from the viewpoint of OWL design practices,

• the default (implicit) quantification in DRT is existential, except when explicit
universal quantification is lexicalized; but this conflicts with Lexico-syntactic
ODPs, e.g., for definitional constructions,

• OWL restrictions need to be ‘reconstructed’ from sparse DRS constructs,
• subsumption must be derived from different constructs, e.g., co-reference axioms,
• terminology extraction is mildly implemented in Boxer, therefore other (e.g., co-

referential) rules need to be enforced.

Generally speaking, FRED deals with issues such as: What is the difference between
similar sentences in terms of DRT vs. DL? When does a sentence express a concepts vs.
a fact on the grounds of DRT? What logical form should DRS boxing correspond to in a
DL? What are the boundaries of a (domain) term? A sample FRED output graph can be
viewed in Figure 3. As the figure illustrates, given the example input sentence, the output

10The Situation CP is a CP instantiation of the n-ary relation Logical ODP for OWL, its description and
OWL building block can be found at: http://ontologydesignpatterns.org/wiki/Submissions:Situation

11Precision when accepting partially correct detection (partially correct means that more specific or more
generic frames are accepted) is for both around .75, recall is .58 for FRED vs. .75 for Semafor. The difference
is partly due to that Semafor has been trained on the same FrameNet corpus as the one in the SemEval task.

12The Description-Situation CP enables a dual representation of situations, and their parametrized descrip-
tions, cf. http://www.ontologydesignpatterns.org/cp/owl/descriptionsituation.owl

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 277

Figure 3. A graph of FRED RDF output for the sentence: Miles Davis was an American jazz musician who
played the trumpet since he was 13.

.

is a ‘situation’-instance (i.e. an instance of the Situation-class belonging to the Situation
CP), connected to a set of elements that defines the situation, e.g., the agent involved,
the theme, and the time duration. In summary, the FRED method shows the potential
of combining ODPs (both Logical ODPs and CPs) with linguistic resources and deep
parsing, in order to directly detect complex logical structures in NL texts, and transform
them into OWL ontologies.

5. Concluding Remarks

In this chapter we have introduced the notion of Ontology Design Patterns, and presented
the different types of ODPs available. In addition, we have discussed some challenges
in OL that could be addressed through the application of ODPs. Lexico-syntactic ODPs
have been used in OL for a long time, although it is only now that they are being de-
scribed and shared in catalogues. In combination with Content or Logical ODPs, they
can also support reengineering from textual resources into ontologies, which is one of the
core problems for OL. Currently, such explicitly described Reengineering ODPs mainly
exist for structured sources, but most likely this will change in the future. The last sec-
tion exemplifies the application of ODPs to improve OL methods, an interesting future
direction of OL. We have also pointed to a number of repositories of different patterns
that could be discussed, reused and extended based on specific requirements from the OL
community. So far we did not see any attempt to apply more complex or abstract ODPs,
e.g. Architecture or Reasoning ODPs, in OL. Nevertheless, the requirements for apply-
ing such ODPs are there also for OL; the ontologies produced need not only to cover the
domain but also to support certain tasks, e.g. reasoning tasks, hence they need to provide
a certain logical structure, both on the micro and macro level. We conclude that ODPs
have the potential to both provide guidance for OL, in terms of task-focus and making
design choices available in a formalized manner, and act as reusable building blocks that
could raise the focus of OL from single elements to detection and composition of larger
and more complex components.

278 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

Acknowledgements

This work has been partly funded by the European Commission under grant agreement
FP7-ICT-2007-3/ No. 231527 (IKS - Interactive Knowledge Stack).

References

[1] Reem Al-Halimi, Robert C. Berwick, J. F. M. Burg, Martin Chodorow, Christiane Fellbaum, Joachim
Grabowski, Sanda Harabagiu, Marti A. Hearst, Graeme Hirst, Douglas A. Jones, Rick Kazman, Karen T.
Kohl, Shari Landes, Claudia Leacock, George A. Miller, Katherine J. Miller, Dan Moldovan, Naoyuki
Nomura, Uta Priss, Philip Resnik, David St-Onge, Randee Tengi, Reind P. van de Riet, and Ellen
Voorhees. WordNet - An Electronic Lexical Database. MIT Press, 1998.

[2] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The berkeley FrameNet project. In Proceedings
of the 17th International Conference on Computational Linguistics, volume 1, pages 86–90, Montreal,
Quebec, Canada, 1998. Association for Computational Linguistics.

[3] Eva Blomqvist. OntoCase-Automatic Ontology Enrichment Based on Ontology Design Patterns. In
ISWC 2009, 8th International Semantic Web Conference, Chantilly, VA, USA, October 25-29, 2009.
Proceedings, volume 5823 of Lecture Notes in Computer Science, pages 65–80. Springer, 2009.

[4] Eva Blomqvist. Semi-automatic Ontology Construction based on Patterns. PhD thesis, Linköping
University, Department of Computer and Information Science at the Institute of Technology, 2009.

[5] Eva Blomqvist, Valentina Presutti, and Aldo Gangemi. Experiments on Pattern-Based Ontology Design.
In In Proceeding of K-CAP 2009, pages 41–48, Redondo Beach, California, USA, 2009. ACM.

[6] Eva Blomqvist, Valentina Presutti, Aldo Gangemi, and Enrico Daga. Experimenting with eXtreme
Design. In In Proceedings of the Conference on Knowledge Engineering and Knowledge Management
(EKAW2010), Redondo Beach, California, USA, 2010. Springer.

[7] Eva Blomqvist and Kurt Sandkuhl. Patterns in Ontology Engineering: Classification of Ontology Pat-
terns. In Proceedings of the International Conference on Enterprise Information Systems 2005, Miami
Beach, Florida, May 24-28 2005.

[8] Johan Bos. Wide-coverage Semantic Analysis with Boxer. In In STEP 2008 Conference Proceedings,
Research in Computational Semantics, page 277Ð286. College Publications, 2008.

[9] Christopher Brewster, Fabio Ciravegna, and Yorick Wilks. Background and foreground knowledge in
dynamic ontology construction. In Proc. Semantic Web Workshop, SIGIR, 2003.

[10] Dan Brickley and Libby Miller. The Friend Of A Friend (FOAF) vocabulary specification, July 2005.
[11] Philipp Cimiano. Ontology Learning and Population from Text - Algorithms, Evaluation and Applica-

tions. Springer, 2006.
[12] Bonaventura Coppola, Aldo Gangemi, Alfio Gliozzo, Davide Picca, and Valentina Presutti. Frame

Detection over the Semantic Web. In Proceedings of the Fifth European Semantic Web Conference.
Springer, 2009.

[13] Bonaventura Coppola, Aldo Gangemi, Alfio Gliozzo, Davide Picca, and Valentina Presutti. Learning
domain ontologies by corpus-driven framenet specialization. In Johanna Völker and Jens Lehmann,
editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press,
2012.

[14] Oscar Corcho, Catherine Roussey, Luis Manuel Vilches Blazquez, and Ivan Perez. Pattern-based owl
ontology debugging guidelines. In Proceedings of WOP2009 collocated with ISWC2009, volume 516.
CEUR-WS.org, November 2009.

[15] Dipanjan Das, Nathan Schneider, Desai Chen, and Noah A. Smith. Probabilistic Frame-semantic Pars-
ing. In Proceedings of HLT ’10 - Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, 2009.

[16] Guadalupe Aguado de Cea, Asunción Gómez-Pérez, Elena Montiel-Ponsoda, and Mari Carmen Suárez-
Figueroa. Using linguistic patterns to enhance ontology development. In Conference on Knowledge En-
gineering and Ontology Development (KEOD 2009), editors, Proceedings of the International Confer-
ence on Knowledge Engineering and Ontology Development (KEOD 2009)., 2009.

[17] Rim Djedidi and Marie-Aude Aufaure. Onto-evoal an ontology evolution approach guided by pattern
modeling and quality evaluation. In Sebastian Link and Henri Prade, editors, Foundations of Information

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 279

and Knowledge Systems, volume 5956 of Lecture Notes in Computer Science, pages 286–305. Springer
Berlin / Heidelberg, 2010.

[18] Francesco Draicchio. Frame-driven Extraction of Linked Data and Ontologies from Text. Master’s
Thesis. University of Bologna Electronic Press, University of Bologna, Dept. of Computer Science,
2012.

[19] Ontology Engineering and Patterns Task Force (OEP). http://www.w3.org/2001/sw/BestPractices/OEP/
(Accessed: 2011-03-30).

[20] Aldo Gangemi. Ontology Design Patterns for Semantic Web Content. In The Semantic Web ISWC 2005,
volume 3729 of Lecture Notes in Computer Science. Springer, 2005.

[21] Aldo Gangemi. What’s in a schema? A formal metamodel for ECG and FrameNet. Studies in Natural
Language Processing. Cambridge University Press, 2010.

[22] Aldo Gangemi. Back to the Future: Frame Representation and Semantic Technologies. Cahiers de
Lexicologie, 99(2), 2012.

[23] Aldo Gangemi, Carola Catenacci, and Massimo Battaglia. Inflammation ontology design pattern: an
exercise in building a core biomedical ontology with descriptions and situations. In Domenico Maria
Pisanelli, editor, Ontologies in Medicine. IOS Press, Amsterdam, 2004.

[24] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann. Modelling ontology eval-
uation and validation. In ESWC, pages 140–154, 2006.

[25] Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, and Jos Lehmann. Qood grid: A
metaontology-based framework for ontology evaluation and selection. In Proc. of the 4th International
EON Workshop, Located at WWW2006, 2006.

[26] Aldo Gangemi, Frehiwot Fisseha, Johannes Keizer, Jos Lehmann, Anita Liang, Ian Pettman, Margherita
Sini, and Marc Taconet. A core ontology of fishery and its use in the fishery ontology service project.
In Aldo Gangemi and Stefano Borgo, editors, EKAW04 Workshop on Core Ontologies in Ontology En-
gineering, Northamptonshire, UK, 2004. CEUR Proceedings Vol. 118.

[27] Aldo Gangemi, Roberto Navigli, and Paola Velardi. The ontowordnet project: Extension and axiomati-
zation of conceptual relations in wordnet. In CoopIS/DOA/ODBASE, pages 820–838, 2003.

[28] Aldo Gangemi, Domenico M. Pisanelli, and Geri Steve. A formal ontology framework to represent norm
dynamics. In In Proceedings of the Second International Workshop on Legal Ontologies (LEGONT,
2001.

[29] Aldo Gangemi and Valentina Presutti. Ontology Design Patterns. In Handbook on Ontologies, 2nd Ed.,
International Handbooks on Information Systems. Springer, 2009.

[30] Aldo Gangemi and Valentina Presutti. Towards a pattern science for the semantic web. Semantic Web,
1(1-2):61–68, 2010.

[31] Asunción Gómez-Pérez. Evaluation of Taxonomic Knowledge in Ontologies and Knowledge Bases. In
Proc. of KAW’99, volume 2, Banff, 1999.

[32] Michael Gruninger and Mark S. Fox. The role of competency questions in enterprise engineering. In
Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory and Practice, 1994.

[33] Nicola Guarino and Chris Welty. Evaluating Ontological Decisions with OntoClean. Communications
of the ACM, 45(2):61–65, February 2002.

[34] Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the
Fourteenth International Conference on Computational Linguistics, pages 539–545, Nantes, France,
July 1992.

[35] Hans Kamp and Uwe Reyle. From Discourse to Logic: Introduction to Model-theoretic Semantics of
Natural Language, Formal Logic and Discourse Representation Theory. In Sebastian Link and Henri
Prade, editors, Foundations of Information and Knowledge Systems, volume 42 of Studies in Linguistics
and Philosophy. Kluwer / Dordrecht, 1993.

[36] Karin Kipper, Anna Korhonen, Neville Ryant, and Martha Palmer. Extending verbnet with novel verb
classes. In Proc. of the Fifth International Conference on Language Resources and Evaluation (LREC
2006), Genoa, Italy, 2006.

[37] Markus Krötzsch and Ian Horrocks Frantisek Simančík. A description logic primer. In Johanna Völker
and Jens Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA
Heidelberg / IOS Press, 2012.

[38] Adolfo Lozano-Tello and Asunción Gómez-Pérez. ONTOMETRIC: A Method to Choose the Appro-
priate Ontology. Journal of Database Management, 15(2), April-June 2004.

[39] Alexander Maedche. Ontology Learning for the Semantic Web. Kluwer Academic Publishers, 2002.

280 Blomqvist et al. / Ontology Design Patterns in Ontology Learning

[40] Diana Maynard and Kalina Bontcheva. Natural language processing. In Johanna Völker and Jens
Lehmann, editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg /
IOS Press, 2012.

[41] Diana Maynard, Adam Funk, and Wim Peters. Using lexico-syntactic ontology design patterns for
ontology creation and population. In Proceedings of WOP2009 collocated with ISWC2009, volume 516.
CEUR-WS.org, November 2009.

[42] Peter Mika, Daniel Oberle, Aldo Gangemi, and Marta Sabou. Foundations for service ontologies: Align-
ing owl-s to dolce. In S. Staab and P. Patel-Schneider, editors, Proceedings of the World Wide Web
Conference (WWW2004), Semantic Web Track, 2004.

[43] Alistair Miles and Dan Brickley. SKOS core guide. W3C working draft, W3C, November 2005.
Published online on November 2nd, 2005 at http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-
20051102/.

[44] Nadejda Nikitina, Sebastian Rudolph, and Sebastian Blohm. Refining ontologies by pattern-based com-
pletion. In Eva Blomqvist, Kurt Sandkuhl, Francois Scharffe, and Vojtech Svatek, editors, Proceedings
of the Workshop on Ontology Patterns (WOP 2009), collocated with the 8th International Semantic Web
Conference (ISWC-2009), Washington D.C., USA, 25 October, 2009, volume 516. CEUR Workshop
Proceedings, 2009.

[45] Andrea G. Nuzzolese, Aldo Gangemi, and Valentina Presutti. Gathering Lexical Linked Data and
Knowledge Patterns from FrameNet. In K-CAP, 2011.

[46] Andrea G. Nuzzolese, Aldo Gangemi, Valentina Presutti, and Paolo Ciancarini. Fine-tuning triplication
with semion. In V. Presutti, V. Svatek, and F. Share, editors, EKAW workshop on Knowledge Injection
into and Extraction from Linked Data (KIELD2010), volume 631. CEUR Workshop Proceedings, 2010.

[47] ODP Portal. Content odp submissions. http://ontologydesignpatterns.org/wiki/Submissions:ContentOPs
(Accessed: 2011-03-30).

[48] ODP Portal. Lexico-syntactic odp submissions. http://ontologydesignpatterns.org/wiki/Submissions:
LexicoSyntacticODPs (Accessed: 2011-03-30).

[49] ODP Portal. Logical odp submissions. http://ontologydesignpatterns.org/wiki/Submissions:LogicalODPs
(Accessed: 2011-03-30).

[50] ODP Portal. Reengineering odp submissions. http://ontologydesignpatterns.org/wiki/Submissions:
ReengineeringODPs (Accessed: 2011-03-30).

[51] Fabian Suchanek. Information extraction for ontology learning. In Johanna Völker and Jens Lehmann,
editors, Perspectives of Ontology Learning, Studies on the Semantic Web. AKA Heidelberg / IOS Press,
2012.

[52] Vojtěch Svátek, Ondrej Šváb Zamazal, and Valentina Presutti. Ontology naming pattern sauce for (hu-
man and computer) gourmets. In Proceedings of the Workshop on Ontology Patterns (WOP 2009), col-
located with the 8th International Semantic Web Conference (ISWC-2009), Washington D.C., USA, 25
October, 2009, volume 516. CEUR Workshop Proceedings, 2009.

[53] Manchester University. Ontology design patterns (odps) public catalog.
http://www.gong.manchester.ac.uk/odp/html/index.html (Accessed: 2011-03-30).

[54] Frank van Harmelen, Annette ten Teije, and Holger Wache. Knowledge engineering rediscovered: To-
wards reasoning patterns for the semantic web. In N. Noy, editor, Proceedings of The Fifth International
Conference on Knowledge Capture, pages 81–88. ACM, september 2009.

[55] Paola Velardi, Roberto Navigli, Alessandro Cucchiarelli, and Francesca Neri. Evaluation of OntoLearn,
a methodology for automatic population of domain ontologies. In Paul Buitelaar, Philipp Cimiano, and
Bernardo Magnini, editors, Ontology Learning from Text: Methods, Applications and Evaluation. IOS
Press, 2006.

[56] Johanna Völker, Peter Haase, and Pascal Hitzler. Learning expressive ontologies. In Ontology Learning
and Population: Bridging the Gap between Text and Knowledge, Frontiers in Artificial Intelligence and
Applications. IOS Press, 2008.

[57] Johanna Völker, Pascal Hitzler, and Philipp Cimiano. Acquisition of OWL DL Axioms from Lexical
Resources. In Enrico Franconi, Michael Kifer, and Wolfgang May, editors, Proceedings of the 4th
European Semantic Web Conference (ESWC’07), Lecture Notes in Computer Science. Springer, 2007.

[58] Ondřej Šváb Zamazal, Vojtěch Svátek, and Luigi Iannone. Pattern-based ontology transformation ser-
vice exploiting oppl and owl-api. In Philipp Cimiano and H. Pinto, editors, Knowledge Engineering
and Management by the Masses, volume 6317 of Lecture Notes in Computer Science, pages 105–119.
Springer Berlin / Heidelberg, 2010.

Blomqvist et al. / Ontology Design Patterns in Ontology Learning 281

[59] Ondřej Šváb Zamazal, Vojtěch Svátek, François Scharffe, and Jérôme David. Detection and transfor-
mation of ontology patterns. In Ana Fred, Jan L. G. Dietz, Kecheng Liu, and Joaquim Filipe, editors,
Knowledge Discovery, Knowlege Engineering and Knowledge Management, volume 128 of Communi-
cations in Computer and Information Science, pages 210–223. Springer Berlin Heidelberg, 2011.

[60] Haining Yao, Anthony M. Orme, and Letha Etzkorn. Cohesion Metrics for Ontology Design and Appli-
cation. Journal of Computer Science, 1(1):107–113, 2005.

